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STRUCTURE OF LARGE RANDOM HYPERGRAPHS

BY R. W. R. DARLING AND J. R. NORRIS

National Security Agency and University of Cambridge

The theme of this paper is the derivation of analytic formulae for certain
large combinatorial structures. The formulae are obtained via fluid limits of
pure jump-type Markov processes, established under simple conditions on the
Laplace transforms of their Lévy kernels. Furthermore, a related Gaussian
approximation allows us to describe the randomness which may persist in
the limit when certain parameters take critical values. Our method is quite
general, but is applied here to vertex identifiability in random hypergraphs.
A vertexv is identifiable inn steps if there is a hyperedge containingv all of
whose other vertices are identifiable in fewer steps. We say that a hyperedge
is identifiable if every one of its vertices is identifiable. Our analytic formulae
describe the asymptotics of the number of identifiable vertices and the
number of identifiable hyperedges for a Poisson(β) random hypergraph� on
a setV of N vertices, in the limit asN → ∞. Hereβ is a formal power series
with nonnegative coefficientsβ0, β1, . . . , and(�(A))A⊆V are independent
Poisson random variables such that�(A), the number of hyperedges onA,
has meanNβj /

(N
j

)
whenever|A| = j .

1. Introduction.

1.1. Motivation. We are interested in the evolution of certain statistically
symmetric random structures, extended over a large finite set of points, when
points are progressively removed in a way which depends on the structure. The
initial condition of the structure may allow few possibilities for the removal of
points; indeed, it may be that, once a small proportion of points are removed,
the process terminates. On the other hand, the removal of points may cause the
structure to ripen, eventually yielding a large proportion of the initial points. Our
analysis will enable us to demonstrate a sharp transition between these two sorts
of behavior as certain parameters pass through critical values.

Let us illustrate this phenomenon by a simple special case. Consider the com-
plete graph onN vertices and declare each vertex to be open with probabilityp,
each edge to be open with probabilityα/N . Suppose that we are allowed to select
an open vertex, remove it, and declare open any other vertices sharing an open edge
with the selected vertex. If we continue in this way until no open vertices remain,
we eventually remove every vertex connected to an open vertex by open edges. We
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shall see that the proportion of vertices thus removed converges in probability as
N → ∞ and that the limitz∗(p,α) is the unique root in[0,1) of the equation

αz + log(1− z) = log(1− p).

Thus, for small values ofp, there is a dramatic change in behavior asα passes
through 1. Asp ↓ 0, for α ≤ 1,

z∗(p,α)/p → 1/(1− α),

but forα > 1,

z∗(0+, α) > 0.

Of course, this is a reflection of well-known connectivity properties of random
graphs, discovered by Erdős and Rényi [7], and discussed, for example, in [3].

The class of models considered in this paper is a natural generalization of
some classical models of random graphs and hypergraphs, which may be further
motivated as follows. Phase transitions in combinatorial problems constitute an
area of active research among computer scientists. Many “hard” combinatorial
problems can be cast assatisfiability problems, which seek to assign a truth value
to each of a set of Boolean variables, such that a collection of logical conjunctions
are simultaneously satisfied. Phase transitions for random satisfiability (“random
k-SAT”) problems have been studied by researchers at Microsoft [1, 2, 15] and
IBM [4], but difficult questions remain unanswered. The random hypergraph
model herein may be viewed as a simplification of the random satisfiability model:
a vertex corresponds to a Boolean variable, and a hyperedge to the set of variables
appearing in a specific logical conjunction, neglecting the truth or falsehood
assigned to those variables. Under this simplification, definitive critical parameters
are obtained which shed light on the random satisfiability model, and whose
derivation may serve as a template for analysis of mixed satisfiability problems.

1.2. Hypergraphs. Let V be a finite set ofN vertices. By ahypergraph on V

we mean any map

� :P (V ) → Z
+.

Here Z
+ denotes the set of nonnegative integers. The reader may consult [6]

for an overview of the theory of hypergraphs; however, the direction pursued
here is largely independent of previous work. We emphasize that, in distinction
to much of the combinatorial literature on hypergraphs, we allow the possibility
that more than one edge is assigned to a given subset; thus we are considering
multi-hypergraphs. Moreover, we do not insist that all hyperedges have the same
number of vertices. Much of the literature is restricted to thisuniform case. Our
methods allow a significant broadening of the class of models for which asymptotic
computations are feasible. Hyperedges over vertices are calledpatches (loops
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in [6]) and hyperedges over∅ are calleddebris. The total number of hyperedges
is

|�| = ∑
A

�(A).

1.3. Accessibility and identifiability. Interest in large random graphs has often
focused on the sizes of their connected components. If there is given also, as in
the example above, a set of distinguished verticesV0, then it is natural to seek to
determine the proportion of all vertices connected toV0.

In the more general context of hypergraphs there is more than one interesting
counterpart of connectivity. Given a hypergraph� on a setV , we say that a vertex
v is accessible in 1 step or, equivalently,identifiable in 1 step if �({v}) ≥ 1. We
say, forn = 2,3, . . . , that a vertex isaccessible in n steps if it belongs to some
subsetA with �(A) ≥ 1, some other element of which is accessible in less thann

steps. A vertex isaccessible if it is accessible inn steps for somen ≥ 1.
On the other hand, we say that a vertex isidentifiable in n steps if it belongs to

some subsetA with �(A) ≥ 1, all of whose other elements are identifiable in less
thann steps. A vertex isidentifiable if it is identifiable inn steps for somen ≥ 1.

The notion of accessibility may be appropriate to some physical models
similar to percolation, whereas identifiability is more relevant to knowledge-based
structures. We shall examine only the notion of identifiability.

Given a hypergraph� without patches and a distinguished vertexv0, we say that
a vertexv is accessible from v0 if it is accessible in the hypergraph�+1{{v0}}, that
is, in the hypergraph obtained from� by adding a single patch atv0. Identifiability
from v0 is defined similarly. The set of vertices accessible fromv0 is thecomponent
of v0, as studied in [6, 11, 12, 14]. The set of vertices identifiable fromv0 is the
domain of v0, as studied by Levin and the current authors [5]. We shall not consider
further in this paper these vertex-based notions.

The process of identification is dual to the process leading to the 2-core of
a graph or hypergraph, that is to say, the maximal subgraph in which every
nonisolated vertex has degree at least 2. In the former process one removes vertices
having a 1-hyperedge, in the latter one removes edges containing a vertex of
degree 1. In this duality, nonidentifiable vertices correspond to the 2-core. Thus
our results may be interpreted as giving the asymptotic size of the 2-core for a
certain class of random hypergraphs.

1.4. Hypergraph collapse. It will be helpful to think of the identification of
vertices as a progressive activity. Once a vertex is identified, it isremoved or
deleted from the vertex set, in a manner which is explained below. Thus, we
shall consider an evolution of hypergraphs by the removal of vertices over which
there is a patch. A hypergraph with no patches will therefore bestable. Given a
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FIG. 1. Example of a permitted collapse—deletion of one vertex.

hypergraph� and a vertexv, we can arrive at a new hypergraph�′ by removingv
from each of the hyperedges of�. Thus

�′(A) =
{

�(A) + �(A ∪ {v}), if v /∈ A,

0, if v ∈ A.

For example, in Figure 1, the patch on the central vertex is selected, and that vertex
is removed; this causes a triangular face to collapse to an edge, and two edges
incident to the vertex to collapse to patches on the vertices at the other ends. Note
that this leaves two patches on the lower left vertex.

If �({v}) ≥ 1, then we say that�′ is obtained from� by a (permitted )
collapse. Starting from�, we can obtain, by a finite sequence of collapses, a stable
hypergraph�∞. Denote byV ∗ the set of vertices removed in passing from�
to �∞. The elements ofV ∗ are the identifiable vertices. We write�∗ for the
identifiable hypergraph, given by

�∗(A) = �(A)1A⊆V ∗ .

