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Let I be a compactd-dimensional manifold, letX:7 — R be a
Gaussian process with regular paths andgl), u € R, be the probability
distribution function of sup.; X (¢).

We prove that under certain regularity and nondegeneracy conditions,
Fy is a Clfunction and satisfies a certain implicit equation that permits
to give bounds for its values and to compute its asymptotic behavior as
u — +oo. This is a partial extension of previous results by the authors in
the casel = 1.

Our methods use strongly the so-called Rice formulae for the moments of
the number of roots of an equation of the fod¥) = x, whereZ: 1 — R4
is a random field and is a fixed point inR?. We also give proofs for this kind
of formulae, which have their own interest beyond the present application.

1. Introduction and notation. Let I be ad-dimensional compact manifold
and letX:I — R be a Gaussian process with regular paths defined on some
probability spacg2, A, P). Define M; = sup.; X(¢) and F;(u) = P{M; < u},

u € R, the probability distribution function of the random varialMg. Our aim is
to study the regularity of the functiof; whend > 1.

There exist a certain number of general results on this subject, starting from the
papers by Ylvisaker (1968) and Tsirelson (1975) [see also Weber (1985), Lifshits
(1995), Diebolt and Posse (1996) and references therein]. The main purpose of this
paper is to extend td > 1 some of the results about the regularity of the function
u ~ Fr(u) in Azais and Wschebor (2001), which concern the easel.

Our main tool here is the Rice formula for the moments of the number of roots
NMZ(I) of the equatiorZ (t) = u on the sef, where{Z(r):¢ € I} is anR?-valued
Gaussian field] is a subset ofR? andu is a given point inR?. Ford > 1, even
though it has been used in various contexts, as far as the authors know, a full proof
of the Rice formula for the moments 8fZ (1) seems to have only been published
by Adler (1981) for the first moment of the number of critical points of a real-
valued stationary Gaussian process withrdimensional parameter, and extended
by Azais and Delmas (2002) to the case of processes with constant variance.
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Cabaia (1985) contains related formulae for random fields; see also the Ph.D.
thesis of Konakov cited by Piterbarg (1996b). In the next section we give a more
general result which has an interest that goes beyond the application of the present
paper. At the same time the proof appears to be simpler than previous ones. We
have also included the proof of the formula for higher moments, which in fact
follows easily from the first moment. Both extend with no difficulties to certain
classes of non-Gaussian processes.

It should be pointed out that the validity of the Rice formula for Lebesgue-
almost everyu € R¢ is easy to prove [Brillinger (1972)] but this is insufficient
for a certain number of standard applications. For example, asdunie~ R
is a real-valued random process and one is willing to compute the moments of
the number of critical points oK. Then, we must take foZ the random field
Z(t) = X'(r) and the formula one needs is for the precise value0 so that a
formula for almost every does not solve the problem.

We have added the Rice formula for processes defined on smooth manifolds.
Even though the Rice formula is local, this is convenient for various applications.
We will need a formula of this sort to state and prove the implicit formulae for the
derivatives of the distribution of the maximum (see Section 3).

The results on the differentiation df; are partial extensions of Azais and
Wschebor (2001). Here, we have only considered the first derivétive). In
fact, one can push our procedure one step more and prove the existdrjoe pf
as well as some implicit formula for it. But we have not included this in the present
paper since formulae become very complicated and it is unclear at present whether
the actual computations can be performed, even in simple examples. The technical
reason for this is that, following the present method, to compifi@), one needs
to differentiate expressions that contain the “helix process” that we introduce
in Section 4, containing singularities with unpleasant behavior [see Azais and
Wschebor (2002)].

For Gaussian fields defined ondadimensional regular manifoldi(> 1) and
possessing regular paths we obtain some improvements with respect to classical
and general results due to Tsirelson (1975) for Gaussian sequences. An example
is Corollary 5.1, which provides an asymptotic formula #®f(x) asu — +oo
which is explicit in terms of the covariance of the process and can be compared
with Theorem 4 in Tsirelson (1975) where an implicit expression depending on
the functionF itself is given.

We use the following notation:

If Z is a smooth functionU ~ RY, U a subset ofR?, its successive
derivatives are denoted’, Z”,...,Z® and considered, respectively, as lin-

ear, bilinear, ..., k-linear forms onR?. For example,X® (1)[v1, vo, v3] =

3X(t) Fog . . . .
i i o1 5w vivavh. The same notation is used for a derivative atPaman-

ifold.
1,91 and I are, respectively, the interior, the boundary and the closure of the
set/. If £ is a random vector with values iR, whenever they exist, we denote
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by pe (x) the value of the density d@f at the pointx, by E(§) its expectation and by
Var(€) its variance—covariance matrix.is Lebesgue measure.df v are points
in R4, (u, v) denotes their usual scalar product dmd the Euclidean norm af.
For M ad x d real matrix, we denotg¢M || = sup =1 |Mx].

Also for symmetricM, M > 0 (resp.M < 0) denotes thaM is positive definite
(resp. negative definite)A° denotes the complement of the sét For realx,
xT =supx, 0), x~ = sup—x, 0).

2. Riceformulae. Our main results in this section are the following:
THEOREM2.1. LetZ:I~ R?, I acompactsubset®?, be arandom field

andu € R4. Assume that

(AQ) Z is Gaussian

(A1) t ~» Z(1) is as. of classC?.

(A2) For eachr € I, Z(r) has a nondegenerate distributidine., Var(Z(¢)) > 0].
(A3) P(3rel,Z(t) =u,de(Z'(t)) =0} =0.

(A4) A(31)=0.

Then
) E(NA (D)) = /1 E(|deq(Z'(1))|/Z(t) = u) pz) (w) dt,
and both members are finite

THEOREMZ2.2. Letk, k > 2,be an integerAssume the same hypotheses as in
Theoren.1except for(A2), which is replaced by

(A’2) forr, ..., 1 € I pairwise different values of the parametibe distribution
of (Z(t1), ..., Z(tx)) does not degenerate [R?)*. Then

E[(NZ(D)(NZ(I) —1)--- (NZ(I) — k +1)]

k
(2) :/Ik E<H |de'(Z/(t‘/'))|/Z(tl):"'IZ([k):u)
j=1
X PZ(t),n Za) W, o u) dty - - - diy,

where both members may be infinite

REMARK. Note that Theorem 2.1 (resp. Theorem 2.2) remains valid if one
replaces/ by 7 in (1) or (2) and if hypotheses (A0)—(A2) [resp.’@] and (A3)
are verified. This follows immediately from the above statements. A standard
extension argument shows that (1) holds true if one repladgsany Borel subset
of I.
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Sufficient conditions for hypothesis (A3) to hold are given by the next
proposition. Under condition (a) the rdsis proved in Lemma 5 of Cucker and
Wschebor (2003). Under condition (b) the proof is straightforward.

