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UNIFORM MARKOV RENEWAL THEORY AND RUIN
PROBABILITIES IN MARKOV RANDOM WALKS1

BY CHENG-DER FUH

Academia Sinica

Let {Xn,n ≥ 0} be a Markov chain on a general state spaceX with
transition probabilityP and stationary probabilityπ . Suppose an additive
componentSn takes values in the real lineR and is adjoined to the chain
such that{(Xn,Sn),n ≥ 0} is a Markov random walk. In this paper, we
prove a uniform Markov renewal theorem with an estimate on the rate
of convergence. This result is applied to boundary crossing problems for
{(Xn,Sn),n ≥ 0}. To be more precise, for givenb ≥ 0, define the stopping
time τ = τ(b) = inf{n :Sn > b}. When a drift µ of the random walk
Sn is 0, we derive a one-term Edgeworth type asymptotic expansion for
the first passage probabilitiesPπ {τ < m} and Pπ {τ < m,Sm < c}, where
m ≤ ∞, c ≤ b andPπ denotes the probability under the initial distributionπ .
When µ �= 0, Brownian approximations for the first passage probabilities
with correction terms are derived. Applications to sequential estimation
and truncated tests in random coefficient models and first passage times in
products of random matrices are also given.

1. Introduction. Let {Xn,n ≥ 0} be a Markov chain on a general state
spaceX with σ -algebraA. Suppose an additive componentSn = ∑n

t=0 ξt with
S0 = ξ0 = 0, taking values in the real lineR, is adjoined to the chain such that
{(Xn,Sn), n ≥ 0} is a Markov chain onX × R with

P {(Xn,Sn) ∈ A × (B + s)|(Xn−1, Sn−1) = (x, s)}
= P {(X1, S1) ∈ A × B|(X0, S0) = (x,0)}(1.1)

= P (x,A × B),

for all x ∈ X, s ∈ R,A ∈ A and B ∈ B (:= Borel σ -algebra onR). The
chain {(Xn,Sn), n ≥ 0} is called aMarkov random walk. For an initial distrib-
ution ν on X0, let Pν denote the probability measure under the initial distribu-
tion ν on X0 and letEν denote the corresponding expectation. Ifν is degenerate
at x, we shall simply writePx (Ex ) instead ofPν (Eν ). In this paper, we shall
assume that{Xn,n ≥ 0} has an invariant probabilityπ .
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Forb ≥ 0, define the stopping time

τ = τ (b) = inf{n :Sn > b}, τ+ = τ (0).(1.2)

In a variety of contexts, for givenm ≤ ∞ andc ≤ b, we need to approximate the
first passage probabilities

Pπ {τ < m},(1.3)

and

Pπ {τ < m,Sm < c}.(1.4)

It is known that, with some proper identifications, (1.3) is the probability that the
waiting time for the(m−1)th customer in a single server queue exceedsb; it is also
the probability of ruin in finite time in risk theory [cf. Asmussen (1989a, b, 2000)].
The joint probability ofτ and Sm in (1.4) is an important ingredient to study
truncated test in random coefficient models. Note that discrete time ARCH model
can be defined, with some modifications, in the framework of random coefficient
models; compare Bougerol and Picard (1992).

When the incrementsξt of the random walks are independent and identically
distributed (i.i.d.) random variables. Siegmund (1979, 1985) and Siegmund
and Yuh (1982) developed a so-called “corrected Brownian approximation”
by computing correction terms in the Brownian approximation to approximate
the first passage probabilities (1.3) and (1.4). In the case of a finite state
ergodic Markov chain, Asmussen (1989b) derived a first-order corrected Brownian
approximation for one-barrier ruin problems in risk theory, while Fuh (1997)
studied one-barrier and two-barrier boundary crossing probabilities, and derived
a second-order corrected Brownian approximation in Markov random walks.
Arndt (1980) studied asymptotic properties of the distribution of the supremum
of a random walk on a Markov chain. Malinovskii (1986) derived asymptotic
expansions in the central limit theorem of (1.4) for Harris recurrent Markov chains.
For a general account on ruin probabilities, the reader is referred to Asmussen
(2000) and references therein.

In this paper, we study asymptotic approximations of the first passage
probabilities (1.3) and (1.4) for Markov random walks on a general state space.
The limiting behavior for (1.3) and (1.4) is defined asm → ∞, andb = ζm1/2

andc = γm1/2 for someγ ≤ ζ > 0. When a driftµ of the random walkSn is
zero, we derive one-term Edgeworth type asymptotic expansions of (1.3) and (1.4).
In the case ofµ �= 0, we first define the conjugate transformation of the
transition probability in Markov random walks and then derive corrected Brownian
approximations for the first passage probabilities (1.3) and (1.4). Motivated by the
approximations of (1.3) and (1.4), we study a uniform Markov renewal theorem
including a rate of convergence. There are three aspects to provide the uniform
Markov renewal theorem. To begin with, the condition of uniform ergodicity with
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respect to a given norm considered in this paper is different from the previous one
[cf. Kesten (1974), Athreya, McDonald and Ney (1978), Shurenkov (1984, 1989),
Alsmeyer (1994) and Fuh and Lai (2001)] and will be applied to products of
random matrices. Second, we study the Markov renewal theorem with an estimate
on the exponential rate of convergence. Early work in the respect can be found in
Silvestrov (1994), using coupling. When the incrementsξt of the random walks
are i.i.d. random variables, rates of convergence for the renewal theorem can
be found in Stone (1965a, b), Carlsson and Wainger (1982), Carlsson (1983),
Kartashov (1996) and Kovalenko, Kuznetsov and Shurenkov (1996). Third, the
renewal theorem is in a uniform version in the sense of varying drifts. Uniform
renewal theorems for simple random walks have been studied extensively in the
literature; the reader is referred to Lai (1976), Kartashov (1980), Zhang (1989)
and Silvestrov (1978, 1979, 1995), and references therein.

The remainder of the paper is organized as follows. In Section 2, we formulate
the problem and state our main results: a uniform Markov renewal theorem
with rate of convergence; one-term Edgeworth type asymptotic expansions for
the first passage probabilities (1.3) and (1.4) in the case of zero drift; and
corrected Brownian approximations for the first passage probabilities (1.3) and
(1.4) whenµ �= 0. The proofs are given in Sections 4–6, respectively. Applications
to sequential estimation and truncated tests in random coefficient models and first
passage times in products of random matrices are in Section 3.

2. Main results. Let {(Xn,Sn), n ≥ 0} be a Markov random walk onX × R.
For ease of notation, writeP (x,A) = P (x,A × R) as the transition probability
kernel of {Xn,n ≥ 0}. For two transition probability kernelsQ(x,A),K(x,A),
x ∈ X, A ∈ A and for all measurable functionsh(x), x ∈ X, defineQh andQK

by Qh(x) = ∫
Q(x,dy)h(y) andQK(x,A) = ∫

K(x,dy)Q(y,A), respectively.
Let N be the Banach space of measurable functionsh :X → C (:= the

set of complex numbers) with norm‖h‖ < ∞. We also introduce the Banach
spaceB of transition probability kernelsQ such that the operator norm‖Q‖ =
sup{‖Qg‖; ‖g‖ ≤ 1} is finite. Two prototypical norms considered in the literature
are the supremum norm and theLp norm. Two other commonly used norms in
applications are theweighted variation norm and thebounded Lipschitz norm,
described as follows:

1. Let w :X → [1,∞) be a measurable function, define for all measurable
functionsh, a weighted variation norm‖h‖w = supx∈X |h(x)|/w(x), and set
Nw = {h :‖h‖w < ∞}. The corresponding norm inBw is of the form‖Q‖w =
supx∈X

∫ |Q|(x, dy)w(y)/w(x).
2. Let (X, d) be a metric space. For any continuous functionh on X, the

Lipschitz seminorm is defined by‖h‖L := supx �=y |h(x) − h(y)|/d(x, y). The
supremum norm is‖h‖∞ = supx∈X |h(x)|. Let ‖h‖BL := ‖h‖L + ‖h‖∞ and
NBL = {h :‖h‖BL < ∞}. Here BL stands for “bounded Lipschitz” andNBL is
the Banach space of all bounded continuous Lipschitz functions onX.
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Denote byP n(x,A) = P {Xn ∈ A|X0 = x}, the transition probabilities over
n steps. The kernelP n is ann-fold power ofP . Define also the Césaro averages
P (n) = ∑n

j=0P j/n, whereP 0 = P (0) = I andI is the identity operator onB.

DEFINITION 1. A Markov chain{Xn,n ≥ 0} is said to be uniformly ergodic
with respect to a given norm‖ · ‖, if there exists a stochastic kernel� such that
P (n) → � as n → ∞ in the induced operator norm inB. The Markov chain
{Xn,n ≥ 0} is calledw-uniformly ergodic in the case of weighted variation norm.

The Markov chain{Xn,n ≥ 0} is assumed to be irreducible [with respect to
a maximal irreducible measureϕ on (X,A)], aperiodic and uniformly ergodic
with respect to a given norm‖ · ‖. In this paper, we assumeϕ is σ -finite, and
{Xn,n ≥ 0} has an invariant probabilityπ . It is known [cf. Theorem 13.3.5 of
Meyn and Tweedie (1993)] that for an aperiodic and irreducible Markov chain, if
there exists someλ-small setC and someP ∞(C) > 0 such that, asn → ∞,∫

C
λC(dx)

(
P n(x,C) − P ∞(C)

) → 0,

whereλC(·) = λ(·)/λ(C) is normalized to a probability onC, then the chain is
positive, and there exists aϕ-null setN such that, for any initial distributionν
with ν(N) = 0, ∥∥∥∥∫

ν(dx)P n(x, ·) − π

∥∥∥∥
tv

→ 0 asn → ∞,

where ‖ · ‖tv denotes the total variation norm. Theorem 1.1 of Kartashov
(1996) gives thatP has a uniquestationary projector � in the sense that
�2 = � = P� = �P , and�(x,A) = π(A) for all x ∈ X,A ∈ A.

The following assumptions will be used throughout this paper.

C1. There exists a measure� on X × R, and measurable functionh on X such
that

∫
π(dx)h(x) > 0, �(X × R) = 1,

∫
�(dx × R)h(x) > 0, and the kernel

T (x,A × B) = P (x,A × B) − h(x)�(A × B) is nonnegative for allA ∈ A
and,B ∈ B.

C2. For allx ∈ X, sup‖h‖≤1‖E[h(X1)|X0 = x]‖ < ∞.
C3. supx Ex |ξ1|2 < ∞ and, for allx ∈ X, sup‖h‖≤1‖E[|ξ1|rh(X1)|X0 = x]‖ < ∞

for somer ≥ 1.
C4. Letν be an initial distribution of the Markov chain{Xn,n ≥ 0}; assume that

for somer ≥ 1,

‖ν‖ := sup
‖h‖≤1

∣∣∣∣ ∫
x∈X

h(x)Ex |ξ1|rν(dx)

∣∣∣∣ < ∞.(2.1)

C5. Assume that for somen0 ≥ 1,
∫ ∞
−∞

∫
x∈X |Ex{exp(iθξ1)}|n0π(dx) dθ < ∞.

C6. There exists
 ⊂ R containing an interval of zero such that, for allx ∈ X and
θ ∈ 
, sup‖h‖≤1‖E[exp(θξ1)h(X1)|X0 = x]‖ ≤ C < ∞, for someC > 0.



1206 C.-D. FUH

C7. There exists aσ -finite measureM on (X,A) such that, for allx ∈ X, the
probability measurePx on (X,A) defined byPx(A) = P (X1 ∈ A|X0 = x) is
absolutely continuous with respect toM , so thatPx(A) = ∫

A p(x, y)M(dy)

for all A ∈ A, wherep(x, ·) = dPx/dM .

REMARK 1. Condition C1 is a mixing condition on the Markov chain
{(Xn,Sn), n ≥ 0}. It is also called a minorization condition in Ney and Nummelin
(1987), where they constructed a regeneration scheme and proved large deviation
theorem. An alternative condition for C1 is that there exists a measure� on X,
and family of measures{h(x,B);B ∈ B} on R, for eachx ∈ X such that the
kernelT (x,A × B) = P (x,A × B) − h(x,B)�(A) is nonnegative for allA ∈ A
and B ∈ B. If a Markov chain is Harris recurrent, then C1 holds forn-step
transition probability. It is known that under the irreducible assumption, C1 implies
that {(Xn, ξn), n ≥ 0} is Harris recurrent [cf. Theorem 3.7 and Proposition 3.12
of Nummelin (1984) and Theorem 4.1(iv) of Ney and Nummelin (1987)]. An
example on page 9 of Kartashov (1996) also shows that there exists a uniformly
ergodic Markov chain with respect to a given norm, which is not Harris recurrent.
Theorem 2.2 of Kartashov (1996) states that under condition C1, a Markov chain
{Xn,n ≥ 0} with transition kernelP is uniformly ergodic with respect to a given
norm if and only if there exists 0< ρ < 1 such that

‖P n − �‖ = O(ρn),(2.2)

as n → ∞. When the Markov chain is uniformly ergodic with respect to the
weighted variation norm, (2.2) still hold without condition C1.

REMARK 2. Conditions C2–C4 are standard moment conditions. Condi-
tion C6 implies that the exponential moment, in the sense of the corresponding
norm, of ξ1 exists forθ in 
. Condition C5 implies that for alln ≥ n0, Sn has
a bounded probability density function for givenXn. The existence of the transi-
tion density in C7 will be used in Theorems 2 and 3 only. It holds in most applica-
tions.