We note thatV ∗, and hence�∗ and�∞, do not depend on the particular sequence
of collapses chosen. For, ifv1, v2, . . . andv′

1, v
′
2, . . . are two such sequences, and if

vn �= v′
k for all k, then we can taken minimal and findk such that{v1, . . . , vn−1} ⊆

{v′
1, . . . , v

′
k}; then, with an obvious notation,�′

k({vn}) ≥ �n−1({vn}) ≥ 1, sovn

must, after all, appear in the terminating sequencev′
1, v

′
2, . . . , a contradiction. We

note also thatV ∗ increases with�.

1.5. Purpose of this paper. The main question we shall address is to determine
the asymptotic sizes ofV ∗ and�∗ for certain generic random hypergraphs, as the
number of vertices becomes large. We note that, since the number of hyperedges
is conserved in each collapse, all the identifiable hyperedges eventually turn to
debris:

�∞(∅) = |�∗|.
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Note thatV ∗ depends only on min{�,1}. In the case where�(A) = 0 for
|A| ≥ 3, the hypergraph min{�,1} may be considered as a graph onV equipped
with a number of distinguished vertices. ThenV ∗ is precisely the set of vertices
connected in the graph to one of these distinguished vertices.

1.6. Poisson random hypergraphs. Let (�,F ,P) be a probability space.
A random hypergraph onV is a measurable map

� :� × P (V ) → Z
+.

An introduction to random hypergraphs may be found in [11], though we shall
pursue rather different questions here. We shall consider a class of random
hypergraphs whose distribution is determined by a sequenceβ = (βj : j ∈ Z

+)

of nonnegative parameters. Say that a random hypergraph� on V is Poisson(β)

if:

1. the random variables�(A),A ⊆ V , are independent;
2. the distribution of�(A) depends only on|A|;
3.

∑
|A|=j �(A) ∼ Poisson(Nβj), j = 0,1, . . . ,N .

A consequence of these assumptions is that�(A) has meanNβj/
(N
j

)
whenever

|A| = j . Note that, whenN is large, forj ≥ 2, only a small fraction of the subsets
of sizej have any hyperedges, and those that do usually have just one. Also the
ratio of j -edges to vertices tends toβj . Our assumption of Poisson distributions is
a convenient exact framework reflecting behavior which holds asymptotically as
N → ∞ under more generic conditions.

1.7. Generating function. A key role is played by the power series

β(t) = ∑
j≥0

βj t
j(1)

and by the derived series

β ′(t) = ∑
j≥1

jβj t
j−1,

β ′′(t) = ∑
j≥2

j (j − 1)βj t
j−2.

Let β have radius of convergenceR. The functionβ ′(t) + log(1 − t) may have
zeros in[0,1) but these can accumulate only at 1. Set

z∗ = inf{t ∈ [0,1) :β ′(t) + log(1− t) < 0} ∧ 1(2)

and denote byζ the set of zeros ofβ ′(t) + log(1− t) in [0, z∗). Note that ifβ is a
polynomial, or indeed ifR > 1, thenz∗ < 1. Also, the generic and simplest case is
whereζ is empty.
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2. Results. We state our principal result first in the generic case.

2.1. Hypergraph collapse—generic case.

THEOREM 2.1. Assume that z∗ < 1 and ζ = ∅. For N ∈ N, let V N be a
set of N vertices and let �N be a Poisson(β) hypergraph on V N . Then, as
N → ∞, the numbers of identifiable vertices and identifiable hyperedges satisfy
the following limits in probability:

|V N∗|/N → z∗, |�N∗|/N → β(z∗) − (1− z∗) log(1− z∗).

EXAMPLE 2.1. The random graph with distinguished vertices described in
the Introduction corresponds to a Poisson(βN) hypergraph�N , where

1− e−βN
1 = p, 1− e−2βN

2 /(N−1) = α/N

and βN
j = 0 for j ≥ 3. Note thatβN

1 = β1 and βN
2 → β2 as N → ∞, where

β1 = − log(1 − p) andβ2 = α/2. Theorem 2.1 extends easily to cases whereβ

depends onN in such a mild way: one just has to check that Lemma 6.1 remains
valid and note that this is the only place thatβ enters the calculations. We have
β(t) = −t log(1− p) + t2α/2 so

β ′(t) + log(1− t) = − log(1− p) + tα + log(1− t).

Thenz∗ is the uniquet ∈ [0,1) such that

αt + log(1− t) = log(1− p)

andζ is empty, so|V ∗N |/N → z∗ in probability asN → ∞, as stated above.

EXAMPLE 2.2. To illustrate critical phenomena, letβ(t) = α(0.1 + 0.9t)7.
Let x, y andz refer to the re-scaled number of vertices eliminated, the number
of patches and the amount of debris, respectively; here “re-scaled” means after
division by the number of vertices. Plots ofy andz versusx are shown in Figure 2,
for the choicesα = 1185 (solid) andα = 1200 (dashed). In the caseα = 1185,
y hits zero whenx ≈ 0.02, and soz remains stuck at about 0.02. A very small
increase inα, from 1185 to 1200, causes a dramatic change in the outcome: after
narrowly avoiding extinction (Figure 2), the number of patches explodes (Figure 3)
asx increases toward 1.

Consider what the figures tell us about the supercritical caseα = 1200: during
the first 4% of patch selections, there is rarely any other patch covering the same
vertex as the one selected; Figure 3 shows that, during the last 10% of patch
selections, an average of 5792 other patches cover the same vertex as the one
selected. (Read the labels on thex-axes carefully: Figure 2 is a close-up of the
leftmost 4% of the scale of Figure 3.)
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FIG. 2. Changes in behavior near a critical parameter value.

2.2. Hypergraph collapse—general case. In order to describe an extension of
Theorem 2.1 to the case whereζ is nonempty, we introduce the random variable

Z = min
{
z ∈ ζ :W

(
z/(1− z)

)
< 0

} ∧ z∗,

where(Wt)t≥0 is a Brownian motion.

THEOREM 2.2. Assume that R /∈ ζ . Then, for V N∗ and �N∗ as in Theo-
rem 2.1,the following limits exist in distribution:

|V N∗|/N → Z, |�N∗|/N → β(Z) − (1− Z) log(1− Z).

In the case whereζ has only a single pointζ0 < z∗, thenZ is equal toζ0 with
probability 1

2 and equal toz∗ with probability 1
2. We do not know what happens

whenR ∈ ζ . Proofs will be given in Section 6.

FIG. 3. Patches and debris in the supercritical regime.
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3. Randomized collapse. We introduce here a particular random rule for
choosing the sequence of moves by which a hypergraph is collapsed, which has
the desirable feature that certain key statistics of the evolving hypergraph behave
as Markov chains. It is by analysis of the asymptotics of these Markov chains as
N → ∞ that we are able to prove our main results.

3.1. Induced hypergraph. Let � be a Poisson(β) hypergraph. ForS ⊆ V with
|S| = n, let �S be the hypergraph obtained from�0 by removing all vertices inS.
Thus, forA ⊆ V \S with |A| = j ,

�S(A) = ∑
B⊇A,B\S=A

�(B) ∼ P
(
λj (N,n)

)
,

where the Poisson parameterλj (N,n) is computed as follows: there are
(n
i

)
ways

to chooseS ∩ B such that|B| = i + j , and the Poisson parameter of�0(B) is
Nβj+i/

( N
i+j

)
, so

λj (N,n) = N

n∑
i=0

βj+i

(
n

i

)/(
N

i + j

)
.

Moreover, the random variables�S(A), A ⊆ V \ S, are independent.

