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UNIFORM MARKOV RENEWAL THEORY AND RUIN
PROBABILITIES IN MARKOV RANDOM WALKS!

By CHENG-DER FUH
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Let {X,,n > 0} be a Markov chain on a general state spacevith
transition probability? and stationary probabilityr. Suppose an additive
components,, takes values in the real linR and is adjoined to the chain
such that{(X,, S,),n > 0} is a Markov random walk. In this paper, we
prove a uniform Markov renewal theorem with an estimate on the rate
of convergence. This result is applied to boundary crossing problems for
{(Xn, Sn),n > 0}. To be more precise, for givelh> 0, define the stopping
time t = t(b) = inf{n:S,, > b}. When a drift w of the random walk
Sy is 0, we derive a one-term Edgeworth type asymptotic expansion for
the first passage probabilitie®; {t < m} and P;{t < m, S;; < ¢}, where
m < 0o, ¢ < b and P, denotes the prollity under the initid distributionz .
When n # 0, Brownian approximations for the first passage probabilities
with correction terms are derived. Applications to sequential estimation
and truncated tests in random coefficient models and first passage times in
products of random matrices are also given.

1. Introduction. Let {X,,n > 0} be a Markov chain on a general state
spaceX with o-algebra. Suppose an additive componefit= }";_,&; with
So = & = 0, taking values in the real linR, is adjoined to the chain such that
{(X,, S,),n >0} is a Markov chain or% x R with

P{(Xn, Sn) € A X (B +5)[(Xp—1, Sp—1) = (x, 5)}
1.1) = P{(X1, §1) € A x B|(Xo, So) = (x, 0)}
= P(x,A x B),

for all x € X,s e R,A e A and B € 8 (:= Borel o-algebra onR). The
chain {(X,, S,),n > 0} is called aMarkov random walk. For an initial distrib-
ution v on Xo, let P, denote the probability measure under the initial distribu-
tion v on X and letE, denote the corresponding expectation: i degenerate
at x, we shall simply writeP, (E,) instead ofP, (E,). In this paper, we shall
assume thaltX,,, n > 0} has an invariant probability .
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Forb > 0, define the stopping time
(1.2) t=t()=Iinf{n:S, > b}, 74 =71(0).

In a variety of contexts, for givem < oo andc < b, we need to approximate the
first passage probabilities

(1.3) Pr{t <mj},
and
(1.4) P {t <m, S, <c}.

It is known that, with some proper identifications, (1.3) is the probability that the
waiting time for the(m — 1)th customer in a single server queue excéedss also

the probability of ruin in finite time in risk theory [cf. Asmussen (1989a, b, 2000)].
The joint probability oft and S, in (1.4) is an important ingredient to study
truncated test in random coefficient models. Note that discrete time ARCH model
can be defined, with some modifications, in the framework of random coefficient
models; compare Bougerol and Picard (1992).

When the increments of the random walks are independent and identically
distributed (i.i.d.) random variables. Siegmund (1979, 1985) and Siegmund
and Yuh (1982) developed a so-called “corrected Brownian approximation”
by computing correction terms in the Brownian approximation to approximate
the first passage probabilities (1.3) and (1.4). In the case of a finite state
ergodic Markov chain, Asmussen (1989b) derived a first-order corrected Brownian
approximation for one-barrier ruin problems in risk theory, while Fuh (1997)
studied one-barrier and two-barrier boundary crossing probabilities, and derived
a second-order corrected Brownian approximation in Markov random walks.
Arndt (1980) studied asymptotic properties of the distribution of the supremum
of a random walk on a Markov chain. Malinovskii (1986) derived asymptotic
expansions in the central limit theorem of (1.4) for Harris recurrent Markov chains.
For a general account on ruin probabilities, the reader is referred to Asmussen
(2000) and references therein.

In this paper, we study asymptotic approximations of the first passage
probabilities (1.3) and (1.4) for Markov random walks on a general state space.
The limiting behavior for (1.3) and (1.4) is defined ms— oo, andb = ¢m'/?
andc = ym?/? for somey < ¢ > 0. When a drift. of the random walks,, is
zero, we derive one-term Edgeworth type asymptotic expansions of (1.3) and (1.4).
In the case ofu # 0, we first define the conjugate transformation of the
transition probability in Markov random Wk and then derive corrected Brownian
approximations for the first passage probabilities (1.3) and (1.4). Motivated by the
approximations of (1.3) and (1.4), we study a uniform Markov renewal theorem
including a rate of convergence. There are three aspects to provide the uniform
Markov renewal theorem. To begin with, the condition of uniform ergodicity with
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respect to a given norm considered in this paper is different from the previous one
[cf. Kesten (1974), Athreya, McDonald and Ney (1978), Shurenkov (1984, 1989),
Alsmeyer (1994) and Fuh and Lai (2001)] and will be applied to products of
random matrices. Second, we study the Markov renewal theorem with an estimate
on the exponential rate of convergence. Early work in the respect can be found in
Silvestrov (1994), using coupling. When the incrementsf the random walks

are i.i.d. random variables, rates of convergence for the renewal theorem can
be found in Stone (1965a, b), Carlsson and Wainger (1982), Carlsson (1983),
Kartashov (1996) and Kovalenko, Kuznetsov and Shurenkov (1996). Third, the
renewal theorem is in a uniform version in the sense of varying drifts. Uniform
renewal theorems for simple random walks have been studied extensively in the
literature; the reader is referred t@ilL(1976), Katashov (1980), Zhang (1989)
and Silvestrov (1978, 1979, 1995), and references therein.

The remainder of the paper is organized as follows. In Section 2, we formulate
the problem and state our main results: a uniform Markov renewal theorem
with rate of convergence; one-term Edgeworth type asymptotic expansions for
the first passage probabilities (1.3) and (1.4) in the case of zero drift; and
corrected Brownian approximations for the first passage probabilities (1.3) and
(1.4) whenu £ 0. The proofs are given in Sections 4-6, respectively. Applications
to sequential estimation and truncated tests in random coefficient models and first
passage times in products of random matrices are in Section 3.

2. Mainresults. Let{(X,, S,), n > 0} be a Markov random walk o x R.
For ease of notation, writ® (x, A) = P(x, A x R) as the transition probability
kernel of {X,,,n > 0}. For two transition probability kernel®(x, A), K (x, A),

x € X, A € A and for all measurable functiogx), x € X, defineQh and QK
by Qh(x) = [ Q(x,dy)h(y) andQK (x, A) = [ K(x,dy)Q(y, A), respectively.

Let & be the Banach space of measurable functibn¢ — C (:= the
set of complex numbers) with norih|| < co. We also introduce the Banach
spaceB of transition probability kernel§) such that the operator norifQ|| =
sud|l Qgli; llgll < 1} is finite. Two prototypical norms considered in the literature
are the supremum norm and tihg, norm. Two other commonly used norms in
applications are theveighted variation norm and thebounded Lipschitz norm,
described as follows:

1. Let w:X — [1,00) be a measurable function, define for all measurable
functionsh, a weighted variation norma||,, = sup.c« |h(x)|/w(x), and set
Ny = {h:||h|lw < oo}. The corresponding norm i, is of the form| Q||,, =
SUp.ex [ 101(x, dy)w(y)/w(x).

2. Let (X,d) be a metric space. For any continuous functioron X, the
Lipschitz seminorm is defined bjiz||. := SUP.zy [ (x) — h(y)|/d(x, y). The
supremum norm i/ loc = SUP,coc [R(x)]. Let ||l := [|AllL + lIh]lo and
ML = {h:|h|lsL < oo}. Here BL stands for “bounded Lipschitz” antds_ is
the Banach space of all bounded continuous Lipschitz functior$.on
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Denote byP"(x, A) = P{X, € A|Xo = x}, the transition probabilities over
n steps. The kerneP” is ann-fold power of P. Define also the Césaro averages
P =3"_oPi/n, whereP® = PO = I andI is the identity operator orB.

DEFINITION 1. A Markov chain{X,,,n > 0} is said to be uniformly ergodic
with respect to a given north- ||, if there exists a stochastic kerridl such that
P™ — II asn — oo in the induced operator norm iB. The Markov chain
{X,,n > 0} is calledw-uniformly ergodic in the case of weighted variation norm.

The Markov chain{X,,n > 0} is assumed to be irreducible [with respect to
a maximal irreducible measute on (X, +)], aperiodic and uniformly ergodic
with respect to a given norm- ||. In this paper, we assume is o-finite, and
{X,,n > 0} has an invariant probabilityt. It is known [cf. Theorem 13.3.5 of
Meyn and Tweedie (1993)] that for an aperiodic and irreducible Markov chain, if
there exists some-small setC and someP*°(C) > 0 such that, as — oo,

/(:Ac(dx)(P”(x, C) — P®(C)) — 0,

whereic(:) = A(-)/A(C) is normalized to a probability o, then the chain is
positive, and there exists @null set N such that, for any initial distributiom
with v(N) =0,

/v(a’x)P”(x,-)—rr” -0 asn — 0o,
tv
where | - |ltv denotes the total variation norm. Theorem 1.1 of Kartashov
(1996) gives thatP has a uniquestationary projector IT in the sense that
2= =PI =TIIP,andlI(x, A) =7 (A) forall x € X, A € A.

The following assumptions will be used throughout this paper.

C1. There exists a measwteon X x R, and measurable functionon X such
that [ 7 (dx)h(x) >0, ¥ (X x R) =1, [ W(dx x R)h(x) > 0, and the kernel
T(x,Ax B)=P(x,A x B)—h(x)¥(A x B) is nonnegative for alA € A
and,B € 8.

C2. Forallx € X, sup, <1 IE[~(X1)| X0 = x]|| < oo.

C3. sup E.|£1]% < oo and, for allx € X, SUR <1 IETIE1"A(X1)| Xo = x]|| < 00
for somer > 1.

C4. Letv be an initial distribution of the Markov chaifX,,, n > 0}; assume that
for somer > 1,

(2.1) v] := sup
lrl<1
C5. Assume that for somey > 1, [°% [, o |Ex{€Xpi0&1)}|"0m (dx) db < oo.
C6. There exist® C R containing an interval of zero such that, for.ak X and
E=CH SURA| <1 |E[exp0&1)h(X1)| Xo =x]|| < C < oo, for someC > 0.

f MOl v(dx)| < oc.



1206 C.-D. FUH

C7. There exists a-finite measurelf on (X, 4) such that, for allk € X, the
probability measuré, on (X, 4) defined byP,(A) = P(X1 € A|Xg=x) IS
absolutely continuous with respect 6, so thatP,(A) = [, p(x, y)M(dy)
forall A € A, wherep(x,-) =dP,/dM.