PROPOSITION2.1. LetZ:I ~ R4, I a compact subset &®?, be a random
field with paths of clas€* andu € R¢. Assume that

() pzu(x) <C forall t € I andx in some neighborhood af.
(i) Atleast one of the two following hypotheses is satisfied

(@) as. 1~ Z(1) is of classC?,
(b) «(8) = SURcs rev) P{|detZ'(r))| < 8§/Z() = x} - 0 as § — O,
whereV (u) is some neighborhood af

Then(A3) holds true
The following lemma is easy to prove.

LEMMA 2.1. With the notation of Theore@ 1, suppose tha(Al) and (A4)
hold true and thatpz(;,(x) < C for all € I andx in some neighborhood of.
ThenP{NZ(d1) # 0} = 0.

LEMMA 2.2. LetZ:I — R4, I a compact subset aR?, be a ! function
andu a point in R?. Assume that

(@) infzezfl({u})()Lmin(zl(f))) >A>0,
(b) wz(n) <A/d,

where wy: is the continuity modulus of’, defined as the maximum of the
continuity moduli of its entriesimin(M) is the square root of the smallest
eigenvalue oM M andy is a positive number

Then if 11, 1o are two distinct roots of the equatiofi(r) = u such that the
segmentfr, t2] is contained in/, the Euclidean distance betweenand #, is
greater tham.

PROOF Setii = |ty — tof|, v = ﬁ Using the mean value theorem, for

i=1,...,d, there exists; € [t1, 2] such tha{Z’(§;,)v); =0. Thus
[(Z' ()| = (Z'(0)v); — (Z (E)v),|

d d
< NZ ik — Z' EDikllvk| < 0z/([) Y uel < oz (V.

k=1 k=1

In conclusion,A < Amin(Z'(11)) < I1Z'(1)v]| < wz/(i))d, which implies? > 7.
O
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PrROOF OFTHEOREM 2.1. Consider a continuous nondecreasing funciion
such thatF'(x) =0 forx < 1/2, F(x) =1 forx > 1. Let A andn be positive real
numbers. Define the random function

@ wsw = F( 55 0 BnnlZ 0) +126)—al]) x (1-F (Sozm) ).
andthesel_, ={rel:|t —sl|>n,Vs¢I}. If ap,(u)>0 andNuZ(I_,,) does
not vanish, conditions (a) and (b) in Lemma 2.2 are satisfied. Hence, in each
ball with diameter3 centered at a point ii_,, there is at most one root of the
equationZ(¢t) = u, and a compactness argument shows N)ﬁ(l_,,) is bounded
by a constan€ (n, I), depending only o and on the sef.

Take now any real-valued nonrandom continuous funcfiomR? — R with
compact support. Because of the coarea formula [Federer (1969), Theorem 3.2.3],
since a.sZ is Lipschitz andva ,(u) - f(u) is integrable,

| FNEU s du= [ |delZ 0)]fZ)as,Z0)d.

-1

Taking expectations in both sides,

/:Rd f(u)E(NMZ(I—U)O‘A,n(M)) du

:/ f(u)du/ E(|det(Z'(1))|aa.,(w)/Z(1) = u) pz)(u) dt.
Rd I

-n

It follows that the two functions

() E(NZU_p)ana 1)),
(i) [, EQdetZ ()laa,n@)/Z@) =u)pza(w)dt,

coincide Lebesgue-almost everywhere as functions of

Let us prove that both functions are continuous, hence they are equal for
everyu € R4.

Fix u = ug and let us show that the function in (i) is continuousuat ug.
Consider the random variable inside the expectation sign in (i). Almost surely,
there is no point in Z~1({ug}) such that de&tZ’(r)) = 0. By the local inversion
theorem, Z(-) is invertible in some neighborhood of each point belonging to
Z~1({up}) and the distance fror(r) to ug is bounded below by a positive number
for t € I_, outside of the union of these neighborhoods. This implies that, a.s.,
as a function of«, N7 (I_,) is constant in some (random) neighborhood:ef
On the other hand, it is clear from its definition that the function: aa , () is
continuous and bounded. We may now apply dominated convergemce>asy,
sinceNuZ(I_n)aA,,,(u) is bounded by a constant that does not depengl.on

For the continuity of (i), it is enough to prove that, for each the conditional
expectation in the integrand is a continuous functiom oNote that the random
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variable |det(Z'(1))|aa ., (1) is a functional defined od(Z(s), Z'(s)):s € I}.
Perform a Gaussian regression(@f(s), Z'(s)) :s € I with respect to the random
variableZ (1), that is, write

Z(s)=Y'(s)+a' ()Z(),
Z5(s) =Yi(s) + BL()Z(), j=1,...,d

where Z/ (s), j=1,...,d, denote the columns of’(s), Y'(s) and Y’(s)
are GaUSS|an vectors mdependentZi’t) for eachs € I, and the regressmn
matricesa’ (s), ﬁ (s), j=1,...,d, are continuous functions of, ¢ [take into
account (A2)]. Replacmg in the conditional expectation, we are now able to get
rid of the conditioning, and using the fact that the moments of the supremum of an
a.s. bounded Gaussian process are finite, the continuityaliows by dominated
convergence.

So, now we fixu € R¢ and make; | 0, A | 0 in that order, both in (i) and (ii).
For (i) one can use Beppo Levi's theorem. Note that almost suvelyr_,) 1
NZ(I) = N”(I), where the last equality follows from Lemma 2.1. On the other
hand, the same Lemma 2.1 plus (A3) imply together that, almost surely,

jg;[kmin(z/(s)) +11Z(s) — ’4”] >0
so that the first factor in the right-hand side of (3) increases toA dscreases to
zero. Hence by Beppo Levi’'s theorem,

Ler lim E(NZ(I_)aa () = E(NZ(D)).