3.2. Rule for randomized collapse. Recall that the sequence of vertices chosen
to collapse a hypergraph is unimportant, provided we keep going until there are no
more patches. However, we shall use a specific randomized rule which turns out
to admit a description in terms of a finite-dimensional Markov chain. This leads
to a randomized process of collapsing hypergraphs(�n)n≥0. This will prove to be
an effective means to compute the numbers of identifiable vertices and identifiable
hyperedges for�0.

The process(�n)n≥0, together with a sequence of sets(Sn)n≥0 such that
�n = �Sn , is constructed as follows. LetS0 = ∅ and �0 = �. Suppose that
Sn and�n have been defined. If there are no patches in�n, thenSn+1 = Sn and
�n+1 = �n. If there are patches in�n, select one uniformly at random and denote
by vn+1 the corresponding vertex; then setSn+1 = Sn ∪{vn+1} and�n+1 = �Sn+1.

3.3. An embedded Markov chain. Let Yn denote the number of patches andZn

the amount of debris in�n. Then Yn = 0 andZn = |�∗| for n ≥ |V ∗|. Also
|V ∗| = inf{n ≥ 0 :Yn = 0}. Let Wn+1 denote the number of other patches at timen

sharing the same vertex as the(n + 1)st selected patch, and letUn+1 denote the
number of 2-edges at timen containing the(n + 1)st selected vertexvn+1. Our
analysis will rest on the observation that(Yn,Zn)n≥0 is a Markov chain, where,
conditional onYn = m ≥ 1 andZn = k, we have

Yn+1 = Yn − 1− Wn+1 + Un+1, Zn+1 = Zn + 1+ Wn+1
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and whereWn+1 ∼ B(m − 1,1/(N − n)) andUn+1 ∼ P ((N − n − 1)λ2(N,n))

with Wn+1 andUn+1 independent.
To see this, introduce the filtration

Fn = σ(Sr , Yr,Zr : r = 0,1, . . . , n).

LEMMA 3.1. Let

p(λ|S, k,m) = P

[
�S = λ

∣∣∣∑
v

�S({v}) = m,�S(∅) = k

]
.

Then

P[�n = λ|Fn] = p(λ|Sn,Yn,Zn).

Equivalently, for all B ∈ Fn so that B ⊂ {Sn = S,Yn = m,Zn = k},
P[�n = λ,B] = p(λ|S,m,k)P[B].

The claimed Markov structure for(Yn,Zn)n≥0 follows easily.

PROOF OFLEMMA 3.1. The identity is obvious forn = 0. Suppose it holds
for n. Let B ⊂ {Sn = S,Yn = m,Zn = k}. Takex ∈ V \S, m′ ≥ 1 andk′ > k. Set
S′ = S ∪ {x} andB ′ = {Sn+1 = S′, Yn+1 = m′,Zn+1 = k′} ∩ B. It will suffice to
show, for all hypergraphsλ′ havingm′ patches and amount of debrisk′, that

P[�n+1 = λ′,B ′] ∝ p(λ′|S′,m′, k′),

where∝ denotes equality up to a constant independent ofλ′. But

P[�n+1 = λ′,B ′] = ∑
λ

k′ − k

m
P[�n = λ,B] ∝ ∑

λ

p(λ|S,m,k),

where the sum is over all hypergraphsλ which collapse toλ′ on removing the
vertex x. Let YS,ZS denote the number of patches, amount of debris in�S ,
respectively. SinceYS and ZS are conditionally independent of�S′

given YS′

andZS′
,∑
λ

p(λ|S,m,k) = P
(
�S′ = λ′|YS = m,ZS = k

) ∝ p(λ′|S′,m′, k′),

as desired. �

4. Exponential martingales for jump processes. We recall here some
standard notions for pure jump Markov processes inR

d and their associated
martingales. These will be used to study the fluid limit of a sequence of such jump
processes in Section 5.
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4.1. Laplace transforms. Let (Xt )t≥0 be a pure jump Markov process taking
values in a subsetI of R

d , with Lévy kernelK . Consider the Laplace transform

m(x, θ) =
∫

Rd
e〈θ,y〉K(x,dy), θ ∈ (Rd)∗,

and assume that, for someη0 > 0,

sup
x∈I

sup
|θ |≤η0

m(x, θ) ≤ C < ∞.(3)

The distribution of the timeT and displacement
XT of the first jump of(Xt )t≥0
is given by

P(T ∈ dt,
XT ∈ dy|T > t,X0 = x) = K(x,dy) dt.

Introduce random measuresµ andν on (0,∞) × R
d , given by

µ = ∑

Xt �=0

ε(t,
Xt ),

ν(dt, dy) = K(Xt−, dy) dt,

whereε(t,y) denotes the unit mass at(t, y); ν is thus the compensator of the random
measureµ, in the sense of ([10], page 422).

4.2. Martingales associated with jump processes. The fact that ν is a
compensator implies that, for any previsible processa :� × (0,∞) × R

d → R

satisfying

E

∫
Rd

|a(s, y)|ν(ds, dy) < ∞,

the following process is a martingale:∫ t

0

∫
Rd

a(s, y)(µ − ν)(ds, dy).

In particular, (3) allows us to takea(s, y) = y, which gives the martingale

Mt =
∫ t

0

∫
Rd

y(µ − ν)(ds, dy).

Fix η ∈ (0, η0). Then there existsA < ∞ such that

|m′′(x, θ)| ≤ A, x ∈ I, |θ | ≤ η,(4)

where “′ ” denotes differentiation inθ . Define forθ ∈ (Rd)∗

φ(x, θ) =
∫

Rd

{
e〈θ,y〉 − 1− 〈θ, y〉}K(x,dy).

Thenφ ≥ 0 and, for|θ | ≤ η, by the second-order mean value theorem,

φ(x, θ) =
∫ 1

0
m′′(x, rθ)(θ, θ)(1− r) dr
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so

φ(x, θ) ≤ 1
2A|θ |2, x ∈ I, |θ | ≤ η.

Let (θt )t≥0 be a previsible process in(Rd)∗ with |θt | ≤ η for all t . Set

Zt = Zθ
t = exp

{∫ t

0
〈θs, dMs〉 −

∫ t

0
φ(Xs, θs) ds

}
.(5)

Then(Zt )t≥0 is locally bounded, and by the Doléans formula ([10], page 440),

Zt = 1+
∫ t

0

∫
Rd

Zs−
(
e〈θs ,y〉 − 1

)
(µ − ν)(ds, dy).

Hence(Zt )t≥0 is a nonnegative local martingale, soE(Zt ) ≤ 1 for all t . Hence

E

∫ t

0

∫
Rd

∣∣Zs−
(
e〈θs,y〉 − 1

)∣∣ν(ds, dy)

≤ E

∫ t

0
Zs

(
m(Xs, θs) + m(Xs,0)

)
ds ≤ 2Ct

so(Zt )t≥0 is a martingale.

PROPOSITION4.1. For all δ ∈ (0,Aηt
√

d ],

P

(
sup
s≤t

|Ms | > δ

)
≤ (2d)e−δ2/(2Adt).

PROOF. Fix θ ∈ (Rd)∗ with |θ | = 1 and consider the stopping time

T = inf{t ≥ 0 :〈θ,Mt〉 > δ}.
Forε < η, takingθt = θ for all t above, we know that(Zεθ

t )t≥0 is a martingale. On

the set{T ≤ t} we haveZεθ
T ≥ eδε−Atε2/2. By optional stopping,

E(Zεθ
T ∧t ) = E(Zεθ

0 ) = 1.

Hence,

P

(
sup
s≤t

〈θ,Ms〉 > δ

)
= P(T ≤ t) ≤ e−δε+Atε2/2.

Whenδ ≤ Atη we can takeε = δ/At to obtain

P

(
sup
s≤t

〈θ,Ms〉 > δ

)
≤ e−δ2/2At.