Next, we will describe the uniform version of conditions C1–C7. Since the
uniform version is in the sense of varying drift [see (2.13)], we consider a compact
set� ⊂ R which contains an interval of 0. For eachα ∈ �, let {(Xα

n , Sα
n ), n ≥ 0}

be the Markov random walk on a general state spaceX defined as (1.1), with
transition probabilityP α and invariant probability measureπα . For eachα ∈ �,
the Markov chain{Xα

n,n ≥ 0} is assumed to be irreducible [with respect to
a maximal irreducible measureϕ on (X,A)], aperiodic and uniformly ergodic
with respect to a given norm‖ · ‖.

To establish the uniform Markov renewal theorem, we shall make use of the
uniform version of (1.1) in conjunction with the following extension of the uniform
Cramér’s (strong nonlattice) condition:

g(θ) := inf
α∈�

inf|v|>θ
|1− Eα

π {exp(ivSα
1 )}| > 0 for all θ > 0.(2.3)
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Additive componentSn is called strongly nonlattice if� has only one element.
In addition, we also assume that the [conditional uniform] Cramér’s (strong
nonlattice) condition holds. There existsm ≥ 1 such that

sup
α∈�

lim sup
|θ |→∞

∣∣Eα{exp(iθSα
m)|X0,Xm}∣∣ < 1.(2.4)

Note that under condition C5, (2.3) and (2.4) can be removed. Next, we assume the
strong mixing condition holds. There existγ1 > 0 and 0< ρ1 < 1 such that, for all
k ≥ 0 andn ≥ 1, and for all real-valued measurable functionsg,h with g,h ∈ N ,

|Eν{g(Xk)h(Xk+n)} − {Eνg(Xk)}{Eνh(Xk+n)}| ≤ γ1ρ
n−1
1 .

Note that when the norm is the weighted variation norm, we only need that
(2.3) and (2.4) hold without the strong mixing condition.

Forα ∈ �, the uniform versions of C1–C6 are:

K1. There exists a measure�α onX × R, and measurable functionh onX such
that

∫
πα(dx)h(x) > 0, �α(X × R) = 1,

∫
�α(dx × R)h(x) > 0, and the

kernelT α(x,A × B) = P α(x,A × B) − h(x)�α(A × B) is nonnegative for
all A ∈ A andB ∈ B.

K2. For allx ∈ X, supα∈� sup‖h‖≤1‖Eα[h(Xα
1 )|Xα

0 = x]‖ < ∞.
K3. supα∈� supx Eα

x |ξα
1 |2 < ∞ and for allx ∈ X, supα∈� sup‖h‖≤1‖Eα[|ξα

1 |r ×
h(Xα

1 )|Xα
0 = x]‖ < ∞ for somer ≥ 1.

K4. Letνα be an initial distribution of the Markov chain{Xα
n,n ≥ 0}; assume that

for somer ≥ 1,

sup
α∈�

sup
‖h‖≤1

∣∣∣∣ ∫
x∈X

h(x)Eα
x |ξα

1 |rνα(dx)

∣∣∣∣ < ∞.

K5. Assume that for somen0 ≥ 1,

sup
α∈�

∫ ∞
−∞

∫
x∈X

|Eα
x {exp(iθξα

1 )}|n0πα(dx) dθ < ∞.

K6. There exists
 ⊂ R containing an interval of zero such that, for allx ∈ X and
θ ∈ 
, supα∈� sup‖h‖≤1‖Eα[exp(θξα

1 )h(Xα
1 )|Xα

0 = x]‖ ≤ C for someC > 0.

THEOREM 1. Let {(Xα
n , Sα

n ), n ≥ 0} be a uniformly strong nonlattice Markov
random walk satisfying K1–K4 with r ≥ 2 in K3. Let µα := µα

1 := Eα
πξα

1 > 0 and
µα

2 := Eα
π(ξα

1 )2 < ∞. Then, as s → ∞,

∞∑
n=0

P α
ν {s ≤ Sα

n ≤ s + h,Xα
n ∈ A} = h

µα
πα(A) + o

(
s−(r−1)),(2.5)

∞∑
n=0

P α
ν {−∞ ≤ Sα

n ≤ s,Xα
n ∈ A} =

(
s

µα
+ µα

2

2(µα)2

)
πα(A) + o

(
s−(r−2)

)
.(2.6)
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Furthermore, if K6 holds, then for some r1 > 0, as s → ∞,
∞∑

n=0

P α
ν {−∞ ≤ Sα

n ≤ s,Xα
n ∈ A} =

(
s

µα
+ µα

2

2(µα)2

)
πα(A) + O(e−r1s).(2.7)

REMARK 3. When � has only one element and the incrementsξn are
i.i.d., these results are proved via Fourier transform and Schwartz’s theory of
distributions. These methods can be extended to the Markov case via perturbation
theory of the transition probability operator. Such extensions can also be modified
to yield the rate of convergence in Markov renewal theory, which generalizes the
corresponding results of Stone (1965a, b) and Carlsson (1983) for simple random
walks.

REMARK 4. For each fixedα, the Markov renewal theorems in Theorems 1–4
in Fuh and Lai (2001) provide the rate of convergence ass → ∞. However, in the
applications to Theorem 3, we shall be lettingα → 0 simultaneously withs → ∞.
Consequently, we must consider the possibility that certain unpleasant situations
might occur, such as a case in which, asα → 0, the rate of convergence to 0 of
the error terms in (2.5)–(2.7) gets slower and slower. Theorem 1 guarantees that
this cannot happen; that is, that there is a certain rate of convergence which applies
uniformly to allα in some neighborhood of 0.

Let ν be an initial distribution of the Markov chain{Xn,n ≥ 0} and let
µ = Eπξ1, σ 2 = limn→∞ n−1Eν{(Sn − nµ)2} and κ = limn→∞ n−1Eν{(Sn −
nµ)3}, which are well defined under C4 for somer ≥ 3. It will be convenient
to use the notation

P (m,s)
ν (A) = Pν{A|Sm = s}.(2.8)

Let τ+ = inf{n ≥ 1 :Sn > 0} be the first ascending ladder epoch ofSn,
τn = inf{k ≥ τn−1 :Sk > Sτn−1} be the nth ascending ladder epoch ofSn, for
n = 2,3, . . . , and letτ− = inf{n ≥ 1 :Sn ≤ 0} be the first descending ladder epoch
of Sn. Sinceµ > 0, τn are finite almost surely under the probabilityP {Xτ+ ∈
A|X0 = x} and therefore, the associated ladder heightsSτn are well-defined
positive random variables. Furthermore,{(Xτn, Sτn), n ≥ 0} is a Markov chain, and
it is the so-calledladder Markov random walk. Whenµ = 0, we can still define
the ladder Markov chain via the property of uniform integrability in Theorem 5
of Fuh and Lai (1998).It is assumed throughout this paper that Px(τ+ < ∞) = 1
for all x ∈ X and that the ladder random walk is uniform ergodic with respect to
a given norm. The moment conditions C2–C4 and C6 for the ladder random walk
are in Lemma 1 and Lemma 14, respectively. The uniformly strong nonlattice for
the ladder random walk is in Lemma 13. Since C5 holds in Theorems 2 and 3,
we do not need (2.4) anymore. Letπ+ denote the invariant measure of the kernel
P+(x,A × Rd) which is assumed to be irreducible and aperiodic. The property
of Harris recurrent for ladder Markov chains has been established in Alsmeyer
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(2000). Therefore, C1 holds for the ladder random walk. In Section 3, we will
show how uniform ergodicity of the ladder chain and finiteness of moments ofSτ+
can be established in some interesting examples.

THEOREM 2. Let {(Xn,Sn), n ≥ 0} be a Markov random walk satisfying
C1–C5and C7 with r = 3 in C3. Suppose µ = 0, σ = 1, and that there exists
ε > 0 such that infx Pπ {ξ1 ≤ −ε|X1 = x} > 0. Let b = ζm1/2 and s = ζ0m

1/2 for
some ζ > 0 and −∞ < ζ0 < ζ . Then, as m → ∞,

P (m,s)
π {τ < m}

(2.9) = exp{−2(b + ρ+)(b + ρ+ − s − κ/3)/(m + κs/3)} + o(m−1/2),

where ρ+ = Eπ+S2
τ+/2Eπ+Sτ+ . If in addition c = γm1/2 for some γ ≤ ζ , then, as

m → ∞,

Pπ {τ < m,Sm < c} = �

(
c + κ/3− 2(b + ρ+)

(m + κc/3)1/2

)
+ o(m−1/2),(2.10)

where � denotes the standard normal distribution function.

REMARK 5. Approximations (2.9) and (2.10) are the corresponding results
for Brownian motion with drift 0,b replaced byb + ρ+, s(c) replaced by
s + κ/3 (c + κ/3) andm replaced bym + κs/3. Also, note that the constantρ+
in (2.9) and (2.10) reduces toES2

τ+/2ESτ+ when Sn is a simple random walk
[cf. Siegmund (1985), pages 220 and 221]. SincePπ {τ < m} = Pπ {Sm ≥ b} +
Pπ {τ < m,Sm < b}, one-term Edgeworth expansion ofPπ {Sm ≥ b} and (2.10)
give a representation of (1.3).

To state Theorem 3, we need to define a twist transformation of the transition
probability operator, and this requirement leads us to study the perturbation theory
of certain linear operators onN . Forz ∈ C, define linear operatorsPz, P, ν∗ andQ
onN by

(Pzh)(x) = E[h(X1)e
zξ1|X0 = x], (Ph)(x) = E[h(X1)|X0 = x],

(2.11)
ν∗h = Eν{h(X0)}, Qh =

∫
h(y)π(dy).

When the norm is supremum norm andξn = g(Xn), Nagaev (1957) and Jensen
(1987) have shown that there exists sufficiently smallδ > 0 such that, for|z| ≤ δ,
N = N1(z) ⊕ N2(z) and

PzQzh = λ(z)Qzh for all h ∈ N ,(2.12)

whereN1(z) is a one-dimensional subspace ofN , λ(z) is the eigenvalue ofPz with
corresponding eigenspaceN1(z) andQz is the parallel projection ofN onto the
subspaceN1(z) in the direction ofN2(z). Extension of their argument to weighted
variation norm and randomξn satisfying some regularity assumptions is given in
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Fuh and Lai (2001). We extend this result to uniform ergodic Markov random
walks with respect to a given norm in the Appendix. Leth1 ∈ N be the constant
functionh1 ≡ 1 and letr(x; z) = (Qzh1)(x). From (2.12), it follows thatr(·; z) is
an eigenfunction ofPz associated with the eigenvalueλ(z), that is,r(·; z) generates
the one-dimensional eigenspaceN1(z).

In particular,z = α ∈ R such that there existsδ > 0 andα ∈ [−δ, δ] := �.
Define the “twisting” transformation

P α(x, dy × ds) = r(y;α)

r(x;α)
e−�(α)+αsP (x, dy × ds) where� = logλ.(2.13)

Then P α is the transition probability of a Markov random walk{(Xα
n , Sα

n ),

n ≥ 0}, with invariant probabilityπα . The function�(α) is normalized so that
�(0) = �(1)(0) = 0, where(1) denotes the first derivative. ThenP 0 = P is the
transition probability of the Markov random walk{(Xn,Sn), n ≥ 0} with invariant
probability π . Here and in the sequel, we denoteP α

ν as the probability measure
of the Markov random walk{(Xα

n , Sα
n ), n ≥ 0} with transition probability kernel

(2.13), and having initial distributionνα. For ease of notation, we denoteνα := ν,
and letEα

ν be the expectation underP α
ν .

It is known that� is a strictly convex and real analytic function for which
�(1)(α) = Eα

πξα
1 . Therefore,Eα

πξα
1 <,=,or > 0 ⇔ α <,=,or > 0. For any value

α �= 0 and |α| < δ, there is at most one valueα′ with |α′| < δ, necessarily of
opposite sign, for which�(α) = �(α′). Assume suchα′ exists; we may let that
α0 = min(α,α′) andα1 = max(α,α′) such thatα0 < 0 < α1 and�(α0) = �(α1).
Denote� = α1 − α0. We also assume, without loss of generality, thatσ 2 =
�(2)(0) = 1, where(2) denotes the second derivative.

THEOREM 3. Let {(Xn,Sn), n ≥ 0} be a strong nonlattice Markov random
walk satisfying C1–C5 and C7. Let {(Xα

n , Sα
n ), n ≥ 0} be the Markov random

walk induced by (2.13). Suppose there exists ε > 0 such that infx Pπ {ξ1 ≤
−ε|X1 = x} > 0. Let b = ζm1/2 for some ζ > 0, c = γm1/2 for some γ ≤ ζ ,
and also that

√
m� = δ is a fixed positive constant. Then as m → ∞, for j = 0

or 1,

P
αj

πα {τ < m,S
αj
m < c}

=
∫
x∈X

r(Xτ+;αj)

r(x;αj)

r(x;α1−j )

r(Xτ+;α1−j )

× exp[−(−1)j�(b + ρ+)]παj (dx)(2.14)

× �

(
c + κ/3− 2(b + ρ+)

(m + κc/3)1/2
+ 1

2
(−1)j�(m + kc/3)1/2

)
+ o(m−1/2).