REMARK 1. Condition C1 is a mixing condition on the Markov chain
{(Xy, Sp),n > 0}. Itis also called a minorization condition in Ney and Nummelin
(1987), where they constructed a regeneration scheme and proved large deviation
theorem. An alternative condition for C1 is that there exists a meaBuwa X,
and family of measure§:(x, B); B € 8} on R, for eachx € X such that the
kernelT (x, A x B) = P(x, A x B) — h(x, B)W(A) is nonnegative for alA € A
and B € 8. If a Markov chain is Harris recurrent, then C1 holds foistep
transition probability. It is known that under the irreducible assumption, C1 implies
that {(X,,, &,),n > 0} is Harris recurrent [cf. Theorem 3.7 and Proposition 3.12
of Nummelin (1984) and Theorem 4.1(iv) of Ney and Nummelin (1987)]. An
example on page 9 of Kartashov (1996) also shows that there exists a uniformly
ergodic Markov chain with respect to a given norm, which is not Harris recurrent.
Theorem 2.2 of Kartashov (1996) states that under condition C1, a Markov chain
{X,,n > 0} with transition kernelP is uniformly ergodic with respect to a given
norm if and only if there exists @ p < 1 such that

(2.2) IP" =TIl = O (p"),

asn — oo. When the Markov chain is uniformly ergodic with respect to the
weighted variation norm, (2.2) still hold without condition C1.

REMARK 2. Conditions C2-C4 are standard moment conditions. Condi-
tion C6 implies that the exponential moment, in the sense of the corresponding
norm, of&; exists forg in ®. Condition C5 implies that for alt > ng, S, has
a bounded probability density function for givéfy. The existence of the transi-
tion density in C7 will be used in Theorems 2 and 3 only. It holds in most applica-
tions.

Next, we will describe the uniform version of conditions C1-C7. Since the
uniform version is in the sense of varying drift [see (2.13)], we consider a compact
setI" C R which contains an interval of 0. For eaehe I, let {(X7, SY),n > 0}
be the Markov random walk on a general state sp¥cdefined as (1.1), with
transition probabilityP* and invariant probability measure®. For eachw € T,
the Markov chain{X?,n > 0} is assumed to be irreducible [with respect to
a maximal irreducible measuge on (X, )], aperiodic and uniformly ergodic
with respect to a given norm- ||.

To establish the uniform Markov renewal theorem, we shall make use of the
uniform version of (1.1) in conjunction with the following extension of the uniform
Cramér’s (strong nonlattice) condition:

(2.3) g®) :=inf inf |1— EZ{expivS{)}| >0 forallg > 0.
ael |v|>0
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Additive components,, is called strongly nonlattice if" has only one element.
In addition, we also assume that the [conditional uniform] Cramér’s (strong
nonlattice) condition holds. There exigts> 1 such that

(2.4) suplim sup|E* {exp(if So)| X0, Xm}| < 1.
ael’ |0|—o0
Note that under condition C5, (2.3) and (2.4) can be removed. Next, we assume the
strong mixing condition holds. There exigt > 0 and O< p1 < 1 such that, for all
k> 0andn > 1, and for all real-valued measurable functi@ng with g, 2 € N,

|Ev{8(XOh(Xk4n)} — {Evg (XOHEvh(Xin)} < vap)

Note that when the norm is the weighted variation norm, we only need that
(2.3) and (2.4) hold without the strong mixing condition.
Fora €T, the uniform versions of C1-C6 are:

K1. There exists a measude® on X x R, and measurable functidgnon X such
that [ 7%(dx)h(x) > 0, ¥V*(X x R) =1, [V*(dx x R)h(x) > 0, and the
kernelT%(x, A x B) = P*(x, A x B) — h(x)¥*(A x B) is nonnegative for
all A e A andB e B.

K2. Forallx € X, sup,er Sup <1 | E*[A(X])1 X3 = x]| < oo.

K3. sup,cr sup E§|§f|2 < oo and for allx € X, suR,er SUR <1 IE*LIEL]" x
h(X9)|Xg = x]|l < oo for somer > 1.

K4. Letv® be an initial distribution of the Markov chafiX¥, » > 0}; assume that
for somer > 1,

sup sup
acl ||h|<1

/ h(x)EY|E7 v (dx)| < oo.
x
K5. Assume that for someg > 1,
o0
sup/ / |E2{exp(if&f)}"n* (dx) db < oo.
acl’J—o0 JxeX

K6. There exist® c R containing an interval of zero such that, forak X and
0 € ©, SuR,cr SURL| <1 | E“[exp@&0)h(X)| Xg = x]|| < C for someC > 0.

THEOREM 1. Let {(X7,SY),n > 0} be a uniformly strong nonlattice Markov
randomwalk satisfying K1-K4 with r > 2in K3. Let u* := u{ := EF&Y > 0 and
1s = E2(E%)? < 0. Then, ass — oo,

o0

h

(25) Y PMs=Si<s+h X eAl= En“(A) +o(s~" D),
n=0

C{

2(u “)2

(2.6) ZP"{ 00 < S <s, X"‘eA}—(——i—
n=0

) “(A) 4 o(s~"=2).
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Furthermore, if K6 holds, then for somer; > 0,ass — oo,
13
2(u®)?

oo
N
(2.7) Y Pl{—co<Sy<s XyecA}= <F +

)7‘[“(14) + 0(e ).
n=0

REMARK 3. WhenT has only one element and the incremegisare
i.i.d., these results are proved via Fourier transform and Schwartz’s theory of
distributions. These methods can be extended to the Markov case via perturbation
theory of the transition probability operator. Such extensions can also be modified
to yield the rate of convergence in Markov renewal theory, which generalizes the
corresponding results of Stone (1965a, b) and Carlsson (1983) for simple random
walks.

REMARK 4. Foreach fixed, the Markov renewal theorems in Theorems 1-4
in Fuh and Lai (2001) provide the rate of convergence-asoco. However, in the
applications to Theorem 3, we shall be lettiag> 0 simultaneously with — oco.
Consequently, we must consider the possibility that certain unpleasant situations
might occur, such as a case in which,cas> 0, the rate of convergence to O of
the error terms in (2.5)—(2.7) gets slower and slower. Theorem 1 guarantees that
this cannot happen; that is, that there is a certain rate of convergence which applies
uniformly to all« in some neighborhood of 0.

Let v be an initial distribution of the Markov chaifX,,n > 0} and let
u=Eré&1, 0% = im0 n_lEv{(Sn - nM)Z} and k = lim, .« n_lEv{(Sn -
nw)3}, which are well defined under C4 for some> 3. It will be convenient
to use the notation

(2.8) P (A) = Py{A|Sy = s).

Let t; = inf{n > 1:8, > 0} be the first ascending ladder epoch 8f,
T, =inflk >17,_1:85, > S;, ,} be thenth ascending ladder epoch ¢f,, for
n=2,3,...,andletr_ =inf{n > 1:§, <0} be the first descending ladder epoch
of §,. Sinceu > 0, 7, are finite almost surely under the probabiliB{X ., <
A|Xo = x} and therefore, the associated ladder heighys are well-defined
positive random variables. Furthermof€X -, , S;,), n > 0} is a Markov chain, and
it is the so-calledadder Markov random walk. When . = 0, we can still define
the ladder Markov chain via the property of uniform integrability in Theorem 5
of Fuh and Lai (1998)lt is assumed throughout this paper that P, (14 <oc0) =1
for all x € X and that the ladder random walk is uniform ergodic with respect to
a given norm. The moment conditions C2—C4 and C6 for the ladder random walk
are in Lemma 1 and Lemma 14, respectively. The uniformly strong nonlattice for
the ladder random walk is in Lemma 13. Since C5 holds in Theorems 2 and 3,
we do not need (2.4) anymore. Let denote the invariant measure of the kernel
P, (x, A x R?) which is assumed to be irreducible and aperiodic. The property
of Harris recurrent for ladder Markov chains has been established in Alsmeyer
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(2000). Therefore, C1 holds for the ladder random walk. In Section 3, we will
show how uniform ergodicity of the ladder chain and finiteness of momersts of
can be established in some interesting examples.

THEOREM 2. Let {(X,,S,),n > 0} be a Markov random walk satisfying
C1-C5and C7 with » = 3 in C3. Suppose 1 = 0, 0 = 1, and that there exists
e > 0 suchthat inf, P;{£1 < —¢|X1=x} > 0.Let b=¢m¥2 and s = cgm?/2 for
some¢ > 0and —oo < ¢g < ¢. Then,asm — oo,

Pjgm*s){r < m}
= eXp—2(b + p4)(b + py — 5 —ic/3)/(m + k5 /3)} + 0(m™/?),

where p; = Ex, S? /2E;, S,,.If in addition c = ym?/? for some y < ¢, then, as
m— 00,

(2.9)

(2.10) Pyt <m, S, <c}= cp(c /3 2“’“’”) 4 o(m—Y2),

(m +kc/3)V/2
where @ denotes the standard normal distribution function.

REMARK 5. Approximations (2.9) and (2.10) are the corresponding results
for Brownian motion with drift 0,5 replaced byb + p,, s(c) replaced by
s +«/3 (c + k/3) andm replaced byn + ks/3. Also, note that the constapi;
in (2.9) and (2.10) reduces tESTZ+/2ES,+ when S, is a simple random walk
[cf. Siegmund (1985), pages 220 and 221]. Sitkydt < m} = P, {S,, > b} +
P.{t <m,S,, < b}, one-term Edgeworth expansion 8f{S,, > b} and (2.10)
give a representation of (1.3).

To state Theorem 3, we need to define a twist transformation of the transition
probability operator, and this requirement leads us to study the perturbation theory
of certain linear operators oN . Forz € C, define linear operatof;, P, v, andQ
on.N by

P.h)(x) = E[h(XDeiXo=x],  (Ph)(x) = E[h(X1)|Xo = x],
vl = Ey{h(Xo)), Qh = / h(y)r(dy).

When the norm is supremum norm afd= g(X,), Nagaev (1957) and Jensen
(1987) have shown that there exists sufficiently sall 0 such that, foiz| <8,
N = N1(z) ® N2(z) and

(2.12) P.Q.h =A(2)Q;h forallh e N,

whereN1(z) is a one-dimensional subspace/f A(z) is the eigenvalue d?, with
corresponding eigenspadé (z) andQ; is the parallel projection oy’ onto the
subspacevi(z) in the direction ofN>(z). Extension of their argument to weighted
variation norm and randor), satisfying some regularity assumptions is given in

(2.11)
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Fuh and Lai (2001). We extend this result to uniform ergodic Markov random
walks with respect to a given norm in the Appendix. kete N be the constant
functions; =1 and letr (x; z) = (Q;h1)(x). From (2.12), it follows thak (-; z) is
an eigenfunction oP, associated with the eigenvalu€), thatis,(; z) generates
the one-dimensional eigenspase(z).

In particular,z = @ € R such that there exist® > 0 anda € [—§,8] :=T.
Define the “twisting” transformation

riyie) e AT py dy xds)  whereA =logh.
r(x; o)

(2.13) P¥(x,dy x ds) =

Then P is the transition probability of a Markov random walkXy, Sy),

n > 0}, with invariant probabilityz®. The functionA(«) is normalized so that
A) = AD () =0, wherelD) denotes the first derivative. TheP® = P is the
transition probability of the Markov random wadkX,,, S,,), n > 0} with invariant
probability 7. Here and in the sequel, we dendg as the probability measure
of the Markov random walK (X, S%), n > 0} with transition probability kernel
(2.13), and having initial distribution®. For ease of notation, we denoté:= v,
and letEY be the expectation undéx”.