Finally, if sups≤t |Ms | > δ, then sups≤t 〈θ,Ms〉 > δ/
√

d for one of θ =
±e1, . . . ,±ed . �
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5. Fluid limit for stopped processes. In this section we develop some general
criteria for the convergence of a sequence of Markov chains inR

d to the solution
of a differential equation, paying particular attention to the case where the chain
may stop abruptly on leaving a given open set.

5.1. Fluid limits. It is possible to give criteria for the convergence of Markov
processes in terms of the limiting behavior of their infinitesimal characteristics.
This is a powerful technique which has been intensively studied by probabilists.
The book of Ethier and Kurtz [8] is a key reference. Further results are given in
Chapter 17 of [10] and in Theorems IX.4.21 and IX.4.26 of [9]. A particular case
with many applications is where the limiting process is deterministic and is given
by a differential equation, sometimes called a fluid limit. The relevant probabilistic
literature, though well developed, may not be readily accessible to nonspecialists
seeking to apply the results in other fields. One field where fluid limits of Markov
processes are beginning to find interesting applications is random combinatorics.
Wormald [16] and co-workers have put forward a set of criteria which is specially
adapted to this application. The material in this section may be considered as an
alternative framework, somewhat more rigid but, we hope, easy to use, developed
with the same applications in mind.

Let (XN
t )t≥0 be a sequence of pure jump Markov processes inR

d . It may be
that (XN

t )t≥0 takes values in some discrete subsetIN of R
d and that its Lévy

kernelKN(x, dy) is given naturally only forx ∈ IN . So let us suppose thatIN is
measurable, that(XN

t )t≥0 takes values inIN and that the Lévy kernelKN(x, dy)

is given forx ∈ IN . Let S be an open set inRd and setSN = IN ∩ S. We shall
study, under certain hypotheses, the limiting behavior of(XN

t )t≥0 asN → ∞, on
compact time intervals, up to the first time the process leavesS. In applications,
the setS will be chosen as the intersection of two open setsH and U . Our
sequence of processes may all stop abruptly on leaving some open setH , so that
KN(x, dy) = 0 for x /∈ H . If this sort of behavior does not occur, we simply take
H = R

d . We chooseU so that the conjectured fluid limit path does not leaveU

in the relevant compact time interval. Subject to this restriction we are free to
takeU as small as we like to facilitate the checking of convergence and regularity
conditions, which are required only onS.

The scope of our study is motivated by the particular model which occupies
the remainder of this paper: so we are willing to impose a relatively strong,
large-deviations-type hypothesis on the Lévy kernelsKN , see (6) below, and we
are interested to find that strong conclusions may be drawn using rather direct
arguments. On the other hand, in certain cases of our model, the fluid limit path
grazes the boundary of the setS; this calls for a refinement of the usual fluid limit
results to determine the limiting distribution of the exit time.
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5.2. Assumptions. Consider the Laplace transform

mN(x, θ) =
∫

Rd
e〈θ,y〉KN(x, dy), x ∈ SN, θ ∈ (Rd)∗.

We assume that, for someη0 > 0,

sup
N

sup
x∈SN

sup
|θ |≤η0

mN(x,Nθ)

N
< ∞.(6)

SetbN(x) = mN ′(x,0), where “′ ” denotes the derivative inθ . We assume that, for
some Lipschitz vector fieldb onS,

sup
x∈SN

|bN(x) − b(x)| → 0.(7)

We write b̃ for some Lipschitz vector field onRd extendingb. [Such ab̃ is given,
e.g., byb̃(x) = sup{b(y) − K|x − y| :y ∈ S} whereK is the Lipschitz constant
for b.] Fix a point x0 in the closureS̄ of S and denote by(xt )t≥0 the unique
solution toẋt = b̃(xt ) starting fromx0. We assume finally that, for allδ > 0,

lim sup
N→∞

N−1 logP(|XN
0 − x0| > δ) < 0.(8)

While these are not the weakest conditions for the fluid limit, they are readily
verified in many examples of interest. In particular, we will be able to verify them
for the Markov chains associated with hypergraph collapse in Section 3.

5.3. Exponential convergence to the fluid limit. Fix t0 > 0 and set

T N = inf{t ≥ 0 :XN
t /∈ S} ∧ t0.

PROPOSITION5.1. Under assumptions (6)–(8), we have, for all δ > 0,

lim sup
N→∞

N−1 logP

(
sup

t≤T N

|XN
t − xt

∣∣ > δ

)
< 0.(9)

PROOF. The following argument is widely known but we have not found a
convenient reference. SetbN(x) = mN ′(x,0) and define(MN

t )t≥0 by

XN
t = XN

0 + MN
t +

∫ t

0
bN(XN

s ) ds.

Note thatMN
t corresponds to the martingale we identified in Proposition 4.1. Fix

η ∈ (0, η0). Assumption (6) implies that there existsC < ∞ such that, for allN ,

|mN ′′(x, θ)| ≤ C/N, x ∈ SN, |θ | ≤ Nη.
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Compare this estimate with (4). By applying Proposition 4.1 to the stopped
process(XN

t∧T N )t≥0, we find constantsε0 > 0 andC0 < ∞, depending only on
C,η, d andt0 such that, for allN and allε ∈ (0, ε0],

P

(
sup

t≤T N

|MN
t | > ε

)
≤ C0e

−Nε2/C0.(10)

Given δ > 0, setε = min{e−Kt0δ/3, ε0}, whereK is the Lipschitz constant of̃b.
Let

�N =
{
|XN

0 − x0| ≤ ε and sup
t≤T N

|MN
t | ≤ ε

}
.

Then (8) and (10) together imply that

lim sup
N→∞

N−1 logP(�\�N) < 0.

On the other hand, by (7), there existsN0 such that|bN(x) − b(x)| ≤ ε/t0 for all
x ∈ SN and allN ≥ N0. We note that

XN
t −xt = (XN

0 −x0)+MN
t +

∫ t

0

(
bN(XN

s )−b(XN
s )

)
ds +

∫ t

0

(
b̃(XN

s )− b̃(xs)
)
ds

so, forN ≥ N0, on�N , for t ≤ T N ,

|XN
t − xt | ≤ 3ε + K

∫ t

0
|XN

s − xs |ds,

which implies, by Gronwall’s lemma, that supt≤T N |XN
t − xt | ≤ δ. �

5.4. Limiting distribution of the exit time. The remainder of this section is
concerned with the question, left open by Proposition 5.1, of determining the
limiting distribution ofT N . Set

τ = inf{t ≥ 0 :xt /∈ S̄} ∧ t0,

T = {t ∈ [0, τ ) :xt /∈ S}.
It is straightforward to deduce from (9) that, for allδ > 0,

lim sup
N→∞

N−1 logP

(
inf

t∈T ∪{τ } |T
N − t| > δ

)
< 0.(11)

In particular, ifT is empty, thenT N → τ in probability and, for allδ > 0,

lim sup
N→∞

N−1 logP

(
sup
t≤t0

|XN
t − xt∧τ | > δ

)
< 0.

The reader who wishes only to know the proof of Theorem 2.1 may skip to
Section 6 as the remaining results of this section are needed only for the more
general case considered in Theorem 2.2.
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5.5. Fluctuations. We assume here that

T is finite.(12)

In this case the limiting distribution ofT N may be obtained from that of the
fluctuationsγ N

t = √
N(XN

t∧T N − xt∧T N ). We assume that there exists a limit
kernel K(x,dy), defined forx ∈ S, such thatm(x, θ) < ∞ for all x ∈ S and
|θ | ≤ η0, where

m(x, θ) =
∫

Rd
e〈θ,y〉K(x,dy), x ∈ S, θ ∈ (Rd)∗.

