The Annals of Applied Probability

2005, Vol. 15, No. 1A, 125-152

DOI 10.1214/105051604000000567

© Institute of Mathematical Statistics, 2005

STRUCTURE OF LARGE RANDOM HYPERGRAPHS

By R. W. R. DARLING AND J. R. NORRIS
National Security Agency and University of Cambridge

The theme of this paper is the derivation of analytic formulae for certain
large combinatorial structures. The formulae are obtained via fluid limits of
pure jump-type Markov processes, dgished under simple conditions on the
Laplace transforms of their Lévy kernels. Furthermore, a related Gaussian
approximation allows us to describe the randomness which may persist in
the limit when certain parameters take critical values. Our method is quite
general, but is applied here to vettiglentifiability in random hypergraphs.

A vertexv is identifiable inn steps if there is a hyperedge containingll of
whose other vertices are identifiable in fewer steps. We say that a hyperedge
is identifiable if every one of its vertices is identifiable. Our analytic formulae
describe the asymptotics of the number of identifiable vertices and the
number of identifiable hyperedges for a Poigghrmandom hypergraph on

a setV of N vertices, in the limitagv — oo. Herep is a formal power series

with nonnegative coefficientgg, 1, ..., and(A(A)) acy are independent
Poisson random variables such thatA), the number of hyperedges an

has mearNﬂj/(l}l) wheneverA| = ;.

1. Introduction.

1.1. Mativation. We are interested in the evolution of certain statistically
symmetric random structures, extended over a large finite set of points, when
points are progressively removed in a way which depends on the structure. The
initial condition of the structure may allow few possibilities for the removal of
points; indeed, it may be that, once a small proportion of points are removed,
the process terminates. On the other hand, the removal of points may cause the
structure to ripen, eventually yielding a large proportion of the initial points. Our
analysis will enable us to demonstrate a sharp transition between these two sorts
of behavior as certain parameters pass through critical values.

Let us illustrate this phenomenon by a simple special case. Consider the com-
plete graph orV vertices and declare each vertex to be open with probabhility
each edge to be open with probabilityN. Suppose that we are allowed to select
an open vertex, remove it, and declare open any other vertices sharing an open edge
with the selected vertex. If we continue in this way until no open vertices remain,
we eventually remove every vertex connected to an open vertex by open edges. We
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126 R. W. R. DARLING AND J. R. NORRIS

shall see that the proportion of vertices thus removed converges in probability as
N — oo and that the limit*(p, «) is the unique root ifi0, 1) of the equation

az +log(l—z) =log(l— p).

Thus, for small values op, there is a dramatic change in behavioreapasses
through 1. Asp | 0, fora <1,

Z(p,)/p—>1/(1-a),
but fora > 1,
70+, a) > 0.

Of course, this is a reflection of well-known connectivity properties of random
graphs, discovered by Ebd and Rényi [7], and discussed, for example, in [3].

The class of models considered in this paper is a natural generalization of
some classical models of random graphs and hypergraphs, which may be further
motivated as follows. Phase transitions in combinatorial problems constitute an
area of active research among computer scientists. Many “hard” combinatorial
problems can be cast aatisfiability problems, which seek to assign a truth value
to each of a set of Boolean variables, such that a collection of logical conjunctions
are simultaneously satisfied. Phase s$iaons for random satisfiability (“random
k-SAT”) problems have been studied by researchers at Microsoft [1, 2, 15] and
IBM [4], but difficult questions remain unanswered. The random hypergraph
model herein may be viewed as a simplification of the random satisfiability model:
a vertex corresponds to a Boolean variable, and a hyperedge to the set of variables
appearing in a specific logical conjunction, neglecting the truth or falsehood
assigned to those variables. Under this simplification, definitive critical parameters
are obtained which shed light on thandom satisfiability model, and whose
derivation may serve as a template for analysis of mixed satisfiability problems.

1.2. Hypergraphs. LetV be a finite set oV vertices. By ahypergraphon vV
we mean any map

AP(V)—> T .

Here Z* denotes the set of nonnegative integers. The reader may consult [6]
for an overview of the theory of hypergraphs; however, the direction pursued
here is largely independent of previous work. We emphasize that, in distinction
to much of the combinatorial literature on hypergraphs, we allow the possibility
that more than one edge is assigned to a given subset; thus we are considering
multi-hypergraphs. Moreover, we do nosist that all hyperedges have the same
number of vertices. Much of the literature is restricted to tiigorm case. Our
methods allow a significant broadening of the class of models for which asymptotic
computations are feasible. Hyperedges over vertices are qadketles (loops
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in [6]) and hyperedges over are calleddebris. The total number of hyperedges
is

A=) A(A).
A

1.3. Accessibility and identifiability. Interest in large random graphs has often
focused on the sizes of their connected components. If there is given also, as in
the example above, a set of distinguished vertiggshen it is natural to seek to
determine the proportion of all vertices connectedgo

In the more general context of hypergraphs there is more than one interesting
counterpart of connectivity. Given a hypergraplon a setV, we say that a vertex
v is accessiblein 1 step or, equivalentlyjdentifiablein 1 step if A({v}) > 1. We
say, forn = 2,3, ..., that a vertex isaccessible in n steps if it belongs to some
subsetA with A(A) > 1, some other element of which is accessible in less than
steps. A vertex igccessibleif it is accessible im steps for some > 1.

On the other hand, we say that a verteidiantifiable in n stepsif it belongs to
some subsed with A(A) > 1, all of whose other elements are identifiable in less
thann steps. A vertex isdentifiable if it is identifiable inn steps for some > 1.

The notion of accessibility may be appropriate to some physical models
similar to percolation, whereas identifiability is more relevant to knowledge-based
structures. We shall examine only the notion of identifiability.

Given a hypergraph without patches and a distinguished vertgxwe say that
avertexv is accessiblefromuy if it is accessible in the hypergrapgh+- 1,3, that
is, in the hypergraph obtained fromby adding a single patch ag. Identifiability
from vg is defined similarly. The set of vertices accessible fi@ns thecomponent
of vg, as studied in [6, 11, 12, 14]. The set of vertices identifiable figrs the
domain of vg, as studied by Levin and the current authors [5]. We shall not consider
further in this paper these vertex-based notions.