It is known thatA is a strictly convex and real analytic function for which
A () = E2£Y. Therefore E2£S <, =,0r > 0% « <, =, 0r > 0. For any value
a # 0 and|a| < §, there is at most one valug with |&’| < §, necessarily of
opposite sign, for which\ (o) = A(a’). Assume suclx’ exists; we may let that
oo = Min(e, o) anday = max(a, «’) such thatyg < 0 < a1 and A (xg) = A(aq).
Denote A = a1 — ap. We also assume, without loss of generality, thdt=
AP (0) = 1, where® denotes the second derivative.

THEOREM 3. Let {(X,, S,),n > 0} be a strong nonlattice Markov random
walk satisfying C1-C5and C7. Let {(X%, SY),n > 0} be the Markov random
walk induced by (2.13). Suppose there exists ¢ > 0 such that inf, P,{& <
—¢|X1=x} > 0. Let b =¢m¥2 for some ¢ > 0, ¢c = ym¥?2 for some y < ¢,
and also that \/mA = § is a fixed positive constant. Then as m — oo, for j =0
orl,

P:J{t <m,S,(;l/ <c}
. r(Xe s a5) r(x;a1—;)
xex rxaj) r(Xe;a1-j)

(2.14) x exg—(—=1)7 A(b + p4)]17% (dx)

(c +k/3—=2(b+ py)
x ¢
(m +Kc/3)Y/2

+0(m_1/2).

—( 1)/ A(m + kc/3)1/2)
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REMARK 6. LetM,E“) =r(X,; a)expas, —nA(x)} andF, be thes-algebra
generated by(X;, S;),t <n}. Then for|a| <, {M,(,"‘), F,,n >0} is a martingale
under any initial distribution of Xg [cf. Ney and Nummelin (1987) and Fuh and
Lai (1998)]. Note that (-; «) in (2.14) reduces to 1 whe#y, is a simple random
walk. Hence,r(y; @)/r(x; @) can be regarded as the reflection of Markovian
dependence under uniform ergodicity condition with respect to a given norm.

3. Examples. Inthis section, we give examples of strongly nonlattice Markov
random walks satisfying conditions C1#Cand such that the underlying Markov
chain {X,,n > 0} is irreducible and aperiodic. Many time series and queuing
models X, are irreducible, aperiodic and-uniformly ergodic Markov chains,
as shown in Chapters 15 and 16 of Meyn and Tweedie (1993), and conditions
C2-C4 and C6 are moment conditions on the additive components attackigd to
that are satisfied in typical applications. However, renewal theorems are often
applied to the ladder random walk, as in Section 2. The techniques used by Meyn
and Tweedie (1993) to prove theuniform ergodicity of a rich class of time series
and queuing models can also be applied to show that their ladder random walks
indeed satisfy conditions C1-C7, as illustrated by the following examples.

3.1. Random coefficient models. Let {X,,,n > 1} be the Markov chain which
satisfies a first-order random coefficient autoregression model

(3-1) Xp=BuXn_1+é&n, Xo=0,

where (B,),>1 IS a sequence of i.i.d. random variables wi#g, = g and
Var(8,) = o2, whereo > 0 is known. (¢,),>1 IS a sequence of i.i.d. random
variables withEe¢, = 0 and Vare,) = 1. Further, we assume thg,),>1 and
(en)n>1 are independent, ani@,, s,)’ has common density functignwith respect
to Lebesgue measure is positive everywhere.

In the case of AR(1) model for which, is a constang, Lai and Siegmund
(1983) proposed a sequential estimation procedure for the unknown parame-
ter 8. Pergamenshchikov and Shiryaev (1993) generalized their results to the
model (3.1). They introduced the stopping time

3.2 T=T.=infln>1:3" —k >t
&2 { ;H(,z;(,g—c}

wherec > 0 is a fixed number, and considered a modification of the sequential
least-squares estimate

T T 2
—~ Xp—1Xp X
o0 (B ) /()
P L G Sil+o2XE

Their Theorems 1-3 showed thAt < oo with probability 1 for anyc > 0, and
br is asymptotically normal under some moment conditions.
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In this section we investigate the limiting behavior Bf under the stability
assumptiorg?+ o2 < 1. Meyn and Tweedie [(1993), Theorem 16.5.1] established
w(x) = |x|2-uniform ergodicity of the random coefficient model (3.1) by proving
that adrift condition is satisfied. By Lemma 15.2.9 of Meyn and Tweedie (1993),
it is also (x| 4+ 1)-uniform ergodic. Suppose the conditional distributiortpt=
X2/(1+402X?) givenXy, ..., X, is of the formFy,_, x, such that

/x /_Z /_Z{/_O; o' de,ﬁx+z(E)}q(ﬁ, 2)dBdzm(dx)| <1,

where r is the stationary distribution ofX,}. Since&; has probability den-

sity function with respect to Lebesgue measure, (2.4) can be removed. Let
Sp=2""_o&. Then{(X,, S,), n > 0} is strongly nonlattice, and by Theorem 6(ii)

of Fuh and Lai (1998), so is the ladder random walk with transition kePpeaie-

fined by

(3.4) limsup

|6]— o0

(3.5) Pi(x,Ax B)=P{X,, €A,S,, €B|Xo=x}.

Assume furthermore that

(3.6) SUPE{&1(1+ |B1l + |e1)} < oo and  p:= Ez&1 > 0.
X

We first note thatX;, has a positive density function with respect to Lebesgue
measureL and is thereforel-irreducible. Moreover, the ladder chain is clearly
aperiodic; see Section 5.4.3 of Meyn and Tweedie (1993)ul(e) = |x| + 1. To
show that the ladder chain is-uniformly ergodic, by Theorem 16.0.1 of Meyn
and Tweedie (1993), it suffices to show that there exist positive congtantnd
a petite set such that

(3.7) E.w(X7r) —wkx) < —Aw(x) +blc(x) forall x e R,

for T = t.. We first show that the drift condition (3.7) in fact holds for all stopping
timesT [with respect to the filtration generated b¥,, S,)] such that, for some
a >0,

(3.8) E.T <a(lx|+1 forall x e R.
We then show that, satisfies (3.8) and therefore (3.7) indeed holdsffes 7., .
Let B > 0, and denote; = &; 1<}, & = &1 |>p). Note that

(3.9) E|X7t|=E|Br---PrXo+ Br—1---Prer+---+ Prer—1+ €|

T
<|Bllxl+@A—1BDTIB+ > lef*|  for Xo=x.
i=1

Since thes/™ are i.i.d. random variables, Wald’s equation yields

T
2 e

i=1

(3.10) E, — (ExT)Ele}*| <a (x| + DEe}"],
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by (3.8). SinceE|e1]| < oo from (3.6), we can choosB sufficiently large so that
aEle7*| + |B] < 1. In view of (3.9) and (3.10), we can then choose: Q. <
1—|B] —aElef*], b > (1 — BB + aEle7*| and C = {x:|x| < K} with
K sufficiently large such that (3.7) holds. Note tlaais a petite set; see Section 5.2
of Meyn and Tweedie (1993).

To show thatr, satisfies (3.8), we use Wald's equation for Markov random
walks [see Lemma 1(i) in Section 4]: For any stopping timesith E,T < oo and
E,w(X7) < 00,

(3.11) E,St=upE,T + E,{A(X71) — A(X0)},

where sup|A(x)|/w(x) < oo, and A is defined in (4.1). LeEl.(B) = &1l <B),

SE =B 1P and o(B) = inf{n:S\® > 0}. Sinceu (= Ex&1 =
ExX2/(1 + 02X?)) > 0, we can choose large enough such that® (=
Ensl(B)) > 0. Note thatS,(lB) < S, andt(B) > t;.. Hence it suffices to show that
7(B) satisfies (3.8). By the monotone convergence theorem, we need only show
that (3.8) holds withl" = 7 (B) A m for everym > 1. SinceS;g)am < B, (3.11)
yields

B> puBET — ExJAXT)| — |AM)|
(3.12)
> uBET — cE | X7| — c(|x| +2),
since|A(x)| < cw(x) =c(]x| + 1) for somec > 0 and allx. By (3.9) and (3.10),
Ex|Xr| <|Bllx|+@1—18)"'B
+ (ExT)E(|51|]l{\sl\>B})-

Choosing B large enough so thatE|e1|Le, -5 < n®/2, we obtain from
(3.12) and (3.13) that

(3.13)

B+c(1—|B) " B +2c+clx|(1+8) = n'PE,T/2,

proving (3.8) forT = 7(B) Am. Note that the ladder chain also satisfies the mixing
condition C1 by Theorem 1 of Alsmeyer (2000).

From (3.9) and (3.10) withT = 7, it follows that sup{E,w(X.,)/
w(x)} < co. Hence C2 holds for the ladder chain. To prove the moment condi-
tion C6 hold for the kernel (3.5), we assume the additional moment conditions

(3.14) SUPE, expX0(&1+ B1+€1)} < 00 foro € G.

First note that E, expl0S;, Jw(Xy,) < (E.explfpS., WYP{E,wi (X, )}V4,
wherep~! + ¢=1 = 1. Lemma 14 in Section 6 implies that exppS,, } < oo
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for x € X. From (3.9), there exists a constaptdepending only og such that

Ex|Xc, |7 < Cq{|x|q + (11— BT HEx max|gi|‘1}
I<T4

< cq{IXIq +(L— IBITHE, Z|5i|q}

i=1
= co{1x17 + A~ |BIT Y Ele1l? Exty ).

It follows that sup E,(expfS:, Jw(X:,))/w(x) < oo. By using the same
argument and applying Wald’s equation for Markov chain in Lemma 1, it follows
that the moment condition C3 also holds for the ladder chain. Sfgee 0 and
sup, Ex explfS, }/w(x) < oo, C4 also holds for the kerneP, if the initial
distribution v satisfies/*_ [x|dv(x) < co. Hence C1-C6 are satisfied by the
ladder random walk with transition kern®l. when the underlying chain is the
random coefficient model (3.1) arég,} satisfies (3.4), (3.6) and (3.14).

Under the normality assumption @fi, ex) with knowneo 2, the log-likelihood
ratio statisticz,, for testingHy: 8 < uo againstHi : 8 > uo is given by

(3.15) Zy =3 ((X; — p1Xi—0?— (X; — poXi—1)?),
i=1

whereu1 is so chosem; > . Define the stopping tim&, =inf{n > 1:Z, > A}.
Givenm > 0, we consider the test dfy: 8 < uo againstH; : 8 > o defined by
the following: stop sampling at miff;,, m); rejectHyp if T, < m, and otherwise do
not rejectHp.

Under the stability assumptiof? + o2 < 1, and considet, = (X,_1, X,)
as the underlying Markov chain. Suppose the conditional distribution
of & = (X, — B1Xn-1)% — (X, — PoX,_1)? given Yo,...,Y, is of the form
Fy, , v, such that

lim su / /OO /w{/we”sdn : (g)}
\9\_>0p XxX J—o0J—00 lJ—00 y-Bytz

(3.16)
x q(B.2) dB dz m(dy)‘ <1,

wherery is the stationary distribution dft,,}. Let S, = "% &; then{(Y,, S,),

n > 0} is strongly nonlattice. It is easy to see that there exists 0 such
that inf, Pr,{§1 < —¢|X1 = x} > 0. The rest of the argument is the same as
(3.4)—(3.14) and is omitted.