For convergence of the fluctuations we assume

γ N
0 → γ0 in distribution,(13)

sup
x∈SN

sup
|θ |≤η0

∣∣∣∣mN(x,Nθ)

N
− m(x, θ)

∣∣∣∣ → 0,(14)

sup
x∈SN

√
N |bN(x) − b(x)| → 0,(15)

a is Lipschitz andb is C1 onS,(16)

wherebN(x) = mN ′(x,0) anda(x) = m′′(x,0). Of course (14) will forceb(x) =
m′(x,0).

5.6. Limiting stochastic differential equation. Consider the process(γt )t≤τ

given by the linear stochastic differential equation

dγt = σ(xt) dBt + ∇b(xt)γt dt(17)

and starting fromγ0, whereB is a Brownian motion andσ(x)σ (x)∗ = a(x). The
distribution of(γt )t≤τ does not depend on the choice ofσ . For convergence ofT N

we assume, in addition,

∂S is C1 atxt with inward normalnt and

P(〈nt, γt〉 = 0) = 0 for all t ∈ T .
(18)

THEOREM 5.1. Under assumptions (8), (12)–(16)and (18)we have T N → T

in distribution, where

T = min{t ∈ T : 〈nt, γt〉 < 0} ∧ τ.

PROOF. Let τ0 = 0 and write the positive elements ofT as τ1 < · · · < τm.
Define, fork = 0,1, . . . ,m,

γ̃ N
k =

{
γ N
τk

, if T N > τk,
∂, otherwise,

γ̃k =
{

γτk
, if T > τk,

∂, otherwise,
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where∂ is some cemetery state. We will show by induction, fork = 0,1, . . . ,m,
that

(γ̃ N
0 , . . . , γ̃ N

k ) → (γ̃0, . . . , γ̃k) in distribution.(19)

Given (11), this implies thatT N → T in distribution, as required.
Note that both(γ̃ N

k )0≤k≤m and(γ̃k)0≤k≤m may be considered as time-dependent
Markov processes. Hence, by a conditioning argument, it suffices to deal with the
case whereγ0 is nonrandom. By (18), ifx0 ∈ ∂S, we can assume that∂S is C1

at x0 and〈n0, γ0〉 �= 0. Moreover, for the inductive step, it suffices to consider the
case wherẽγk is nonrandom, not∂ , and to show that, if̃γ N

k → γ̃k in probability,
then γ̃ N

k+1 → γ̃k+1 in distribution. We lose no generality in considering only the
casek = 0.

We have assumed thatγ N
0 → γ0 in distribution. Note thatT = 0 if and only

if x0 ∈ ∂S and 〈n0, γ0〉 < 0. On the other hand, sinceXN
0 = x0 + √

Nγ N
0 , we

haveP(T N = 0) → 1 if and only if x0 ∈ ∂S and〈n0, γ0〉 < 0. Henceγ̃ N
0 → γ̃0 in

distribution; that is, (19) holds fork = 0.
In Lemmas 5.4–5.6 below, we will show that, ifx0 ∈ S, or x0 ∈ ∂S and

〈n0, γ0〉 > 0, then

P(T N > ε) → 1 for someε > 0,

and, in the casem ≥ 1,

γ N
τ1

→ γτ1 in distribution,

P
(〈
nτ1, γ

N
τ1

〉 ≥ 0 andT N ≤ τ1
) → 0,

P
(〈
nτ1, γ

N
τ1

〉
< 0 andT N > τ1

) → 0.

It follows that γ̃ N
1 → γ̃1 in distribution, so (19) holds fork = 1. This establishes

the induction and completes the proof.�

We remark that the same proof applies when the Lévy kernelsKN have a
measurable dependence on the time parametert , subject to obvious modifications
and to each hypothesis holding uniformly int ≤ t0.

For the remainder of this section, the assumptions of Theorem 5.1 are in force
andγ0 is nonrandom.

LEMMA 5.2. For all ε > 0 there exists λ < ∞ such that, for all N ,

P

(
sup
t≤t0

|γ N
t | ≥ λ

)
< ε.

PROOF. Givenε > 0, chooseλ < ∞ andN0 such that, forλ′ = e−Kt0λ/3 and
N ≥ N0, √

N |bN(x) − b(x)| ≤ λ′/t0, x ∈ SN,
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and, with probability exceeding 1− ε,

|γ N
0 | ≤ λ′,

√
N sup

t≤T N

|MN
t | ≤ λ′.

This is possible by (10) and (15). These three inequalities imply

|γ N
t | ≤ 3λ′ + K

∫ t

0
|γ N

s |ds, t ≤ T N,

so, by Gronwall’s lemma

sup
t≤T N

|γ N
t | ≤ λ.

�

LEMMA 5.3. For all ε > 0 there exists λ < ∞ such that, for all δ > 0, there
exists Nδ < ∞ such that, for all N ≥ Nδ and all t ≤ t0,

P

(
sup

s≤t0,t≤s≤t+δ

|γ N
s − γ N

t | > λ
√

δ

)
< ε.

PROOF. Consider first the caset = 0. Givenε > 0, chooseλ < ∞ such that,
for all δ > 0, there existsNδ such that, forλ′ = eKt0λ/3 andN ≥ Nδ,√

N |bN(x) − b(x)| ≤ λ′/
√

t0, x ∈ SN,

and, with probability exceeding 1− ε,

|γ N
0 | ≤ λ′/K

√
t0,√

N sup
t≤T N∧δ

|MN
t | ≤ λ′√δ.

This is possible by (10) and (15). These three inequalities imply

|γ N
t − γ N

0 | ≤ 3λ′√δ + K

∫ t

0
|γ N

s − γ N
0 |ds, t ≤ T N ∧ δ,

so by Gronwall’s lemma,

sup
t≤T N∧δ

|γ N
t − γ N

0 | ≤ λ
√

δ.

The caset > 0 follows by the same sort of argument, using Lemma 5.2 to get the
necessary tightness ofγ N

t . �

LEMMA 5.4. Suppose either x0 ∈ S, or x0 ∈ ∂S and 〈n0, γ0〉 > 0. Then
P(T N > ε) → 1 as N → ∞ for some ε > 0.
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PROOF. The casex0 ∈ S follows from (11). Suppose then thatx0 ∈ ∂S and
〈n0, γ0〉 > 0. Then, since∂S is C1 at x0, for all ε > 0, there existsδ(ε) > 0 such
that, for allx ∈ S̄ with |x − x0| ≤ δ(ε), and allv ∈ R

d ,

|v| ≤ δ(ε) and 〈n0, v〉 ≥ ε|v| �⇒ x + v ∈ S.(20)

Since〈n0, γ0〉 > 0, by Lemma 5.3, givenε > 0 there existε1 > 0 andN0 such that,
for all N ≥ N0 andt ≤ T N ∧ ε1,

〈n0, γ
N
t 〉 > ε1|γ N

t |, |γ N
t | < 1/ε1,

with probability exceeding 1− ε. Chooseε2 ∈ (0, ε1) so that|xt − x0| ≤ δ(ε1) and
xt ∈ S̄ whenevert ≤ ε2. SetN1 = max{N0, (ε1δ(ε1))

−2}, then, forN ≥ N1 and
t ≤ T N ∧ ε2,

xt ∈ S̄, |xt − x0| ≤ δ(ε1), N−1/2|γ N
t | ≤ δ(ε1),

〈n0, γ
N
t 〉 > ε1|γ N

t |,
(21)

with probability exceeding 1− ε. By (20), (21) impliesXN
t = xt + N−1/2γ N

t ∈ S.
HenceP(T N ≤ ε2) < ε for all N ≥ N1. �

For the rest of this section we assume thatm ≥ 1. (The next result holds withτ1
replaced byτ whenm = 0, by the same argument, but we do not need this.)