The process of identification is dual to the process leading to the 2-core of
a graph or hypergraph, that is to say, the maximal subgraph in which every
nonisolated vertex has degree at least 2. In the former process one removes vertices
having a 1-hyperedge, in the latter one removes edges containing a vertex of
degree 1. In this duality, nonidentifiable vertices correspond to the 2-core. Thus
our results may be interpreted as giving the asymptotic size of the 2-core for a
certain class of random hypergraphs.

1.4. Hypergraph collapse. It will be helpful to think of the identification of
vertices as a progressive activity. Once a vertex is identified, rierisoved or
deleted from the vertex set, in a manner which is explained below. Thus, we
shall consider an evolution of hypergraphs by the removal of vertices over which
there is a patch. A hypergraph with no patches will thereforetélde. Given a
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BEFORE [ELETION AFTEM DELETION

Fic. 1. Example of a permitted collapse—deletion of one vertex.

hypergraphA and a vertex, we can arrive at a new hypergraphby removingv
from each of the hyperedges af Thus

AA) +AAUY),  ifvéA,
0, if veA.

For example, in Figure 1, the patch on the central vertex is selected, and that vertex
is removed; this causes a triangular face to collapse to an edge, and two edges
incident to the vertex to collapse to patches on the vertices at the other ends. Note
that this leaves two patches on the lower left vertex.

If A({v}) > 1, then we say that’ is obtained fromA by a (permitted)
collapse. Starting fromA, we can obtain, by a finite sequence of collapses, a stable
hypergraphA ... Denote byV* the set of vertices removed in passing fram
to Aw. The elements oV* are the identifiable vertices. We write&* for the
identifiable hypergraph, given by

A*(A) = A(A)Lacy~.

A'(A) = {

We note that/*, and hence\* and A o, do not depend on the particular sequence
of collapses chosen. For,uf, vy, ... andv/l, v/z, ... are two such sequences, and if
v # vy, for all k, then we can take minimal and findk such thafvy, ..., v,—1} €

{v, ..., v }; then, with an obvious notationy; ({v,}) > A,—1({v,}) = 1, sov,
must, after all, appear in the terminating sequeﬂ_ce’z, ..., acontradiction. We
note also tha¥’* increases with.

1.5. Purposeof thispaper. The main question we shall address is to determine
the asymptotic sizes df* and A* for certain generic random hypergraphs, as the
number of vertices becomes large. We note that, since the number of hyperedges
is conserved in each collapse, all the identifiable hyperedges eventually turn to
debris:

Ao (D) = |A7].
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Note thatV* depends only on mim\, 1}. In the case wheré\(A) = 0 for
|A| > 3, the hypergraph mim\, 1} may be considered as a graph Wrequipped
with a number of distinguished vertices. Thei is precisely the set of vertices
connected in the graph to one of these distinguished vertices.

1.6. Poisson random hypergraphs. Let (2, #,P) be a probability space.
A random hypergraph on V is a measurable map

AQxPV)—>7Z7 .

An introduction to random hypergraphs may be found in [11], though we shall
pursue rather different questions here. We shall consider a class of random
hypergraphs whose distribution is determined by a sequgnegB;:j € Z")

of nonnegative parameters. Say that a random hypergkaph V is Poissong)

if:

1. the random variables(A), A C V, are independent;

2. the distribution ofA (A) depends only oA |;

3. szj A(A) ~ PoissoNg;), j=0,1,..., N.

A consequence of these assumptions is thét) has mearNﬂj/(’}’) whenever

|A| = j. Note that, wherV is large, forj > 2, only a small fraction of the subsets

of size j have any hyperedges, and those that do usually have just one. Also the
ratio of j-edges to vertices tends fg. Our assumption of Poisson distributions is

a convenient exact framework reflecting behavior which holds asymptotically as
N — oo under more generic conditions.

1.7. Generating function. A key role is played by the power series
(1) Bty=) Bt/
j=0
and by the derived series
B)=>"jBt"
j=>1
B ()= j( -2
j=2

Let B8 have radius of convergend& The functiong’(r) + log(1 — ) may have
zeros in[0, 1) but these can accumulate only at 1. Set

2 ZF=inf{re[0,1):p'(t) +logl—1) <0} Al

and denote by the set of zeros g8’(¢) + log(1 —¢) in [0, z*). Note that ifg is a
polynomial, or indeed iR > 1, thenz* < 1. Also, the generic and simplest case is
where¢ is empty.
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2. Results. We state our principal result first in the generic case.
2.1. Hypergraph collapse—generic case.

THEOREM 2.1. Assume that z* <l and ¢ = @. For N e N, let VN be a
set of N vertices and let AN be a Poissoiig) hypergraph on V. Then, as
N — o0, the numbers of identifiable vertices and identifiable hyperedges satisfy
the following limits in probability:

[VN*|/N — 2%, |JAN*|/N — B(z") — (1 — z") log(1 — z*).

ExamMPLE 2.1. The random graph with distinguished vertices described in
the Introduction corresponds to a Poisg®h) hypergrapmA ¥, where

1—e_’3{V=p, 1—e_zﬁ§,/(N_l):a/N

and )Y = 0 for j > 3. Note thatg;’ = g1 and ;' — 2 as N — oo, where
B1=—log(l— p) and B> = «/2. Theorem 2.1 extends easily to cases witere
depends oV in such a mild way: one just has to check that Lemma 6.1 remains
valid and note that this is the only place thaenters the calculations. We have
B(t) = —tlog(1 — p) + t2a/2 so

B'(t) +log(l—1t)=—log(1l— p) + ta +log(1l—t).
Thenz* is the unique € [0, 1) such that
at +log(l—1) =log(1— p)

and¢ is empty, sqV*V|/N — z* in probability asN — oo, as stated above.

EXAMPLE 2.2. To illustrate critical phenomena, 18(r) = « (0.1 + 0.9)".
Let x, y andz refer to the re-scaled number of vertices eliminated, the number
of patches and the amount of debris, respectively; here “re-scaled” means after
division by the number of vertices. Plotspaindz versusy are shown in Figure 2,
for the choicesr = 1185 (solid) andx = 1200 (dashed). In the case= 1185,
y hits zero whenv ~ 0.02, and saz remains stuck at about 0.02. A very small
increase inx, from 1185 to 1200, causes a dramatic change in the outcome: after
narrowly avoiding extinction (Figure 2), the number of patches explodes (Figure 3)
asx increases toward 1.