3.2. Productsof randommatrices. Inthis section, we apply the renewal theory
in Section 2 to generalize some results of Kesten (1973) on products of random
matrices in three directions. First, while Kesten considered products of i.i.d.
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matricesM,,, we work with the more general setting in whi¢t¥,,, M,,), n > 0}

are products of Markov random matrices. Second, we provide uniform renewal
theory, with polynomial and exponential rate of convergence, respectively. This
extension enables us to apply corrected diffusion approximation for the first
passage probabilities. Third, while Kesten assumed the entrigg td be positive

with probability 1, we can dispense with this assumption. Moreover, our proof
is considerably simpler and provides a more transparent description of the basic
constants that appear in his results.

We shall considek x k nonsingular matrices/, with real entries, and define
the norm by|| M || = sup,—1 [Mx|, where]| - | is a norm inR¥. Following Bougerol
(1988), definex (M) = max(log|| M|, log|M~1|). Let {(X,, M,),n > O} be
a Markov chain satisfying the following assumptions:

(A1) M, is ak x k nonsingular matrix with real entries such that

SUpPE{expax (M1))|Xo=x} < 00 for somea > 0.
X

(A2) {X,,n >0} is aw-uniformly ergodic Markov chain and satisfies C7.
(A3) {(X,, M,),n > 0}isquasi-irreducible angh # y», wherey; > yo > --- >y
denotes its Lyapunov exponents.

For the definition of “quasi-irreducilify,” see Bougerol [(1988), page 199].
For the definitim and basic properties of Lyapunov exponents, see Bougerol
and Lacroix [(1985), Sections lll.5nd 111.6) and Bougerol [(1988), pages
197 and 198]. Leb be thek x k identity matrix and define the product

(3.17) M, =M, M.

Let u be unit column vectors iR*. Sincell, is nonsingular]T,u # 0 and
n
(3.18)  log|M,ul=) &  whereg =log(IMul/|MT;—1ul).
t=1

Let Yo = (Xo,u),..., Y, = (X,, T,u/|IT,ul|). Define & as (3.18), and let
Sp =>_1_1&. Then it follows from (3.17) that(Y,, S,), n > 0} is a Markov ran-
dom walk. Under (A1)-(A3), Bougerol (1988) has shown thahas an invariant
measure and is uniform ergodic with Holder continuous norm [see Definitions
3 and 4 of Bougerol (1988)]. Moreover, in view of (Al), conditions C3 and C4 are
satisfied for every- > 1. Furthermore, condition C6 holds. Assumifgto be
strongly nonlattice and conditional strgly nonlattice, we canherefore apply
the renewal theorems in Section 2 to the Markov random Wk, S,,), n > 0},
thereby both generalizing Kesten’s (1973) renewal theory for products of i.i.d.
matrices with positive entries and providing convergence rates in the renewal the-
orems. The mean value in these theorems is equal 1@ of upper Lyapunov
exponents.
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Let 8 denote the sphere consisting of unit column vectorRfn For u € §,
define the stopping time

(3.19) N(b)=inf{n > 1:|u|> e’} =inf{n>1:S, > b}, inf ¢ = oo.

Supposey1 > 0. Since sup. ,cs E(|1]"|Xo = x) < oo in view of (Al),
Theorem 2 in Section 2 can be applied to show that (2.9) and (2.10) haid(tor
asb — oo. This generalizes Theorem 2 of Kesten (1973) that considers the case
of i.i.d. M,, with positive entries.
We next consider the casg < 0 and assume in addition that, for some

0 < a* < a [wherea is given in (Al)],

; a* _ a*/2
(A4) xe?ICrTEGJE{|M1u| |Xo=x} >k
For i.i.d. matricesM,, = (M,,(h,i))1<n.i <k With positive entries, Kesten’s (1973)
Theorem 3 restricts: to the subset, of § consisting only of vectors with
nonnegative entries and assumes, among other conditions, that

k a*
min (Z My(h, i)) } > k412
h=1

(3.20) E

1<i<k

which implies (A4) with 8 replaced bys, [see the inquality preceding (2.66)

in Kesten (1973)]. Under assumptions (Al) and (A2), if the assumption of quasi-
irreducibility in (A3) is strengthened into “strong irreducibility” [see Section 5 of
Bougerol (1988) for its definition and properties], then it can be shown that tilting
for the operatoP,, is defined by

(Po f)(x,u) = E{e"5 f (Y1) |Yo = (x, )}

on the spacé. («) of functions onX x 8 with the Holder continuous norm whose
spectrum is taken over € X [if the induced Markov chaif(Y,, S,),n > 0} is
irreducible]. By making use of (Al)-(A4) and Proposition 1 in the Appendix,
(Py f)(x,u) is well defined. LetA (o) andr((x, u); o) be the largest eigenvalue
and associated eigenfunction defined as (2.11)—(2.13).

Therefore, the usual tilting argument shows that Theorem 3 of Kesten (1973)

holds. In particular, taking® = ¢’ yields
(3.21) BPx{r’I\;alXH'[nul > B} — Kr((x,u), o) asB — oo,
whereK = (e PA@=D /y1) [ pe 1/r((x, u); o) ds(x, u).
4. Proof of Theorem 1. The ingredients we need to make thmiform
Markov renewal theorem over the famifyX?, S¢),n > 0:«a € I'} are provided

by Lemmas 3 and 4. The proof of Lemma 3 depends on a uniform upper bound
for the expectation of the overshoot, which we state and prove in Lemma 2.
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To prove Lemma 2, we need Wald's equation for Markov chains, and moment
convergence of the stopping timeb) defined in (1.2) for alb > 0. These are
included in Lemma 1. A version of Wald’s equations for uniformly ergodic Markov
random walks can be found in Fuh and Lai (1998), where they applied the spectral
theory of positive operators related to Markov semigroups. Fuh and Zhang (2000)
first derived Poisson equations for Markov random walks, and then applied them
to establish Wald's equations. Here in C1 and C2, we applied results in Harris
recurrent Markov random walks to obtain (first-order) Wald’s equation via Poisson
equation.

LEMMA 1. Assume Cl1l and C2 and that 0 < u := E;&1 < oo. Let v be
aninitial distribution of Xo, and let 7 be a stopping time suchthat £, 7T < oc:

(i) If sup, Ex(|€1]) < oo, then
E,St=nE,T + E,{A(X7) — A(X0)}.

The constant E,{A(X7) — A(Xp)} is zero when v = 7. Denote gf (¢7) asthe
positive (negative) part of &1.

(i) Ifsup. E,(¢;) <oo,then E,7(b) < 0.

(iii) Letp>1.1fsup Ex(€]) < ooandsup, E,(&;)P < oo, then E, St < oo.

PrROOF (i) The minorization condition C1 ensures tHaX,, S,),n > 0} is
a split chain [cf. Lemma 3.1 of Ney and Nummelin (1987)]. Under the irreducible
assumption, it is also a Harris recurrent Markov chain. Proposition 17.4.1 and
Theorem 17.4.2 of Meyn and Tweedie (1993) give that the following Poisson
equation

(4.1) ExA(Xy) — Ax) =E 81— Exy

has a solutionA: X — R for almost everyx € X. Under the assumption of
sup, Ex(|&1]) < oo, E,(A(X7) — A(X0)) is finite. Therefore, by Corollary 1 and
Theorem 4 of Fuh and Zhang (2000), we have the proof of (i).

To prove (ii), we choos® > 0 such thay' := E; (£1(B)) > 0, where&;(B) =
&I1(& < B).LetS, =&1(B)+---+&,(B) and letN, =inf{n > 1:S) > b}. Then
Sy < Sy and Ny > ©(b). Form > 0, apply () toN, A m; we haveE, Sy, ., =
wE,(N, A m) + O(1) asm — oo. By the monotone convergence theorem,
lim;,— 0 Ev(Np Am) = E, Np. Moreover, by the definition oV, Syyam <b+ B
for all m > 1. Henceb + B > W'E,N, — a for somea > 0, and therefore
oo > E,Ny > E,t(b).

Finally, we prove (iii). Since G S; ;) < b+ &), it follows from Minkowski’s
inequality that

b \1/p 7(b) i 1/p
(EUSI(b)) <b+E, Z(gt ) .
=1
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Since we have already shown thAtr(b) < co and sup Ex(sf)l’ < o0 by
assumption, it follows from (i) that

T(b)
EU[Z@,*)"} < {supEx@f)"}Eur(b) + o).
t=1 *

proving the finiteness ok, S, . O

LEMMA 2. Assume C1-C4with r =2in C3. Suppose 1 > 0. For b > 0, let
R(b) = Sf(b) —b. Then,

E +32
(4.2) SUpPE; R(b) < ﬁ
b>0 Ez§1
When the initial distribution of Xg is v, (4.2) becomesthat there exists a constant
K > Osuchthat sup,.o EvR(b) < Ex (§])%/Ex£1 + K.

REMARK 7. In the case of simple random walks, the upper bound (4.2) was
given in Lorden (1970) by pathwise integration.

PROOF OFLEMMA 2. For any values ofy, &, ..., the overshoot function
{R(b); b > 0} is piecewise linear, with all pieces having slopé&. We consider
first the case where thigs are honnegative. It is easy to see that,dor 0,

¢ _([S@ St _17(0) 2 1 2
(4.3) /O R(b)db_/o R(b)db—/c R(b)db_ét;ét —1R()?.

Since forc > 0, E;t(c) is finite by Lemma 1(ii), the sum in (4.3) has finite
expectation by C3 and Wald’s equation for Markov random walks, and since the
other terms are nonnegative, they also have finite expectations. &ihre- 0 for
all b, we have by Fubini’'s theorem and Wald’s equation for Markov random walks
in Lemma 1(i)

C
|| ExR®)db=3Ere2Extc) ~ 3Ex R

WhereEﬂgl2 is finite via condition C3. Note thaf {A (X)) — A(Xp)} =0 in
the Wald’s equation.
By Jensen’s inequality and Wald’s equation for Markov random walks,

(4.4) /0 “E.R(b)db < L ELE(c + ExR(0)) — 3(ExR(0))%.

Itis easytoseethatforal,u >0,E,t(b+u) < Ext(b)+ E,1(u), since the
conditional expectation af (b 4+ u) — t(b) givent (b) =n, Xo, X1,&1,..., Xu, &
equalsE,t(u —r), wherer =& +---+&, —b > 0andt(u —r) is zero ifr > u,
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sothatE,t(u —r) < E,t(u). It follows from Wald’s equation for Markov random
walks thatE; R(b) is a subadditive function df and therefore

%C(EnR(C) + gc)

(4.5) <ic

= OfAQE/ZC(EnR(b) + EzR(c — b))

1/2¢ ¢
5/ (EnR(b)—i-EnR(c—b))db:/ E.R(b)db.
0 0
Combining (4.4) and (4.5) and rewriting, we obtain

(4.6) (ExR(©))* + (¢ — Ex2/) Ex R(c) — cEx£2 /1t < 0.