MARKOV RENEWAL THEORY 1211

REMARK 6. LetM(α)
n = r(Xn;α)exp{αSn −n�(α)} andFn be theσ -algebra

generated by{(Xt , St ), t ≤ n}. Then for|α| ≤ δ, {M(α)
n ,Fn, n ≥ 0} is a martingale

under any initial distributionν of X0 [cf. Ney and Nummelin (1987) and Fuh and
Lai (1998)]. Note thatr(·;α) in (2.14) reduces to 1 whenSn is a simple random
walk. Hence,r(y;α)/r(x;α) can be regarded as the reflection of Markovian
dependence under uniform ergodicity condition with respect to a given norm.

3. Examples. In this section, we give examples of strongly nonlattice Markov
random walks satisfying conditions C1–C7, and such that the underlying Markov
chain {Xn,n ≥ 0} is irreducible and aperiodic. Many time series and queuing
modelsXn are irreducible, aperiodic andw-uniformly ergodic Markov chains,
as shown in Chapters 15 and 16 of Meyn and Tweedie (1993), and conditions
C2–C4 and C6 are moment conditions on the additive components attached toXn

that are satisfied in typical applications. However, renewal theorems are often
applied to the ladder random walk, as in Section 2. The techniques used by Meyn
and Tweedie (1993) to prove thew-uniform ergodicity of a rich class of time series
and queuing models can also be applied to show that their ladder random walks
indeed satisfy conditions C1–C7, as illustrated by the following examples.

3.1. Random coefficient models. Let {Xn,n ≥ 1} be the Markov chain which
satisfies a first-order random coefficient autoregression model

Xn = βnXn−1 + εn, X0 = 0,(3.1)

where (βn)n≥1 is a sequence of i.i.d. random variables withEβn = β and
Var(βn) = σ 2, whereσ ≥ 0 is known.(εn)n≥1 is a sequence of i.i.d. random
variables withEεn = 0 and Var(εn) = 1. Further, we assume that(βn)n≥1 and
(εn)n≥1 are independent, and(βn, εn)

′ has common density functionq with respect
to Lebesgue measure is positive everywhere.

In the case of AR(1) model for whichβn is a constantβ, Lai and Siegmund
(1983) proposed a sequential estimation procedure for the unknown parame-
ter β. Pergamenshchikov and Shiryaev (1993) generalized their results to the
model (3.1). They introduced the stopping time

T = Tc = inf

{
n ≥ 1 :

n∑
k=1

X2
k

1+ σ 2X2
k

≥ c

}
,(3.2)

wherec > 0 is a fixed number, and considered a modification of the sequential
least-squares estimate

b̂T =
(

T∑
k=1

Xk−1Xk

1+ σ 2X2
k−1

)/(
T∑

k=1

X2
k

1+ σ 2X2
k−1

)
.(3.3)

Their Theorems 1–3 showed thatTc < ∞ with probability 1 for anyc > 0, and
b̂T is asymptotically normal under some moment conditions.
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In this section we investigate the limiting behavior ofTc under the stability
assumptionβ2+σ 2 < 1. Meyn and Tweedie [(1993), Theorem 16.5.1] established
w(x) = |x|2-uniform ergodicity of the random coefficient model (3.1) by proving
that adrift condition is satisfied. By Lemma 15.2.9 of Meyn and Tweedie (1993),
it is also(|x| + 1)-uniform ergodic. Suppose the conditional distribution ofξn =
X2

n/(1+ σ 2X2
n) givenX0, . . . ,Xn is of the formFXn−1,Xn such that

lim sup
|θ |→∞

∣∣∣∣ ∫
X

∫ ∞
−∞

∫ ∞
−∞

{∫ ∞
−∞

eiθξ dFx,βx+z(ξ)

}
q(β, z) dβ dzπ(dx)

∣∣∣∣ < 1,(3.4)

where π is the stationary distribution of{Xn}. Since ξ1 has probability den-
sity function with respect to Lebesgue measure, (2.4) can be removed. Let
Sn = ∑n

i=0 ξi . Then{(Xn,Sn), n ≥ 0} is strongly nonlattice, and by Theorem 6(ii)
of Fuh and Lai (1998), so is the ladder random walk with transition kernelP+ de-
fined by

P+(x,A × B) = P
{
Xτ+ ∈ A,Sτ+ ∈ B|X0 = x

}
.(3.5)

Assume furthermore that

sup
x

Ex{ξ1(1+ |β1| + |ε1|)} < ∞ and µ := Eπξ1 > 0.(3.6)

We first note thatXτ+ has a positive density function with respect to Lebesgue
measureL and is thereforeL-irreducible. Moreover, the ladder chain is clearly
aperiodic; see Section 5.4.3 of Meyn and Tweedie (1993). Letw(x) = |x| + 1. To
show that the ladder chain isw-uniformly ergodic, by Theorem 16.0.1 of Meyn
and Tweedie (1993), it suffices to show that there exist positive constantsb,λ and
a petite setC such that

Exw(XT ) − w(x) ≤ −λw(x) + b1C(x) for all x ∈ R,(3.7)

for T = τ+. We first show that the drift condition (3.7) in fact holds for all stopping
timesT [with respect to the filtration generated by(Xn,Sn)] such that, for some
a > 0,

ExT ≤ a(|x| + 1) for all x ∈ R.(3.8)

We then show thatτ+ satisfies (3.8) and therefore (3.7) indeed holds forT = τ+.
Let B > 0, and denoteε∗

i = εi1{|εi |≤B}, ε∗∗
i = εi1{|εi |>B}. Note that

E|XT | = E|βT · · ·β1X0 + βT −1 · · ·β1ε1 + · · · + β1εT −1 + εT |
(3.9)

≤ |β||x| + (1− |β|)−1B +
T∑

i=1

|ε∗∗
i | for X0 = x.

Since theε∗∗
i are i.i.d. random variables, Wald’s equation yields

Ex

∣∣∣∣∣
T∑

i=1

ε∗∗
i

∣∣∣∣∣ = (ExT )E|ε∗∗
1 | ≤ a (|x| + 1)E|ε∗∗

1 |,(3.10)



MARKOV RENEWAL THEORY 1213

by (3.8). SinceE|ε1| < ∞ from (3.6), we can chooseB sufficiently large so that
aE|ε∗∗

1 | + |β| < 1. In view of (3.9) and (3.10), we can then choose 0< λ <

1 − |β| − aE|ε∗∗
1 |, b > (1 − |β|)−1B + aE|ε∗∗

1 | and C = {x : |x| ≤ K} with
K sufficiently large such that (3.7) holds. Note thatC is a petite set; see Section 5.2
of Meyn and Tweedie (1993).

To show thatτ+ satisfies (3.8), we use Wald’s equation for Markov random
walks [see Lemma 1(i) in Section 4]: For any stopping timeT with EνT < ∞ and
Eνw(XT ) < ∞,

EνST = µEνT + Eν{�(XT ) − �(X0)},(3.11)

where supx |�(x)|/w(x) < ∞, and� is defined in (4.1). Letξ (B)
i = ξi1{ξi≤B},

S
(B)
n = ξ

(B)
1 + · · · + ξ

(B)
n and τ (B) = inf{n :S(B)

n > 0}. Since µ (= Eπξ1 =
EπX2

1/(1 + σ 2X2
1)) > 0, we can chooseB large enough such thatµ(B) (=

Eπξ
(B)
1 ) > 0. Note thatS(B)

n ≤ Sn andτ (B) ≥ τ+. Hence it suffices to show that
τ (B) satisfies (3.8). By the monotone convergence theorem, we need only show
that (3.8) holds withT = τ (B) ∧ m for everym ≥ 1. SinceSτ(B)∧m ≤ B, (3.11)
yields

B ≥ µ(B)ExT − Ex |�(XT )| − |�(x)|
(3.12)

≥ µ(B)ExT − cEx|XT | − c(|x| + 2),

since|�(x)| ≤ cw(x) = c(|x| + 1) for somec > 0 and allx. By (3.9) and (3.10),

Ex|XT | ≤ |β||x| + (1− |β|)−1B
(3.13)

+ (ExT )E
(|ε1|1{|ε1|>B}

)
.

ChoosingB large enough so thatcE|ε1|1{|ε1|>B} < µ(B)/2, we obtain from
(3.12) and (3.13) that

B + c(1− |β|)−1B + 2c + c|x|(1+ |β|) ≥ µ(B)ExT /2,

proving (3.8) forT = τ (B)∧m. Note that the ladder chain also satisfies the mixing
condition C1 by Theorem 1 of Alsmeyer (2000).

From (3.9) and (3.10) withT = τ+, it follows that supx{Exw(Xτ+)/

w(x)} < ∞. Hence C2 holds for the ladder chain. To prove the moment condi-
tion C6 hold for the kernel (3.5), we assume the additional moment conditions

sup
x

Ex exp{θ(ξ1 + β1 + ε1)} < ∞ for θ ∈ 
.(3.14)

First note that Ex exp{θSτ+}w(Xτ+) ≤ {Ex exp{θpSτ+}}1/p{Exw
q(Xτ+)}1/q ,

wherep−1 + q−1 = 1. Lemma 14 in Section 6 implies thatEx exp{θpSτ+} < ∞
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for x ∈ X. From (3.9), there exists a constantcq depending only onq such that

Ex|Xτ+|q ≤ cq

{
|x|q + (1− |β|−1)Ex max

i≤τ+
|εi |q

}

≤ cq

{
|x|q + (1− |β|−1)Ex

τ+∑
i=1

|εi |q
}

= cq{|x|q + (1− |β|−1)E|ε1|qExτ+}.
It follows that supx Ex(exp{θSτ+}w(Xτ+))/w(x) < ∞. By using the same
argument and applying Wald’s equation for Markov chain in Lemma 1, it follows
that the moment condition C3 also holds for the ladder chain. SinceS0 = 0 and
supx Ex exp{θSτ+}/w(x) < ∞, C4 also holds for the kernelP+ if the initial
distribution ν satisfies

∫ ∞
−∞ |x|dν(x) < ∞. Hence C1–C6 are satisfied by the

ladder random walk with transition kernelP+ when the underlying chain is the
random coefficient model (3.1) and{ξn} satisfies (3.4), (3.6) and (3.14).

Under the normality assumption on(βk, εk) with knownσ 2, the log-likelihood
ratio statisticZn for testingH0 :β ≤ µ0 againstH1 :β > µ0 is given by

Zn = 1
2

n∑
i=1

(
(Xi − µ1Xi−1)

2 − (Xi − µ0Xi−1)
2),(3.15)

whereµ1 is so chosenµ1 > µ0. Define the stopping timeTλ = inf{n ≥ 1 :Zn ≥ λ}.
Givenm > 0, we consider the test ofH0 :β ≤ µ0 againstH1 :β > µ0 defined by
the following: stop sampling at min(Tλ,m); rejectH0 if Tλ ≤ m, and otherwise do
not rejectH0.

Under the stability assumptionβ2 + σ 2 < 1, and considerYn = (Xn−1,Xn)

as the underlying Markov chain. Suppose the conditional distribution
of ξn = (Xn − β1Xn−1)

2 − (Xn − β0Xn−1)
2 given Y0, . . . , Yn is of the form

FYn−1,Yn such that

lim sup
|θ |→0

∣∣∣∣ ∫
X×X

∫ ∞
−∞

∫ ∞
−∞

{∫ ∞
−∞

eiθξ dFy,βy+z(ξ)

}
(3.16)

× q(β, z) dβ dzπ1(dy)

∣∣∣∣ < 1,

whereπ1 is the stationary distribution of{Yn}. Let Sn = ∑n
i=0 ξi ; then{(Yn, Sn),

n ≥ 0} is strongly nonlattice. It is easy to see that there existsε > 0 such
that infx Pπ1{ξ1 ≤ −ε|X1 = x} > 0. The rest of the argument is the same as
(3.4)–(3.14) and is omitted.

3.2. Products of random matrices. In this section, we apply the renewal theory
in Section 2 to generalize some results of Kesten (1973) on products of random
matrices in three directions. First, while Kesten considered products of i.i.d.
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matricesMn, we work with the more general setting in which{(Xn,Mn),n ≥ 0}
are products of Markov random matrices. Second, we provide uniform renewal
theory, with polynomial and exponential rate of convergence, respectively. This
extension enables us to apply corrected diffusion approximation for the first
passage probabilities. Third, while Kesten assumed the entries ofMn to be positive
with probability 1, we can dispense with this assumption. Moreover, our proof
is considerably simpler and provides a more transparent description of the basic
constants that appear in his results.

We shall considerk × k nonsingular matricesM , with real entries, and define
the norm by‖M‖ = sup|x|=1 |Mx|, where| · | is a norm inRk . Following Bougerol
(1988), defineχ(M) = max(log‖M‖, log‖M−1‖). Let {(Xn,Mn),n ≥ 0} be
a Markov chain satisfying the following assumptions:

(A1) Mn is ak × k nonsingular matrix with real entries such that

sup
x

E{exp(aχ(M1))|X0 = x} < ∞ for somea > 0.

(A2) {Xn,n ≥ 0} is aw-uniformly ergodic Markov chain and satisfies C7.
(A3) {(Xn,Mn),n ≥ 0} is quasi-irreducible andγ1 �= γ2, whereγ1 ≥ γ2 ≥ · · · ≥ γk

denotes its Lyapunov exponents.