Consider what the figures tell us about the supercritical @asel200: during
the first 4% of patch selections, there is rarely any other patch covering the same
vertex as the one selected; Figure 3 shows that, during the last 10% of patch
selections, an average of 5792 other patches cover the same vertex as the one
selected. (Read the labels on thexes carefully: Figure 2 is a close-up of the
leftmost 4% of the scale of Figure 3.)
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Zz versus x: a=1185 and 0=1200
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FIG. 2. Changesin behavior near a critical parameter value.

In order to describe an extension of

Theorem 2.1 to the case wherés nonempty, we introduce the random variable

Z=min{ze¢:W(z/(1—2)) <0} A Z¥,

where(W;);>o is a Brownian motion.

THEOREM 2.2. Assume that R ¢ ¢. Then, for VV* and AN* as in Theo-
rem2.1,the following limits exist in distribution:

[VN*|/N - Z,

|AN*|/N — B(Z) — (1— Z)log(1 — Z).

In the case where has only a single poinfy < z*, thenZ is equal tozg with

probability% and equal taz* with probability%. We do not know what happens
whenR € ¢. Proofs will be given in Section 6.
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FIG. 3. Patches and debrisin the supercritical regime.
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3. Randomized collapse. We introduce here a particular random rule for
choosing the sequence of moves by which a hypergraph is collapsed, which has
the desirable feature that certain key statistics of the evolving hypergraph behave
as Markov chains. It is by analysis of the asymptotics of these Markov chains as
N — oo that we are able to prove our main results.

3.1. Induced hypergraph. Let A be a PoissaiB) hypergraph. Fof C V with
|S| =n, let AS be the hypergraph obtained frafry by removing all vertices ir$.
Thus, forA € V\S with |[A] =,

A=Y AB)~P(;(N,n),
BDA,B\S=A

where the Poisson parametgi(N, n) is computed as follows: there af§ ways
to chooseS N B such thatB| =i + j, and the Poisson parameter &f(B) is

Nﬂj—i—i/([ﬁj)a SO
“"N’”)=N§ﬁf“ (1)/(4,)

Moreover, the random variablés’(A), AC V \ §, are independent.

3.2. Rulefor randomized collapse. Recall that the sequence of vertices chosen
to collapse a hypergraph is unimportant, provided we keep going until there are no
more patches. However, we shall use a specific randomized rule which turns out
to admit a description in terms of a finite-dimensional Markov chain. This leads
to a randomized process of collapsing hypergraghs,,>o. This will prove to be
an effective means to compute the numbers of identifiable vertices and identifiable
hyperedges fon .

The process(A,),>0, together with a sequence of sat$,),>o0 such that
A, = A5, is constructed as follows. Lefp = @ and Ag = A. Suppose that
S, and A, have been defined. If there are no patches jnthens, 1 = S, and
An+1= A,.Ifthere are patches in,,, select one uniformly at random and denote
by v,+1 the corresponding vertex; then $gt.1 = S, U{v,1} andA 11 = A5+,

3.3. Anembedded Markov chain. LetY,, denote the number of patches afid
the amount of debris im,,. ThenY, =0 and Z,, = |A*| for n > |V*|. Also
|V*| =inf{n > 0:Y, = 0}. Let W, 1 denote the number of other patches at time
sharing the same vertex as ttie+ 1)st selected patch, and 1&},,.1 denote the
number of 2-edges at time containing the(n + 1)st selected vertex, 1. Our
analysis will rest on the observation th@t,, Z,),>o0 is a Markov chain, where,
conditional onY,, =m > 1 andZ,, = k, we have

Yor1="Yn = 1= Wpp1+ Uns1, Zny1=Zn+ 14+ Wy
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and whereW,, 1 ~ B(m — 1,1/(N —n)) andU,+1 ~ P((N —n — 1)A2(N, n))
with W,,,.1 andU,,;1 independent.
To see this, introduce the filtration

Fo=0(S..Y,,Z,:r=0,1,...,n).
LEMMA 3.1. Let
p(AIS, k, m) =]P’[AS =x] S AS(fv}) =m, AS (@) :k]
v

Then
P[Ay = AFul = p(AISp, Yn, Zn).
Equivalently, for all B € #,, sothat BC {S,,=S,Y, =m, Z, =k},
P[A, = A, Bl= p(A|S, m, k)P[B].

The claimed Markov structure fa¥,, Z,),>o follows easily.

PROOF OFLEMMA 3.1. The identity is obvious fot = 0. Suppose it holds
forn.LetB C{S,=S,Y,=m,Z, =k}. Takex € V\S, m’ > 1 andk’ > k. Set
S'=SU{x}andB ={S,;.1="5",Y,1.1=m', Z,11 =Kk'} N B. It will suffice to
show, for all hypergraphs’ havingm’ patches and amount of debkis that

P[A,1=4", BToc pW'|S",m', k),
whereox denotes equality up to a constant independent.dBut
K —k

PlAns1=1,B1=>) P[Ay =%, Bl Y p(AlS, m, k),
m
A A
where the sum is over all hypergraphsvhich collapse ta\’ on removing the
vertexx. Let Y5, Z5 denote the number of patches, amount of debris\f)
respectively. Sinc&S and Z$ are conditionally independent afS given Y5
andz¥,

S pS,m k) =P(AS = 1YS =m, Z5 =k) o« p(.'|S', ' k),
A
as desired. O

4. Exponential martingales for jump processes. We recall here some
standard notions for pure jump Markov processeRih and their associated
martingales. These will be used to study the fluid limit of a sequence of such jump
processes in Section 5.
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4.1. Laplace transforms. Let (X;);>0 be a pure jump Markov process taking
values in a subsétof R?, with Lévy kernelK . Consider the Laplace transform

m(x,@):/de(e’”K(x,dy), 6 € (RY)*,
R

and assume that, for someg > 0,

3) sup sup m(x,0) < C < oo.
xel |01<no

The distribution of the timg" and displacemem X7 of the first jump of(X;);>0
is given by

P(T edt, AXT €dy|T >t,Xo=x)=K(x,dy)dt.
Introduce random measurgsandv on (0, co) x R?, given by

n= Z Et,AX;)»
AX,#0

v(dt,dy) = K(X;—,dy)dt,

whereg; yy denotes the unitmass@t y); v is thus the compensator of the random
measureu, in the sense of ([10], page 422).

4.2. Martingales associated with jump processes. The fact thatv is a
compensator implies that, for any previsible proces® x (0, c0) x RY — R
satisfying

E/ la(s, y)|v(ds, dy) < oo,
R4

the following process is a martingale:

t
L[ et =vyds.dy).