The left-hand side of (4.6) is a quadraticify R (c) which is honpositive only
between its roots;-c and E,£2/u. Therefore,E, R(c) < Ex£2/u and since is
arbitrary, the proof is complete for the nonnegative case.

The case wherégy, &, ... may take negative values reduces to the nonnegative
case through consideration of the associated sequence of positive ladder variables,
which forms the ladder Markov random walKéX. , S; ),n > 0} defined in
the paragraph before Theorem 2. We first note that, by assumption, the ladder
Markov chain is uniformly ergodic with respect to a given norm. Next, we
need to verify that conditions C1-C4 still hold for the associated ladder Markov
chains{(X+,, S¢,),n > 0}. It is known [cf. Theorem 1 of Alsmeyer (2000)] that
if {(X,,S,),n > 0} is Harris recurrent, then the associated ladder Markov chains
{(X:,, S7,), n > 0} are also Harris recurrent. Under the irreducible assumption, the
minorization condition C1 is equivalent to Harris recurrent. Therefore the ladder
Markov chain{(X,, S;,), n > O} satisfies C1. The moment conditions C2—C4 hold
by Lemma 1(iii).

Since R(b) is pointwise the same faf, &2, ... and the sequence of ladder
variables, and & S;, < 5;_;, the result for the nonnegative case implies

Ex, 82, _ Ex (627

SUPE, R(b) <

b>0 Err+ ST+ N En+ ST+
B @D+ + ED B3
- E7T+[$1+"'+$‘L’+] B Eﬂfl

by Wald’s equation for Markov random walks.

When the initial distribution of Xg is v. Under the assumption of
sup, Ex|&1/%> < oo, and > 0. It is known that ash — oo, Ex(Syp) — b) =
EMS%/ZE,HSr+ + o(1) uniformly in x € X [cf. (3.20) of Fuh and Lai (2001)].
Therefore, the difference between gupE, R (b) and sup.q E; R(b) is a con-
stantk > 0, and the proof is complete [ -
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Forz € C anda € T', define the operatorB‘g‘, P,v¢ andQ on N as (2.11).
By (A.1)—(A.3) and Proposition 1 in the Appendix, we can define eigenval(e
of the operatoP?.

Let “R” and “4” denote “real part of” and “imaginary part of,” respectively.
DenoteB = [s, s + &) and let

o0
(4.7) U*D(B):=) Pls<S!<s+h X*eA)
n=0

be the renewal measure for eack I".

LEMMA 3. Assume the conditions of Theorem 1 hold. For k > 1, let u} :=
E (9% > 0and n¥ := sup, Ex(§¥)* > 0. Then, for each positive integer , there
exist prs, mis > 0and uf, n; < oo suchthat
(4.8) s < inf uyf <supuy <pp and . < inf nf <supnf <n;.

ael ael ael acl
Also, thereexist r1 > 0and é > O suchthat, for all z with R(z) <riand|L(z)| <4,
then for each positive integer k, there exists v} < oo suchthat, for all « € T',

dk
———k“
‘ )

<vy.

Finally, thereexists C suchthat, for all « e I'yands >0and h < 2in (4.7),
U@ By <cC.

PrOOF To prove (4.8), we only consider the first part, since the second part
can be proved in a similar way. By the assumption of uniformly strong nonlattice
in the form (2.3), we have for afl > 0

2(0) == inf |E,e'%1 — 1] > g(0) > 0,
ael’

so that using the fact that’ — 1| < || for all realt, we obtain for alle € " and
0 > 0 that

0<32(0) < / 1€’ — 1| P%(x, dy x ds)m%(dx)
x,y€X J[0,00)

< / / OsP%(x,dy x ds)m*(dx) =0pug,
x,yeX J[0,00)

where P*(-, - x -) denotes the transition probability ¢tX3, S¥),n > 0}, and
7*(-) denotes the invariant probability ¢fX?, SY),» > 0}. This implies that

infyea ng = SuR.og(0)/0 > 0. Hence, we get the existencewof.. The existence
of ui, for positive integer now follows from Jensen'’s inequality.
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For the upper bound in (4.8), note that sirée- t*/k! for all r > 0, we have
by K6 that

e =/ f sKPY(x, dy x ds)m%(dx)
x,yeX J[0,00)

k!
< —k/ / e P*(x,dy x ds)m“(dx)
r1 x,yeX J[0,00)

- k!C
=k
r
foralle eT.
To prove the second assertion, note that by Proposition 1 and the Cauchy—
Schwarz inequality, folR (z) < r1/2 and|4(z)| < §, there exists > 0 such that,
foralla €T,

dk
F

T @)= Er (@D )]+ o < E7 (D) /%) 4 c

< [EX(EHP)EX ) 4 0 < 13,0 + ¢ = v

The final assertion can be proved by using Lemma 1(i), Lemma 2 and (4.8). Let
A = X for simplicity; then for alle € I, s > 0 andh < 2, there exist€"; < oo
such that

1
%
U**(B) < EO‘S"‘[ VSt sm — EVSTp]+Ca
Sl

[h+ ESR(s +h) — ESR(s)] + C1

By
1 [ o
< 24sup sup E R(s)|+C1
M1 L ael’ 0<s<oo
17 E. (£§)? }
< 2+ sup +K|[+C1
M1k L ael Engf
1 r *
< 2+ M2+K}+C1::C. 0
M1 L M1«

LEMMA 4. Assumethe conditionsof Theorem 1 hold. Then thereexist r1 > 0,
8 > 0and ¢ > 0 such that, for all z satisfying 0 < R(z) <rp and |[L(z)| <6, and
foralla e I', A%(z) # 1, and for all z satisfying R(z) =r1 and |L(z)| < §, and for
all a eT,

(4.9) () — 1| > e.
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PROOF Letuf :=E; (gf)k. By integration by parts and Proposition 1,
Z
M@ =14 ufz+ / tk“@(z —t)dt
0

at least for all; such thatR(z) < r1 and|L(z)| < §, where® denotes the second
derivative. Therefore, for alf in the setS .= {z: R(z) <r1/2,|4(@)| <6, |z]| <
n1x/v3}, whereus,, vy are defined in Lemma 3, and alle ", we have

Z
22 () — 1] > %z — ‘/o 55Dy dr

=
5 z|.

Takee > 0 such that the squar® := {R(z) < ¢, |L(2)| < ¢} is contained in the
sets; for exampleg =r1/2 A 8 A 1./ (+/2v3) will do. Then

*
v
2 2
> p1lz] — > |z|© >

M 1x
2
By the assumption thdtSy :« € I'} is uniformly strong nonlattice and Proposi-
tion 1, we have, for allf| < 8, [A%(i0)| = |E%e!%1| + O(]6)); this implies that
A% (i0) — 1] > g(e) > 0, forall|§| > ¢ and alle € I". Taker := g(e)(2v]) Ae > 0.

Then, forallO<u <r <ry1,8 > |0| >canda €T,

(4.10) A*(z) =1 =

|Z] forall z € S,.

1A% +i6) — 1
> |)»O’(i9) -1 - |ka(u +i0) — ka(i9)|
u+io
> ge) — f 2@ () dz| > ge) — uvt
0
8(e) . _ 8

2

Furthermore, (4.10) implies thgt*(u + i) — 1] is positive for all O< u <r,
0] <e anda € I', and [A%(r 4+ i0) — 1| is at leastuir/2 for all |§] < e. Thus,
takingé := g(e)/2 A ujr/2 > 0, the lemma is proved.O

> g(e) — 207 Vg

Since the rate of convergence in the uniform Markov renewal theorem in
Theorem 1 can be proved for eaghe I', the uniformity ina € T appealing to
Lemmas 3 and 4 when necessary, we will present the proofs by omittiiog
simplicity.

Let B = [s,s + &), and recall that/ 4 (B) defined in (4.7) is the renewal
measure. For simplicity, we delateand denote

o0
(4.11) UNB):=) Pfis<Sy<s+h X,ecA)
n=0
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as the renewal measure{@i,, S,), n > 0}.

To prove Theorem 1, we evaluate the Fourier transform of the renewal
measurd/4. As in Carlsson (1983) and Carlsson and Wainger (1982), we perform
Fourier inversion of the Fourier transform as a generalized function. We refer the
reader to Gelfand and Shilov (1964), Schwartz (1966) and Strichartz (1994) for
the basic theory; in particular, the following notation and concepts will be used.

A test function ¢ (s) is an infinitely differentiable function that vanishes outside
a bounded region iR. Let £ denote the linear space of all test functions, and
D’ the space of linear functionals ab. A sequence, € D is said to converge
to zero if ¢, and all its derivatives converge to 0 uniformly and vanish outside
a common bounded subset Bf A generalized function is a continuous linear
functional onD. A function f defined orR for which [ f(s)¢(s) ds is absolutely
convergent for anyy € O is calledlocally integrable. A C* function f on
R is of class7 if f and all its partial derivatives areapidly decreasing in
the sense that they are of ordér|s|~*) as|s| — oo, for everya > 0. Linear
functionals ong~ are calledtempered distributions, and7’ denotes the set of all
tempered distributions. The Fourier transfognof a functiong € D is defined
by 9(0) = [¢(s)expifs)ds for 6 € R. The Fourier transform of a generalized
function f is the linear functionalf defined on the spac) : v is the Fourier
transform of some € D} by (27)(f, ¢) = (f,p) forallp € D.

As in renewal theory for simple random walks, the proof of Theorem 1 requires
detailed analysis of the characteristic function for the additive compdhefithe
analysis can be decomposed in two parts:|fpmear zero and fojp| away from
zero. The rate of convergence for the renewal measure to the Lebesgue measure
scaled by the mean is given by the analysisgdfnear zero. The contribution of
|6| away from zero is negligible via the property of local integrability. That is, we
need to show that fof € R, there exists @ > 0 with [0] > §, 300 o E, (e%5)
and itskth derivatives with respect # are locally integrable fok =1, 2, .... By
usingkth integration by parts, we thus need to show the following lemma.

LEMMA 5. Suppose{(X,, S,),n > 0} isastrongly nonlattice Markov random
walk satisfying (2.4), C1-C4and C6. Then for every ¢ > 0, for any r > 2 and
k=0,1,...,r,

o
i0S, ¢k
: . .
(4.12) SUP Y " |Ex ("7 S8)] < 00
|9|>cn:O

PROOF Fork=0,...,r and for anyx € X, we have
|Ex(SKe!®Sn)| < S |Ey (&), -+ £5,€7057)

where the summation extends over. .., jx € {1, ..., n}. There are:* terms. We
shall give upper bounds for each term. E@g e j,? €{1,...,n}, and a natural

’
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numberm to be determined later. Let
J={je{l....n}:lj—jpl=3m, p=1,. k}
Divide J into blocksA1, B1, ..., A;, B; as follows: defingiy, ..., j; by
a=infJ and j,pi=inf{j>j,+Tm:jeJ}
and let/ be the smallest integer for which the inf is undefined. Write
Ap =TTl %01 = jpl <m), p=1.. .1,
By =[T{e "™ jy4m+1<j<jpr—m—1}, p=1...,1-1,
B = H{eie"fl/sz j> g +m+1y,

R= (g0 &0) [Tt ) ¢ 7).

