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HITTING PROBABILITIES IN A MARKOV ADDITIVE PROCESS
WITH LINEAR MOVEMENTS AND UPWARD JUMPS:

APPLICATIONS TO RISK AND
QUEUEING PROCESSES

BY MASAKIYO MIYAZAWA 1

Tokyo University of Science

Motivated by a risk process with positive and negative premium rates,
we consider a real-valued Markov additive process with finitely many
background states. This additive process linearly increases or decreases
while the background state is unchanged, and may have upward jumps at
the transition instants of the background state. It is known that the hitting
probabilities of this additive process at lower levels have a matrix exponential
form. We here study the hitting probabilities at upper levels, which do not
have a matrix exponential form in general. These probabilities give the ruin
probabilities in the terminology of the risk process. Our major interests are in
their analytic expressions and their asymptotic behavior when the hitting level
goes to infinity under light tail conditions on the jump sizes. To derive those
results, we use a certain duality on the hitting probabilities, which may have
an independent interest because it does not need any Markovian assumption.

1. Introduction. Consider a risk process in which premium rates, claim
arrivals and claim sizes depend on a background state, which is governed by
a continuous time Markov chain. The premium rate is usually assumed to be
positive, and can be reduced to unit by a random time change. Suppose that the
premium includes returns from investments. Then, it may happen that the premium
rate takes negative values since the returns may be negative. This motivates us to
consider a risk process with positive and negative premium rates. Our primary
interest is in an asymptotic behavior of the ruin probability when the initial reserve
goes to infinity, provided the claim size distributions have light tails, that is,
decrease exponentially fast.

Similarly to Asmussen (2000), we model the risk process as a Markov additive
processY (t) with upward jumps andY (0) = 0. Then, forx ≥ 0, x − Y (t) is a risk
process with initial reservex, and ruin occurs whenY (t) hits levelx. We assume
the following setting. The background continuous-time Markov chain has a finite
state space. The additive component linearly increases or decreases while the
background state is unchanged. At the transition instants of the background
Markov chain, the additive component may have upward jumps whose sizes may
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depend on the background states before and after the transitions. This additive
process was recently studied by Takada (2001) and Miyazawa and Takada (2002)
for extending the Markov modulated fluid queue [see, e.g., Asmussen (1995) and
Rogers (1994)].

A key observation in Miyazawa and Takada (2002) and Takada (2001) is that
the hitting probabilities in the downward direction have a matrix exponential form,
which follows from the fact that the additive process is skip free in this direction.
The result generalizes the matrix exponential forms in the literature [see, e.g.,
Asmussen (1995, 1995), Rogers (1994) and Takine (2001)]. However, we can
not directly apply this result to the ruin probability since this requires the hitting
probabilities in the upward direction.

In this paper we consider these hitting probabilities. We represent the hitting
probabilities as a Markov renewal function. Then, their asymptotic behaviors
are studied through the Markov renewal theorem. This renewal approach for
the asymptotic behavior is rather classical, but has not been so popular for the
Markov additive process. A typical approach is the change of measures based on
martingales [see, e.g., Asmussen (2000)]. The large deviation technique has also
been used. The latter can be applied for a larger class of additive processes, but is
less informative. In this paper we show that the Markov renewal approach is yet
powerful, in particular, it provides the prefactor of the decay function.

To fully utilize this approach, we need to get the Markov renewal kernel in
a closed form, which is the conditional joint distribution of the ladder height and
associated background state given an initial background state. To this end, we use
a dual additive process similarly to Asmussen (1991) and Sengupta (1989). This
dual process is obtained from the Markov additive process by time reversal and
changing the sign of the additive component. However, our approach is different
from those in Asmussen (1991) and Sengupta (1989), which use the occupation
measure. We directly derive the joint distribution, including the ladder epoch, in
terms of the dual process, which does not require any drift condition on the additive
process. Furthermore, we do not need any Markovian assumption, but only need
stationarity. This result may be of independent interests, so we derive it under
the stationary regime. We then specialize it to the Markov additive process and
perform detailed computations.