In particular, (3) allows us to take(s, y) = y, which gives the martingale

t
M= [ [ yu-vyas.ap.
0 Jrd
Fix n € (0, no). Then there existd < oo such that
(4) Im” (x,0)| < A, xel, 0] <n,
where " denotes differentiation i. Define foro € (R%)*

b (x,0) :f @) —1 (6, y)IK (x,dy).

R4
Theng¢ > 0 and, for|0| < n, by the second-order mean value theorem,

1
¢(x,0)=/0 m” (x,r0)(@,0)(L—r)dr
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SO
¢(x,0) <3A161%,  xel|8l<n.

Let (6;);>0 be a previsible process {®R?)* with |6;] < n for all 7. Set

(5) Zt=Zf=exp{/0t(0S,dMS)—/otqb(Xs,Qs)ds}.

Then(Z;);>o is locally bounded, and by the Doléans formula ([10], page 440),

zt_1+// %) — 1) (= v)(ds, dy).

Hence(Z;),>0 is a nonnegative local martingale, B¢Z;) < 1 for all z. Hence
t
2 [ [z~ lvids.ay)
R4

<E/ s(m(Xs, 05) + m(Xs,0))ds <2Ct
S0(Z;):=0 is a martingale.
PROPOSITION4.1. For all § € (0, Ant+/d ],

IP)<SUI3|MSI > 8) < (2d)e~%"/@Adn),

sS<t

PROOFE  Fix 6 e (R%)* with |#| = 1 and consider the stopping time
T =inf{r >0:(0, M;) > §}.
Fore < n, takingd; = 6 for all r above, we know tha(the)tZo is a martingale. On
the set{T <t} we havez? > e%e=A1e/2 By ontional stopping,
Ez ) =Rz =1

Hence,

P(SU[X@, M) > 8) =P(T <1)< e—3€+Al‘82/2.
S<t
Whens < Aty we can take = §/ At to obtain

]P’(sup(e, M) > 3) < 6_52/2At.

s<t

Finally, if sup_, |My| > &, then sup_ (0, M;) > 8/+/d for one of § =
:|:€1,...,:|:ed. O
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5. Fluid limit for stopped processes. In this section we develop some general
criteria for the convergence of a sequence of Markov chaifi®ito the solution
of a differential equation, paying particular attention to the case where the chain
may stop abruptly on leaving a given open set.

5.1. Fluid limits. It is possible to give criteria for the convergence of Markov
processes in terms of the limiting behavior of their infinitesimal characteristics.
This is a powerful technique which has been intensively studied by probabilists.
The book of Ethier and Kurtz [8] is a key reference. Further results are given in
Chapter 17 of [10] and in Theorems IX.4.21 and 1X.4.26 of [9]. A particular case
with many applications is where the limiting process is deterministic and is given
by a differential equation, sometimes called a fluid limit. The relevant probabilistic
literature, though wikdeveloped, may not be reyl accessible to nonspecialists
seeking to apply the results in other fields. One field where fluid limits of Markov
processes are beginning to find interesting applications is random combinatorics.
Wormald [16] and co-workers have put forward a set of criteria which is specially
adapted to this application. The material in this section may be considered as an
alternative framework, somewhat more rigid but, we hope, easy to use, developed
with the same applications in mind.

Let (XV);>0 be a sequence of pure jump Markov processeR4nlt may be
that (X{V),Zo takes values in some discrete subs®tof R? and that its Lévy
kernel KV (x, dy) is given naturally only for € V. So let us suppose that’ is
measurable, thatX),-o takes values if" and that the Lévy kernet ¥ (x, dy)
is given forx e IV. Let S be an open set iiR? and setSV = IV N S. We shall
study, under certain hypotheses, the limiting behaviagf),~o asN — oo, on
compact time intervals, up to the first time the process ledvés applications,
the setS will be chosen as the intersection of two open sHtsand U. Our
sequence of processes may all stop abruptly on leaving some opAn setthat
KN (x,dy) =0 forx ¢ H. If this sort of behavior does not occur, we simply take
H =R?. We choosd/ so that the conjectured fluid limit path does not leave
in the relevant compact time interval. Subject to this restriction we are free to
takeU as small as we like to facilitate the checking of convergence and regularity
conditions, which are required only ¢h

The scope of our study is motivated by the particular model which occupies
the remainder of this paper: so we are willing to impose a relatively strong,
large-deviations-type hypothesis on the Lévy kerriel$, see (6) below, and we
are interested to find that strong conclusions may be drawn using rather direct
arguments. On the other hand, in certain cases of our model, the fluid limit path
grazes the boundary of the s&tthis calls for a refinement of the usual fluid limit
results to determine the limiting distribution of the exit time.
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5.2. Assumptions. Consider the Laplace transform
m" (x,0) = /de<9’y>KN(x,dy), xe SN, 6e®H*.
R

We assume that, for somg > 0,
N(x,N6
(6) sup sup sup m”(x. N6) <0
N xesNlol<no N

SetbN (x) = m"'(x, 0), where “” denotes the derivative ifi. We assume that, for
some Lipschitz vector field on S,

(7) sup |6 (x) — b(x)| — O.

xeSN

We write b for some Lipschitz vector field oR? extendingp. [Such ab is given,
e.g., byb(x) = supb(y) — K|x — y|:y € S} whereK is the Lipschitz constant
for b.] Fix a pointxg in the closureS of S and denote by(x;);>0 the unique
solution tox, = b(x;) starting fromxg. We assume finally that, for afl> O,

(8) limsupN ~tlogP(| X} — xo| > 8) < 0.

N—oo

While these are not the weakest conditions for the fluid limit, they are readily
verified in many examples of interest. In particular, we will be able to verify them
for the Markov chains associated with hypergraph collapse in Section 3.

5.3. Exponential convergenceto the fluid limit. Fix 7o > 0 and set
TV =inf{t >0:X" ¢ S} A t0.
PROPOSITIONS.1. Under assumptions (6)+8), we have, for all § > 0,

9) lim supN‘llog]P’< sup [XN — x| > 6) <0.

N—o00 t<TN

ProOF The following argument is widely known but we have not found a
convenient reference. SeY (x) = m"’(x, 0) and defingMN),~0 by

t
X{V=X6V+M,N+fo N (XN ds.