Then
!
i0S, __
PRI _E[APBPR.
We have
I !
ExR[[A,By — ExR[ [ BpE(A,IE; 1 j # jp)
1 1
l q-1
=< Z EiR 1_[ Apo(Aq - E(Ap|$j 0J #]q))
q=1 1
!
(4.13) x [ BpE(AplEj < j # jp)
q+1

q—1
ExR [ ApBp(Ag— E(ALIE; 1 j # Jo))
1

l
=
q=1

l
x [ BpE(Apl&j :0<1j — jpl §3m)‘.
q+1

The first summation term in (4.13) vanishes since

q—1 l
R[[A,B, and []BpE(AplEj:0<|j—jpl <3m)
1 q+1

are both measurable with respect to shéield generated by; : j # j,.
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Recall that the functions
E(Apl;j:0<|j— jpl <3m) forp=1,...,1
are weakly dependentsingg,1 — j, > 7m, p=1,...,1— 1. Using condition C1
we obtain

l
ExR[[ByE(Apl&j:0<1j— jpl §3m)’
1

< (2nPYE,

I
[TE@AIE:0<1j—jpl §3m)’
1

l
< @) []EEAplE;:0< 1) — jpl < 3m)]
1

+ @nPY'1 - 4d e ™,

With the strong nonlattice condition (&, the conditional strong nonlattice
condition (2.4) and Lemma 2 in Statuleius (1969), we fid an upper bound for

E(|E(A,lE;:0<|j— jpl <3m)|.

We have for|0| > §, the relationE,|E(A,l&;:j # jg)l < e~?, and hence
by (2.4), foralld e R, |6] < 4,

E(|E(Apl&;: j # Jg)| < exp(=8161%/n).
Therefore, for alb € R,
EL|E(Aplg;:0<1j— jpl < 3m)|
< Ex|E(AplEj 1 j #Jg)|
< max(exp(—31612/n), e %).

If we chooseK appropriately and lekz be the integral part oK logn, then the
assertion of the lemma follows from

exp(—381012/n)"/™ < exp(—810]?/(K logn))
< exp(—8 n®/?)

for |9 > cn® and some > 0. O

PROOF OFTHEOREM 1. By using the same argument as that in Theorem 2.4
of Fuh and Lai (2001), we have (2.5) and (2.6). The details are omitted.

To prove (2.7), leg (s) € C* and have supportife = {s : |s| <1}. Letg.(s) =
eg(s/e), let I4 be the indicator function of the set and letQ, = {s:|s| < ¢}
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for ¢ > 0. Let L be the measure with density /. As in Carlsson and Wainger
(1982), we have that

gex I, , * (U(A) —L)(s) —
(4.14) <(UW —L)(Q+5)
<gexlg,, * (U™ —L)(s)+Ke,

where K can be chosen uniformly far bounded. Letting: = s~ with & large
enough, we have (2.7) if we can show that there exist such that

(4.15) |ge % Ig, * (U™ — L)(s)| < Ke™"™.

To prove (4.15), we consider the Fourier transform

Y (0) =Y Ey{e">h1(X,)}
(4.16) "=0

=Y A'(O)vQoh1+ Y P — Qp)h1,
n=0 n=0

wherePy, Qg are defined in (2.11) with=i6, andh, := I 4. Note that the second
equation in (4.16) follows from Proposition 1(i).
As in Carlsson and Wainger (1982), there exisés=a0 such that, fotd| < §,

4.17) yO) = ( + 8(9))1}*th1 3 P - Qo

1—2(0) —=

where §(-) denotes the Dirac delta function. By using Fourier inversion of the
generalized function, we have

ge # I, x U (s)

_ 1 —ifs A
=5 [ e @ o @) @) de

o 05 8:(0) 10, (0)
(4.18) g( 0+ /0<9<6e ) veQuhnd?
1 —ZQS’\ 71 _
(4.19) 5 /0 R 0L <9>’§U*P 2(1 — Qg)h1 d0
(4.20) + 1 / ~i955.(0)Iq, (0) ZE (!5 hy(X1)}d0,
21 Jig|> 5 =0

whereg, denotesthe Fouriertransformg}fandfgc denotes the Fourier transform
of Iq, .
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Equation (4.18) can be analyzed by making use of the Taylor expansidgf of
as that in Proposition 1, which says that for any 2 as|6| — O,

<I9| M=

y)
(IGI M= )(r) (IQI)
)

(k)
=0 fork<r—1,

(k)

1
<|9|2(/\(9) 1+iop)) =o0@Q) fork <r—2,

1 ®)
<|0|2(A(0) 1+i9,u)) =o(|0)F? fork=r—1,r,

where(® denotes théth derivative. Alsov,Qgh1 and itskth derivatives converge
to 0 as|f| — O.

Next, we want to verify that the rate of convergence in (4.18p{g~"") for
somer > 0 ass — oo. Note that

(4.21) f R{e™ 8,(0) o, (0)1.Qehai /1)) d8 = 52 4 0,
0<|0]<8 2un

ass — oo. Consider

1 i0s A 1 __Ji_

Z/o<e<ae (e)lgc(e)v*thl(l—xae) ,w)de

_ 1 —ifs A
27'[ !@0(/ 6<9<8 (G)IQC(Q)U*QQ}II
1 i

4 / 195, (0) 1o, (0)v,Qphy
£<B<$

1 i
x (7 - —) de).
1-X@G60) uo

Let 0 < u1 € ©, where ® is defined in K6. For anyu € (0,u1), and
z=u +i6 € C, consider four linesLi(¢e) = {z: R(z) = 0,& < |4(2)| < 8},
= {z:R(() € [0,u],4(z) = 8}, Lz = {z:R() € [0,u], L(z) = =6},
L4s={z:R()=u,|d(z)| <é}, and one semicircld,s(¢), from ¢ to —¢, oriented
clockwise. Define

—z5 A 1 i
(4.23) hz) =e (Z)IQC(Z)V*th1<m - E)'
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Sincer is analytic in the regions from1(¢) to Ls(¢), by Cauchy’s theorem for
contour integral, we have

/Ll(s)h(z)dz+/L2h(z)dz+/L3h(z)dz

(4.24)
h(z)d h(z)dz=0.
+/L4 (2) z+/L5(£) (2)dz

The continuity yields that the residual df(z) at 0 is 0, whence
lim h(z)dz=0.
e—>0JLs(e)
Combining with the Riemann-Lebesgue lemma, we have

lim h(z)dz
e=>0JL1(e)

) . n
- / e~ WO (u 4 i0) T, (4 + 8) v, Quight
(4.25) -

1
x( — — ! - )d@
1—-Au+i0) pu(u+ibh)
=0(") for somer > 0 ass — oo.

To analyze (4.20), we make use of Lemma 5 which implies ¥ty £, {e/?5}
and its partial derivatives up to orderare bounded for any > 2, and a fortiori
locally integrable, in the regiof : |0| > &}. Moreover,l}zc and its derivatives are
bounded by a constant timeﬁ;f’:lwrl as|f| — oo. ThereforeN integrations
by parts as in page 359 of Carlsson and Wainger (1982) can be used to show
that (4.20)= O( Ioge|"’/siv) for any N. Sincen (@) and its partial derivatives of
orderr are bounded for & |0] < §* for anyr > 2, N integrations by parts can
also be used to show that (4.13)0(s1‘N) for any N. Therefore, by making use
(4.18)—(4.20), (4.23) and (4.25), we have (4.15) and hence get the pfdof.

5. Proof of Theorem 2. In this section, we assume the Markov random walk
{(Xn, Sp),n > 0} defined as (1.1) is uniformly ergodic with respect to a given
norm, and the stationary mean= 0. Under the minorization condition C1,
making use of the results in Hipp (1985), Malinovskii (1987) and Jensen (1989),
we have the following asymptotic expansions of the density for the distribution in
Markov random walks.

LEMMA 6. Assume C1-C5with » = 3 in C3. We assume, without loss of
generality, the asymptotic variance o2 = 1. Then

(51) Sy <sviT} =) + () Qj/(;) Fa+ |s|3)_1o<%>,
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where o(-) is uniformin s. Here ®(-) denotes the standard normal distribution,
¢ (-) denotes the standard normal density, and Q1(s) = «/6(1 — s2) + k,,, where
Kk = En513 +3)721 En";‘lz&_H +3X 72 En§15;2+1 + 62;’10’,2:1 Ex&18n+180+6+1
andx, =) ;24 E,&. Notethat k, =0if v =1.

Furthermore, if P;{S, <s./n} hasadensity p, ,(s</n), then

k 1
52) pralsva) i =p(s)(1+ st 39)) + @+ |s|3)—1o(ﬁ),

whereo(-) isuniformin s.

In the following, we shall assume C1-C5 and C7 hold. Lemma 7 is taken from
Theorem 5 of Fuh and Lai (1998); we include it here for completeness.

LEMMA 7. Letr > 1. Assume sup, E,(&;) 1 < oo, where &, denotes the
positive part of £1. Furthermore, assume there exists ¢ > 0 such that inf, P, {&1 <
—&|X1=x}>0.Then, EﬂSQ+ < oo and {Sz ) — b, b > O} isuniformly integrable
under the probability Py .

A Markov random walk is callediattice with spand > 0 if 4 is the maximal
number for which there exists a measurable funcfrarX — [0, o0), called the
shift function, such thaP {1 — y(x) +y(y) €{...,—-2d,—d,0,d, 2d, .. }| Xo =
x,X1=y}=1foralmost allx, y € X. If no suchd exists, it is callechonlattice.

Let W(r), 0 <t < oo, denote Brownian motion with driftu and put
w=1tw(b) =inf{r: W() > b}. Define the inverse Gaussian distribution
G(t; u,b) = PW{ty(b) <t} andHy (s) = (Ex, Sz,) "1 f§ Pr, (Sc, >t}dt.

LEMMA 8. Assume P isnonlattice. Suppose b — oo and m — oo so that, for
somefixed 0 < ¢ < oo, b=¢mY2. Thenfor all 0<1t,s < oo,

P lt(b) <mt, S;p) —b <s}—> G(#;0,¢)Hi(s).

PrROOF Note that
Pn{‘[(b) > mt, Sf(b) —b SS}
= Ex(Pr{St) — b < s|t(b) > mt, S, }; T(b) > mt).

Let 5 = b — b¥/4. Then by the central limit theorem for Markov random walks
[cf. Theorem 17.2.2 of Meyn and Tweedie (1993)], we have

Ex(Pr{Szpy — b < s|t(b) > mt, Sy }; t(b) > mt,b < S, < b)
<P {b<S, <b}—0.
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Moreover, itis also known that,, {t; < oo} =1and by Lemma 7k, S;, < oo,
and

Po{Scpy — b < s|t(b) > mt, S, <b)

i
=/ / Pr{Sc) — b < 5|X;y = x,T(b) > mt, Sy, € dv}
0 JX
X P {X, €dx|t(b) > mt, S, €dv}

5
=/0 / Pe{Sep—v) — (b—v) <5} Py{X,, € dx|T(b) > mt, S € dv).
X

Since Py {t(b) > mt, S,, < b} > 0 asb — oo, therefore forv uniformly in
{z(b) > mt, S, < b}, P{St(p—v) — (b —v) < s} > H,(s) asb — oo by the
Markov renewal theorem in Theorem 1. Hence, uniformlyritb) > mt, S, < B},
asb — oo,

Pr{Sepy — b <s|t(b) > mt, Sy} — Hy(s).