This paper is made up by six sections. In Section 2 we introduce the
additive process with upward jumps under the stationary regime, and compute the
ascending ladder height distribution in terms of the dual process. In Section 3
we specialize this result to the Markov additive processes. In Section 4 we
derive a Markov renewal equation for the hitting probabilities. In Section 5 those
probabilities are shown to have asymptotically exponential decay. In Section 6 we
discuss applications to risk processes and fluid queues.

2. The additive process under the stationary framework. In this section we
introduce a stationary additive process and consider its ascending ladder height,
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not using any Markovian assumption. Let{(tn,Mn,An);n ∈ Z} be a stationary
marked point process, such that the counting measureN of {tn} has a finite
intensityλ and the mark(Mn,An) takes values inS × R+, whereS is a countable
set,Z is the set of all integers andR+ = [0,∞). In our applicationS is finite,
but this does not matter in this section. In the terminology of a risk process,
tn is the arrival time of a claim ifAn is positive andMn is a background state.
Note that not alltn represent claim arrivals sinceAn = 0 is allowed. This gives
a great flexibility when we assumeMn to be Markov. Namely, the claim arrivals
are subject to the Markovian arrival process due to Neuts (1989) [see Asmussen
(2000) for applications to a risk process].

Let M(t) and A(t) be continuous-time processes such thatM(t) = Mn and
A(t) = An, respectively, fort ∈ [tn, tn+1). As usual, we can choose a canonical
probability space(�,F ,P ) with a shift operator group{θt } on � such that
P ({θt (ω) ∈ D}) = P (D) for all D ∈ F , and, forω ∈ �,s ∈ R ≡ (−∞,+∞),

N(B)(θs(ω)) = N(B + s)(ω), B ∈ B(R),

M(t)(θs (ω)) = M(t + s)(ω), A(t)(θs(ω)) = A(t + s)(ω), t ∈ R,

whereB + s = {u+ s;u ∈ B}. We shall use abbreviated notation such asM(t) ◦ θs

for M(t)(θs(ω)).
We next define an additive process. Letv(i) be a function fromS to R \ {0}.

For simplicity, we exclude the casev(i) = 0, but this is not essential. Then,Y (t)

is defined as

Y (t) =




∫ t+
0+

v(M(u)) du +
∫ t+

0+
A(u)N(du), t ≥ 0,

−
∫ 0+
t−

v(M(u)) du −
∫ 0+
t−

A(u)N(du), t < 0.

(2.1)

Thus Y (t) is the additive process that linearly changes whileM(t) is constant
and may have jumps when it changes. Note thatY (t), M(t) andA(t) are right
continuous andY (0) = 0. By definition, Y (t) has stationary increments and
satisfies(Y (t)−Y (s)) ◦ θu = Y (t +u)−Y (s +u). In particular,Y (0) = 0 implies

Y (t) ◦ θu = Y (t + u) − Y (u).(2.2)

We refer toY (t) as a stationary additive process with background processM(t).
Let τ+

x be the hitting time whenY (t) gets into[x,∞) for x ≥ 0. Namely,

τ+
x = inf{t > 0;Y (t) ≥ x}.

Then, Y (τ+
0 ) is called the ascending ladder height, which is zero whenY (t)

continuously crosses the origin. Note thatτ+
0 and, hence,Y (τ+

0 ) andM(τ+
0 ) are

defective (proper) if

E(Y (1)) < (>)0 respectively.
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As is well known, this can be proved using Loynes’ (1962) arguments. IfM(t)

is a Markov process,E(Y (1)) ≥ 0 implies thatτ+
0 is proper [see Lemma 2.1 of

Miyazawa and Takada (2002)]. In what follows, fori ∈ S, the event{M(τ+
0 ) = i}

means the event{τ+
0 < ∞,M(τ+

0 ) = i}.
The purpose of this section is to express the joint distribution at the ascending

ladder epoch, that is, fori, j ∈ S,u, x, z ≥ 0,

P
(
τ+

0 ≤ u;M(0) = i,M(τ+
0 −) = j,M(τ+

0 ) = k,−Y (τ+
0 ) ≤ z,Y (τ+

0 ) ≤ x
)
,

in terms of dual processes̃M(t), Ã(t) andỸ (t) defined below. In our applications
we only need the case thatu = z = ∞, but the joint distribution may be of
independent interests, as we shall see.