Note thatMN corresponds to the martingale we identified in Proposition 4.1. Fix
n € (0, no). Assumption (6) implies that there exisfs< oo such that, for allv,

im""(x,0)| <C/N,  xeSN, 0] <Nn.
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Compare this estimate with (4). By applying Proposition 4.1 to the stopped
process(XtAiTN),zo, we find constantgg > 0 andCy < oo, depending only on
C, n,d andrg such that, for allv and alle € (0, &g,

(10) IP’( sup [MN| > 8) < Coe~Ne*/Co,
t<TN

Givens > 0, sete = min{e—X%§/3, g0}, whereK is the Lipschitz constant df.

Let

oV = {|X6V — x| <eand sup|M}| Se}.

t<TN
Then (8) and (10) together imply that
limsupN ~tlogP(Q\2V) < 0.

N—oo

On the other hand, by (7), there exigts such thaib” (x) — b(x)| < ¢/1o for all
x € SN and allN > Ng. We note that

XN —x, =¥ —xo)—i-M,N—i-/ot(bN(Xf,V) —b(Xf,V))ds—i-/ot(l;(Xf,V) —b(xy))ds
so, forN > Ng, onQV, fort < TV,

XN — x| 5384—[(/0[ XN — x| ds,
which implies, by Gronwall's lemma, that SURv |XtN — x| <é. O

5.4. Limiting distribution of the exit time. The remainder of this section is
concerned with the question, left open by Proposition 5.1, of determining the
limiting distribution of 7V . Set

T =inf{r>0:x; ¢ S} A to,
T ={re[0,7):x; ¢&S).
It is straightforward to deduce from (9) that, for al 0,
(11) lim supN‘llogIP’< inf [TV —¢| > 5) <0.
teTU{r}

N—oo

In particular, if7 is empty, ther™™ — ¢ in probability and, for alb > 0,

lim supN‘llog]P’<sup|X,N — Xinzl > 5) <0.
N—o0 t<fg

The reader who wishes only to know the proof of Theorem 2.1 may skip to

Section 6 as the remaining results of this section are needed only for the more

general case considered in Theorem 2.2.
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5.5. Fluctuations. We assume here that

(12) T is finite.
In this case the limiting distribution of ¥ may be obtained from that of the
fluctuationsy,\' = VN(XN v — x,,rv). We assume that there exists a limit

kernel K (x, dy), defined forx € S, such thatm(x,0) < oo for all x € § and
6] < no, where

m(x,0) = /de<9’y)l((x,dy), x€8,0 e (RH*.
R

For convergence of the fluctuations we assume

(13) vd" — yo in distribution
N(x, N6
(14) sup sup m —m(x,0) — 0,
xesN 161<no N
(15) sup v/ N|bY (x) — b(x)| — O,
xeSN
(16) a is Lipschitz andb is Ct on s,

whereb" (x) = m"'(x, 0) anda(x) = m” (x, 0). Of course (14) will forceb(x) =
m’(x, 0).

5.6. Limiting stochastic differential equation. Consider the proces§/;);<;
given by the linear stochastic differential equation
(17) dy; =0 (x;)dB; + Vb(x;)y, dt

and starting fromyp, whereB is a Brownian motion and (x)o (x)* = a(x). The
distribution of(y;),<. does not depend on the choicexafFor convergence df
we assume, in addition,

S is ct atx, with inward normak, and

(18)
P({n;,y;) =0 =0 forallr e 7.

THEOREM5.1. Under assumptions(8), (12)«16)and (18)wehave TV — T
in distribution, where

T=min{t €T :{n;,v) <O} AT.
PROOFE Let 1g = 0 and write the positive elements 6f asty < -+ < 1.
Define, fork =0, 1, ..., m,
)71\1:{)/{]:, if TV > 1,
k 9, otherwise,

~ v, if T> 1,
k=10, otherwise,
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whered is some cemetery state. We will show by induction,#c£ 0, 1, ..., m,
that

(19) G 7 = (o, ..., 7o) in distribution

Given (11), this implies thaf ¥ — T in distribution, as required.

Note that botk(;?,?’)osksm and(yx)o<k<m May be considered as time-dependent
Markov processes. Hence, by a conditioning argument, it suffices to deal with the
case wherey is nonrandom. By (18), ikg € 35, we can assume that is C1
atxg and(no, yo) # 0. Moreover, for the inductive step, it suffices to consider the
case wherey is nonrandom, nod, and to show that, if;¥ — 7 in probability,
then fkﬁl — P11 in distribution. We lose no generality in considering only the
casek =0.

We have assumed thag’ — yo in distribution. Note tha? = 0 if and only
if xo € 3S and (no, yo) < 0. On the other hand, sinck) = xo + VN, we
haveP(T"V = 0) — 1 if and only if xg € 35 and(no, yo) < 0. Henceyd’ — 7o in
distribution; that is, (19) holds fdr = 0.

In Lemmas 5.4-5.6 below, we will show that, i € S, or xg € 95 and
(no, y0) > 0, then

P(TY >¢)—>1  forsomes >0,
and, in the casa: > 1,
y4 — vz, in distribution
P((nzy. v ) = 0andTV < 1) > 0,
P((ne,. yfl’) <0and7TV > 71) = 0.
It follows that )71N — 1 in distribution, so (19) holds fok = 1. This establishes

the induction and completes the proof.]

We remark that the same proof applies when the Lévy kerkéshave a
measurable dependence on the time paramgsetbject to obvious modifications
and to each hypothesis holding uniformlyzig: 1.

For the remainder of this section, the assumptions of Theorem 5.1 are in force
andyg is nonrandom.

LEMMA 5.2. For all ¢ > Othereexists A < oo such that, for all N,

P(suply,”l > k) <e.

t<tg

PROOF  Givene > 0, choose. < oo andNy such that, foi’ = e~%%) /3 and
N = No,

VNP (x) = b(x)| < X /10, xesV,
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and, with probability exceeding-t ¢,
lve | <,

VN sup MM <.

t<TN

This is possible by (10) and (15). These three inequalities imply
t
WM<k [CpNds. TV,
0

so, by Gronwall's lemma

N
sup |y | < A.
ZETN ! D

LEMMA 5.3. For all ¢ > 0 there exists A < oo such that, for all § > 0, there
exists N5 < oo such that, for all N > Ns and all r < rg,

P( sup |%N——%N|>kv@)<<a

§<tg,t<s<t+§

PrRooOFE Consider first the case= 0. Givene > 0, choosée\. < oo such that,
for all 8 > 0, there existVs such that, fon’ = ¢X0%/3 andN > Ny,

VNIPY () = b <V /Vio,  xesV,
and, with probability exceeding-t ¢,
l79'l < X'/ K /o,
VN sup |MN| <.

t<TNAS

This is possible by (10) and (15). These three inequalities imply
t
|VzN—V(§V|S3)»/\/S+K/ N —ydds, r<TN AS,
0

so by Gronwall’s lemma,

sup [y — 1 < Avs.

t<TNAS

The case > 0 follows by the same sort of argument, using Lemma 5.2 to get the
necessary tightness f'. O

LEMMA 5.4. Suppose either xg € S, or xg € 35S and (ng, o) > 0. Then
P(TN > ¢) - 1as N — oo for somee > 0.
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PROOF The casexp € S follows from (11). Suppose then thag € S and
(no, yo) > 0. Then, since) S is cl atxg, for all ¢ > 0, there exists(¢) > 0 such
that, for allx € S with |x — xo| < 8(¢), and allv € R,

(20) lv] <é(e) and (ng,v)>¢lv] =— x+veS.