For (ii), one can proceed in a similar way after deconditioning obtaining (1). To
finish the proof, remark that standard Gaussian calculations show the finiteness of
the right-hand side of (1).O

PROOF OFTHEOREM2.2. For eacld > 0, define the domain
Dis(D)={(tr,....t) e IX,|lt; —tjl| =8 iF i #j,i,j=1,....k)
and the procesg
(t1, ..., %) € Dg s(I) ~ Z(tl, e t) =(Z(11), ..., Z(y)).

It is clear thatZ satisfies the hypotheses of Theorem 2.1 for every value
W, ..., u) e (RH*. So,

E[Ng,,‘.‘,m(Dk,sU))]

k
(4) = E(H |det(Z'(t)|/Z(t) = -+ = Z (1) =u>
Dy,s(I)

j=1

X PZ(ty),o Z () Uy o u) dty - - dit.
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To finish, lets | 0, note that(N/(I)(NS(I) — 1)...(NJ(I) —k + 1) is
the monotone limit ofNéwu)(Dkyg(l)), and that the diagonaby(I) = {(1,

... ) € I, 1; = t; for some pait, j, i # j} has zero Lebesgue measuréRr)~.
O

REMARK. Even thought we will not use this in the present paper, we point
out that it is easy to adapt the proofs of Theorems 2.1 and 2.2 to certain classes of
non-Gaussian processes.

For example, the statement of Theorem 2.1 remains valid if one replaces
hypotheses (A0) and (A2), respectively, by the following (BO) and (B2):

(BO) Z(t) = H(Y(r)) for t € I, whereY : I — R" is a Gaussian process with
¢! paths such that for eacte I, Y (r) has a nondegenerate distribution and
H:R"— R is ac!function.

(B2) For eachr € I, Z(¢) has a densityz) which is continuous as a function
of (¢, u).

Note that (BO) and (B2) together imply that> 4. The only change to be
introduced in the proof of the theorem is in the continuity of (ii) where the
regression is performed dn(¢) instead ofZ(z).

Similarly, the statement of Theorem 2.2 remains valid if we replace (AO) by
(BO) and add the requirement that the joint densityZf4),..., Z(#) be a
continuous function ofy, .. ., rx, u for pairwise differenty, ..., #.

Now consider a process from 7 to R and define

M,ffl(l) =t{t € I, X(-) has a local maximum at the pointX (¢) > u},
M ,(D=8{tel,X'(1)=0,X(t)>u}.

The problem of writing Rice formulae for the factorial moments of these random
variables can be considered as a particular case of the previous one and the
proofs are the same, mutatis mutandis. For further use, we state as a theorem the
Rice formula for the expectation. For breavity we do not state the equivalent of
Theorem 2.2, which holds true similarly.

THEOREM2.3. LetX:I~+ R, I acompactsubset ®®?, be a random field
Letu € R, defineM,jfi(I), i = 1,2, as aboveFor eachd x d real symmetric
matrix M, we puts1(M) := | de{( M) |10, 2(M) := | de{ M)|.

Assume

(AO) X is Gaussian

(A"1) as. 1~ X (1) is of classC?,

(A”2) foreachr € I, X (1), X'(r) has a nondegenerate distribution ! x R?,

(A"3) eitheras.t ~ X () is of classC® or a(8) = SUP¢; ey (o) P et X” ()] <
8/X'(t) =x") - 0ass — 0,whereV (0) denotes some neighborhoodf
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(A4) oI has zero Lebesgue measure
Thenfori =1, 2,

X.(D) / dx f (X)X (0 = x. X' (1) = 0) pxqoy.x7(0) (x. ) dit

and both members are finite

2.1. Processes defined on a smooth manifoldet U be a differentiable
manifold (by differentiable we mean infinitely differentiable) of dimensibn
We suppose thal/ is orientable in the sense that there exists a nonvanishing
differentiabled-form € on U. This is equivalent to assuming that there exists
an atlas((U;, ¢;); i € I) such that for any pair of intersecting chatis;, ¢;),
(U;. ;). the Jacobian of the maf) o ¢ * is positive.

We consider a Gaussian stochastic process with real values®anuhths

={X(t):t € U} defined on the manifold’. In this section we first write Rice
formulae for this kind of processes without further hypothese& olvhenU is
equipped with a Riemannian metric, we give, without details and proof, a nicer
form. Other forms exist also whei is naturally embedded in a Euclidean space,
but we do not need this in the sequel [see Azais and Wschebor (2002)].

We will assume that in every chaxt(s) and D X () have a nondegenerate joint
distribution and that hypothesis (8) is verified. ForS a Borel subset ot/, the
following quantities are well defined and measuratulgffl(S), the number of

local maxima and\/llfz(S), the number of critical points.

PROPOSITION2.2. Fork =1, 2the quantity which is expressed in every chart
¢ with coordinatesy, ..., s; as

400 d
©)) / dxE(*(Y"(5))/Y (s) =x, Y'(s) = 0) py 5), v/(5)(x, 0) /\ dsi,
u i=1
whereY (s) is the process( written in the chartY = X o ¢»~1, defines ai-form
Q% on U and for every Borel sef c U,

[ 2t =B s).

PROOF Note that ad-form is a measure o/ whose image in each chart
is absolutely continuous with respect to Lebesgue mea,s\dqusi. To prove
that (5) defines @-form, it is sufficient to prove that its density with respect to
/\j-”:1 ds; satisfies locally the change-of-variable formula. (&Y, ¢1), (U2, ¢2)
be two intersecting charts and set

Us:= Ui NUsy; Yi:=Xog¢ % Y2:=Xog¢, H:=¢r0p"
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Denote bys! ands?,i =i, ..., d, the coordinates in each chart. We have

oY1 oY, 0H;
asl-l N ; 8si2, asl-l ’
2 2 . . 29y
0°Y1 _Z 0°Y, 0H; 0H; +ZBY2 0°H;/
as} 8s/1- N asl?, as]% 8sl-1 8s/1- asl?, 8sl-1 8s}.

iJ i

Thus at every point
Yish = (H'(D)" Y3,
Pryshy.v]sH 2 0) = Pyys2) yy(s2) (x, 0 det(H'(sY)| ™,
and at a singular point,
Y{(sh = (H' (sH) ¥ D H' (sY).

On the other hand, by the change-of-variable formula,
d d
N\ dst=|detH' (sY)| 7 N\ ds?.
i=1 i=1

Replacing in the integrand in (5), one checks the desired result.