Define dual processes̃M(t) andỸ (t) by

M̃(t) = M(−t), Ã(t) = A(−t), Ỹ (t) = −Y (−t) + Y (0−), t ∈ R.

Note thatỸ (t) is also a stationary additive process with upward jumps satisfying
Ỹ (0+) = 0. The termY (0−) is irrelevant in the definition ofỸ (t) under the
stationary setting, that is, with respect toP , sinceP (Y (0) = Y (0−) = 0) = 1.
However, this is not the case under the conditional probability measure, given
that there is a point ofN at the origin. Note that the dual processỸ (t) is
not right continuous but left continuous. Thus,Ỹ (0) = Ỹ (0−) may be negative.
Similarly to Ỹ (t), M̃(t) andÃ(t) are left continuous. Furthermore, if̃M(t) = i,
thenỸ (t) changes at ratev(i), that is,Y (t) andỸ (t) have the same rate when their
corresponding background states are identical. Let

τ̃−
w = inf{t > 0; Ỹ (t) ≤ w}, w ≤ 0.

That is, τ̃−
w is the hitting time ofỸ (t) at levelw ≤ 0. Note thatỸ (t) is skip free

in the downward direction. So the distributions ofτ̃−
w andM̃(τ̃−

w ) are easier to get
when the background processM(t) is Markov. This fact will be used.

Sinceλ ≡ E(N(0,1]) < ∞, we can define the Palm distribution with respect to
the point processN , which is denoted byPN . Let

σ−(t) = sup{u < t;N([u, t)) > 0},
σ+(t) = inf{u > t;N([t, u)) > 0}.

We also use their duals:̃σ−(t) and σ̃+(t), by changingN to its dual Ñ ,
where Ñ(B) = N(−B) for B ∈ B(R) in which −B = {x ∈ R;−x ∈ B}. For
example, σ̃−(t) is the last transition instant ofM̃ before time t . Note that
the dual processes underP coincide with the original processes underP̃ ,
which is a canonical probability measure for(Ñ(·), M̃(t), Ã(t)). For example,
EN(ϕ(τ̃−−x)) = Ẽ

Ñ
(ϕ(τ−−x)). Keeping these facts in mind, we present the following
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results, using the following notation:

S− = {i ∈ S; v(i) < 0}, S+ = {i ∈ S; v(i) > 0},
M−(t) = (

M
(
σ−(t)−)

,M(t)
)
, M̃+(t) = (

M̃(t), M̃
(
σ̃+(t)+))

.

Note thatM−(t) = (M(t−), M(t)) if N({t}) = 1.

LEMMA 2.1. For a nonnegative measurable ϕ, i ∈ S−, j, k ∈ S and x, z ≥ 0,

−v(i)E
(
ϕ(τ+

0 );M(0) = i,M−(τ+
0 ) = (j, k),

−Y (τ+
0 −) ≤ z,0< Y(τ+

0 ) ≤ x
)

(2.3)
= λ

∫ z

0
EN

(
ϕ(τ̃−−w); M̃+(0) = (k, j), M̃(τ̃−−w) = i,

0 < Ã(0) − w ≤ x
)
dw,

and, using the notation T̃ = Ỹ (0) − Ỹ (σ̃−(0)+), for i ∈ S−, k ∈ S+,

−v(i)E
(
ϕ(τ+

0 );M(0) = i,M−(τ+
0 ) = (j, k), Y (τ+

0 ) = 0
)

= λ

∫ ∞
0

EN

(
ϕ(τ̃−−w); M̃+(0) = (k, j), M̃(τ̃−−w) = i,(2.4)

Ã(0) < w < T̃ + y
)
dw,

where E(X;D) = E(X1D) for a random variable X and an event D.