Since(ng, yo) > 0, by Lemma 5.3, given > 0 there exist1 > 0 andNg such that,
forall N > Ngandr < TN A ey,

no, vV) > ealyM, 1N < 1/en,

with probability exceeding * ¢. Choosess € (0, £1) so that|x, — xg| < 8(e1) and
x; € S whenever < g5. Set N1 = max{No, (¢18(g1)) 2}, then, forN > N1 and
r < TN N €2,

-1/2

x €8, |x; — xo| < 8(e1), AEICH)

(22) N N

(I’lo, Vi ) > 81|)’, |v
with probability exceeding % ¢. By (20), (21) impliesxN = x, + N~Y2yN e 5.
HenceP(TVN <er) <eforall N > Ni. O

For the rest of this section we assume that 1. (The next result holds witky
replaced byr whenm = 0, by the same argument, but we do not need this.)

LEMMA 5.5. Suppose either xg € S, or xg € 3S and (ng, yo0) > 0. Then
Vflv — yy, indistributionas N — oo.

PrROOF ByLemma 5.3, gived > 0, we can find < t; such that, for allv,
]P’(|y, ytl|>6)<8 P(lys — vr| > 8) <38.

Hence it suffices to show, — y; in distribution for allz < 1.
Define(¥,);<; in R? @ (RY)* by

Y =Vb(x)Yr,  Yo=id.
Fix 6 € (RY)* and seb; = (1) ~16. Then
d{0:, ;) = (0:,0(x;)dBy), r<r,
SO
t
6y ~N(0.10. [ G.atnrds). 1<t
On the other hand, fo(thN)tZo as in the proof of Proposition 5.1,

d6,yN)=vN@G.dMy+ RN ar, <1V,
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where
RN =V N, bY (XN) = b(x;) — Vb)) (XY = x))).
By (15),
sup VN b (xN) —bxN)| - 0.

t<TN

By (16), givene > 0, there existsy > 0 such that, for allt € [e, 71 — ¢], for
|x - xl| S 8!

|b(x) — b(x;) — Vb(x,)(x — x,)| < &]x — x|
Hence| XN — x;| <8 ande <t <t — & imply
VNIBXN) = b(x;) = Vb ) (XN — x| <ely].

Combining this with Lemma 5.2, we deduce that
NG
/ |R; | dt — 0 in probability.
0

Hence it suffices to show, for dle (RY)* and allr < 1,

t t
VN / (65, dMNy — N(O, / (Gs,a(xs)es)ds> in distribution.

0 0

Indeed, it suffices to show, for al € (RY)* andt < 11, thatE(E,N’Q) — 1 as
N — o0, where

t t
EN? :exp{idﬁ/ (5, dMN) +%/ (Qs,a(xs)es)ds}.
0 0
Setm™ (x,0) = m" (x,i0), m(x,0) =m(x, i0) and

N (x.0) = /Rd(e“@’” —1—i(0, y)) KN (x, dy).

By (14), for alln < ng, we have
sup sup|Nm™" (x, N6) — i (x,0)| — O.

xesN 10]=n

Note that
¢" (x, VNO) + 3(6,a(x)0)

1
:/0 (NN (x, VNr6) — i (x,0))(0,0)(1 — r)dr

so, for allp < o0,

(22) sup sup|@™ (x, V'NO) + 3(0, a(x)8)| — O.
xeSN |01=p
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Write ENY = EN = zZN AN BN, where

t
Z,N:expi\/ﬁ/ (65, dMNy —

S

&N(va,ﬁes)ds},
A,N:exp/O( N(xN VN6 + %Gs,a(Xf,V)@S))ds},

B = exp| /Ot (05 (axs) — a(XﬁV))esms}.

Now (ZmTN)’<f is a martingale, as in (5), s]E(ZmTN) =1 for all N. Fix
t <t1.By (22), Zt/\TN is bounded, uniformly inv, andAN v — L uniformly as
N — oo. Moreover, by (16)BZATN is bounded unlformly inv and convergesto 1
in probability, using (9). Hence

E(zN

tATN

AN BN

IANTN Z(ATN

)—>1

asN — oco. By Lemma5.4 and (11p(TV > 1) — 1 for all < 1. It follows that
E(EN) — 1forallt < 71 as required. O

LEMMA 5.6. Suppose either xg € S, or xg € 35 and (ng, y0) > 0. Then, as
N — o0,

P((nz, v)=0and TV < 11) > 0,
P((n,, yfjl/) <0and TV > 71) — 0.

PrROOF ByLemma 5.5, giverm > 0, there existg1 > 0 andNg such that, for
all N > Np,

(e, yg)| > 81|)/.[]¥ , e1 < |V11| <1/e1,

with probability exceeding * ¢. Then by Lemma 5.3, there exists > 0 and
N1 > Ng such that, for alivV > N, with probability exceeding % ¢, either

(23)  (nqg. ytN) > 82|)/IN|, |ytN| <1/eo forall t € [T1 — &2, 1]
or
(24) (o v ) < ey, | <V/ea.