Under irreducible assumption and the minorization condition C1yfer2,
assumption C3 ensures that the Poisson equation (4.1) has a salutidrich
satisfies E, (A(X1))? < oo. Therefore, by the invariance principle for Harris
recurrent Markov chain [cf. Theorem 17.4.4 of Meyn and Tweedie (1993)], the
limiting marginal distribution ofr (b)/m is G(¢; 0, ¢). Hence,

P;T{‘L’(b) > mt, Sf(b) —b SS}
= En(Pe{Szpy — b < s|t(b) > mt, Sy }; T(b) > mt, Sy < b) + 0(1)
= H(s)Pr{t(b) > mt, Sy, <b}+0(1) - Hy(s)(1—G(;0,7)). O

LEMMA 9. Let0<¢ < oo, and R, = S;(b) — ¢m¥/?. Then for any ¢ > 0,
PRy > emY/2) = o(m=1/?).

PrROOF By Markov's inequality we have

Pe{Ry > em/?} = g—lm—l/Z/ Ry, d P

{Ry>em1/2}
which iso(m~1?) by Lemma 7. O
LEMMA 10. LetO<<¢ <o0, 0<s < oo, and mi =m(1— (logm)~2). Then
asm — oo,
(5.3) Primi<t<m, Sy < (@ — s)ml/z} = o(m_l/z),

(5-4) Pelmi <t <m, Sy = (¢ +5)mY?) = om™?).
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PROOF ByLemmay,
Pﬂ{ml <T=m, S, > +s)ml/2}
(5.5) =Pr{mi<t<m,Ry < %sml/z, Sm > (¢ —{—s)ml/z} +o(m~Y?

= sup Prr{Sm—n = %Sml/z} + 0(’"—1/2)-

mi<n<m

It is easy to see (5.5) is(m—1/2). By using a similar argument, we have that (5.3)
iso(m=12). O

PROOF OFTHEOREM 2. Since we will consider time delay in the proof, we
denoteSy = so for convenience. LeP" %) (A) = P,{A|So = so, S = s}. Set
so =mY?%5g ands = mY2¢y for someig, ¢o < ¢. Lets’ = 2b —s = mY2(2¢ — ¢p)
denotes reflected aboub. From (5.2) in Lemma 6 and the Markov renewal
theorem in Theorem 1, in whicli® has only one element, it follows as in
Lemmas 7-10 that, fon; = m(1 — (logm)~2) and some,, — 0,

(5.6) Pj_gm,so,s){‘r <m}— Pygm,so,S){f <m1,S; —b < ml/ng} — O(m—l/Z)
and
(5.7) Pj_gm,so,s’){t <m}— Pj_gm,so,s’){f <m1,8; —b< ml/ng} — O(m—l/Z)'

SetA,, = {t <m1, S; — b <m¥2¢,}, and letL™ (n, S,,) denote the likelihood
ratio of £y, .. ., &, under P relative toP™ "), For alln < m — no,

Pn,m—n(s - Sn)PTr,m(S/ — 50)
pn,m—n(s/ - Sn)prt,m(s - SO)’

wherep; ,, (s) is defined in (5.2). By (5.6) and Wald’s likelihood ratio identity for
Markov chains

(5.8) L™ (n, S,) =

(5.9) PO r <m)=EL L (7, 8); A} + om ).

Substitution of (5.8) into (5.9) and expansion with the aid of (5.2) gives the first-
order result,

P]gm,so,s){t < m} — eXH—Z({ — )MO)(é‘ - é‘O)]

This motivates the following reformulation of (5.9), which is justified by (5.7) and
the fact thatP™*** ) {t = m} = o(m=/2);

P50 (1 < m} — exd—2(Z — Ao)(& — &o)] + o(m~Y?)

(5.10) " o
= EUsos) L (7 8y — exd—2(¢ — 20)(§ — £0)]; Am)-
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The likelihood ratio of, ..., &, under P/ relative to P, {-|So = so} is
Prm—n(s"—Sn)/ pr.m (s’ — s0). Hence by (5.8) and Wald's likelihood ratio identity
once again, the right-hand side of (5.10) becomes

E, { Pr.m—t (s —S7)

(511) pn,m(s — 50)

(s =S
Pr.m (s T);Am‘50=so}.
pn,m(s/ — 50)

—expg—2(¢ — 20)(¢ — ¢o)]

The rest of the proof of (2.9) involves use of Lemma 6 to expand the integrand
in (5.11) and application of Lemma 8 to evaluate the resulting expectation. Let
R, = S; —m?¢. Some tedious algebra gives that the integrand in (5.11) equals

[(1—t/m)?p (0 — 1o)1?

¢ — o+ Ry /mY/? £ — %0~ Ry/m*?
X{¢< 1—1/m)i2 )‘ ( 1—t/m)2 >}

which can be expanded to give
—2(1—t/m)"Y2expg 3 (5o — r0)? — 3(¢ — )%/ —t/m)]
x [(¢ = ¢0) Rm/mY?(1 — t/m)] + o((1+ R2)/m)

(5.12)

uniformly on A,,. According to Lemma 8z/m and R,, are asymptotically
independent, converge in law, and by Lemma&,,is uniformly integrable. Also,
(5.12) is a bounded, continuous function ofm on A,,. Hence, (5.12) can be
substituted into (5.11) and Lemma 8 applied to evaluate the result. Prgtin@®
and performing the appropriate integrations yields (2.9).

Formally, (2.10) follows by substituting (2.9) into

(5.13)  P.{t <m, Sy <c} =f( ) PO T < my P (S, €ds).
—00,C

However, some care is required to justify this calculation, especially in the case
c=>b (y =¢), whens in (5.13) can be arbitrarily close tb. It is easy to see
that (2.9) holds uniformly on each compact subintervaleso, ¢); butif g — ¢,
(5.12) is not necessarily bounded, (5.6) may fail to hold, and indeed the proof
of (2.9) disintegrates.

To circumvent this difficulty, we need to apply the duality argument to a time-
reversed Markov chain. By condition C7, recall that(A) = [, p(x, y)M(dy)
for all A € A, wherep(x,-) =dP,/dM. Letting Q*Y(B) = P(&1 € B|Xo = x,
X1 =y), we can express the transition probability function (1.1) as

(5.14) P(x,Ax B)=/Ap(x,y)Qx’y(B)M(dy) :=/AF(x,y;B)M(dy),
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where F(x, y; B) = p(x, y)Q*Y(B). For ease of notation, we still denateas
the density of the invariant probability measure. We shall t#sw refer to the
time-reversed (or dual) chaiiiX,,, S,,), n > 0} with transition kernel:

(5.15) F(y,x: B)=F(x,y: B)m(x)/m(y).

Let t* = sugn:n < m,S, > b}, and let7 = inf(n:§, > b} denote the
first passage time of the time-reversed Markov random v#liat the linear
boundaryb. Observe thaP{" % (z < m} = PO (rx > 0y = P47 < m);
so to approximate”ém’o’o{r <m} for ¢ —e < ¢o < ¢, it suffices to consider
POz Yy for ¢ =0 and¢ — e < Ag < ¢ (recall thathg = m~2s). It is
easy to see from (5.10)—(5.12) that uniformly for- ¢ <19 <so—m Y2 < ¢,
pimsoOs it — exp(—2¢ (¢ — Ao)} +o(m~Y2), which suffices to justify formal
substitution of (2.9) into (5.13) far in a neighborhood af and complete the proof
wheny =¢. O

6. Proof of Theorem 3. The way to prove Theorem 3 is a suitable application
of Theorem 1 via the following lemmas.

LEMMA 11. Assume the conditions of Theorem 3 hold. Then, there exists
8 > 0 and |o| < such that the induced Markov chain {(X}, S%),n > 0} with

transition probability (2.13)is aperiodic and irreducible. Moreover, it is uniform
ergodic with respect to a given norm and satisfying K1-K6.

PROOF For |a| < 4, it is known [cf. Ney and Nummelin (1987)] that
{(X%, 8%),n > 0} is an aperiodic and irreducible Markov chain. Sif¢g,,, S,,),

n’=n

n > 0} satisfies C1pP% is geometricallye—“("‘)—recurrent fola| < 8, and therefore
is e =A@ _yniformly ergodic, compare Theorem 4.1 of Ney and Nummelin (1987).
Define

W(dy x ds)e  MOTasp(y: o)
(Wr)(er) ’
where(¥r)(«) is a normalizing constant, and
R (x) = (Wr) (@) x; a)h(x),
whereW (1) andi(-) are defined in C1 with
P(x,dy xds) = h(x)¥(dy x ds).

V¥ dy x ds) =

This implies that

W(dy x ds)e_A(“Ho‘sr(y; o)
(\Wr) (@)

=h*(x)¥*(dy x ds).

P%(x,dy x ds) > (IIJr)(a)r_l(x; a)h(x)
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Therefore the mixing condition K1 hold.
To prove the moment condition K6, denaté(z) as the eigenvalue dP?.
By (2.13), we have

|E2 (e%51) — Ex ("))

/ /OO r(y;a) gs(”(x @) eo{s—A(a))POt(x’dy x ds)m®(dx)
x,yeX

oo r(x;a)  \r(y;a)
=Ll

r(X; O() . eas—A(ot)

r(y; o)
foré € ® C R. Fromlimy o|r(y; @)/r(x; a)| = 1, we getlim, osup, | EZ (e?51) —
E%(e%1)| = 0 by dominated convergence. Therefore, we may chedse 0 so
that SUR (oo« SUR | Ex (%) — Ex(e%1)| < C, say. Hence, condition C6 im-
plies K6 holds. By using a similar argument, we also have the moment conditions
K2-K4. O

r(y;a)

9S|
r(x; a)

P%(x,dy x ds)m%(dx)

LEMMA 12. Assume the conditions of Theorem 3 hold. Then there exists
a* > 0 such that the family {(X%, $%),n > 0:0< a < *} satisfies(2.3)and (2.4).