PROOF. We first consider the case thatY (τ+
0 ) > 0. In this case the additive

processY (t) only up crosses level 0 by a jump. Hence, we have

E
(
ϕ(τ+

0 );M(0) = i,M−(τ+
0 ) = (j, k),−Y (τ+

0 ) < z,0< Y(τ+
0 ) ≤ x

)
= E

(∫ ∞
0

ϕ(t)1
(
M(0) = i,M−(t) = (j, k),

(2.5)
Y (u) < 0, u ∈ (0, t),

− Y (t−) ≤ z,Y (t) ∈ (0, x])N(dt)

)
,

where 1(·) is the indicator function of the statement “·”. To (2.5), we apply
Campbell’s formula [see, e.g., (3.3.1) of Baccelli and Brémaud (2002)], which
is given for a random functiong(t) by

E

(∫ ∞
0

g(t) ◦ θtN(dt)

)
= λEN

(∫ ∞
0

g(t) dt

)
.

To this end, we applyθ−t to the events in the indicator function of (2.5). By (2.2),

Y (t) ◦ θ−t = −Y (−t) = Ỹ (t) − Ỹ (0).
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Thus, using the fact thatY (0+) = 0, we have

{M(0) = i,M(t−) = j,M(t) = k} ◦ θ−t

= {M̃(0) = k, M̃(0+) = j, M̃(t) = i},
{Y (u) < 0, u ∈ (0, t)} ◦ θ−t

= {Ỹ (t) ≤ Ỹ (u), u ∈ (0, t)},
{−Y (t−) ≤ z,Y (t) ∈ (0, x]} ◦ θ−t

= {−Ỹ (t) ≤ z,−Ỹ (0) − x ≤ −Ỹ (t) ≤ −Ỹ (0)}.
Hence, applying Campbell’s formula to the right-hand side of (2.5) yields

E
(
ϕ(τ+

0 );M(0) = i,M−(τ+
0 ) = (j, k),0 < Y(τ+

0 ) ≤ x
)

= λEN

(∫ ∞
0

ϕ
(
τ̃−
Ỹ (t)

)
1
(
M̃+(0) = (k, j), M̃

(
τ̃−
Ỹ (t)

) = i,

(2.6)
Ỹ (t) < Ỹ (u), u ∈ (0, t),−Ỹ (t) ≤ z,

−Ỹ (0) − x ≤ −Ỹ (t) < −Ỹ (0)
)
dt

)
,

where the fact thatt = τ̃−
Ỹ (t)

whent is the descending ladder epoch is used. We now

change variablet in the integral in (2.6). Let

w(t) = − inf
0<u<t

Ỹ (u).

Clearly,w(t) is nondecreasing, andw(t) = −Ỹ (t) whenw(t) increases because
the dual process̃Y (t) is left continuous and skip free in the downward direction.
So, we have

w′(t) = −v(M̃(t))1
(
Ỹ (t) < Ỹ (u), u ∈ (0, t)

)
.

Hence, changing variables fromt to w = w(t) in (2.6) and using the fact that
Ã(0) = −Ỹ (0), we obtain (2.3). We next consider the case thatk ∈ S+ and
Y (τ+

0 ) = 0. Similarly to (2.5), we have

E
(
ϕ(τ+

0 );M(0) = i,M−(τ+
0 ) = (j, k), Y (τ+

0 ) = 0
)

= E

(∫ ∞
0

ϕ(t)1
(
M(0) = i,M−(t) = (j, k),

(2.7)

Y (u) < 0, u ∈ (0, t),

Y (t) ≤ 0 < Y
(
σ+(t)−))

N(dt)

)
.
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Hence, we can apply similar arguments as for the caseY (τ+
0 ) > 0, but we need to

replace the event{0< Y(t) ≤ x} ◦ θ−t by

{
Y (t) ≤ 0 < Y

(
σ+(t)−)} ◦ θ−t

= {−Y (−t) ≤ 0< Y
(
σ+(0)−) − Y (−t)

}
= {

Ã(0) ≤ w < Ỹ (0) − Ỹ
(
σ̃−(0)+) + Ã(0)

}
,

for w = −Ỹ (t). Hence, (2.4) follows. �

REMARK 2.1. (a) A key fact in Lemma 2.1 is that the ladder height
distribution, given the initial state, can be obtained via the hitting times in the
skip free direction.