Sinced S is C1 atx.,, there exist$ > 0 such that
if x € S andv € R? with |x — x,,| <6, |v| <8 and
(ney, v) < &2v] thenx +ve S
and

if ve R with [u| <8 and (1, v) < —e2|v] thenx,, +v ¢ S.
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Choosess € (0, e2] such thafx; — x| <& andx; € S whenever € [t1 — €3, T1].
Set N; = max{Ny, (e28)~2}. Then, for N > Ny, since XN = x, + N~Y2yVN
on {TV >1t}, (23) impliesX" € S for all 1 € [t1 — &2, 71] O TN < 11 — &2,
and (24) impliesX ¢ S or TV < ;. We know by Lemma 5.4 and (11) that
P(T"N < 11 — &) - 0 asN — oo. Hence, with high probability, a8’ — oo,
(ney. vY) = 0 implies (23) and thed™ > 1, and(n,, ) < 0 implies (24) and
then7V <7;. O

6. Fluid limit of collapsing hypergraphs. We now apply the general theory
from the preceding sections to prove our main results Theorems 2.1 and 2.2.

6.1. Lévy kernel for collapse of random hypergraphs. In Section 3 we
introduced a Markov process\,),>o of collapsing hypergraphs, starting from
Ao ~ Poissoiig) and stopping when = |V*|, the number of identifiable vertices
in Ao. The processY,,, Z,),>o of patches and debris i, was found itself to be
Markov. We now view this process as a function of the initial number of verfices
and obtain a fluid limit result wheN — oo.

It will be convenient to embed our process in continuous time, by removing
vertices according to a Poisson procéss,-o of rate N which stops when
v, = |V*|. Set

xN=N"1u,1,.2),)
and note thak'" takes values in
(25) IV ={xeR3Nxle(0,1,....N -1}, Nx?, Nx3 e 2T}
U{(1,0,x3:Nx3ezt).

The Lévy kernek ¥ (x, dy) for (X),>0 is naturally defined fox € IV. If x2 =0,
then KN (x,dy) =0. If x2 > 0, thenN~1K "V (x, ) is a probability measure; by
Lemma 3.1, it is the law of the random variab’lé(/N, where

JN=@, -1-w¥N+ UV, 14+ wh),

WV ~ B(Nx?-1,1/(N — NxY)), UM ~P((N — Nxt = D)ax(N, Nxb))
with WV andU" independent.

Recall thatR denotes the radius of convergence of the power sgiies given
by (1). We assume, until further notice, th&t> 0 and fixz € (0, R A 1) and
p€E(tg, RAD).

LEMMA 6.1. Thereisa constant C < oo such that

INA2(N,n) — B"(n/N)| < C(Iog N)?/N
forall NeNandne{0,1,...,[Np]}.
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PrRoor Recall that

nn—-21---n—i+1

xz(N,n>=NZ<i+1><i+2>ﬁi+zN(N_l)___(N_i_1).

i=0

SetM = AlogN whereA = (log(R/p)) ! < 0o. Then, forn < [Np],

INA2(N,n) — B"(n/N)|

MAn 00

< Y (+DE+DBir2si(Nom)+2 Y (i + D) +2Bir20i(N.n),
i=1 i=M+1

where

N2 n/n-—1 n—i+1 n\!
Si(N’ n)= j ] _< )“‘(7.) B <_)
(N—-DIN—-i—1)N\N-1 N—-i+1 N

and

N2 n\' :
p"(N’"):(N—i)(N—i—l)(N) =Cp'.
Note that, forj =0, ...,i —1andi <M A n,
n_j,—ﬁlsAlogN/N
N—-j N

so, making use of the inequality]a; — [[b;| <> laj — bl forO0<a;,b; <1,
we obtain

8i(N,n) < C(logN)?p'/N.
Hence
INA2(N,n) — B"(n/N)| < C(logN)?p"(p)/N + C(p/R)M
and(p/RYM =1/N. O
6.2. Fluid limit. The main result of this section is to obtain the limiting
behavior of(X,N),zo as N — oo, which we deduce from Proposition 5.1 and
Theorem 5.1. We present first the calculations by which the limit was discovered.

Note that, asV — oo, for x1 < R A 1, we haveW" — W andU" — U in
distribution, where

W~Px%/A-xY),  U~P@A-xHp ).

SetJ = (1,—1— W + U, 1+ W). Note also thatX) — xo = (0, p1, fo) and
VNXY — x0) = yo in distribution, where y& = 0,52 ~ N(0, p),
¥é ~ N(0, Bo), with y2 and 3 independent. Thus, subject to certain technical
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conditions, to be checked later, at least up to the first time)t]flvai.L >RA1lor

va’z =0, the limit path is given by; = b(x;), starting fromxg, where
X2 X2
b(x)=E(J) = (1, —l-——+ (L—xHp"(xh, 1_x1).
Fix o’ € (0, 00) and set
(26) S={(x1 x%, x3) x| < p,x% € (0, p), x3 € R}.

Thenb is Lipschitz onS and, for p” sufficiently large, the maximal solution
on [0, o] to x; = b(x;) in S starting fromxg is given by(x;);<., where

xr=(t, A—1)(B'(t) +log(1 —1)), B(t) — (L —1)log(1 — 1))
and

‘E:Z*/\to.

6.3. Limiting fluctuations. Seta(x) = E(J ® J). A convenient choice of
suchthabo* =aiso = (V1, V>, V3), where

2 0
X
Vilx) = 11 ( 1),
o -1

0
Va(x) =/ (1= xbH)p"(x1) (1) )
0

V3(x) = b(x).

Note thatz is Lipschitz andb is C* on S. The limiting fluctuations are given by

dy: =Y _Vi(x;)dB] + Vb(x))y: dt, t<rt,

4

starting fromyg, where B is a Brownian motion irR® independent ofq. Note
that

T ={tel0,7):x ¢S} =¢ N[0, t0).

In cases wher§ is nonempty, the limiting behavior c{fX,N),go depends on the
signs of the component of the fluctuations normal to the boundary, that is, on

(Y2:iteT).
Note thatd, = b(x,) B satisfies

d6; = Va(x;) d B2 + Vb(x,)6, dt.



148 R. W. R. DARLING AND J. R. NORRIS

This is the part of the fluctuations which reflects our Poissonization of the time-
scale. Sincé?(x,) =0 for all 7 € T, it does not affec'(yt € 7). So consider
)/t =V — 0[. Then

dy;" = Vi(x;) d B + Vo(x;) d B? + Vb(x,)y; dt.