For the second part again it suffices to prove it locally for an open subset
included in a unique chart. LéS, ¢) be a chart and let again(s) be the process
written in this chart. It suffices to check that

E(M,4(5))

(6) o +ood E5k Y” Y Y’ 0 0
_/M) mfu X EEH(Y())/ Y (5) = %, Y(s) = 0) pys).y7cs) (5. O.

Since MX(S) is equal to M) {¢(S)}, we see that the result is a direct
consequence of Theorem 2.3.

Even though in the integrand in (5) the product does not depend on the
parameterization, each factor does. When the manifdlés equipped with a
Riemannian metric it is possible to rewrite (5) as

+00
(7 / dx E(8k(V2X(s))/X(s) =x,VX(s) =0)px(s).vx(s) (x, 0)Vol,
u
whereV2X (s) andV X (s) are respectively the Hessian and the gradient read in an
orthonormal basis. This formula is close to a formula by Taylor and Adler (2002)

for the expected Euler characteristic.

REMARK. One can consider a number of variants of Rice formulae, in which
we may be interested in computing the moments of the number of roots of the
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equationZ () = u under some additional conditionshi§ has been the case in the
statement of Theorem 2.3 in which we have given formulae for the first moment
of the number of zeroes of’ in which X is bigger tharu (i = 2) and also the
real-valued procesk has a local maximum = 1).

We just consider below two additional examples of variants that we state here
for further reference. We limit the statements to random fields defined on subsets
of R<. Similar statements hold true when the parameter set is a general smooth
manifold. Proofs are essentially the same as the previous ones.

VARIANT 1. Assume thatZ, Z, are R%-valued random fields defined on
compact subseté;, o of R? and suppose thatZ;, I;), i = 1,2, satisfy the
hypotheses of Theorem 2.1 and that for every I; andz € I, the distribution
of (Z1(s), Z»(1)) does not degenerate. Then, for each paju, € R,

E(N/H(I)N2(I2))

1

8 = dtydr E(|det(Z1(r))||de{ Z5(12))|/ Z1(11) = u1, Za(t2) = u2)

I x1Ip

X PZ1(t1), Za(tp) (U1, U2).

VARIANT 2. LetZ, I beasinTheorem 2.1 and lebe areal-valued bounded
random variable which is measurable with respect tootheEgebra generated by
the processZ. Assume that for eache I, there exists a continuous Gaussian
processY’(s):s € I}, for eachs, t € I a nonrandom function’ (s) : R¢ — R4
and a Borel-measurable functign:©¢ — R where C is space of real-valued
continuous functions o equipped with the supremum norm, such that:

LéE=g(Y'(O)+ad'(HZ{)),

2. Y'(-) andZ(r) are independent,

3. for eachug € R, almost surely the functiont ~ g(Y'(-) + o' (-)u) is
continuous atr = ug.

Then the formula
E(NMZ(I)S;‘) :/IE(|det(Z/(t))|§/Z(z) =u)pzu(u)dt

holds true.

We will be particularly interested in the functign= 1, -, for somev € R.
We will see later on that it satisfies the above conditions under certain hypotheses
on the procesg.

3. First derivative, first form. Our main goals in this and the next section are
to prove existence and regularity of the derivative of the funciien F;(«) and,
at the same time, that it satisfies some implicit formulae that can be used to provide
bounds on it. In the following we assume thais ad-dimensionalc> manifold
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embedded inRY, N > d. o andé are respectively the geometric measures on
I andaI. Unless explicit statement of the contrary is made, the topologywiti
be the relative topology.

In this section we prove formula (10) fdt; («)—which we call “first form"—
which is valid fori-almost every:, under strong regularity conditions on the paths
of the processX. In fact, the hypothesis tha is Gaussian is only used in the
Rice formula itself and in Lemma 3.1 which gives a bound for the joint density
PX(s),X(1),X'(s),X'()- IN both places, one can substitute Gaussianity by appropriate
conditions that permit to obtain similar results.

More generally, it is easy to see that inequality (9) is valid under quite general
non-Gaussian conditions and implies that we have the following upper bound for
the density of the distribution of the random variabfe:

Fiu) < / EGL(X"(1))/ X (1) = u. X'(t) = 0) px(oy.x/( (1t O)or (d)
)
+ / LR (1))/ X (0) =, X'(1) = 0) py oy 1) (4, 005 (d),

where the functior8! has been defined in the statement of Theorem 2.3Xand
denotes the restriction d&f to the boundary!.

Even ford = 1 (one-parameter processes) aKidGaussian and stationary,
inequality (9) provides reasonably good upper boundsfar) [see Diebolt and
Posse (1996) and Azais and Wschebor (2001)]. We will see an example=f@r
at the end of this section.

In the next section, we are able to prove thatu) is a G function and
that formula (10) can be essentially simplified by getting rid of the conditional
expectation, thus obtaining the “second form” for the derivative. This is done
under weaker regularity conditions but the assumptionXhiastGaussian becomes
essential.

DEFINITION 3.1. LetX:I — R be a real-valued stochastic process defined
on a subset oR?. We will say thatX satisfies conditioiiHy), k a positive integer,
if the following three conditions hold true:

() X is Gaussian;
(i) a.s.the paths oX are of clas<"¥;
(i) for any choice of pairwise different values of the parameter. ., 1,
the joint distribution of the random variabl&<r,), ..., X (t,), X'(t1), ..., X'(t,),
L X® (1), ..., XP(,) has maximum rank.

The next proposition shows that there exist processes that satigfy

PROPOSITION3.1. LetX = {X(r):t € R% be a centered stationary Gaussian
process having continuous spectral dengity. Assume thay X (x) > 0 for every
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x € R4 and that for anyr > 0 fX(x) < Cy|lx||~¢ holds true for some constant
C, and allx € R?. Then X satisfies Hy) for everyk =1,2, ....

PrROOF The proof is an adaptation of the proof of a related resultifer 1
[Cramér and Leadbetter (1967), page 203]; see Azais and Wschebor (20D2).

THEOREM 3.1 (First derivative, first form). Let X:I — R be a Gaussian
process a C*° compactd-dimensional manifoldAssume tha verifies(Hj)
foreveryk=1,2,....