(b) Lemma 2.1 does not need any drift condition onY (t). So, the distribution
in the left-hand side of (2.3), withϕ ≡ 1, may or may not be defective.

(c) Consider the special case thatN is Poisson andv(1) = −1 with S = {1}.
This constitutes the classical risk process. Then, (2.3) is compatible with standard
results, such as Theorem 2.2 in Chapter III of Asmussen (2000), provided
E(Y (1)) < 0.

In the rest of this section we shall give further remarks and results on
Lemma 2.1. We first note the interesting feature of (2.3), that the sample path of
the forward process is traced back under the Palm distribution. Figure 1 illustrates
this sample path behavior. This fact is also related to the following conditional trace
back for the conventional Markov modulated risk process, that is, in the Markovian

FIG. 1. The additive process Y(t) and its dual Ỹ (t).
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setting withv ≡ −1.

P
(
τ+

0 ≤ t|M(0) = i,M−(τ+
0 ) = (j, k),−Y (τ+

0 −) = z
)

(2.8) = P
(
τ̃−−z ≤ t|M̃+(0) = (k, j), M̃(τ̃−−z) = i

)
, t, z ≥ 0.

See, for example, (2.1) of Asmussen and Højgaard (1996) and Proposition 2.2 of
Asmussen and Klüppelberg (1996) for the derivation of (2.8). Let us show how
(2.8) is obtained in our approach. From (2.3), we have, fori ∈ S−, j, k ∈ S and
t, z > 0,

−v(i)P
(
τ+

0 ≤ t,M(0) = i,M−(τ+
0 ) = (j, k),0 < −Y (τ+

0 −) ≤ z
)

(2.9)
= λ

∫ z

0
PN

(
τ̃−−w ≤ t,M̃+(0) = (k, j), M̃(τ̃−−w) = i,w < Ã(0)

)
dw.

Hence, taking the derivative of (2.9) with respect toz and dividing by this
derivative witht = ∞, we get, fort ≥ 0,

P
(
τ+

0 ≤ t|M(0) = i,M−(τ+
0 ) = (j, k),−Y (τ+

0 −) = z
)

(2.10) = PN

(
τ̃−−z ≤ t|M̃+(0) = (k, j), M̃(τ̃−−z) = i,w < Ã(0)

)
.

In the Markovian setting,PN in (2.10) can be replaced byP , andτ̃−
z andM̃(τ̃−−z)

do not depend oñA(0) sinceỸ (0+) = 0. So we arrive at (2.8). Note that (2.10) is
less informative than (2.9), equivalently, (2.3). Namely, we need (2.9) witht = ∞
to get (2.9) from (2.10).

We next sum (2.3) withϕ(y) = 1(y ≤ t) over alli, j, k, which yields

COROLLARY 2.1. If v(i) = −1 for i ∈ S−, we have, for t, x, z > 0,

P
(
τ+

0 ≤ t,−Y (τ+
0 −)≤ z,0<Y(τ+

0 ) ≤ x
)

(2.11)
= λ

∫ z

0
PN

(
τ̃−−w ≤ t,0 < Ã(0) − w ≤ x

)
dw,

where v(i) can be an arbitrary positive number for i ∈ S+.

REMARK 2.2. If S+ = ∅ andE(Y (1)) < 0, then (2.11) witht = ∞ agrees
with the well-known formula for the severity in a risk process [see, e.g., Asmussen
(2000)], sinceP (τ̃−−w < ∞) = 1 andPN(Ã(0) ≤ x) = PN(A(0) ≤ x). On the other
hand, if x = z = ∞, it generalizes Proposition 2.3 in Chapter IV of Asmussen
(2000), which is obtained for the case thatN is Poisson.

Lemma 2.1 also generalizes Proposition 3.1 and Theorem 3.1 of Asmussen
(1991), which assumes thatv(i) ≡ −1. We here note another aspect of Lemma 2.1.