For the definition of “quasi-irreducibility,” see Bougerol [(1988), page 199].
For the definition and basic properties of Lyapunov exponents, see Bougerol
and Lacroix [(1985), Sections III.5 and III.6) and Bougerol [(1988), pages
197 and 198]. LetM0 be thek × k identity matrix and define the product

�n = Mn · · ·M0.(3.17)

Let u be unit column vectors inRk . Since�n is nonsingular,�nu �= 0 and

log |�nu| =
n∑

t=1

ξt whereξt = log(|�tu|/|�t−1u|).(3.18)

Let Y0 = (X0, u), . . . , Yn = (Xn,�nu/|�nu|). Define ξt as (3.18), and let
Sn = ∑n

t=1 ξt . Then it follows from (3.17) that{(Yn, Sn), n ≥ 0} is a Markov ran-
dom walk. Under (A1)–(A3), Bougerol (1988) has shown thatYn has an invariant
measure and is uniform ergodic with Hölder continuous norm [see Definitions
3 and 4 of Bougerol (1988)]. Moreover, in view of (A1), conditions C3 and C4 are
satisfied for everyr > 1. Furthermore, condition C6 holds. Assumingξ1 to be
strongly nonlattice and conditional strongly nonlattice, we cantherefore apply
the renewal theorems in Section 2 to the Markov random walk{(Yn, Sn), n ≥ 0},
thereby both generalizing Kesten’s (1973) renewal theory for products of i.i.d.
matrices with positive entries and providing convergence rates in the renewal the-
orems. The mean valueµ in these theorems is equal toγ1 of upper Lyapunov
exponents.
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Let S denote the sphere consisting of unit column vectors inRk . For u ∈ S,
define the stopping time

N(b) = inf{n ≥ 1 :|�nu| > eb} = inf{n ≥ 1 :Sn > b}, inf φ = ∞.(3.19)

Supposeγ1 ≥ 0. Since supx∈X,u∈S E(|ξ1|r |X0 = x) < ∞ in view of (A1),
Theorem 2 in Section 2 can be applied to show that (2.9) and (2.10) hold forN(b)

asb → ∞. This generalizes Theorem 2 of Kesten (1973) that considers the case
of i.i.d. Mn with positive entries.

We next consider the caseγ1 < 0 and assume in addition that, for some
0 < a∗ < a [wherea is given in (A1)],

inf
x∈X,u∈S

E
{|M1u|a∗ ∣∣X0 = x

} ≥ ka∗/2.(A4)

For i.i.d. matricesMn = (Mn(h, i))1≤h,i≤k with positive entries, Kesten’s (1973)
Theorem 3 restrictsu to the subsetS+ of S consisting only of vectors with
nonnegative entries and assumes, among other conditions, that

E

{
min

1≤i≤k

(
k∑

h=1

M1(h, i)

)a∗}
≥ ka∗/2,(3.20)

which implies (A4) withS replaced byS+ [see the inequality preceding (2.66)
in Kesten (1973)]. Under assumptions (A1) and (A2), if the assumption of quasi-
irreducibility in (A3) is strengthened into “strong irreducibility” [see Section 5 of
Bougerol (1988) for its definition and properties], then it can be shown that tilting
for the operatorPα is defined by

(Pαf )(x,u) = E{eαξ1f (Y1)|Y0 = (x,u)}
on the spaceL(α) of functions onX × S with the Hölder continuous norm whose
spectrum is taken overx ∈ X [if the induced Markov chain{(Yn, Sn), n ≥ 0} is
irreducible]. By making use of (A1)–(A4) and Proposition 1 in the Appendix,
(Pαf )(x,u) is well defined. Letλ(α) and r((x,u);α) be the largest eigenvalue
and associated eigenfunction defined as (2.11)–(2.13).

Therefore, the usual tilting argument shows that Theorem 3 of Kesten (1973)
holds. In particular, takingB = eb yields

BPx

{
max
n≥1

|�nu| > B

}
−→ Kr

(
(x,u),α

)
asB → ∞,(3.21)

whereK = (e−b(�(α)−1)/γ1)
∫
X×Rk 1/r((x,u);α)dπα+(x,u).

4. Proof of Theorem 1. The ingredients we need to make theuniform
Markov renewal theorem over the family{(Xα

n , Sα
n ), n ≥ 0 :α ∈ �} are provided

by Lemmas 3 and 4. The proof of Lemma 3 depends on a uniform upper bound
for the expectation of the overshoot, which we state and prove in Lemma 2.



MARKOV RENEWAL THEORY 1217

To prove Lemma 2, we need Wald’s equation for Markov chains, and moment
convergence of the stopping timeτ (b) defined in (1.2) for allb ≥ 0. These are
included in Lemma 1. A version of Wald’s equations for uniformly ergodic Markov
random walks can be found in Fuh and Lai (1998), where they applied the spectral
theory of positive operators related to Markov semigroups. Fuh and Zhang (2000)
first derived Poisson equations for Markov random walks, and then applied them
to establish Wald’s equations. Here in C1 and C2, we applied results in Harris
recurrent Markov random walks to obtain (first-order) Wald’s equation via Poisson
equation.

LEMMA 1. Assume C1 and C2 and that 0 < µ := Eπξ1 < ∞. Let ν be
an initial distribution of X0, and let T be a stopping time such that EνT < ∞:

(i) If supx Ex(|ξ1|) < ∞, then

EνST = µEνT + Eν{�(XT ) − �(X0)}.
The constant Eν{�(XT ) − �(X0)} is zero when ν = π . Denote ξ+

1 (ξ−
1 ) as the

positive (negative) part of ξ1.
(ii) If supx Ex(ξ

−
1 ) < ∞, then Eντ(b) < ∞.

(iii) Let p ≥ 1. If supxEx(ξ
−
1 ) < ∞ and supxEx(ξ

+
1 )p < ∞, then EνS

p
τ(b) < ∞.

PROOF. (i) The minorization condition C1 ensures that{(Xn,Sn), n ≥ 0} is
a split chain [cf. Lemma 3.1 of Ney and Nummelin (1987)]. Under the irreducible
assumption, it is also a Harris recurrent Markov chain. Proposition 17.4.1 and
Theorem 17.4.2 of Meyn and Tweedie (1993) give that the following Poisson
equation

Ex�(X1) − �(x) = Exξ1 − Eπξ1(4.1)

has a solution� :X → R for almost everyx ∈ X. Under the assumption of
supx Ex(|ξ1|) < ∞, Eν(�(XT ) − �(X0)) is finite. Therefore, by Corollary 1 and
Theorem 4 of Fuh and Zhang (2000), we have the proof of (i).

To prove (ii), we chooseB > 0 such thatµ′ := Eπ(ξ1(B)) > 0, whereξt (B) =
ξt I (ξt ≤ B). Let S′

n = ξ1(B) + · · · + ξn(B) and letNb = inf{n ≥ 1 :S′
n ≥ b}. Then

S′
n ≤ Sn andNb ≥ τ (b). For m > 0, apply (i) toNb ∧ m; we haveEνS

′
Nb∧m =

µ′Eν(Nb ∧ m) + O(1) as m → ∞. By the monotone convergence theorem,
limm→∞ Eν(Nb ∧m) = EνNb. Moreover, by the definition ofNb, SNb∧m ≤ b+B

for all m ≥ 1. Henceb + B ≥ µ′EνNb − a for some a > 0, and therefore
∞ > EνNb ≥ Eντ(b).

Finally, we prove (iii). Since 0≤ Sτ(b) < b + ξτ(b), it follows from Minkowski’s
inequality that

(
EνS

p
τ(b)

)1/p ≤ b +
{
Eν

[
τ(b)∑
t=1

(ξ+
t )p

]}1/p

.
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Since we have already shown thatEντ(b) < ∞ and supx Ex(ξ
+
1 )p < ∞ by

assumption, it follows from (i) that

Eν

[
τ(b)∑
t=1

(ξ+
t )p

]
≤

{
sup
x

Ex(ξ
+
1 )p

}
Eντ(b) + O(1),

proving the finiteness ofEνS
p
τ(b). �

LEMMA 2. Assume C1–C4with r = 2 in C3. Suppose µ > 0. For b ≥ 0, let
R(b) = Sτ(b) − b. Then,

sup
b≥0

EπR(b) ≤ Eπ(ξ+
1 )2

Eπξ1
.(4.2)

When the initial distribution of X0 is ν, (4.2)becomes that there exists a constant
K > 0 such that supb≥0 EνR(b) ≤ Eπ(ξ+

1 )2/Eπξ1 + K .

REMARK 7. In the case of simple random walks, the upper bound (4.2) was
given in Lorden (1970) by pathwise integration.

PROOF OF LEMMA 2. For any values ofξ1, ξ2, . . . , the overshoot function
{R(b);b ≥ 0} is piecewise linear, with all pieces having slope−1. We consider
first the case where theξ ’s are nonnegative. It is easy to see that, forc ≥ 0,∫ c

0
R(b)db =

∫ Sτ(c)

0
R(b)db −

∫ Sτ(c)

c
R(b) db = 1

2

τ(c)∑
t=1

ξ2
t − 1

2R(c)2.(4.3)

Since forc ≥ 0, Eπτ(c) is finite by Lemma 1(ii), the sum in (4.3) has finite
expectation by C3 and Wald’s equation for Markov random walks, and since the
other terms are nonnegative, they also have finite expectations. SinceR(b) ≥ 0 for
all b, we have by Fubini’s theorem and Wald’s equation for Markov random walks
in Lemma 1(i) ∫ c

0
EπR(b) db = 1

2Eπξ2
1Eπτ(c) − 1

2EπR(c)2,

whereEπξ2
1 is finite via condition C3. Note thatEπ {�(Xτ(c)) − �(X0)} = 0 in

the Wald’s equation.
By Jensen’s inequality and Wald’s equation for Markov random walks,∫ c

0
EπR(b) db ≤ 1

2µ−1Eπξ2
1
(
c + EπR(c)

) − 1
2

(
EπR(c)

)2
.(4.4)

It is easy to see that for allb,u ≥ 0,Eπτ(b +u) ≤ Eπτ(b)+Eπτ(u), since the
conditional expectation ofτ (b +u)− τ (b) givenτ (b) = n, X0,X1, ξ1, . . . ,Xn, ξn

equalsEπτ(u − r), wherer = ξ1 + · · · + ξn − b > 0 andτ (u − r) is zero ifr > u,
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so thatEπτ(u−r) ≤ Eπτ(u). It follows from Wald’s equation for Markov random
walks thatEπR(b) is a subadditive function ofb and therefore

1
2c

(
EπR(c) + gc

)
≤ 1

2c inf
0≤b≤1/2c

(
EπR(b) + EπR(c − b)

)
(4.5)

≤
∫ 1/2c

0

(
EπR(b) + EπR(c − b)

)
db =

∫ c

0
EπR(b) db.

Combining (4.4) and (4.5) and rewriting, we obtain(
EπR(c)

)2 + (c − Eπξ2
1/µ)EπR(c) − cEπξ2

1/µ ≤ 0.(4.6)

The left-hand side of (4.6) is a quadratic inEπR(c) which is nonpositive only
between its roots,−c andEπξ2

1/µ. Therefore,EπR(c) ≤ Eπξ2
1/µ and sincec is

arbitrary, the proof is complete for the nonnegative case.
The case whereξ1, ξ2, . . . may take negative values reduces to the nonnegative

case through consideration of the associated sequence of positive ladder variables,
which forms the ladder Markov random walks{(Xτn, Sτn), n ≥ 0} defined in
the paragraph before Theorem 2. We first note that, by assumption, the ladder
Markov chain is uniformly ergodic with respect to a given norm. Next, we
need to verify that conditions C1–C4 still hold for the associated ladder Markov
chains{(Xτn, Sτn), n ≥ 0}. It is known [cf. Theorem 1 of Alsmeyer (2000)] that
if {(Xn,Sn), n ≥ 0} is Harris recurrent, then the associated ladder Markov chains
{(Xτn, Sτn), n ≥ 0} are also Harris recurrent. Under the irreducible assumption, the
minorization condition C1 is equivalent to Harris recurrent. Therefore the ladder
Markov chain{(Xτn, Sτn), n ≥ 0} satisfies C1. The moment conditions C2–C4 hold
by Lemma 1(iii).

SinceR(b) is pointwise the same forξ1, ξ2, . . . and the sequence of ladder
variables, and 0< Sτ+ ≤ ξ+

τ+ , the result for the nonnegative case implies

sup
b≥0

EπR(b) ≤ Eπ+S2
τ+

Eπ+Sτ+
≤ Eπ+(ξ+

τ+)2

Eπ+Sτ+

≤ Eπ+[(ξ+
1 )2 + · · · + (ξ+

τ+)2]
Eπ+[ξ1 + · · · + ξτ+] = Eπ(ξ+

1 )2

Eπξ1

by Wald’s equation for Markov random walks.
When the initial distribution of X0 is ν. Under the assumption of

supx Ex|ξ1|2 < ∞, and µ > 0. It is known that asb → ∞, Ex(Sτ(b) − b) =
Eπ+S2

π+/2Eπ+Sτ+ + o(1) uniformly in x ∈ X [cf. (3.20) of Fuh and Lai (2001)].
Therefore, the difference between supb≥0 EνR(b) and supb≥0 EπR(b) is a con-
stantK > 0, and the proof is complete.�
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For z ∈ C andα ∈ �, define the operatorsP α
z ,P, να∗ and Q on N as (2.11).

By (A.1)–(A.3) and Proposition 1 in the Appendix, we can define eigenvalueλα(z)

of the operatorP α
z .