Then the functioru ~ F;(u) is absolutely continuous and its Radon—Nikodym
derivative is given for almost eveyby

Fi(u) = (—1)d/[ E(det{ X" () Lp, <u/ X (1) = u, X'(1) =0)

X px ). x'(t)(u, 0)o (dr)
(10)
- (—1)"—1/81 E(det( X" (1)) 1y, <u/X (1) = u, X'(t) = 0)

X Px .%o U, 05 (d1).

PROOF Foru < v ands (resp.S) a subset of (resp.d!), let us denote
M, ,(S)=8{teSu<X() <v, X'(t)=0, X"(t) <0},
M, ,(S)=t{teS:u<X@)<v,X'(t)=0,X"(t) <0}.

Stepl. Leth > 0 and consider the increment
Fr(u) — Fr(u—h)
=P((M; <u) N [{My—pu(D) = 1} UMy, (3]) = 1}]).

Let us prove that

(11) P(My_pu(I) =1, My_4,,(01)>1)=0(h)  ashO.

In fact, fors > 0,

P(My—u(D) = 1, My—pu(31) > 1)
<EMynu-5)My—nu@D)+ E(My—pu(I\ 1-5)).

The first term in the right-hand side of (12) can be computed by means of a
Rice-type formula, and it can be expressed as

/IMI o (d)& (di) //_h dx di

x E(8Y(X" (1)1 (X" 1))/ X (1) =x, X (1) =%, X'(1) =0, X' (i) = 0)

(12)

X Px (). %(0).x/ ). %) (X %, 0,0),
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where the functio® has been defined in Theorem 2.3.

Since in this integraljr — 7|| > §, the integrand is bounded and the integral
is O (h?).

For the second term in (12) we apply the Rice formula again. Taking into
account that the boundary &fis smooth and compact, we get

E(My—nu(I\ 1))
= s o(dr) /u_h E((Sl(X//(t))/X(t) — 2. X'(1) = 0) pxcox/y (x. O) dx
< (consjho (I \ I-s) < (consjhs,

where the constant does not depend/omand §. Sinced > 0 can be chosen
arbitrarily small, (11) follows and we may write &s— O:

Fr(u) — Fr(u —h)
=P(M; <u, My_p,(I) = 1) +P(M; <u, My_p,(3I) > 1) + o(h).

Note that the foregoing argument also implies thatis absolutely continuous
with respect to Lebesgue measure and that the density is bounded above by the
right-hand side of (10). In fact,

Fr(u) — Fr(u —h) < P(My_py(I) > 1) +P(My_p,(d1) > 1)
< E(My—pu(D)) + E(My—p(31))

and it is enough to apply the Rice formula to each one of the expectations on the
right-hand side.
The delicate part of the proof consists in showing that we have equality in (10).

Step2. Forg:I — R we put||gllec = SUpe;Ig(®)| and if k is a non-
negative integel|g|lco x = SUR +kyt-ootky <k 19k1 k. ... kg 8 lloo - FOT fixedy > 0O (to
be chosen later on) and> 0,we denote byE; = {|| X|lc0.a < h~"}. Because of
the Landau—Shepp-Fernique inequality [see Landau and Shepp (1970) or Fernique
(1975)] there exist positive constarnds, C»> such that

P(ES) < Crexp—Coh™#]=0(h)  ash— 0,
so that to have (10) it suffices to show thatfias- 0,
(13) E(Mu—nu(D) =1Ly, , ch=1]lm,<lE,) = o(h),
(14) E(My—nu @D =15, , on=1]1m<dlE,) = o).

We prove (13). Equation (14) can be proved in a similar way.
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PutM,_, , = Mu_h,u(l'). We have, on applying the Rice formula for the second
factorial moment,

E([Mu_h’u - ]]'Mu—h,uzl]]lleu]lEh)

(15)

< E(Myou (Moo = V1) = [ /1 Ao ds)a),

X
where
Ay :// dx1dxp
u—nh
x E(| det(X"(s)) det(X" (1)) |Lx7(sy<0.x"(ty<0LE, / X (s) = x1,

(16)

X(t)=x2,X'(s)=0X'(t) = 0)
X PX(5),X (1), X'(s),X'(t) (X1,x2, 0, 0).

Our goal is to prove tha#;; is o(h) ash | O uniformly ons,z. Note that
when s,¢t vary in a domain of the formDs := {t,s € .||t — s|| > &} for
somes > 0, then the Gaussian distribution in (16) is nondegeneratedands
bounded by (const¥, the constant depending on the minimum of the determinant:
detVaX (s), X (1), X'(s), X'(¢)), for s, t € Ds.

So it is enough to prove that, ; = o(h) for ||z — s|| small, and we may assume
thats andr are in the same chaft/, ¢). Writing the process in this chart, we may
assume thaf is a ball or a half ball inR?. Lets, r be two such points, and define
the procesy =Y*'byY(r) = X(s+1(t—s)); T € [0, 1]. Under the conditioning
one has

Y(0) = xa, Y(1) =x2, Y'(0)=Y'(1) =0,
Y"(0) = X"()[(z —5), (t = 9)], Y'"(D)=X"0t - ), (t =]
Consider the interpolation polynomi@l of degree 3 such that

Q(0) = x1, 0(1) = x2, 0'(0)=0'(1)=0.
Check that

Q(y) =x1+ (x2— x1)y*(3—2y), 0"(0) =—0Q"(1) =6(xz2 — x1).

DenoteZ(t) =Y (r) — Q(r), 0 < t < 1. Under the conditioning, one ha&0) =
Z(1) = Z'(0) = Z'(1) = 0 and if also the evenk; occurs, an elementary
calculation shows thatfor@r <1,

1ZP ()] Y@ (2)]

(A7) 1Z"(x)| < sup sup

< (consi||t — s||*h77.
ref0y 2! r€[0,1]
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On the other hand, check thatAf is a positive semidefinite symmetritx d
real matrix andv; is a vector of Euclidean norm equal to 1, then the inequality

(18) det(A) < (Av1, v1) detB)
holds true, where is the(d — 1) x (d — 1) matrix B = (((Avj, vk))) j k=2,...« and
{v1, vo, ..., vg} is an orthonormal basis &&¢ containingus.