COROLLARY 2.2. If there are no jumps, that is, Fij (0) = 1 for all i, j ∈ S,
then we have, for i ∈ S− and k ∈ S+,

−v(i)P
(
M(0) = i,M(τ+

0 ) = k
) = v(k)P

(
M̃(0) = k, M̃(τ̃−

0 ) = i
)
.(2.12)
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PROOF. SinceY (τ+
0 ) = 0 with probability one, (2.4) withϕ ≡ 1 yields

−v(i)P
(
M(0) = i,M

(
σ−(τ+

0 )−) = j,M(τ+
0 ) = k

)
= λ

∫ ∞
0

dwPN

(
M̃(0) = k, M̃(0+) = j, M̃(τ̃−−w) = i,w < T̃

)
.

Summing over all possiblej and using the fact that̃T = −v(k)σ̃−(0) and
M̃(τ̃−−w) ◦ θ−w/v(k) = M̃(τ̃−

0 ) on M̃(0) = k, we have

−v(i)P
(
M(0) = i,M(τ+

0 ) = k
)

= λ

∫ ∞
0

dwPN

(
M̃(0) = k, M̃(τ̃−−w) = i,w < T̃

)

= λEN

(∫ T̃

0
1
[
M̃

(−w/v(k)
) = k, M̃(τ̃−

0 ) ◦ θw/v(k) = i
]
dw

)
.

SinceT̃ = v(k)σ+(0), we get (2.12) by the Palm inversion formula.�

Equation (2.12) explains how upward hitting is interpreted in the dual additive
process when there are no jumps. Suppose−∞ < E(Y (1)) < 0. Then (2.12) also
yields

P (τ+
0 < ∞) = a+

a− ,

wherea+ = ∑
i∈S+ v(i)P (M(0) = i) anda− = −∑

i∈S− v(i)P (M(0) = i).

3. The Markov additive process. From now on we specializeM(t) to be
a continuous-time Markov chain with finite state spaceS and assume thatA(t)

only depend onM(t−) andM(t). In this setting(M(t), Y (t)) is called a Markov
additive process. In this section we derive the ascending ladder height distribution
in a closed form for this additive process.

Let Cij for i �= j andDij for all i, j ∈ S be nonnegative numbers and let

Cii = −
(∑

j �=i

Cij + ∑
j∈S

Dij

)
, i ∈ S.

For convenience, letc(i) = −Cii . LetC = {Cij } andD = {Dij } beS ×S matrices.
We takeC + D for the rate matrix of Markov chainM(t) and assume thatC + D

is irreducible. SinceS is finite, this implies that the Markov chain has a unique
stationary distribution, which is represented as a row vectorπ ≡ {πi}.

Note that the Markov chainM(t) may include transitions that do not change
their states, sinceDii may be positive. Of course, these transitions are irrelevant for
the sample path ofM(t), but they are convenient to include Markov modulated
Poisson arrivals for the jumps in our formulation. So we letN be the point process
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generated by all the transition instants. LetF D
ij be the jump size distribution associ-

ated with transitions due toDij , whereF D
ij (0) = 0, while no jumps are associated

with transitions due toCij . Then, the conditional distributionFij of A(t), given
thatM(t−) = i andM(t) = j , is obtained as

Fij (x) =




F D
ii (x), i = j ,

Cij

Cij + Dij

δ(x) + Dij

Cij + Dij

F D
ij (x), i �= j ,

for x ≥ 0, whereδ(x) is the Dirac distribution which has a unit mass at the origin.
In this way the additive processY (t) is completely specified for the rate functionv.

DefineCij (x) andDij (x) as

Cij (x) = Cij δ(x), Dij (x) = DijF
D
ij (x), i, j ∈ S.