Let “R” and “I” denote “real part of” and “imaginary part of,” respectively.
DenoteB = [s, s + h) and let

U(α,A)(B) :=
∞∑

n=0

P α
ν {s ≤ Sα

n ≤ s + h,Xα
n ∈ A}(4.7)

be the renewal measure for eachα ∈ �.

LEMMA 3. Assume the conditions of Theorem 1 hold. For k ≥ 1, let µα
k :=

Eπ(ξα
1 )k > 0 and ηα

k := supx Ex(ξ
α
1 )k > 0. Then, for each positive integer k, there

exist µk∗, ηk∗ > 0 and µ∗
k, η∗

k < ∞ such that

µk∗ ≤ inf
α∈�

µα
k ≤ sup

α∈�

µα
k ≤ µ∗

k and ηk∗ ≤ inf
α∈�

ηα
k ≤ sup

α∈�

ηα
k ≤ η∗

k .(4.8)

Also, there exist r1 > 0 and δ > 0 such that, for all z with R(z) ≤ r1 and |I(z)| < δ,
then for each positive integer k, there exists v∗

k < ∞ such that, for all α ∈ �,∣∣∣∣ dk

dzk
λα(z)

∣∣∣∣ ≤ v∗
k .

Finally, there exists C such that, for all α ∈ �, and s ≥ 0 and h ≤ 2 in (4.7),

U(α,A)(B) ≤ C.

PROOF. To prove (4.8), we only consider the first part, since the second part
can be proved in a similar way. By the assumption of uniformly strong nonlattice
in the form (2.3), we have for allθ > 0

g̃(θ) := inf
α∈�

∣∣Eπeiθξα
1 − 1

∣∣ ≥ g(θ) > 0,

so that using the fact that|eit − 1| ≤ |t| for all real t , we obtain for allα ∈ � and
θ > 0 that

0 < g̃(θ) ≤
∫
x,y∈X

∫
[0,∞)

|eiθs − 1|P α(x, dy × ds)πα(dx)

≤
∫
x,y∈X

∫
[0,∞)

θsP α(x, dy × ds)πα(dx) = θµα
1,

whereP α(·, · × ·) denotes the transition probability of{(Xα
n , Sα

n ), n ≥ 0}, and
πα(·) denotes the invariant probability of{(Xα

n , Sα
n ), n ≥ 0}. This implies that

infα∈A µα
1 ≥ supθ>0 g̃(θ)/θ > 0. Hence, we get the existence ofµ1∗. The existence

of µk∗ for positive integersk now follows from Jensen’s inequality.
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For the upper bound in (4.8), note that sinceet > tk/k! for all t > 0, we have
by K6 that

µα
k =

∫
x,y∈X

∫
[0,∞)

skP α(x, dy × ds)πα(dx)

≤ k!
rk
1

∫
x,y∈X

∫
[0,∞)

er1sP α(x, dy × ds)πα(dx)

≤ k!C
rk
1

for all α ∈ �.
To prove the second assertion, note that by Proposition 1 and the Cauchy–

Schwarz inequality, forR(z) ≤ r1/2 and|I(z)| < δ, there existsc > 0 such that,
for all α ∈ �,∣∣∣∣ dk

dzk
λα(z)

∣∣∣∣ = ∣∣Eα
π

(
(ξα

1 )kezξα
1
)∣∣ + c ≤ Eα

π

(
(ξα

1 )ker1ξ
α
1 /2) + c

≤ [
Eα

π

(
(ξα

1 )2k)Eα
π

(
er1ξ

α
1
)]1/2 + c ≤ (µ∗

2kC)1/2 + c := v∗
k .

The final assertion can be proved by using Lemma 1(i), Lemma 2 and (4.8). Let
A = X for simplicity; then for allα ∈ �, s ≥ 0 andh ≤ 2, there existsC1 < ∞
such that

Uα,X(B) ≤ 1

Eα
πξα

1

[
Eα

ν Sα
τ(s+h) − Eα

ν Sα
τ(s)

] + C1

= 1

Eα
πξα

1
[h + Eα

ν R(s + h) − Eα
ν R(s)] + C1

≤ 1

µ1∗

[
2+ sup

α∈�

sup
0≤s<∞

Eα
ν R(s)

]
+ C1

≤ 1

µ1∗

[
2+ sup

α∈�

Eπ(ξα
1 )2

Eπξα
1

+ K

]
+ C1

≤ 1

µ1∗

[
2+ µ∗

2

µ1∗
+ K

]
+ C1 := C. �

LEMMA 4. Assume the conditions of Theorem 1 hold. Then there exist r1 > 0,
δ > 0 and ε > 0 such that, for all z satisfying 0 < R(z) ≤ r1 and |I(z)| ≤ δ, and
for all α ∈ �, λα(z) �= 1, and for all z satisfying R(z) = r1 and |I(z)| ≤ δ, and for
all α ∈ �,

|λα(z) − 1| ≥ ε.(4.9)
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PROOF. Let µα
k := Eπ(ξα

1 )k . By integration by parts and Proposition 1,

λα(z) = 1+ µα
1z +

∫ z

0
tλα(2)

(z − t) dt

at least for allz such thatR(z) < r1 and|I(z)| ≤ δ, where(2) denotes the second
derivative. Therefore, for allz in the setS := {z :R(z) ≤ r1/2, |I(z)| ≤ δ, |z| ≤
µ1∗/v∗

2}, whereµ1∗, v∗
2 are defined in Lemma 3, and allα ∈ �, we have

|λα(z) − 1| ≥ |µα
1z| −

∣∣∣∣ ∫ z

0
tλα(2)

(z − t) dt

∣∣∣∣
≥ µ1∗|z| − v∗

2

2
|z|2 ≥ µ1∗

2
|z|.

Takeε > 0 such that the squareSε := {R(z) ≤ ε, |I(z)| ≤ ε} is contained in the
setS; for example,ε = r1/2∧ δ ∧ µ1∗/(

√
2v∗

2) will do. Then

|λα(z) − 1| ≥ µ1∗
2

|z| for all z ∈ Sε.(4.10)

By the assumption that{Sα
n :α ∈ �} is uniformly strong nonlattice and Proposi-

tion 1, we have, for all|θ | < δ, |λα(iθ)| = |Eα
πeiθξα

1 | + O(|θ |); this implies that
|λα(iθ)−1| ≥ g(ε) > 0, for all |θ | ≥ ε and allα ∈ �. Taker := g(ε)(2v∗

1)∧ε > 0.
Then, for all 0≤ u ≤ r < r1, δ > |θ | ≥ ε andα ∈ �,

|λα(u + iθ) − 1|
≥ |λα(iθ) − 1| − |λα(u + iθ) − λα(iθ)|
≥ g(ε) −

∣∣∣∣ ∫ u+iθ

iθ
λα(2)

(z) dz

∣∣∣∣ ≥ g(ε) − uv∗
1

≥ g(ε) − g(ε)

2v∗
1

v∗
1 = g(ε)

2
.

Furthermore, (4.10) implies that|λα(u + iθ) − 1| is positive for all 0< u ≤ r ,
|θ | ≤ ε andα ∈ �, and |λα(r + iθ) − 1| is at leastµ∗

1r/2 for all |θ | ≤ ε. Thus,
takingδ := g(ε)/2∧ µ∗

1r/2> 0, the lemma is proved.�

Since the rate of convergence in the uniform Markov renewal theorem in
Theorem 1 can be proved for eachα ∈ �, the uniformity inα ∈ � appealing to
Lemmas 3 and 4 when necessary, we will present the proofs by omittingα for
simplicity.

Let B = [s, s + h), and recall thatU(α,A)(B) defined in (4.7) is the renewal
measure. For simplicity, we deleteα and denote

U(A)(B) :=
∞∑

n=0

Pν{s ≤ Sn ≤ s + h,Xn ∈ A}(4.11)



MARKOV RENEWAL THEORY 1223

as the renewal measure of{(Xn,Sn), n ≥ 0}.
To prove Theorem 1, we evaluate the Fourier transform of the renewal

measureUA. As in Carlsson (1983) and Carlsson and Wainger (1982), we perform
Fourier inversion of the Fourier transform as a generalized function. We refer the
reader to Gelfand and Shilov (1964), Schwartz (1966) and Strichartz (1994) for
the basic theory; in particular, the following notation and concepts will be used.

A test function ϕ(s) is an infinitely differentiable function that vanishes outside
a bounded region inR. Let D denote the linear space of all test functions, and
D ′ the space of linear functionals onD . A sequenceϕn ∈ D is said to converge
to zero if ϕn and all its derivatives converge to 0 uniformly and vanish outside
a common bounded subset ofR. A generalized function is a continuous linear
functional onD . A functionf defined onR for which

∫
f (s)ϕ(s) ds is absolutely

convergent for anyϕ ∈ D is called locally integrable. A C∞ function f on
R is of classT if f and all its partial derivatives arerapidly decreasing in
the sense that they are of orderO(|s|−a) as |s| → ∞, for everya > 0. Linear
functionals onT are calledtempered distributions, andT ′ denotes the set of all
tempered distributions. The Fourier transform̂ϕ of a functionϕ ∈ D is defined
by ϕ̂(θ) = ∫

ϕ(s)exp(iθs) ds for θ ∈ R. The Fourier transform of a generalized
function f is the linear functional̂f defined on the space{ψ :ψ is the Fourier
transform of someϕ ∈ D} by (2π)(f,ϕ) = (f̂ , ϕ̂) for all ϕ ∈ D .

As in renewal theory for simple random walks, the proof of Theorem 1 requires
detailed analysis of the characteristic function for the additive componentSn. The
analysis can be decomposed in two parts: for|θ | near zero and for|θ | away from
zero. The rate of convergence for the renewal measure to the Lebesgue measure
scaled by the mean is given by the analysis of|θ | near zero. The contribution of
|θ | away from zero is negligible via the property of local integrability. That is, we
need to show that forθ ∈ R, there exists aδ > 0 with |θ | > δ,

∑∞
n=0Eπ(eiθSn)

and itskth derivatives with respect toθ are locally integrable fork = 1,2, . . . . By
usingkth integration by parts, we thus need to show the following lemma.

LEMMA 5. Suppose {(Xn,Sn), n ≥ 0} is a strongly nonlattice Markov random
walk satisfying (2.4), C1–C4and C6. Then for every c > 0, for any r ≥ 2 and
k = 0,1, . . . , r ,

sup
|θ |>c

∞∑
n=0

|Eπ(eiθSnSk
n)| < ∞.(4.12)

PROOF. Fork = 0, . . . , r and for anyx ∈ X, we have

|Ex(S
k
neiθSn)| ≤ ∑∣∣Ex

(
ξj1 · · · ξjk

eiθSn
)∣∣,

where the summation extends overj1, . . . , jk ∈ {1, . . . , n}. There arenk terms. We
shall give upper bounds for each term. Fixj0

1 , . . . , j0
k ∈ {1, . . . , n}, and a natural
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numberm to be determined later. Let

J = {
j ∈ {1, . . . , n} : |j − j0

p| ≥ 3m,p = 1, . . . , k
}
.

Divide J into blocksA1,B1, . . . ,Al,Bl as follows: definej1, . . . , jl by

j1 = inf J and jp+1 = inf{j ≥ jp + 7m : j ∈ J }
and letl be the smallest integer for which the inf is undefined. Write

Ap = ∏{
eiθn−1/2ξj : |j − jp| ≤ m

}
, p = 1, . . . , l,

Bp = ∏{
eiθn−1/2ξj : jp + m + 1 ≤ j ≤ jp+1 − m − 1

}
, p = 1, . . . , l − 1,

Bl = ∏{
eiθn−1/2ξj : j > jl + m + 1

}
,

R = (
ξj0

1
· · · ξj0

k

)∏{eiθξj : j /∈ J }.
Then

ξj0
1
· · · ξj0

k
eiθSn =

l∏
1

ApBpR.

We have ∣∣∣∣∣ExR

l∏
1

ApBp − ExR

l∏
1

BpE(Ap|ξj : j �= jp)

∣∣∣∣∣
≤

l∑
q=1

∣∣∣∣∣ExR

q−1∏
1

ApBp

(
Aq − E(Ap|ξj : j �= jq)

)

×
l∏

q+1

BpE(Ap|ξj : j �= jp)

∣∣∣∣∣(4.13)

≤
l∑

q=1

∣∣∣∣∣ExR

q−1∏
1

ApBp

(
Aq − E(Ap|ξj : j �= jq)

)

×
l∏

q+1

BpE(Ap|ξj : 0< |j − jp| ≤ 3m)

∣∣∣∣∣.
The first summation term in (4.13) vanishes since

R

q−1∏
1

ApBp and
l∏

q+1

BpE(Ap|ξj : 0 < |j − jp| ≤ 3m)

are both measurable with respect to theσ -field generated byξj : j �= jq .
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Recall that the functions

E(Ap|ξj : 0 < |j − jp| ≤ 3m) for p = 1, . . . , l

are weakly dependent sincejp+1 − jp ≥ 7m,p = 1, . . . , l −1. Using condition C1
we obtain ∣∣∣∣∣ExR

l∏
1

BpE(Ap|ξj : 0< |j − jp| ≤ 3m)

∣∣∣∣∣
≤ (2nβ)rEx

∣∣∣∣∣
l∏
1

E(Ap|ξj : 0 < |j − jp| ≤ 3m)

∣∣∣∣∣
≤ (2nβ)r

l∏
1

Ex

∣∣E(Ap|ξj : 0 < |j − jp| ≤ 3m)
∣∣

+ (2nβ)r l · 4d−1e−dm.