AssumeX”(s) is negative definite, and that the evefif occurs. We can
apply (18) to the matrixA = —X"(s) and the unit vectoo; = (t — s) /||t — s|.
Note that in that case, the elements of ma®iare of the form(—X”(s)vj, Vi),
hence bounded bgconsja—". So,

del—X" ()] < (=X"(5)ve, v1)Cg K™V = CalY" O] It — 5| *h @7V,

the constanC,; depending only on the dimensian
Similarly, if X”(¢) is negative definite, and the evefiif occurs, then

de{—X"(1)] < Cq[Y" (D] |l — s||72h~ =7,
Hence, ifC is the condition[ X (s) = x1, X (r) = x2, X'(s) = 0, X'(¢) = 0},
E(] det(X" (s))det{ X" (1)) |Lx7(s)<0.x"(1)<01E; /C)
< C2 2Dy — 5| (Y ()1 [Y" (D] "1, /C)

Y”(0 Y (1 2
< cn 20— ([0 e

B _ _ Z// 0 +Z// 1 2
= ciw2avry— ([ ST T )

< (consjC2 h=247 |1 — 5|4,

We now turn to the density in (15) using the following lemma which is similar
to Lemma 4.3, page 76, in Piterbarg (1996a). The proof is omitted.

LEMMA 3.1. Forall s,z e,

(19) It — 51193 pxs). x0).x'),x')(0,0,0,0) < D,
whereD is a constant

Back to the proof of the theorem, to bound the expression in (15) we use
Lemma 3.1 and the bound on the conditional expectation, thus obtaining

E(Mu—h u(Mu—h u 1)1Eh)
(20) < (consjC? h~ 2"VD// d+1dsdt// dxidxo

< (consjh?—2y
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since the functior(s, t) ~ ||t — s||~?*1 is Lebesgue-integrable ihx I. The last
constant depends only on the dimensiband the sef. Takingy small enough,
(13) follows. O

EXAMPLE. Let{X(s,t)} be areal-valued two-parameter Gaussian, centered
stationary isotropic process with covariaiteAssume thaf"(0) = 1 and that the
spectral measure is absolutely continuous with densitds, df) = f (o) ds dt,

p = (s? + 122, Assume further thafy = [;7° p* f (p) dp < oo, for 1< k <5.
Our aim is to give an explicit upper bound for the density of the probability
distribution of M; where[ is the unit disc. Using (9) which is a consequence
of Theorem 3.1 and the invariance of the law of the process, we have

Fj(u) < 7E(8Y(X"(0,0))/ X (0,0) = u, X'(0,0) = (0, 0))
X px(0,0,x'0,0)(, (0, 0))
+ 27BN (X" (1,0)/X (L, 0) =u, X'(1,0) = 0)px (1.0, 710, 0)
=11+ I>.

(21)

We denote byX, X', X” the value of the different processes at some pGint);
by X7, X7, X}, the entries of the matriX”; and byy and® the standard normal

MO st
density and distribution.
One can easily check thak’ is independent ok and X”, and has variance
nJ3ly; X}, is independent ofX, X’ X and X;;, and has varianc€; Js.
Conditionally onX = u, the random variable¥’, andX;, have

expectation:  —m Ja;

. 3 2
variance: " Js — (wJ3)%;

. . 2
covariance: ZJS_ ( J3)°.

We obtain
2 3 2\ 2
12: J—3(p(M)|:(TJ5—(7TJ3) ) @(bu)‘f‘ﬂJBu(D(b”)],

. _ 71]3 oy _
with b = AL As for I; we remark that, conditionally oX = u,
X/, + X}, andX;, — X/, are independent, so that a direct computation gives

1 7w Js
L= —w(u)E[(am — 21 J3u)? — =2 (15 + 1) Lieny <27 Jau)
(22) 8 J3 4

x1 s

{(am1—2m Jau)?— 5 <n§+n§)>0}]’
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where 1, 2, 73 are standard independent normal random variablesc@ng
21 Js — 42 JZ. Finally we get

= é/j(p(u)/ (a +a czxz)CIJ(a —cXx)
+ [2ac — &®(a — cx)]p(a — cx)|xe(x)dx,
with a = 2 J3u, ¢ = ”715.

4, First derivative, second form. We choose, once for this entire section,
a finite atlas for I. Then, to every € I it is possible to associate a fixed chart
that will be denotedU;, ¢,). Whent € 31, ¢,(U,) can be chosen to be a half ball
with ¢, (¢) belonging to the hyperplane limiting this half ball. Foe I, let V; be
an open neighborhood ofwhose closure is included iti; and lety, be ac*®
function such that/; =1 onV;; ¥, =0 onUy.

1. For everyr € I ands € I we define the normalizatiom(z, s) in the following
way:

(@) Fors € V;, we set “in the chart(U,, ¢;), n1(¢, s) = %||s —1]|2. By “in
the chart” we mean thalts — z|| is in fact||¢; (r) — ¢/ (s)]].
(b) For generat, we setu(t, s) = ¥ (s)n1(t, s) + (L — ¥ (s)).

Note that in the flat case, when the dimensioof the manifold is equal to the
dimensionN of the ambient space, the simpler definitiofi, s) = %Hs — 1|2
works.

2. For everyr € 31 ands € I, we setny(t,s) = (s — H)y| + 5lls — 7], where
(s — 1)y is the normal component af — ¢) with respect to the hyperplane
delimiting the half balky, (U;). The rest of the definition is the same.

DEFINITION 4.1. We will say thatf is helix-function—or ark-function—on
I with poler € I satisfying hypothesisH; x), k integerk > 1, if:

(i) f is abounded* function onrl \ {r}.
(i) f(s):=n(t,s)f(s) can be prolonged as function of clagson .

DEFINITION 4.2. In the same way is called ani-process with pole € 7
satisfying hypothesisH; i), k integerk > 1, if:

() Zis a Gaussian process wiif paths on/ \ {}.

(i) Fort e, Z(s):=n(t,s)Z(s) can be prolonged as a process of class
on/,with Z(r) =0,Z'(t) =0, If s, ..., s,, are pairwise different points df\ {¢},
then the distribution of;(z)(t), .. .,;(k)(t),;(sl), o Z0 ), Z0 ()
does not degenerate.
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(i) For z € I; Z(s) :=n(t,s)Z(s) can be prolonged as a process of class
C* on I with Z@) = 0, Z(t) =0, and if 51,...,s, are pairwise different
points of I \ {¢}, then the distribution ofz}y (1), Z? (1), ..., Z® 1), Z(s1), - ..,
Z®(s1), ..., Z®(s,,) does not degeneratéy, (¢) is the derivative normal to the
boundary off atr.