LEMMA 5.5. Suppose either x0 ∈ S, or x0 ∈ ∂S and 〈n0, γ0〉 > 0. Then
γ N
τ1

→ γτ1 in distribution as N → ∞.

PROOF. By Lemma 5.3, givenδ > 0, we can findt < τ1 such that, for allN ,

P
(∣∣γ N

t − γ N
τ1

∣∣ > δ
)
< δ, P

(∣∣γt − γτ1

∣∣ > δ
)
< δ.

Hence it suffices to showγ N
t → γt in distribution for allt < τ1.

Define(ψt )t≤τ in R
d ⊗ (Rd)∗ by

ψ̇t = ∇b(xt)ψt , ψ0 = id.

Fix θ ∈ (Rd)∗ and setθt = (ψ∗
t )−1θ . Then

d〈θt , γt〉 = 〈θt , σ (xt ) dBt〉, t ≤ τ,

so

〈θt , γt〉 ∼ N

(
〈θ, γ0〉,

∫ t

0
〈θs, a(xs)θs〉ds

)
, t ≤ τ.

On the other hand, for(MN
t )t≥0 as in the proof of Proposition 5.1,

d〈θt , γ
N
t 〉 = √

N〈θt , dMN
t 〉 + R

N,θ
t dt, t ≤ T N,
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where

R
N,θ
t = √

N〈θt , b
N(XN

t ) − b(xt) − ∇b(xt )(X
N
t − xt)〉.

By (15),

sup
t≤T N

√
N |bN(XN

t ) − b(XN
t )| → 0.

By (16), givenε > 0, there existsδ > 0 such that, for allt ∈ [ε, τ1 − ε], for
|x − xt | ≤ δ,

|b(x) − b(xt) − ∇b(xt)(x − xt )| ≤ ε|x − xt |.
Hence|XN

t − xt | ≤ δ andε ≤ t ≤ τ1 − ε imply
√

N |b(XN
t ) − b(xt) − ∇b(xt)(X

N
t − xt)| ≤ ε|γ N

t |.
Combining this with Lemma 5.2, we deduce that∫ τ1

0
|RN,θ

t |dt → 0 in probability.

Hence it suffices to show, for allθ ∈ (Rd)∗ and allt < τ1,
√

N

∫ t

0
〈θs, dMN

s 〉 → N

(
0,

∫ t

0
〈θs, a(xs)θs〉ds

)
in distribution.

Indeed, it suffices to show, for allθ ∈ (Rd)∗ and t < τ1, that E(E
N,θ
t ) → 1 as

N → ∞, where

E
N,θ
t = exp

{
i
√

N

∫ t

0
〈θs, dMN

s 〉 + 1
2

∫ t

0
〈θs, a(xs)θs〉ds

}
.

Setm̃N (x, θ) = mN(x, iθ), m̃(x, θ) = m(x, iθ) and

φ̃N(x, θ) =
∫

Rd

(
ei〈θ,y〉 − 1− i〈θ, y〉)KN(x, dy).

By (14), for allη < η0, we have

sup
x∈SN

sup
|θ |≤η

|Nm̃N ′′(x,Nθ) − m̃′′(x, θ)| → 0.

Note that

φ̃N
(
x,

√
Nθ

) + 1
2〈θ, a(x)θ〉

=
∫ 1

0

(
Nm̃N ′′(x,

√
Nrθ

) − m̃′′(x,0)
)
(θ, θ)(1− r) dr

so, for allρ < ∞,

sup
x∈SN

sup
|θ |≤ρ

∣∣φ̃N(
x,

√
Nθ

) + 1
2〈θ, a(x)θ〉∣∣ → 0.(22)
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Write E
N,θ
t = EN

t = ZN
t AN

t BN
t , where

ZN
t = exp

{
i
√

N

∫ t

0
〈θs, dMN

s 〉 −
∫ t

0
φ̃N(

XN
s ,

√
Nθs

)
ds

}
,

AN
t = exp

{∫ t

0

(
φ̃N (

XN
s ,

√
Nθs

) + 1
2〈θs, a(XN

s )θs〉)ds

}
,

BN
t = exp

{∫ t

0

1
2

〈
θs,

(
a(xs) − a(XN

s )
)
θs

〉
ds

}
.

Now (ZN
t∧T N )t≤τ is a martingale, as in (5), soE(ZN

t∧T N ) = 1 for all N . Fix

t ≤ τ . By (22),ZN
t∧T N is bounded, uniformly inN , andAN

t∧T N → 1 uniformly as

N → ∞. Moreover, by (16),BN
t∧T N is bounded uniformly inN and converges to 1

in probability, using (9). Hence

E
(
ZN

t∧T N AN
t∧T N BN

t∧T N

) → 1

asN → ∞. By Lemma 5.4 and (11),P(T N > t) → 1 for all t < τ1. It follows that
E(EN

t ) → 1 for all t < τ1 as required. �

LEMMA 5.6. Suppose either x0 ∈ S, or x0 ∈ ∂S and 〈n0, γ0〉 > 0. Then, as
N → ∞,

P
(〈
nτ1, γ

N
τ1

〉 ≥ 0 and T N ≤ τ1
) → 0,

P
(〈
nτ1, γ

N
τ1

〉
< 0 and T N > τ1

) → 0.

PROOF. By Lemma 5.5, givenε > 0, there existsε1 > 0 andN0 such that, for
all N ≥ N0, ∣∣〈nτ1, γ

N
τ1

〉∣∣ > ε1
∣∣γ N

τ1

∣∣, ε1 <
∣∣γ N

τ1

∣∣ < 1/ε1,

with probability exceeding 1− ε. Then by Lemma 5.3, there existsε2 > 0 and
N1 ≥ N0 such that, for allN ≥ N1, with probability exceeding 1− ε, either〈

nτ1, γ
N
t

〉
> ε2|γ N

t |, |γ N
t | < 1/ε2 for all t ∈ [τ1 − ε2, τ1](23)

or 〈
nτ1, γ

N
τ1

〉
< −ε2

∣∣γ N
τ1

∣∣, ∣∣γ N
τ1

∣∣ < 1/ε2.(24)

Since∂S is C1 atxτ1, there existsδ > 0 such that

if x ∈ S̄ andv ∈ R
d with

∣∣x − xτ1

∣∣ ≤ δ, |v| ≤ δ and〈
nτ1, v

〉
< ε2|v| thenx + v ∈ S

and

if v ∈ R
d with |v| ≤ δ and

〈
nτ1, v

〉
< −ε2|v| thenxτ1 + v /∈ S.
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Chooseε3 ∈ (0, ε2] such that|xt − xτ1| ≤ δ andxt ∈ S̄ whenevert ∈ [τ1 − ε3, τ1].
Set N2 = max{N1, (ε2δ)

−2}. Then, for N ≥ N2, since XN
t = xt + N−1/2γ N

t

on {T N ≥ t}, (23) impliesXN
t ∈ S for all t ∈ [τ1 − ε2, τ1] or T N < τ1 − ε2,

and (24) impliesXN
τ1

/∈ S or T N < τ1. We know by Lemma 5.4 and (11) that
P(T N < τ1 − ε2) → 0 asN → ∞. Hence, with high probability, asN → ∞,
〈nτ1, γ

N
τ1

〉 ≥ 0 implies (23) and thenT N > τ1, and〈nτ1, γ
N
τ1

〉 < 0 implies (24) and

thenT N ≤ τ1. �

6. Fluid limit of collapsing hypergraphs. We now apply the general theory
from the preceding sections to prove our main results Theorems 2.1 and 2.2.