We denote the matrices which have these entries byC(x) andD(x), respectively.
For convenience, we also define matrixU(x) whoseij -entry is defined as

Uij (x) = 1(i �= j)Cij (x) + Dij (x), i, j ∈ S,x ≥ 0.(3.1)

Clearly, the additive processY (t) is specified byC, D(x) and the rate functionv.
We now evaluate (2.3) and (2.4) in the Markov setting. To this end, we first

consider the dual Markov chaiñM(t) for M(t) and the dual additive processỸ (t),
defined in Section 2. DefineS × S matrices:

C̃(x) = 
−1
π C(x)′
π , D̃(x) = 
−1

π D(x)′
π ,

Ũ (x) = 
−1
π U(x)′
π ,

where 
π is the diagonal matrix whoseith entry is π(i) and “′ ” stands for
transpose. Obviously, we see thatM̃(t) has transition rate matrix̃C + D̃, where
C̃ = C̃(∞) andD̃ = D̃(∞). Ỹ (t) andY (t) have the same rate functionv for the
continuous movements. Thus,Ỹ (t) is the Markov additive process, specified by
C̃(x), D̃(x) andv.

We next modify Lemma 2.1 in a convenient form for the Markov additive
process. LetF̃jk = Fkj . Then, from (2.3) and (2.4), we have, fori ∈ S−, j, k ∈ S

andx > 0,

−v(i)E
(
M(0) = i,M−(τ+

0 ) = (j, k),0 < Y(τ+
0 ) ≤ x

)
(3.2)

= λ

∫ x

0
dw

∫ ∞
w

F̃kj (dy)PN

(
M̃+(0) = (k, j), M̃

(
τ̃−
−(y−w)

) = i
)
,

and, fori ∈ S−, k ∈ S+,

−v(i)E
(
M(0) = i,M−(τ+

0 ) = (j, k), Y (τ+
0 ) = 0

)
= λ

∫ ∞
0

dw

∫ ∞
0

F̃kj (dy)PN

(
M̃+(0) = (k, j), M̃(τ̃−−w) = i,(3.3)

y < w < T̃ + y
)
.
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LEMMA 3.1. For i ∈ S−, j, k ∈ S and x ≥ 0,

P
(
M−(τ+

0 ) = (j, k),0 < Y(τ+
0 ) ≤ x|M(0) = i

)
(3.4)

= πk

πi

∫ x

0
dw

∫ ∞
w

D̃kj (dy)PN

(
M̃

(
τ̃−
−(y−w)

) = iM̃(0+) = j
) −1

v(i)

and, for i ∈ S−, j ∈ S and k ∈ S+,

P
(
M−(τ+

0 ) = (j, k), Y (τ+
0 ) = 0|M(0) = i

)
= πk

πi

∫ ∞
0

e−c(k)w/v(k) dw

∫ ∞
0

Ũkj (dy)(3.5)

× PN

(
M̃

(
τ̃−
−(w+y)

) = i|M̃(0+) = j
) −1

v(i)
.

PROOF. We only need to evaluate the Palm probabilities in (3.2) and (3.3).
SinceM̃(t) is the Markov chain with rate matrix̃C + D̃, it is easy to see that

λPN

(
M̃(0) = k, M̃(0+) = j, M̃

(
τ̃−
−(y−w)

) = i
)

(3.6) = PN

(
M̃

(
τ̃−
−(y−w)

) = i|M̃(0+) = j
)(

1(k �= j)C̃kj + D̃kj

)
πk.

Hence, (3.2) and (3.1) yields (3.4). SinceT of Lemma 2.1 is exponentially
distributed with mean−c(k)/v(k), the right-hand side of (3.3) becomes

λ

∫ ∞
0

F̃kj (dy)

∫ ∞
0

dwPN

(
M̃+(0) = (k, j), M̃(τ̃−−w) = i, y < w < y + T̃

)

= πk

∫ ∞
0

Ũkj (dy)

∫ ∞
0

e−c(k)u/v(k)−c(k)

v(k)
du

×
∫ y+u

y
dwPN

(
M̃(τ̃−−w) = i|M̃(0+) = j

)

= πk

∫ ∞
0

Ũkj (dy)

∫ ∞
y

dw

∫ ∞
w−y

e−c(k)u/v(k)−c(k)

v(k)
du

× PN

(
M̃(τ̃−−w) = i|M̃(0+) = j

)
= πk

∫ ∞
0

Ũkj (dy)

∫ ∞
y

e−c(k)(w−y)/v(k) dw

× PN

(
M̃(τ̃−−w) = i|M̃(0+) = j

)
.