We use the termgi~function” and ‘a-process” since the function and the paths
of the process need not extend to a continuous function at the pdiawever,
the definition implies the existence of radial limitsratSo the process may take
the form of a helix around.

LEMMA 4.1. Let X be a process satisfyingHy, k > 2), and let f be a¢*
function/ — R.
(@Fortel,setforsel,s #t,

X(s)=a' X))+ (b, X' (1)) +n(t, )X (s),

wherea! andb’ are the regression coefficients
In the same wayset

) =agf @)+ (b5, f'O) +n(t,s) £ (s),

using the regression coefficients associatel to
(b)Fortedl,seT,s #t,set

X(s)=a'X () + (b, X'(1)) 4 n(t, $)X'(s)
and
f&)=agf @)+ (B, f'©) +nt, ) f'(5).
Thens ~ X'(s) and s ~ f'(s) are, respectively an h-process and an

h-function with poler satisfyingH; .

PROOF We give the proofin the cases I, the other one being similar. In fact,
the quantity denoted by’ (s) is justX (s) — al X (t) — (b, X'(1)). On L2(Q, P),
let IT be the projector on the orthogonal complement to the subspace generated by
X (1), X'(t). Using a Taylor expansion,

X()=X®+ (s =0, X' 1)

1
+ ||t — s||2fO X"((1— )t +as)v, v](1 — ) da,

t

, e
with v = 5=

This implies that

1
@) X6 =1l sl [ XA ay+as)v.vld - e dal,
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which gives the result due to the nondegeneracy conditian.

We state now an extension of Ylvisaker’'s (1968) theorem on the regularity of
the distribution of the maximum of a Gaussian process which we will use in the
proof of Theorem 4.2 and which might have some interest in itself.

THEOREM 4.1. Let Z:T — R be a Gaussian separable process on some
parameter sef” and denote byWZ = sup.; Z(t) which is(a random variablg
taking values inR U {+o00}. Assume that there existg > 0, m_ > —oo such that

mt)=E(Z)=m_,  o®(t)=\VarZ) >0}

for everyr e T. Then the distribution of the random variablé” is the sum of an
atom at+oo and a—possibly defective—probability measure®nvhich has a
locally bounded density

PROOF Suppose first thatX:T — R is a Gaussian separable process
satisfying VatX,;) = 1, E(X;) > 0, for everyt € T. A close look at Ylvisaker's
(1968) proof shows that the distribution of the supremurt has a density ,,x
that satisfies

exp(—u?/2)
[2° exp(—v2/2) dv

Let now Z satisfy the hypotheses of the theorem. For giveh € R, a < b,
choosed € R so thatja| < A and consider the process
Z(t)—a |m_|+A

o (1) oo

(24) pux) =¥ (u) =

for everyu € R.

X(1) =

Clearly, forevery € T,
m()—a |m_|+A Im_|+la| |m_|+ A
> — + >
o (1) oo 00 oo

and Va(X (¢)) = 1. So that (24) holds for the proce¥s
On the other hand, the statement follows from the inclusion:

lm_|+ A _mX < |m_|+A+b—a}
00 - 00 oo J

E(X(1) = 0,

{a<MZ§b}C{

which implies
(Im—|+A)/oo+(b—a)/og

P{a<MZ§b}§/ V() du
(Im—|+A4)/o0

b1 - “|+A
:/ —1//<U a+|m_|+ )dv. -
a 00 oo
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Set nowg(t) = 1. The key point is that, due to regression formulae, under the
condition{X (z) = u, X'(¢+) = 0} the event

Ay(X,B):={X(s)<u,Vsel}
coincides with the event
Ay(X', B = 1{X"(s) < B (s)u, Vs e I\ {t}},

whereX’ andp! are the h-process and the h-function defined in Lemma 4.1.

THEOREM 4.2 (First derivative, second form).Let X : I — R be a Gaussian
process I a C*®compact manifold contained iR?. Assume thaX has paths
of classC? and fors # ¢ the triplet (X (s), X (1), X' (1)) in R x R x R has a
nondegenerate distributiohen the result of Theorer8.1is valid, the derivative
F;(u) given by relation(10) can be written as

F[l(u) = (—1)d/[ E[det(&ﬂl(t) — Et”(l‘)u)]]-Au(Xt,ﬁf)]

X px (). x'(t)(u, 0)o (dr)
(25)
[ ¥/ ~t!
+(—1)d—1/a[ E[det(X"" (1) — B () ula,cxt pr)]

X Px(t),)?’(t)(”’ 0)o (dt)

and this expression is continuous as a function .of

The notationX”” () should be understood in the sense that we first define
and then calculate its second derivative al@iig

PROOF OFTHEOREM4.2. As a first step, assume that the procéssatisfies
the hypotheses of Theorem 3.1, which are stronger that those in the present
theorem.

We prove that the first term in (10) can be rewritten as the first term in (25).
One can proceed in a similar way with the second term, mutatis mutandis. For that
purpose, use the remark just before the statement of Theorem 4.2 and the fact that
under the ondition{X (1) = u, X'(t) =0}, X" (¢) is equal toX""'(t) — B""(t)u.

Replacing in the conditional expectation in (10) and on account of the
Gaussianity of the process, we get rid of the conditioning and obtain the first term
in (25). We now study the continuity af~ F; (). The variable: appears at three
locations:

(1) inthe densitypx ), x ¢ (u, 0), which is clearly continuous,
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(i) in
E[det(X"" (1) — B (t)u)La,(x: p1)]:
where it occurs twice: in the first factor and in the indicator function.

Due to the integrability of the supremum of bounded Gaussian processes, it is
easy to prove that this expression is continuous as a function of the first

As for theu in the indicator function, set
(26) £y :=det(X"'(r) — " (t)v)

and, forh > 0, consider the quantity[E, 1 4, (xr g1y] — E[§u1 4, ,(x,1y], Which is
equal to

@7) El&oLa, xt pona,-ncxrpn] — E[EvTa, o ponaux pn]-
Apply Schwarz’s inequality to the first term in (27):

E[&0La,xr g\ (xt,p)] < [EEDPIAL(X", B\ Au—n (X", B)Y]
The eventd, (X', B") \ A,_n (X', B") can be described as
Vsel\{t}:X"(s)— B (s)u <0; JIsoe I\ {t}: X" (s0) — B (so)(u — h) > 0.