Note thatVl(x) = V(x) = 0 andVbi(x) = 0, so (y,*)l (y$Hr =0 for aII t.
Also 3b?/3x% = —1/(1 — x1) and9b?/9x3 = 0. Alsox}! = ¢ andx?/(1 — x})
B'(¢) +log(1 — ¢). The sign of(y,*)? is the same as that of = (y,)?/(1—1). We
have

day =dy}?/(1— 1)+ v/ (L —0)%d1
= (V2(x))dBY + V2(x,)dB?) /(1 —1)

SO we can writey, = W(a,z), whereW is a Brownian motion and

_ 5 +/’ﬁ(S)+Iog(1—S)+(1—S)/3 (S)d
0 1-—v

_ By +log(l—1)+1

- 1—¢ '

We have shown tha(sgr(y ):t € 7) has the same distribution ésgnW;1—)) :
ted).In partlcular,]P’(yt O)=0forallred
Recall thatZ is defined by

Z=min{zel:W(z/1—2) <0} AZ".
Set
TV =inf{t >0:xV2 =0}

and putZ(t) = Z A to, TV (10) = TN A 1.

THEOREM6.1. For all § > 0 we have

IimsupN‘llogIP’< sup |XN — x| > 8) <0.

N—o0 1<TN (1)

Moreover, TV (19) — Z (o) in distributionas N — co.

PROOF  We defined ", the state-space 0X),~o, in (25), andS in (26). Set
SN =1VNS. Forx € SV we have

m¥(5,0) = [ VKN (x.dy) = NE( Y
R
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SO

m™ (x, 0)
N

1 63—06
:exp{01—92+03+B<Nx2—1 3 2)

"N—-Nx1" N

+ P((N — Nxt = DaavV, Nxb, %)}

where, ford € R, we write B(N, p,0) = Nlog(1 — p + pe®) and P(A,0) =
A —1). So, by Lemma 6.1,

m" (x, NO)

sup sup v

xeSN 101=<no

—m(x,@)’ -0

asN — oo, for all ng > 0, where

m(x,0) =E(e!7)

2

= exp{@l — 6+ 63+ P(ﬁ, 63 — 92) +P(1-xhHp" b, 92)}.

Set
bY@ = [ yKYrdy) =BG,
R
then, by Lemma 7.1,

sup VN |bN (x) — b(x)| = O.

xeSN

Recall that
xt=0,  NXJP~P(NB),  NX{P~P(NBo),
andxo = (0, B1, Bo). By standard exponential estimates, foréa# 0

limsup N~tlogP(| X} — xo| > 8) <O.

N—o00
We have now checked the validity of (7), (8), (12)—(16) and (18) in this context, so
Proposition 5.1 and Theorem 5.1 apply to give the desired conclusians.

REMARK 6.1. If z* < 1, thenz* < R A 1, so by choosingg € (z*, R A 1)
we getZ(to) = Z and, asN — oo, with high probabilityT" (19) = T". Hence,
whenz* < 1, Theorem 6.1 holds witlf and TV replacingZ(z) andT" (1g). In
particular, Theorem 2.1 follows.
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6.4. Proof of Theorem?2.2. Recall that

XN =(|VN"‘| 0 |AN*|>
TN N s Uy N .

Letz e ¢ U{z*}. If z <1, thenz < R A 1 so, by choosingpe(z, R A 1) in
Theorem 5.1, we obtain

(27) P(| XNy — x| <8) > P(Z=2)

for all sufficiently smalls > 0.

It remains to deal with the cage= z* = 1. Note that V"V*| < N and|AN*| <
IAN]. Now |AN| ~ P(NB(1)) so|AN|/N — B(1) in probability asN — oo. It
therefore suffices to show, for dll> 0 anda < 8(1) — 8,

(lvN*| |AN>1<|

liminf P >1-5§and

N—o0

za) >P(Z=1).

When combined with (27) this completes the proof as we have exhausted the
possible values of.

We consider first the casf > 1. We can findrg € (1 — §/2,1) such that
B(10) > a +8/2. Note tha XY — x;,| < §/2 implies

VNN = XN > 10-8/2>1—a,
IAN* /N > XN3 > B(1g) — (1 10) log(L — 10) — 8/2 > .

By Theorem 6.1

liminf ]P’(sup|XfV —x < 8/2) >P(Z > 1) >P(Z=1)
N—o0 t<tg
so we are done.

Consider next the cafe=0. Fix M e Nand sef; = 8, if j <M andB; =0
otherwise. Then, with obvious notation, we can chodseso thatzp > 1 — §/2,
¢ =@ andB(zo) > o +8/2. Hence

‘}N* [\N*
]P’(| | zl—aand| |

2a)—>1.

We can coupleA and A so thatA(A) = A(A)Ljaj<y. ThenVV* € VV* and
AN* < AN* so this is enough.

There remains the cagec (0, 1). In this case is finite. We have assumed that
R ¢ ¢. Sowe can fing € (supz, R) andM < N such that, with obvious notation,

ZO>1_8/2’ ¢=d, ﬁ(20)>a+8/2’
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whereB (1), r € [0, 1), is defined by

ﬂ//(t)7 t<p’
5 300 ey — I M .
FO=po  FO=pr  FO=15" 1502 s,
j=2

Consider the collapsing hypergrapﬁf)’)nzo which evolves agAY),=0 up
to n = v(p), at which time all hyperedges having at least two vertices and

originally having more thad/ vertices are removed, S0 th&ﬁ’(p) < szv(p)_ After

v(p), ([\,]1\’),130 evolves by selection of patches as before. Denotef/lﬁ()? the
set of identifiable vertices inifvv(p) and by AV* the corresponding identifiable
hypergraph. Then

‘}N*g VN* and ]\N*SAN*.
A modification of Theorem 5.1 shows that
P(|X) — 3z, <8/2) > P(Z=%0)=P(Z=1)
with XY = (JVN*|/N, 0, |AN*|/N) and with
=, A=0)(B' (1) +log(l—1), B(r) — (1L — 1) log(1 —1)).

All that changes in the proof is that, for> p the Lévy kernel is modified by
replacingi, by A» given by
nA(M—-2)

Jo(N.my=N Y (+D3i+2Bis2
i=0

nmn—-21---n—i+1
N(N-=1)---(N—i+1

The argument of Lemma 6.1 shows that for@lk 1 there is a constaiit < oo
such that

INA2(N,n) — B"(n/N)| < C/N

fqr al Ne Nandn ={0,1,...,[Np']}. Everything else is the same. Now
|XY —%:,] <8/2 implies

VNN = VNV N =XM1 >20-5/2>1—5,
IAN*|/N = |AN*|/N = X3 > B(Z0) — (1 —Z0) log(1 — Z0) — 8/2 > a,

SO

o VN* AN*
I|m|nf]P’<| |zl—éand| |2a>2]P’(Z=1)
N N

N—o00

as required.
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