PrROOF Since the proofs of (2.3) and (2.4) are similar, we only prove (2.3),
the uniformly strong nonlattice case. Let(z) denote the eigenvalue d??.
Since{(X,, S,),n > 0} is assumed to be strongly nonlattice, we have #iaj :=
inflg;>111— Ex(e!%1)| > 0. However, by (2.13),

|E,,(ei9€1) _E“ (eiesf”
/ /OO rie) o (eocs—A(ot) _ M)pa(x,dy x ds)m®(dx)
x,yeX

oo F(x; a) r(y; o)
=

as—A(ot) r(x O()
r(y; )
for all real 6. Since lim,olr(y; @)/r(x; @) = 1, so lim, oSup |Ex(e'%51) —
EZ (¢'*1)] = 0 by dominated convergence theorem. Therefore, we may choose
a* > 0 S0 that SUP. (g o« SUR | Ex (e%51) — E%(e'%51)| < g(1)/2, say. Choosing
*in this way, by applying the definition gf(1) and the triangle inequality, we
obtain

r(y; @)
r(x;a)

P%(x,dy x ds)m%(dx)

f f|1— EY (050 1)/2.
ae'[GaméTLl' 2 1)[ = g(1)/

Consider

§):= inf inf |[1— E2(%%1
g@) = inf inf |1—Ez(e™)]:
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we want to show thag(s) > 0 for all § > 0. If § > 1, theng(§) > ¢g(1)/2 > 0.
Suppose & § < 1. To showg (8) > 0, it suffices to show

inf inf |1— Ea,(¢!%1)|> 0.

ae[O,a*]6§\9\§l| ax(e7)] >

However, sinceE%(e/%1) = E2(e@+i9%)/E2 (1), it is easy to see that
E;;‘(e"eéf) is a continuous function ofw, 0) for « € I' and reald. Therefore,
11— E2(¢%%1)|, being a continuous function on the compact §et, 6):0 <
a <a* 8§ <10 <1}, must attain its minimum there. To complete the proof, we

need only show that this minimum value cannot be 0. Supposing to the contrary
thatEg(elefix) =1 for some 0k @ <™ andé < |0| < 1, we would have

0
P { 551 is an integer} =1

However, by the assumption thetX,,, S,), n > 0} is strongly nonlattice and the
property of exponential embedding tht is absolutely continuous with respect
to PY, this is a contradiction. [

Use the same notation as the paragraph before Theorem 2 in Section 2. Note
that 7,,, 7+ and t_ depend onx; we omit it here for simplicity. The following
lemma is related to uniform strong nonlattice of the ladder chains. The proof
is a straightforward generalization of Theorem 6 in Fuh and Lai (1998) and is
omitted.

LEMMA 13. Assume the conditions of Theorem 3 hold. Let P7, be the
transition probability of the ladder Markov chain {(X‘;’n, Sgl), n > 0}. Then, there
existsa* > O suchthat, for 0 < & < o, thefamily {(X7 , S7. ), n > O} is uniformly

_ «, 5
strong nonlattice.

The following lemma generalizes Lemmas 4.4 and 4.5 in Heyde (1964) for
simple random walks.

LEMMA 14. Assume the conditions of Theorem 3 hold. Then, there exist
a* > 0,r1 > 0and C such that, for all « € [0, a*],

E2(e5%) < C.

PrRoor Under the assumption C6 and Lemma 11, foe I' C R, we
can define the linear operatoR;,, P, v, andQ on & as in (2.11). By the
spectral decomposition theory for linear operator on the spécgeveloped in
Proposition 1, we have fdre &,

(6.1) Ep{e®Sh(X,)} = A (@) v:Qquht + viPL(I — Qqu)h,
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whereQ,, is defined in (2.12). It also can be shown that there eXist- 0 and
0 < 8* < § such that, fofa| < §*,
(6.2) VP (I = Qo)A < K* Al [{(1+ 2p)/3}",

and under assumption CB6, it follows from Proposition 1 th@t) has the Taylor
expansion

(6.3) AMa) =14 rjol /jl+ Aw)
j=1
in some neighborhood of the origin, whetgo) = O(Ja|") asa — 0.
Now, for suchx, we have for all-0o < s < 00,

Py(S, <s) =< e_as(}‘n(a)v*Qal‘i‘ V*Pg(l - ro)l)a

where 1 denotes the identity fumn. Also, under the assumptiops< 0 and C6,
there exists sufficiently smadl such thati(«) < 1. Along this with (6.2), there
existsC > 0 such that“i(x) <1 andforallc, 0<c < C,

o0
(6.4) D e Py(S, <5) < 0.
n=1
Next, for ally € (0, 1), defineFo(s) = I{s>0), F1(s) = P,(S1<s) andF,(s) =
P, (S, <s;maXi<k<n—1 Sk <logy), forn > 1. Then, (6.4) implies that

o
(6.5) Z e Fy(logy) < oo,
n=1
for somer > 0.
Note that the probability, of the first passage time(y) out of the interval
(logy, co) for the Markovian random walk,, is » is given by

(6.6) pn=Fy_1(logy) — Fy(logy),  n>1.

By (6.5) and (6.6), we hav&,e!*) < oo for somer > 0, for all y € (0, 1).
Hence
(6.7) Ex (') <oco implies Ej(e5+) < oo.

Using the requirement in the definition of the exponential embedding tinafist
contain an interval about 0, take any positivg € I'. Let C := E, (e%5+);
by (6.7),C is finite. Since O< infiy|>5 xexr(x; ) < SURa|>5,xexr(x2 a) < 00,
then, if we takex* andry both to bew1/2, say, for anyr € [0, «*] we have

EY {erlsa V=E, { (R ) e(r1+“)5’+_f+w(a)}
r(Xo; @)

E, { Me(rﬁw)&+ }
r(Xo; a)

En{eals“r} =C,

A

A
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which is the desired property]

LEMMA 15. Assume the conditions of Theorem 3 hold. Suppose b — oo and
0 <« | Osuchthat, for some —oco < ¥ <00, ab — . Thenfor 0 <¢,s < oo

() P¥{r(b) <b?t,S%, —b<s}—> G(t; ¥, 1)H(s) and
Eq, St

(i) EZH(STp) —b)t() <00} — Gopyp, 5o

PROOF (i) Let m = b?% and Fy be theo-algebra generated by X,, S,),
n < N}. By Wald’s likelihood ratio identity for Markov chains, we have that for
any stopping timeV, o/, a”’, A € Fy, and for each fixed € X,
PY{AN (N < 00)}
r(Xn; Ot/) / 1 / 1 "
= ——F—  €ex — Sy — N(A —A dP¥.
AN(N<oo) T(x;a’) (e = eSSy (A@) @) d Py
And this implies that

Pt <m,S7 —b <s}

(6.8)

— En[r(X’; D exptarS, — TA@)}: T <m. Sy —b < s]
(6.9) r(Xo; o)
— exp(ab)Ey [:g; Z; expla (S, — b) — TA@));

rfm,S,—bgs}.

It follows that as O< & |, 0, b — ¥, r(Xr; @) /r(Xo; @) — 1 andA(a) ~ 3o ~
$92/b2. Hence at least for all finite, Lemma 7 shows that the right-hand side
of (6.8) converges to
exp(®) Ex [exp{—39%tw (D) }; tw(1) < 1]Hi(s)
= E-[exp{0 W (tw (D) — 39%tw (D }; tw(D) < 1]H4(s)
= P {tw (1) < t}H (s)
=G(t; 0, ) H(s).

That this calculation is also valid whan= oo follows from the Markov renewal
Theorem 1 once it is known thd, (¢"5+) < oo, for somer > 0. This holds by
Lemma 14.

(i) The proof of the convergence @, S, follows from Lemma 6. The rest
is a similar calculation and is omitted ]

By using the exponential martingale (2.13), uniform renewal theorem in
Theorem 1 and Lemmas 11-15, the proof of Theorem 3 is similar to that of
Theorem 2 and is omitted.
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APPENDIX

Characteristic functions of uniform Markov random walks. Here we
generalize the work of Fuh and Lai (2001). We include it for completeness. Using
the same notation and assumptions as in the first paragraph after Theorem 2 of
Section 2, defin®{, P, vy andQ on ¥ as (2.11). Condition K2 ensures tia{
andP are bounded linear operators a#fy and (2.2) implies that
(A1) IP"—Qll=sup [P"h—Qhl <yp".

heN : |h|=1
For a bounded linear operatér. ;' — N, the resolvent set is defined ase C:
(T —yI)~Lexistg and(T — yI)~1is called the resolvent (when the inverse exists).
From (A.1) it follows that, fory £ 1 and|y| > p,

o0
(A2) R :=Q/(y =D+ Y (P"—Q)/y"**

n=0
is well defined. SinceR(y)(P — yI) = —I = (P — yI)R(y), the resolvent
of P is —R(y). Moreover, by K3 and an argument similar to the proof of
Lemma 2.2 of Jensen (1987), there exist> 0 andn > 0 such that, for
lzZl <n, Iy —1> (@1 - p)/6andly| > p + (1 —p)/6, [P — Pl < K|e| and
R¥(y) =220 R{(PY —P)R(y)}" is well defined. Sinc?(y)(P? — yI) =
REW{(PY —P) + (P —yD} =~1=(P7 — y)R}(y), the resolvent ofP?
is —R%(y).

For |z| < n, the spectrum (which is the complement of the resolvent set)
of P¢ therefore lies inside the two circles; = {y:|y — 1| = (1 - p)/3} and
Co={y:lyl =p + (1 — p)/3}. Hence by the spectral decomposition theorem
[cf. Riesz and Sz-Nagy (1955), page 424],= N1(z) ® MN2(z) and

1 1
A3 Q= | Ry, 1-Qf=g [ RIG)dy

are parallel projections ofy onto the subspace#i(z), MN2(z), respectively.
Moreover, by an argument similar to the proof of Lemma 2.3 of Jensen (1987),
there exists O< § < 5 such thatB1(z) is one-dimensional foiz| < § and
sup, <5 1Q7 — QIl < 1. For |z| <4, let 1%(z) be the eigenvalue oP? with
corresponding eigenspack (z). Since Q¥ is the parallel projection onto the
subspac®;(z) in the direction oB2(z), (2.12) holds. Therefore, fdre N,

Ep{e¥STh(X,)} = veP2"h = v2P"(QY + (I — Q)}h
= (A%(2))"V§Q¥h + viP" (I — Q)h.

Suppose K4 also holds. An argument similar to the proof of Lemma 2.4 of
Jensen (1987) shows that, there exisk @* < § and K* > 0 such that for
lz| < &%, WEPT"(I — Q¥)h| < K*||hllwlzI{(1 + 2p)/3}". Moreover, analogous
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to Lemmas 2.5-2.7 of Jensen (1987), it can be shown iH&t), viQ%h
and ) 2 v2P2"(I — Q%¥)h have continuous partial derivatives of ordet for
|z| < §&*. Furthermore, we have the following proposition.

ProrPosITION1. Assume the conditions of Theorem 1 hold. Let 2 € & and
thereexistsa § > Osuchthat z € C and |z| <.

() Ev{e*Sih(X,)} = A (@)"vEQ%h + v (P (I — Q¥)h. Moreover, there
exist 0 < 6* <4§,0<y <land K > Osuchthat, for |z] < &%, A%(z), viQ%h and
Y omo vy (PY)"(I — Q¢)h have continuous partial derivatives of order [r], and

v (PO (I — QNR| < K|hll|z|y" for all n > 1.
Furthermore,
A%(0) = 1, VAY(0) =il u®, V2.2 (0) = —T' VoI,

(i) Define f$(z) = X020 Ev(e¥Si1(x,ca)), and let hs(z) = Liyea). Then for
0< |z] < 8%

4@ =(1—-2%@) Q%A+ n%(2),

where n*(z) has continuous partial derivativesof order [r] and n%(z) = O(|z]) as
z— 0.
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