This implies thatg’ (so) > 0 and that-|| 8" lcoh < SURc /1y X' (s) — B'(s)u < 0.
Now, observe that our improved version of Ylvisaker's theorem (Theorem 4.1)
applies to the process~ X'(s) — B'(s)u defined onl \ {z}. This implies that
the first term in (27) tends to zero a5, 0. An analogous argument applies to the
second term. Finally, the continuity d@f;(x) follows from the fact that one can
pass to the limit under the integral sign in (25).

To complete the proof we still have to show that the added hypotheses are in
fact unnecessary for the validity of the conclusion. Suppose now that the process
X satisfies only the hypotheses of the theorem and define

(28) X)) =Z:(t) +eY (1),

1/2

where for eache > 0, Z, is a real-valued Gaussian process defined/on
measurable with respect to thealgebra generated by (¢) : ¢ € I}, possessing
C*> paths and such that almost surdy(t), Z.(t), Z.(t) converge uniformly
onl to X(¢), X'(t), X" (r), respectively, as | 0. One standard form to construct
such an approximation procegs is to use a partition of the unity orY and to
approximate locally the composition of a chart with the functiébby means of a
convolution with aC*° kernel.

In (28), Y denotes the restriction td of a Gaussian centered stationary
process satisfying the hypotheses of Proposition 3.1, definedr8n and
independent ofX. Clearly X* satisfies condition(H;) for every k, since it
has ¢* paths and the independence of both terms in (28) ensuresxthat
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inherits from Y the nondegeneracy condition in Definition 3.1. SoMf =
maxe; X°(t) andFy (u) = P(M; < u}, one has

FIE/(M) = (—1)d /; E[det(&””(z‘) — EEt//(t)u)]]-Au(XE’,ﬂW)]

X pxe@),xer)(u, 0o (dr)
(29)
— jod ~etr
+(=1¢ 1/81E[det(f”/(t) — B ()L a, xer g ]

X st(t)’)?g/(,) (I/i, O)&(dt)

We want to pass to the limit as| 0 in (29). We prove that the right-hand side

is bounded ife is small enough and converges to a continuous functiom a$

e | 0. SinceM; — M, this implies that the limit is continuous and coincides
with F;(u) by a standard argument on convergence of densities. We consider only
the first term in (29); the second is similar.

The convergence ot and its first and second derivative, together with the non-
degeneracy hypothesis, imply that uniformly on e I, as ¢ | O,
Pxe@). xe' (1)U, 0) = px ). x'r(u, 0). The same kind of argument can be used for
det( X®"'(t) — B (t)u), on account of the form of the regression coefficients and
the definitions ofX’ andB’. The only difficulty is to prove that, for fixed,

(30) P{C.AC}— 0 ase | 0,

whereC, = A, (X%, g, C = A, (X', BY).
We prove that

(31) aslc, — 1¢ ase | 0,
which implies (30). First of all, note that the event

L= { sup (X'(s) — B'(s)u) = 0}
sel\{t}
has zero probability, as already mentioned. Second, from the definition of
X'(s) and the hypothesis, it follows that, as| 0, X®(s), 8%'(s) converge to
X'(s), B'(s) uniformly on I \ {t}. Now, if w ¢ C, there exists =5(w) € I \ {t}
such thatX’(5) — B'(5)u > 0 and fore > 0 small enough, one hag® (5) —
Be (5)u > 0, which implies thatw ¢ C,.

On the other hand, led € C \ L. This implies that

sup (X'(s) — B'(s)u) <O.
sel\{t}

From the above-mentioned uniform convergence, it follows thatif0 is small
enough, then sqg,\{,}(X’”(s) — B8 (s)u) < 0, hencew € C,. Equation (31)
follows.
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So, we have proved that the limit ag, 0 of the first term in (29) is equal to the
first termin (25).

It remains only to prove that the first term in (25) is a continuous function
of u. For this purpose, it suffices to show that the functiors P{A, (X", B")}
is continuous. This is a consequence of the inequality

IP{Aun (X", )} — P{AL(X", BN}

sP{

and of Theorem 4.1, applied once again to the processX’(s) — B’ (s)u defined
onl\{t}. O

sup (X'(s) — B (s)u)| < |h| sup |ﬁ’<s>|}
sel\{t) sel\{t}

5. Asymptotic expansion of F’(u) for largeu.

COROLLARY 5.1. Suppose that the process satisfies the conditions of
Theoremt.2and that in additiorE(X;) = 0 andVar(X;) = 1.
Thenasu — +o0o, F'(u) is equivalent to

ud

(32) (2n)(d+1)/26

—“2/2/ (detA(r)))Y?at,
1
whereA (¢) is the variance—covariance matrix &f ().

Note that (32) is in fact the derivative of the bound for the distribution function
that can be obtained by Rice’s method [Azais and Delmas (2002)] or by the
expected Euler characteristic method [Taylor, Takemura and Adler (2004)].

PROOF OFCOROLLARY 5.1. Set(s,t) :=E(X(s), X(¢)), andfori, j =1,d,

0
ri (s, 1) = gr(&l),
1

2 52
t (s, 1) =

05; 8Sjr(s’ ), rl"/(s ) as; alj

For everyr,i and j, ri.(t,1) =0, A;;j(t) =ri;j(t, 1) = —r;j,(¢,1). Thus X (1)

and X'(r) are independent. Regression formulae imply tat r (s, t), B'(s) =

L (5) This implies thag! (1) = A(r) and that the possible limits values gf (s)

n(s,t)
ass — t are in the sefv” A(r)v:v € §971}. Due to the nondegeneracy condition
these quantities are minorized by a positive constant. On the other hamnd4 for
B'(s) > 0. This shows that for everye I one has infc; 8’ (s) > 0. Since for every
t € I the proces’ is bounded, it follows that a.9.4,(x: gy = 1 asu — +oc.
Also

riji (s, 1) == r(s,t).

det(X"' (1) — B (1)u) ~ (=) det A (r))u“.
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Dominated convergence shows that the first term in (25) is equivalent to

/ ud det(A")(27) Y2122 ~4/2(deq ")) V24
1

u? _u? 1 2
= e 2 ] (detan)

The same kind of argument shows that the second temi€—te—**/2), which
completes the proof.[]
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