6.1. Lévy kernel for collapse of random hypergraphs. In Section 3 we
introduced a Markov process(�n)n≥0 of collapsing hypergraphs, starting from
�0 ∼ Poisson(β) and stopping whenn = |V ∗|, the number of identifiable vertices
in �0. The process(Yn,Zn)n≥0 of patches and debris in�n was found itself to be
Markov. We now view this process as a function of the initial number of verticesN

and obtain a fluid limit result whenN → ∞.
It will be convenient to embed our process in continuous time, by removing

vertices according to a Poisson process(νt )t≥0 of rate N which stops when
νt = |V ∗|. Set

XN
t = N−1(νt , Yνt ,Zνt

)
and note thatXN takes values in

IN = {
x ∈ R

3 :Nx1 ∈ {0,1, . . . ,N − 1},Nx2,Nx3 ∈ Z
+}

∪ {(1,0, x3) :Nx3 ∈ Z
+}.

(25)

The Lévy kernelKN(x, dy) for (XN
t )t≥0 is naturally defined forx ∈ IN . If x2 = 0,

thenKN(x, dy) = 0. If x2 > 0, thenN−1KN(x, ·) is a probability measure; by
Lemma 3.1, it is the law of the random variableJN/N , where

JN = (1,−1− WN + UN,1+ WN),

WN ∼ B
(
Nx2 − 1,1/(N − Nx1)

)
, UN ∼ P

(
(N − Nx1 − 1)λ2(N,Nx1)

)
with WN andUN independent.

Recall thatR denotes the radius of convergence of the power seriesβ(t), given
by (1). We assume, until further notice, thatR > 0 and fix t0 ∈ (0,R ∧ 1) and
ρ ∈ (t0,R ∧ 1).

LEMMA 6.1. There is a constant C < ∞ such that

|Nλ2(N,n) − β ′′(n/N)| ≤ C(logN)2/N

for all N ∈ N and n ∈ {0,1, . . . , [Nρ]}.
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PROOF. Recall that

λ2(N,n) = N

n∑
i=0

(i + 1)(i + 2)βi+2
n(n − 1) · · · (n − i + 1)

N(N − 1) · · · (N − i − 1)
.

SetM = A logN whereA = (log(R/ρ))−1 < ∞. Then, forn ≤ [Nρ],
|Nλ2(N,n) − β ′′(n/N)|

≤
M∧n∑
i=1

(i + 1)(i + 2)βi+2δi(N,n) + 2
∞∑

i=M+1

(i + 1)(i + 2)βi+2ρi(N,n),

where

δi(N,n) =
∣∣∣∣ N2

(N − i)(N − i − 1)

n

N

(
n − 1

N − 1

)
· · ·

(
n − i + 1

N − i + 1

)
−

(
n

N

)i ∣∣∣∣
and

ρi(N,n) = N2

(N − i)(N − i − 1)

(
n

N

)i

≤ Cρi.

Note that, forj = 0, . . . , i − 1 andi ≤ M ∧ n,∣∣∣∣ n − j

N − j
− n

N

∣∣∣∣ ≤ A logN/N

so, making use of the inequality|∏aj − ∏
bj | ≤ ∑ |aj − bj | for 0 ≤ aj , bj ≤ 1,

we obtain

δi(N,n) ≤ C(logN)2ρi/N.

Hence

|Nλ2(N,n) − β ′′(n/N)| ≤ C(logN)2β ′′(ρ)/N + C(ρ/R)M

and(ρ/R)M = 1/N . �

6.2. Fluid limit. The main result of this section is to obtain the limiting
behavior of(XN

t )t≥0 as N → ∞, which we deduce from Proposition 5.1 and
Theorem 5.1. We present first the calculations by which the limit was discovered.

Note that, asN → ∞, for x1 < R ∧ 1, we haveWN → W andUN → U in
distribution, where

W ∼ P
(
x2/(1− x1)

)
, U ∼ P

(
(1− x1)β ′′(x1)

)
.

Set J = (1,−1 − W + U,1 + W). Note also thatXN
0 → x0 = (0, β1, β0) and√

N(XN
0 − x0) → γ0 in distribution, where γ 1

0 = 0, γ 2
0 ∼ N(0, β1),

γ 3
0 ∼ N(0, β0), with γ 2

0 and γ 3
0 independent. Thus, subject to certain technical
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conditions, to be checked later, at least up to the first time thatX
N,1
t ≥ R ∧ 1 or

X
N,2
t = 0, the limit path is given bẏxt = b(xt), starting fromx0, where

b(x) = E(J ) =
(

1,−1− x2

1− x1 + (1− x1)β ′′(x1),
x2

1− x1

)
.

Fix ρ′ ∈ (0,∞) and set

S = {(x1, x2, x3) : |x1| < ρ,x2 ∈ (0, ρ′), x3 ∈ R}.(26)

Then b is Lipschitz onS and, for ρ′ sufficiently large, the maximal solution
on [0, t0] to ẋt = b(xt) in S̄ starting fromx0 is given by(xt )t≤τ , where

xt = (
t, (1− t)

(
β ′(t) + log(1− t)

)
, β(t) − (1− t) log(1− t)

)
and

τ = z∗ ∧ t0.

6.3. Limiting fluctuations. Seta(x) = E(J ⊗ J ). A convenient choice ofσ
such thatσσ ∗ = a is σ = (V1,V2,V3), where

V1(x) =
√

x2

1− x1


 0

1
−1


 ,

V2(x) =
√

(1− x1)β ′′(x1)


 0

1
0


 ,

V3(x) = b(x).

Note thata is Lipschitz andb is C1 onS. The limiting fluctuations are given by

dγt = ∑
i

Vi(xt ) dBi
t + ∇b(xt)γt dt, t ≤ τ,

starting fromγ0, whereB is a Brownian motion inR3 independent ofγ0. Note
that

T = {t ∈ [0, τ ) :xt /∈ S} = ζ ∩ [0, t0).

In cases whereT is nonempty, the limiting behavior of(XN
t )t≤t0 depends on the

signs of the component of the fluctuations normal to the boundary, that is, on
(γ 2

t : t ∈ T ).
Note thatθt = b(xt)B

3
t satisfies

dθt = V3(xt ) dB3
t + ∇b(xt)θt dt.
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This is the part of the fluctuations which reflects our Poissonization of the time-
scale. Sinceb2(xt ) = 0 for all t ∈ T , it does not affect(γ 2

t : t ∈ T ). So consider
γ ∗
t = γt − θt . Then

dγ ∗
t = V1(xt ) dB1

t + V2(xt ) dB2
t + ∇b(xt)γ

∗
t dt.

Note thatV 1
1 (x) = V 1

2 (x) = 0 and∇b1(x) = 0, so(γ ∗
t )1 = (γ ∗

0 )1 = 0 for all t .
Also ∂b2/∂x2 = −1/(1 − x1) and∂b2/∂x3 = 0. Also x1

t = t andx2
t /(1 − x1

t ) =
β ′(t)+ log(1− t). The sign of(γ ∗

t )2 is the same as that ofαt = (γ ∗
t )2/(1− t). We

have

dαt = dγ ∗2
t /(1− t) + γ ∗2

t /(1− t)2 dt

= (
V 2

1 (xt ) dB1
t + V 2

2 (xt ) dB2
t

)
/(1− t)

so we can writeαt = W(σ 2
t ), whereW is a Brownian motion and

σ 2
t = β1 +

∫ t

0

β ′(s) + log(1− s) + (1− s)β ′′(s)
1− s

ds

= β ′(t) + log(1− t) + t

1− t
.

We have shown that(sgn(γ 2
t ) : t ∈ T ) has the same distribution as(sgn(Wt/(1−t)) :

t ∈ T ). In particular,P(γ 2
t = 0) = 0 for all t ∈ T .

Recall thatZ is defined by

Z = min{z ∈ ζ :W(z/1− z) < 0} ∧ z∗.