With the strong nonlattice condition (2.3), the conditional strong nonlattice
condition (2.4) and Lemma 2 in Statulevicius (1969), we find an upper bound for

Ex

∣∣E(Ap|ξj : 0 < |j − jp| ≤ 3m)
∣∣.

We have for|θ | ≥ δ, the relationEx |E(Ap|ξj : j �= jq)| ≤ e−δ, and hence
by (2.4), for allθ ∈ R, |θ | ≤ δ,

Ex

∣∣E(Ap|ξj : j �= jq)
∣∣ ≤ exp(−δ|θ |2/n).

Therefore, for allθ ∈ R,

Ex

∣∣E(Ap|ξj : 0< |j − jp| ≤ 3m)
∣∣

≤ Ex

∣∣E(Ap|ξj : j �= jq)
∣∣

≤ max
(
exp(−δ|θ |2/n), e−δ).

If we chooseK appropriately and letm be the integral part ofK logn, then the
assertion of the lemma follows from

exp(−δ|θ |2/n)n/m ≤ exp
(−δ|θ |2/(K logn)

)
≤ exp(−δ

′
nε/2)

for |θ | ≥ cnε and someδ
′
> 0. �

PROOF OFTHEOREM 1. By using the same argument as that in Theorem 2.4
of Fuh and Lai (2001), we have (2.5) and (2.6). The details are omitted.

To prove (2.7), letg(s) ∈ C∞ and have support in� = {s : |s| ≤ 1}. Letgε(s) =
εg(s/ε), let IA be the indicator function of the setA and let�c = {s : |s| ≤ c}
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for c > 0. Let L be the measure with densityds/µ. As in Carlsson and Wainger
(1982), we have that

gε ∗ I�1−ε
∗ (

U(A) − L
)
(s) − Kε

≤ (
U(A) − L

)
(� + s)(4.14)

≤ gε ∗ I�1+ε
∗ (

U(A) − L
)
(s) + Kε,

whereK can be chosen uniformly forc bounded. Lettingε = s−k with k large
enough, we have (2.7) if we can show that there existsr > 0 such that∣∣gε ∗ I�c ∗ (

U(A) − L
)
(s)

∣∣ ≤ Ke−rs .(4.15)

To prove (4.15), we consider the Fourier transform

ψ(θ) =
∞∑

n=0

Eν{eiθSnh1(Xn)}
(4.16)

=
∞∑

n=0

λn(θ)ν∗Qθh1 +
∞∑

n=0

ν∗Pn
θ (I − Qθ )h1,

wherePθ ,Qθ are defined in (2.11) withz = iθ , andh1 := IA. Note that the second
equation in (4.16) follows from Proposition 1(i).

As in Carlsson and Wainger (1982), there exists aδ > 0 such that, for|θ | < δ,

ψ(θ) =
(

1

1− λ(θ)
+ π

µ
δ(θ)

)
ν∗Qθh1 +

∞∑
n=0

ν∗Pn
θ (I − Qθ )h1,(4.17)

whereδ(·) denotes the Dirac delta function. By using Fourier inversion of the
generalized function, we have

gε ∗ I�c ∗ U(A)(s)

= 1

2π

∫
e−iθs ĝε(θ)Î�c(θ)ψ(θ) dθ

= π

µ
g(0) + 1

2π

∫
0<|θ |<δ

e−iθs ĝε(θ)Î�c(θ)

1− λ(θ)
ν∗Qθh1dθ(4.18)

+ 1

2π

∫
0<|θ |<δ

e−iθs ĝε(θ)Î�c(θ)

∞∑
n=0

ν∗Pn
θ (I − Qθ )h1 dθ(4.19)

+ 1

2π

∫
|θ |>δ

e−iθs ĝε(θ)Î�c(θ)

∞∑
n=0

Eν{eiθSnh1(X1)}dθ,(4.20)

whereĝε denotes the Fourier transform ofgε andÎ�c denotes the Fourier transform
of I�c .
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Equation (4.18) can be analyzed by making use of the Taylor expansion ofλ(θ)

as that in Proposition 1, which says that for anyr ≥ 2 as|θ | → 0,(
1

|θ |
(
λ(θ) − 1

))(k)

= O(1) for k ≤ r − 1,

(
1

|θ |
(
λ(θ) − 1

))(r)

= o

(
1

|θ |
)
,

(
1

|θ |2
(
λ(θ) − 1+ iθµ

))(k)

= O(1) for k ≤ r − 2,

(
1

|θ |2
(
λ(θ) − 1+ iθµ

))(k)

= o(|θ |r−k−2) for k = r − 1, r,

where(k) denotes thekth derivative. Alsoν∗Qθh1 and itskth derivatives converge
to 0 as|θ | → 0.

Next, we want to verify that the rate of convergence in (4.18) isO(e−rs) for
somer > 0 ass → ∞. Note that

1

2π

∫
0<|θ |<δ

R
{
e−iθs ĝε(θ)Î�c(θ)ν∗Qθh1(i/µθ)

}
dθ = g(0)

2µ
+O(e−rs),(4.21)

ass → ∞. Consider

1

2π

∫
0<|θ |<δ

e−iθs ĝε(θ)Î�c(θ)ν∗Qθh1

(
1

1− λ(iθ)
− i

µθ

)
dθ

= 1

2π
lim
ε→0

(∫
−δ<θ<ε

e−iθs ĝε(θ)Î�c(θ)ν∗Qθh1

×
(

1

1− λ(iθ)
− i

µθ

)
dθ(4.22)

+
∫
ε<θ<δ

e−iθs ĝε(θ)Î�c(θ)ν∗Qθh1

×
(

1

1− λ(iθ)
− i

µθ

)
dθ

)
.

Let 0 < u1 ∈ 
, where 
 is defined in K6. For anyu ∈ (0, u1), and
z = u + iθ ∈ C, consider four linesL1(ε) = {z : R(z) = 0, ε ≤ |I(z)| ≤ δ},
L2 = {z :R(z) ∈ [0, u],I(z) = δ}, L3 = {z :R(z) ∈ [0, u],I(z) = −δ},
L4 = {z :R(z) = u, |I(z)| ≤ δ}, and one semicircle,L5(ε), from ε to −ε, oriented
clockwise. Define

h(z) = e−zs ĝε(z)Î�c(z)ν∗Qzh1

(
1

1− λ(z)
− i

µz

)
.(4.23)
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Sinceh is analytic in the regions fromL1(ε) to L5(ε), by Cauchy’s theorem for
contour integral, we have∫

L1(ε)
h(z) dz +

∫
L2

h(z) dz +
∫
L3

h(z) dz

(4.24)
+

∫
L4

h(z) dz +
∫
L5(ε)

h(z) dz = 0.

The continuityh yields that the residual ofh(z) at 0 is 0, whence

lim
ε→0

∫
L5(ε)

h(z) dz = 0.

Combining with the Riemann–Lebesgue lemma, we have

lim
ε→0

∫
L1(ε)

h(z) dz

=
∫ δ

−δ
e−(u+iθ)s ĝε(u + iθ)Î�c(u + iθ)ν∗Qu+iθ h1

(4.25)
×

(
1

1− λ(u + iθ)
− i

µ(u + iθ)

)
dθ

= O(e−rs) for some r > 0 ass → ∞.

To analyze (4.20), we make use of Lemma 5 which implies that
∑∞

n=0 Eν{eiθSn}
and its partial derivatives up to orderr are bounded for anyr ≥ 2, and a fortiori
locally integrable, in the region{θ : |θ | ≥ δ}. Moreover,Î�c and its derivatives are
bounded by a constant times

∏d
i=1 |θ |−1 as |θ | → ∞. ThereforeN integrations

by parts as in page 359 of Carlsson and Wainger (1982) can be used to show
that (4.20)= O(| logε|d/sN

1 ) for anyN . Sinceη(θ) and its partial derivatives of
orderr are bounded for 0< |θ | ≤ δ∗ for any r ≥ 2, N integrations by parts can
also be used to show that (4.19)= O(s−N

1 ) for anyN . Therefore, by making use
(4.18)–(4.20), (4.23) and (4.25), we have (4.15) and hence get the proof.�

5. Proof of Theorem 2. In this section, we assume the Markov random walk
{(Xn,Sn), n ≥ 0} defined as (1.1) is uniformly ergodic with respect to a given
norm, and the stationary meanµ = 0. Under the minorization condition C1,
making use of the results in Hipp (1985), Malinovskii (1987) and Jensen (1989),
we have the following asymptotic expansions of the density for the distribution in
Markov random walks.

LEMMA 6. Assume C1–C5with r = 3 in C3. We assume, without loss of
generality, the asymptotic variance σ 2 = 1. Then

Pν

{
Sn ≤ s

√
n

} = �(s) + φ(s)
Q1(s)√

n
+ (1+ |s|3)−1o

(
1√
n

)
,(5.1)
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where o(·) is uniform in s. Here �(·) denotes the standard normal distribution,
φ(·) denotes the standard normal density, and Q1(s) = κ/6(1 − s2) + κν , where
κ = Eπξ3

1 + 3
∑∞

t=1 Eπξ2
1ξt+1 + 3

∑∞
t=1 Eπξ1ξ

2
t+1 + 6

∑∞
t1,t2=1 Eπξ1ξt1+1ξt1+t2+1

and κν = ∑∞
t=1 Eνξt . Note that kν = 0 if ν = π .

Furthermore, if Pπ {Sn ≤ s
√

n } has a density pπ,n(s
√

n ), then

pπ,n

(
s
√

n
)√

n = φ(s)

(
1+ k

6
√

n
(s3 − 3s)

)
+ (1+ |s|3)−1o

(
1√
n

)
,(5.2)

where o(·) is uniform in s.

In the following, we shall assume C1–C5 and C7 hold. Lemma 7 is taken from
Theorem 5 of Fuh and Lai (1998); we include it here for completeness.

LEMMA 7. Let r ≥ 1. Assume supx Ex(ξ
+
1 )r+1 < ∞, where ξ+

1 denotes the
positive part of ξ1. Furthermore, assume there exists ε > 0 such that infx Pπ {ξ1 ≤
−ε|X1 = x} > 0. Then, EπSr

τ+ < ∞ and {Sτ(b) − b, b > 0} is uniformly integrable
under the probability Pπ .

A Markov random walk is calledlattice with spand > 0 if d is the maximal
number for which there exists a measurable functionγ :X → [0,∞), called the
shift function, such thatP {ξ1 − γ (x) + γ (y) ∈ {. . . ,−2d,−d,0, d,2d, . . .}|X0 =
x,X1 = y} = 1 for almost allx, y ∈ X. If no suchd exists, it is callednonlattice.

Let W(t), 0 ≤ t ≤ ∞, denote Brownian motion with driftµ and put
τW = τW(b) = inf{t :W(t) ≥ b}. Define the inverse Gaussian distribution
G(t;µ,b) = P (µ){τW(b) ≤ t} andH+(s) = (Eπ+Sτ+)−1 ∫ s

0 Pπ+{Sτ+ ≥ t}dt .

LEMMA 8. Assume P is nonlattice. Suppose b → ∞ and m → ∞ so that, for
some fixed 0 < ζ < ∞, b = ζm1/2. Then for all 0 ≤ t, s ≤ ∞,

Pπ

{
τ (b) ≤ mt, Sτ(b) − b ≤ s

} −→ G(t;0, ζ )H+(s).

PROOF. Note that

Pπ

{
τ (b) > mt, Sτ(b) − b ≤ s

}
= Eπ

(
Pπ

{
Sτ(b) − b ≤ s|τ (b) > mt,Sm

}; τ (b) > mt
)
.

Let b̃ = b − b1/4. Then by the central limit theorem for Markov random walks
[cf. Theorem 17.2.2 of Meyn and Tweedie (1993)], we have

Eπ

(
Pπ

{
Sτ(b) − b ≤ s|τ (b) > mt,Sm

}; τ (b) > mt, b̃ < Sm < b
)

≤ Pπ {b̃ < Sm < b} → 0.
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Moreover, it is also known thatPπ+{τ+ < ∞} = 1 and by Lemma 7,Eπ+Sτ+ < ∞,
and

Pπ

{
Sτ(b) − b ≤ s|τ (b) > mt,Sm ≤ b̃

}
=

∫ b̃

0

∫
X

Pπ

{
Sτ(b) − b ≤ s|Xm = x, τ (b) > mt,Sm ∈ dv

}
× Pπ {Xm ∈ dx|τ (b) > mt,Sm ∈ dv}

=
∫ b̃

0

∫
X

Px

{
Sτ(b−v) − (b − v) ≤ s

}
Pπ {Xm ∈ dx|τ (b) > mt,Sm ∈ dv}.

SincePπ {τ (b) > mt,Sm ≤ b̃} > 0 asb → ∞, therefore forv uniformly in
{τ (b) > mt,Sm ≤ b̃}, Px{Sτ(b−v) − (b − v) ≤ s} → H+(s) as b → ∞ by the
Markov renewal theorem in Theorem 1. Hence, uniformly in{τ (b) > mt,Sm ≤ b̃},
asb → ∞,

Pπ

{
Sτ(b) − b ≤ s|τ (b) > mt,Sm

} → H+(s).

Under irreducible assumption and the minorization condition C1, forr = 2,
assumption C3 ensures that the Poisson equation (4.1) has a solution� which
satisfiesEπ(�(X1))

2 < ∞. Therefore, by the invariance principle for Harris
recurrent Markov chain [cf. Theorem 17.4.4 of Meyn and Tweedie (1993)], the
limiting marginal distribution ofτ (b)/m is G(t;0, ζ ). Hence,

Pπ

{
τ (b) > mt, Sτ(b) − b ≤ s

}
= Eπ

(
Pπ

{
Sτ(b) − b ≤ s|τ (b) > mt,Sm

}; τ (b) > mt,Sm ≤ b̃
) + o(1)

= H+(s)Pπ {τ (b) > mt,Sm ≤ b̃} + o(1) → H+(s)
(
1− G(t;0, ζ )

)
. �

LEMMA 9. Let 0 < ζ < ∞, and Rm = Sτ (b) − ζm1/2. Then for any ε > 0,
Pπ {Rm > εm1/2} = o(m−1/2).

PROOF. By Markov’s inequality we have

Pπ {Rm > εm1/2} = ε−1m−1/2
∫
{Rm>εm1/2}

Rm dPπ

which iso(m−1/2) by Lemma 7. �

LEMMA 10. Let 0 < ζ < ∞, 0 ≤ s ≤ ∞, and m1 = m(1 − (logm)−2). Then
as m → ∞,

Pπ

{
m1 < τ < m,Sm < (ζ − s)m1/2} = o(m−1/2),(5.3)

Pπ

{
m1 < τ ≤ m,Sm ≥ (ζ + s)m1/2} = o(m−1/2).(5.4)
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PROOF. By Lemma 9,

Pπ

{
m1 < τ ≤ m,Sm ≥ (ζ + s)m1/2}
= Pπ

{
m1 < τ ≤ m,Rm < 1

2sm1/2, Sm ≥ (ζ + s)m1/2} + o(m−1/2)(5.5)

≤ sup
m1<n≤m

Pπ

{
Sm−n ≥ 1

2sm1/2} + o(m−1/2).

It is easy to see (5.5) iso(m−1/2). By using a similar argument, we have that (5.3)
is o(m−1/2). �

PROOF OFTHEOREM 2. Since we will consider time delay in the proof, we
denoteS0 = s0 for convenience. LetP (m,s0,s)

π (A) = Pπ {A|S0 = s0, Sm = s}. Set
s0 = m1/2λ0 ands = m1/2ζ0 for someλ0, ζ0 < ζ . Let s′ = 2b − s = m1/2(2ζ − ζ0)

denotes reflected aboutb. From (5.2) in Lemma 6 and the Markov renewal
theorem in Theorem 1, in which� has only one element, it follows as in
Lemmas 7–10 that, form1 = m(1− (logm)−2) and someεm → 0,

P (m,s0,s)
π {τ < m} − P (m,s0,s)

π {τ < m1, Sτ − b < m1/2εm} = o(m−1/2)(5.6)

and

P (m,s0,s
′)

π {τ < m} − P (m,s0,s
′)

π {τ < m1, Sτ − b < m1/2εm} = o(m−1/2).(5.7)

SetAm = {τ < m1, Sτ − b < m1/2εm}, and letL(m)(n,Sn) denote the likelihood
ratio of ξ1, . . . , ξn underP (m,s0,s)

π relative toP
(m,s0,s

′)
π . For alln ≤ m − n0,

L(m)(n,Sn) = pπ,m−n(s − Sn)pπ,m(s′ − s0)

pπ,m−n(s′ − Sn)pπ,m(s − s0)
,(5.8)

wherepπ,m(s) is defined in (5.2). By (5.6) and Wald’s likelihood ratio identity for
Markov chains

P (m,s0,s)
π {τ < m} = E(m,s0,s

′)
π

{
L(m)(τ, Sτ );Am

} + o(m−1/2).(5.9)

Substitution of (5.8) into (5.9) and expansion with the aid of (5.2) gives the first-
order result,

P (m,s0,s)
π {τ < m} → exp[−2(ζ − λ0)(ζ − ζ0)].

This motivates the following reformulation of (5.9), which is justified by (5.7) and

the fact thatP (m,s0,s
′)

π {τ = m} = o(m−1/2):

P (m,s0,s)
π {τ < m} − exp[−2(ζ − λ0)(ζ − ζ0)] + o(m−1/2)

(5.10)
= E(m,s0,s

′)
π

{
L(m)(τ, Sτ ) − exp[−2(ζ − λ0)(ζ − ζ0)];Am

}
.
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The likelihood ratio ofξ1, . . . , ξn under P
(m,s0,s

′)
π relative to Pπ {·|S0 = s0} is

pπ,m−n(s
′ −Sn)/pπ,m(s′ − s0). Hence by (5.8) and Wald’s likelihood ratio identity

once again, the right-hand side of (5.10) becomes

Eπ

{
pπ,m−τ (s − Sτ )

pπ,m(s − s0)
(5.11)

− exp[−2(ζ − λ0)(ζ − ζ0)]pπ,m−τ (s′ − Sτ )

pπ,m(s′ − s0)
;Am

∣∣∣S0 = s0

}
.

The rest of the proof of (2.9) involves use of Lemma 6 to expand the integrand
in (5.11) and application of Lemma 8 to evaluate the resulting expectation. Let
Rm = Sτ − m1/2ζ . Some tedious algebra gives that the integrand in (5.11) equals

[(1− τ/m)1/2φ(ζ0 − λ0)]−1

×
{
φ

(
ζ − ζ0 + Rm/m1/2

(1− τ/m)1/2

)
− φ

(
ζ − ζ0 − Rm/m1/2

(1− τ/m)1/2

)}
,

which can be expanded to give

−2(1− τ/m)−1/2 exp
[1

2(ζ0 − λ0)
2 − 1

2(ζ − ζ0)
2/(1− τ/m)

]
(5.12)

× [
(ζ − ζ0)Rm/m1/2(1− τ/m)

] + o
(
(1+ R2

m)/m
)

uniformly on Am. According to Lemma 8,τ/m and Rm are asymptotically
independent, converge in law, and by Lemma 7,Rm is uniformly integrable. Also,
(5.12) is a bounded, continuous function ofτ/m on Am. Hence, (5.12) can be
substituted into (5.11) and Lemma 8 applied to evaluate the result. Puttings0 = 0
and performing the appropriate integrations yields (2.9).

Formally, (2.10) follows by substituting (2.9) into

Pπ {τ < m,Sm < c} =
∫
(−∞,c)

P (m,0,s)
π {τ < m}Pπ {Sm ∈ ds}.(5.13)

However, some care is required to justify this calculation, especially in the case
c = b (γ = ζ ), when s in (5.13) can be arbitrarily close tob. It is easy to see
that (2.9) holds uniformly on each compact subinterval of(−∞, ζ ); but if ζ0 → ζ ,
(5.12) is not necessarily bounded, (5.6) may fail to hold, and indeed the proof
of (2.9) disintegrates.

To circumvent this difficulty, we need to apply the duality argument to a time-
reversed Markov chain. By condition C7, recall thatPx(A) = ∫

A p(x, y)M(dy)

for all A ∈ A, wherep(x, ·) = dPx/dM . Letting Qx,y(B) = P (ξ1 ∈ B|X0 = x,

X1 = y), we can express the transition probability function (1.1) as

P (x,A × B) =
∫
A

p(x, y)Qx,y(B)M(dy) :=
∫
A

F (x, y;B)M(dy),(5.14)
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whereF(x, y;B) = p(x, y)Qx,y(B). For ease of notation, we still denoteπ as
the density of the invariant probability measure. We shall use∼ to refer to the
time-reversed (or dual) chain{(X̃n, S̃n), n ≥ 0} with transition kernel:

F̃ (y, x;B) = F(x, y;B)π(x)/π(y).(5.15)

Let τ ∗ = sup{n :n < m,Sm ≥ b}, and let τ̃ = inf{n : S̃n ≥ b} denote the
first passage time of the time-reversed Markov random walkS̃n at the linear
boundaryb. Observe thatP (m,0,ζ )

π {τ < m} = P
(m,0,ζ )
π {τ ∗ > 0} = P

(m,ζ,0)
π {τ̃ < m};

so to approximateP (m,0,ζ )
π {τ < m} for ζ − ε ≤ ζ0 < ζ , it suffices to consider

P
(m,λ,ζ )
π {τ̃ < m} for ζ = 0 andζ − ε ≤ λ0 < ζ (recall thatλ0 = m−1/2s0). It is

easy to see from (5.10)–(5.12) that uniformly forζ − ε ≤ λ0 ≤ s0 − m−1/2 < ζ ,
P

(m,s0,0)
π {τ̃ < m} = exp{−2ζ(ζ −λ0)}+o(m−1/2), which suffices to justify formal

substitution of (2.9) into (5.13) forζ in a neighborhood ofb and complete the proof
whenγ = ζ . �

6. Proof of Theorem 3. The way to prove Theorem 3 is a suitable application
of Theorem 1 via the following lemmas.

LEMMA 11. Assume the conditions of Theorem 3 hold. Then, there exists
δ > 0 and |α| ≤ δ such that the induced Markov chain {(Xα

n , Sα
n ), n ≥ 0} with

transition probability (2.13) is aperiodic and irreducible. Moreover, it is uniform
ergodic with respect to a given norm and satisfying K1–K6.

PROOF. For |α| ≤ δ, it is known [cf. Ney and Nummelin (1987)] that
{(Xα

n , Sα
n ), n ≥ 0} is an aperiodic and irreducible Markov chain. Since{(Xn,Sn),

n ≥ 0} satisfies C1,P α is geometricallye−�(α)-recurrent for|α| < δ, and therefore
is e−�(α)-uniformly ergodic, compare Theorem 4.1 of Ney and Nummelin (1987).

Define

�α(dy × ds) = �(dy × ds)e−�(α)+αsr(y;α)

(�r)(α)
,

where(�r)(α) is a normalizing constant, and

hα(x) = (�r)(α)r−1(x;α)h(x),

where�(·) andh(·) are defined in C1 with

P (x, dy × ds) ≥ h(x)�(dy × ds).

This implies that

P α(x, dy × ds) ≥ �(dy × ds)e−�(α)+αsr(y;α)

(�r)(α)
(�r)(α)r−1(x;α)h(x)

= hα(x)�α(dy × ds).
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Therefore the mixing condition K1 hold.
To prove the moment condition K6, denoteλα(z) as the eigenvalue ofP α

z .
By (2.13), we have∣∣Eα

π

(
eθξα

1
) − Eπ(eθξ1)

∣∣
=

∣∣∣∣ ∫
x,y∈X

∫ ∞
−∞

r(y;α)

r(x;α)
eθs

(
r(x;α)

r(y;α)
− eαs−�(α)

)
P α(x, dy × ds)πα(dx)

∣∣∣∣
≤

∫
x,y∈X

∫ ∞
−∞

∣∣∣∣r(y;α)

r(x;α)

∣∣∣∣|eθs |
∣∣∣∣r(x;α)

r(y;α)
− eαs−�(α)

∣∣∣∣P α(x, dy × ds)πα(dx)

for θ ∈ 
 ⊂ R. From limα↓0 |r(y;α)/r(x;α)| = 1, we get limα↓0 supθ |Eα
π(eθξα

1 )−
Eα

π(eθξ1)| = 0 by dominated convergence. Therefore, we may chooseα∗ > 0 so
that supα∈[0,α∗] supθ |Eπ(eθξα

1 ) − Eπ(eθξ1)| ≤ C, say. Hence, condition C6 im-
plies K6 holds. By using a similar argument, we also have the moment conditions
K2–K4. �

LEMMA 12. Assume the conditions of Theorem 3 hold. Then there exists
α∗ > 0 such that the family {(Xα

n , Sα
n ), n ≥ 0 :0≤ α ≤ α∗} satisfies (2.3)and (2.4).

PROOF. Since the proofs of (2.3) and (2.4) are similar, we only prove (2.3),
the uniformly strong nonlattice case. Letλα(z) denote the eigenvalue ofP α

z .
Since{(Xn,Sn), n ≥ 0} is assumed to be strongly nonlattice, we have thatg(1) :=
inf|θ |≥1 |1− Eπ(eiθξ1)| > 0. However, by (2.13),

∣∣Eπ(eiθξ1) − Eα
π

(
eiθξα

1
)∣∣

=
∣∣∣∣ ∫

x,y∈X

∫ ∞
−∞

r(y;α)

r(x;α)
eiθs

(
eαs−�(α) − r(x;α)

r(y;α)

)
P α(x, dy × ds)πα(dx)

∣∣∣∣
≤

∫
x,y∈X

∫ ∞
−∞

∣∣∣∣r(y;α)

r(x;α)

∣∣∣∣∣∣∣∣eαs−�(α) − r(x;α)

r(y;α)

∣∣∣∣P α(x, dy × ds)πα(dx)

for all real θ . Since limα↓0 |r(y;α)/r(x;α)| = 1, so limα↓0 supθ |Eπ(eiθξ1) −
Eα

π(eiθξα
1 )| = 0 by dominated convergence theorem. Therefore, we may choose

α∗ > 0 so that supα∈[0,α∗] supθ |Eπ(eiθξ1) − Eα
π(eiθξα

1 )| ≤ g(1)/2, say. Choosing
α∗ in this way, by applying the definition ofg(1) and the triangle inequality, we
obtain

inf
α∈[0,α∗] inf|θ |≥1

∣∣1− Eα
π

(
eiθξα

1
)∣∣ ≥ g(1)/2.