Set

T N = inf{t ≥ 0 :XN,2
t = 0}

and putZ(t0) = Z ∧ t0, T N(t0) = T N ∧ t0.

THEOREM 6.1. For all δ > 0 we have

lim sup
N→∞

N−1 logP

(
sup

t≤T N(t0)

|XN
t − xt | > δ

)
< 0.

Moreover, T N(t0) → Z(t0) in distribution as N → ∞.

PROOF. We definedIN , the state-space of(XN
t )t≥0, in (25), andS in (26). Set

SN = IN ∩ S. Forx ∈ SN we have

mN(x, θ) =
∫

R3
e〈θ,y〉KN(x, dy) = NE

(
e〈θ,JN 〉/N )



RANDOM HYPERGRAPHS 149

so

mN(x, θ)

N
= exp

{
θ1 − θ2 + θ3 + B

(
Nx2 − 1,

1

N − Nx1 ,
θ3 − θ2

N

)

+ P

(
(N − Nx1 − 1)λ2(N,Nx1),

θ2

N

)}
,

where, forθ ∈ R, we write B(N,p, θ) = N log(1 − p + peθ) and P (λ, θ) =
λ(eθ − 1). So, by Lemma 6.1,

sup
x∈SN

sup
|θ |≤η0

∣∣∣∣m
N(x,Nθ)

N
− m(x, θ)

∣∣∣∣ → 0

asN → ∞, for all η0 > 0, where

m(x, θ) = E
(
e〈θ,J 〉)

= exp
{
θ1 − θ2 + θ3 + P

(
x2

1− x1
, θ3 − θ2

)
+ P

(
(1− x1)β ′′(x1), θ2

)}
.

Set

bN(x) =
∫

R3
yKN(x, dy) = E(JN),

then, by Lemma 7.1,

sup
x∈SN

√
N |bN(x) − b(x)| → 0.

Recall that

X
N,1
0 = 0, NX

N,2
0 ∼ P (Nβ1), NX

N,3
0 ∼ P (Nβ0),

andx0 = (0, β1, β0). By standard exponential estimates, for allδ > 0

lim sup
N→∞

N−1 logP(|XN
0 − x0| > δ) < 0.

We have now checked the validity of (7), (8), (12)–(16) and (18) in this context, so
Proposition 5.1 and Theorem 5.1 apply to give the desired conclusions.�

REMARK 6.1. If z∗ < 1, thenz∗ < R ∧ 1, so by choosingt0 ∈ (z∗,R ∧ 1)

we getZ(t0) = Z and, asN → ∞, with high probabilityT N(t0) = T N . Hence,
whenz∗ < 1, Theorem 6.1 holds withZ andT N replacingZ(t0) andT N(t0). In
particular, Theorem 2.1 follows.
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6.4. Proof of Theorem 2.2. Recall that

XN
T N =

( |V N∗|
N

,0,
|�N∗|

N

)
.

Let z ∈ ζ ∪ {z∗}. If z < 1, thenz < R ∧ 1 so, by choosingt0∈̀(z,R ∧ 1) in
Theorem 5.1, we obtain

P
(∣∣XN

T N − xz

∣∣ ≤ δ
) → P(Z = z)(27)

for all sufficiently smallδ > 0.
It remains to deal with the casez = z∗ = 1. Note that|V N∗| ≤ N and|�N∗| ≤

|�N |. Now |�N | ∼ P (Nβ(1)) so |�N |/N → β(1) in probability asN → ∞. It
therefore suffices to show, for allδ > 0 andα < β(1) − δ,

lim inf
N→∞ P

( |V N∗|
N

≥ 1− δ and
|�N∗|

N
≥ α

)
≥ P(Z = 1).

When combined with (27) this completes the proof as we have exhausted the
possible values ofZ.

We consider first the caseR ≥ 1. We can findt0 ∈ (1 − δ/2,1) such that
β(t0) > α + δ/2. Note that|XN

t0
− xt0| ≤ δ/2 implies

|V N∗|/N ≥ X
N,1
t0

≥ t0 − δ/2 > 1− α,

|�N∗|/N ≥ X
N,3
t0

≥ β(t0) − (1− t0) log(1− t0) − δ/2 > α.

By Theorem 6.1

lim inf
N→∞ P

(
sup
t≤t0

|XN
t − xt | ≤ δ/2

)
≥ P(Z > t0) ≥ P(Z = 1)

so we are done.
Consider next the caseR = 0. Fix M ∈ N and setβ̃j = βj if j ≤ M andβ̃j = 0

otherwise. Then, with obvious notation, we can chooseM so thatz̃0 > 1 − δ/2,
ζ̃ = ∅ andβ̃(z0) > α + δ/2. Hence

P

( |Ṽ N∗|
N

≥ 1− δ and
|�̃N∗|

N
≥ α

)
→ 1.

We can couple� and �̃ so that�̃(A) = �(A)1|A|≤M . Then Ṽ N∗ ⊆ V N∗ and
�̃N∗ ≤ �N∗, so this is enough.

There remains the caseR ∈ (0,1). In this caseζ is finite. We have assumed that
R /∈ ζ . So we can findρ ∈ (supζ,R) andM ∈ N such that, with obvious notation,

z̃0 > 1− δ/2, ζ̃ = ζ, β̃(z̃0) > α + δ/2,
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whereβ̃(t), t ∈ [0,1), is defined by

β̃(0) = β0, β̃ ′(0) = β1, β̃ ′′(t) =




β ′′(t), t < ρ,
M∑

j=2

j (j − 1)βj t
j−2, t ≥ ρ.

Consider the collapsing hypergraph(�̃N
n )n≥0 which evolves as(�N

n )n≥0 up
to n = ν(ρ), at which time all hyperedges having at least two vertices and
originally having more thanM vertices are removed, so that�̃N

ν(ρ) ≤ �N
ν(ρ). After

ν(ρ), (�̃N
n )n≥0 evolves by selection of patches as before. Denote byṼ N∗ the

set of identifiable vertices iñ�N
ν(ρ) and by�̃N∗ the corresponding identifiable

hypergraph. Then

Ṽ N∗ ⊆ V N∗ and �̃N∗ ≤ �N∗.

A modification of Theorem 5.1 shows that

P
(∣∣X̃N

1 − x̃z̃0

∣∣ ≤ δ/2
) → P(Z̃ = z̃0) = P(Z = 1)

with X̃N
1 = (|Ṽ N∗|/N,0, |�̃N∗|/N) and with

x̃t = (
t, (1− t)

(
β̃ ′(t) + log(1− t)

)
, β̃(t) − (1− t) log(1− t)

)
.

All that changes in the proof is that, fort ≥ ρ the Lévy kernel is modified by
replacingλ2 by λ̃2 given by

λ̃2(N,n) = N

n∧(M−2)∑
i=0

(i + 1)(i + 2)βi+2
n(n − 1) · · · (n − i + 1)

N(N − 1) · · · (N − i + 1)
.

The argument of Lemma 6.1 shows that for allρ′ < 1 there is a constantC < ∞
such that

|Nλ̃2(N,n) − β̃ ′′(n/N)| ≤ C/N

for all N ∈ N and n = {0,1, . . . , [Nρ′]}. Everything else is the same. Now
|X̃N

1 − x̃z̃0| ≤ δ/2 implies

|V N∗|/N ≥ |Ṽ N∗|/N = X̃
N,1
1 ≥ z̃0 − δ/2 ≥ 1− δ,

|�N∗|/N ≥ |�̃N∗|/N = X̃
N,3
1 ≥ β̃(z̃0) − (1− z̃0) log(1− z̃0) − δ/2 ≥ α,

so

lim inf
N→∞ P

( |V N∗|
N

≥ 1− δ and
|�N∗|

N
≥ α

)
≥ P(Z = 1)

as required.
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