Consider

g(δ) := inf
α∈[0,α∗] inf|θ |≥δ

∣∣1− Eα
π

(
eiθξα

1
)∣∣;
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we want to show thatg(δ) > 0 for all δ > 0. If δ ≥ 1, theng(δ) ≥ g(1)/2 > 0.
Suppose 0< δ < 1. To showg(δ) > 0, it suffices to show

inf
α∈[0,α∗] inf

δ≤|θ |≤1

∣∣1− Eαπ

(
eiθξα

1
)∣∣ > 0.

However, sinceEα
π(eiθξα

1 ) = Eα
π(e(α+iθ)ξ1)/Eα

π(eαξ1), it is easy to see that
Eα

π(eiθξα
1 ) is a continuous function of(α, θ) for α ∈ � and realθ . Therefore,

|1− Eα
π(eiθξα

1 )|, being a continuous function on the compact set{(α, θ) : 0 ≤
α ≤ α∗, δ ≤ |θ | ≤ 1}, must attain its minimum there. To complete the proof, we
need only show that this minimum value cannot be 0. Supposing to the contrary
thatEα

π(eiθξα
1 ) = 1 for some 0≤ α ≤ α∗ andδ ≤ |θ | ≤ 1, we would have

P α
π

{
θ

2π
ξ1 is an integer

}
= 1.

However, by the assumption that{(Xn,Sn), n ≥ 0} is strongly nonlattice and the
property of exponential embedding thatPπ is absolutely continuous with respect
to P α

π , this is a contradiction. �

Use the same notation as the paragraph before Theorem 2 in Section 2. Note
that τn, τ+ and τ− depend onα; we omit it here for simplicity. The following
lemma is related to uniform strong nonlattice of the ladder chains. The proof
is a straightforward generalization of Theorem 6 in Fuh and Lai (1998) and is
omitted.

LEMMA 13. Assume the conditions of Theorem 3 hold. Let P α
π+ be the

transition probability of the ladder Markov chain {(Xα
τn

, Sα
τn

), n ≥ 0}. Then, there
exists α∗ > 0 such that, for 0 ≤ α ≤ α∗, the family {(Xα

τn
, Sα

τn
), n ≥ 0} is uniformly

strong nonlattice.

The following lemma generalizes Lemmas 4.4 and 4.5 in Heyde (1964) for
simple random walks.

LEMMA 14. Assume the conditions of Theorem 3 hold. Then, there exist
α∗ > 0, r1 > 0 and C such that, for all α ∈ [0, α∗],

Eα
π

(
e
r1S

α
τ+

) ≤ C.

PROOF. Under the assumption C6 and Lemma 11, forα ∈ � ⊂ R, we
can define the linear operatorsPα, P, ν∗ and Q on N as in (2.11). By the
spectral decomposition theory for linear operator on the spaceN developed in
Proposition 1, we have forh ∈ N ,

Eν{eαSnh(Xn)} = λn(α)ν∗Qαh + ν∗Pn
α(I − Qα)h,(6.1)
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whereQα is defined in (2.12). It also can be shown that there existK∗ > 0 and
0 < δ∗ < δ such that, for|α| ≤ δ∗,

‖ν∗Pn
α(I − Qα)h‖ ≤ K∗‖h‖|α|{(1+ 2ρ)/3}n,(6.2)

and under assumption C6, it follows from Proposition 1 thatλ(α) has the Taylor
expansion

λ(α) = 1+
r∑

j=1

λjα
j/j ! + �(α)(6.3)

in some neighborhood of the origin, where�(α) = O(|α|r ) asα → 0.
Now, for suchα, we have for all−∞ < s < ∞,

Pν(Sn ≤ s) ≤ e−αs
(
λn(α)ν∗Qα1+ ν∗Pn

α(I − Qα)1
)
,

where 1 denotes the identity function. Also, under the assumptionsµ < 0 and C6,
there exists sufficiently smallα such thatλ(α) < 1. Along this with (6.2), there
existsC > 0 such thateCλ(α) < 1 and for allc, 0< c < C,

∞∑
n=1

ecnPν(Sn ≤ s) < ∞.(6.4)

Next, for allγ ∈ (0,1), defineF0(s) = I{s≥0}, F1(s) = Pν(S1 ≤ s) andFn(s) =
Pν(Sn ≤ s;max1≤k≤n−1 Sk ≤ logγ ), for n > 1. Then, (6.4) implies that

∞∑
n=1

ernFn(logγ ) < ∞,(6.5)

for somer > 0.
Note that the probabilitypn of the first passage timeτ (γ ) out of the interval

(logγ,∞) for the Markovian random walkSn is n is given by

pn = Fn−1(logγ ) − Fn(logγ ), n ≥ 1.(6.6)

By (6.5) and (6.6), we haveEνe
tτ(γ ) < ∞ for somet > 0, for all γ ∈ (0,1).

Hence

Eπ(etξ1) < ∞ implies Eπ(etSτ+ ) < ∞.(6.7)

Using the requirement in the definition of the exponential embedding that� must
contain an interval about 0, take any positiveα1 ∈ �. Let C := Eπ(eα1Sτ+ );
by (6.7),C is finite. Since 0< inf|α|>δ,x∈X r(x;α) ≤ sup|α|>δ,x∈X r(x;α) < ∞,
then, if we takeα∗ andr1 both to beα1/2, say, for anyα ∈ [0, α∗] we have

Eα
π

{
e
r1S

α
τ+

} = Eπ

{
r(Xτ+;α)

r(X0;α)
e(r1+α)Sτ+−τ+ψ(α)

}

≤ Eπ

{
r(Xτ+;α)

r(X0;α)
e(r1+α)Sτ+

}
≤ Eπ

{
eα1Sτ+

} = C,
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which is the desired property.�

LEMMA 15. Assume the conditions of Theorem 3 hold. Suppose b → ∞ and
0 < α ↓ 0 such that, for some −∞ < ϑ < ∞, αb → ϑ . Then for 0 ≤ t, s ≤ ∞:

(i) P α
π {τ (b) ≤ b2t, Sα

τ(b) − b ≤ s} −→ G(t;ϑ,1)H+(s) and

(ii) Eα
πl{(Sα

τ(b) − b)r; τ (b) < ∞} −→ Eπ+Sr+1
τ+

(r+1)Eπ+Sτ+
.

PROOF. (i) Let m = b2t and FN be theσ -algebra generated by{(Xn,Sn),

n ≤ N}. By Wald’s likelihood ratio identity for Markov chains, we have that for
any stopping timeN , α′, α′′,A ∈ FN , and for each fixedx ∈ X,

P α′
x {A ∩ (N < ∞)}

(6.8)
=

∫
A∩(N<∞)

r(XN ;α′)
r(x;α′)

exp
(
(α′ − α′′)SN − N

(
�(α′) − �(α′′)

))
dP α′′

x .

And this implies that

P α
π {τ ≤ m,Sα

τ − b ≤ s}
= Eπ

[
r(Xτ ;α)

r(X0;α)
exp{αSτ − τ�(α)}; τ ≤ m,Sτ − b ≤ s

]
(6.9)

= exp(αb)Eπ

[
r(Xτ ;α)

r(X0;α)
exp{α(Sτ − b) − τ�(α)};

τ ≤ m,Sτ − b ≤ s

]
.

It follows that as 0< α ↓ 0, αb → ϑ, r(Xτ ;α)/r(X0;α) → 1 and�(α) ∼ 1
2α2 ∼

1
2ϑ2/b2. Hence at least for all finites, Lemma 7 shows that the right-hand side
of (6.8) converges to

exp(ϑ)Eπ

[
exp

{−1
2ϑ2τW(1)

}; τW(1) ≤ t
]
H+(s)

= Eπ

[
exp

{
ϑW

(
τW(1)

) − 1
2ϑ2τW(1)

}; τW(1) ≤ t
]
H+(s)

= P (ϑ)
π {τW(1) ≤ t}H+(s)

= G(t;ϑ,1)H+(s).

That this calculation is also valid whens = ∞ follows from the Markov renewal
Theorem 1 once it is known thatEπ(erSτ+ ) < ∞, for somer > 0. This holds by
Lemma 14.

(ii) The proof of the convergence ofEπ+Sπ+ follows from Lemma 6. The rest
is a similar calculation and is omitted.�

By using the exponential martingale (2.13), uniform renewal theorem in
Theorem 1 and Lemmas 11–15, the proof of Theorem 3 is similar to that of
Theorem 2 and is omitted.
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APPENDIX

Characteristic functions of uniform Markov random walks. Here we
generalize the work of Fuh and Lai (2001). We include it for completeness. Using
the same notation and assumptions as in the first paragraph after Theorem 2 of
Section 2, defineP α

z , P, να∗ andQ on N as (2.11). Condition K2 ensures thatP α
z

andP are bounded linear operators onN , and (2.2) implies that

‖Pn − Q‖ = sup
h∈N : ‖h‖=1

‖Pnh − Qh‖ ≤ γρn.(A.1)

For a bounded linear operatorT :N → N , the resolvent set is defined as{y ∈ C :
(T−yI)−1 exists} and(T−yI)−1 is called the resolvent (when the inverse exists).
From (A.1) it follows that, fory �= 1 and|y| > ρ,

R(y) := Q/(y − 1) +
∞∑

n=0

(Pn − Q)/yn+1(A.2)

is well defined. SinceR(y)(P − yI) = −I = (P − yI)R(y), the resolvent
of P is −R(y). Moreover, by K3 and an argument similar to the proof of
Lemma 2.2 of Jensen (1987), there existK > 0 and η > 0 such that, for
|z| ≤ η, |y − 1| > (1 − ρ)/6 and|y| > ρ + (1 − ρ)/6, ‖P α

z − P‖ ≤ K|α| and
Rα

z (y) := ∑∞
n=0R(y){(P α

z − P)R(y)}n is well defined. SinceRα
z (y)(P α

z − yI) =
Rα

z (y){(P α
z − P) + (P − yI)} = −I = (P α

z − yI)Rα
z (y), the resolvent ofP α

z

is −Rα
z (y).

For |z| ≤ η, the spectrum (which is the complement of the resolvent set)
of P α

z therefore lies inside the two circlesC1 = {y : |y − 1| = (1 − ρ)/3} and
C2 = {y : |y| = ρ + (1 − ρ)/3}. Hence by the spectral decomposition theorem
[cf. Riesz and Sz-Nagy (1955), page 421],N = N1(z) ⊕ N2(z) and

Qα
z := 1

2πi

∫
C1

Rα
z (y) dy, I − Qα

z := 1

2πi

∫
C2

Rα
z (y) dy(A.3)

are parallel projections ofN onto the subspacesN1(z), N2(z), respectively.
Moreover, by an argument similar to the proof of Lemma 2.3 of Jensen (1987),
there exists 0< δ ≤ η such thatB1(z) is one-dimensional for|z| ≤ δ and
sup|z|≤δ ‖Qα

z − Q‖ < 1. For |z| ≤ δ, let λα(z) be the eigenvalue ofP α
z with

corresponding eigenspaceN1(z). Since Qα
z is the parallel projection onto the

subspaceB1(z) in the direction ofB2(z), (2.12) holds. Therefore, forh ∈ N ,

Eν

{
ezSα

n h(Xn)
} = να∗ P α n

z h = να∗ P α n
z {Qα

z + (I − Qα
z )}h

= (
λα(z)

)n
να∗ Qα

z h + να∗ P α n
z (I − Qα

z )h.

Suppose K4 also holds. An argument similar to the proof of Lemma 2.4 of
Jensen (1987) shows that, there exist 0< δ∗ < δ and K∗ > 0 such that for
|z| ≤ δ∗, |να∗ P α n

z (I − Qα
z )h| ≤ K∗‖h‖w|z|{(1 + 2ρ)/3}n. Moreover, analogous



MARKOV RENEWAL THEORY 1239

to Lemmas 2.5–2.7 of Jensen (1987), it can be shown thatλα(z), να∗ Qα
z h

and
∑∞

n=0να∗ P α n
z (I − Qα

z )h have continuous partial derivatives of order[r] for
|z| ≤ δ∗. Furthermore, we have the following proposition.

PROPOSITION 1. Assume the conditions of Theorem 1 hold. Let h ∈ N and
there exists a δ > 0 such that z ∈ C and |z| ≤ δ.

(i) Eν{ezSα
n h(Xn)} = (λα(z))nνα∗ Qα

z h + να∗ (P α
z )n(I − Qα

z )h. Moreover, there
exist 0 < δ∗ < δ, 0< γ < 1 and K > 0 such that, for |z| ≤ δ∗, λα(z), να∗ Qα

z h and∑∞
n=0να∗ (Pα

z )n(I − Qα
z )h have continuous partial derivatives of order [r], and

|να∗ (P α
z )n(I − Qα

z )h| ≤ K‖h‖|z|γ n for all n ≥ 1.

Furthermore,

λα(0) = 1, ∇λα(0) = i�µα, ∇2λα(0) = −�V α�′.

(ii) Define f α
A(z) = ∑∞

n=0Eν(e
zSα

n 1{Xn∈A}), and let hA(z) = 1{x∈A}. Then for
0 < |z| ≤ δ∗,

f α
A(z) = (

1− λα(z)
)−1

να∗ Qα
z hA + ηα(z),

where ηα(z) has continuous partial derivatives of order [r] and ηα(z) = O(|z|) as
z → 0.
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