Hence, (3.3) yields (3.5).�

In (3.4) and (3.5), it remains to evaluate

R̃ij (x) ≡ P
(
M̃(τ̃−−x) = j |M̃(0) = i

)
, x ≥ 0, i ∈ S, j ∈ S−.(3.7)
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By R̃−−(x) andR̃+−(x), we denote theS− × S− andS+ × S− matrices whoseij
entry is given by (3.7), respectively. We shall use this convention widely. Namely,
for S × S matrix A, its submatrices of sizesS− × S−, S− × S+, S+ × S− and
S+ ×S+ are denoted byA−−, A−+, A+− andA++, respectively. Similarly, for an
S-vectorx, x− andx+ are the subvectors whose entries are indexed byS− andS+,
respectively. Note that̃R−−(x) is substochastic, that is, a nonnegative matrix
satisfyingR̃−−(x)e− ≤ e−, wheree is the column vector whose entries are all 1.

We now refer to recent results on the matrix exponential form in the Markov
additive process in Miyazawa and Takada (2002) and Takada (2001). The results
there are obtained for the forward process{(Y (t),M(t))} that is right-continuous.
On the other hand, we here need the corresponding results for the dual process
{(Ỹ (t), M̃(t))} that is left-continuous. However, this left-continuity is irrelevant in
the definition (3.7), sincẽY(t) is skip free in the downward direction.

This skip free property also implies that the ladder height indexed process
{M̃(τ̃−−x);x ≥ 0} is Markov. Hence,R̃−−(x) = exQ̃(−)

for some subrate ma-

trix Q̃(−), that is,Q̃(−)e− ≤ 0−. It is also easy to see, at least intuitively, that

− d

dx

(
R̃−−(x)

R̃+−(x)

)
= 
−1

v

∫ ∞
0

(
C̃(du) + D̃(du)

)(
R̃−−(u + x)

R̃+−(u + x)

)
.

Then, the following results would be intuitively reasonable. Their formal proofs
not for Ỹ (t), but for the forward processY (t) are given in Theorem 3.2 of
Miyazawa and Takada (2002) and Theorem 4.1 of Takada (2001). Clearly, the
results are immediately transferred fromY (t) to Ỹ (t). In what follows, a square
matrix is said to be ML if its off-diagonal entries are nonnegative.

LEMMA 3.2. There exist a subrate matrix Q̃(−) and a substochastic ma-
trix R̃+−, such that(

R̃−−(x)

R̃+−(x)

)
=

(
I−−
R̃+−

)
exQ̃(−)

, x ≥ 0,(3.8)

where Q̃(−) and R̃+− are the minimal ML and nonnegative solutions, respectively,
of the following equation:

−
(

I−−
R̃+−

)
Q̃(−) = 
−1

v

∫ ∞
0

(
C̃(du) + D̃(du)

)(
I−−
R̃+−

)
euQ̃(−)

.(3.9)

Furthermore, Q̃(−) is a rate matrix, if and only if

E
(
Y (1)

)(= E
(
Ỹ (1)

)) = π
ve + π

∫ ∞
0

xD(dx)e ≤ 0.(3.10)

We next represent Q̃(−) and R̃+− using the original additive process. Let
K(−) and L−+ be the minimal solutions of the following equation, such that
K(−) and L−+ are ML and nonnegative matrices, respectively:

−K(−)(I−−,L−+) =
∫ ∞

0
euK(−)

(I−−,L−+)
(
C(du) + D(du)

)

−1

v .(3.11)
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Then Q̃(−) and R̃+− are obtained as

Q̃(−) = (
−−
π )−1(K(−)

)′

−−

π , R̃+− = (
++
π )−1(L−+)′
−−

π .(3.12)

COROLLARY 3.1. If (3.10)is satisfied, then

π−K(−) = 0, π−L−+ = π+,(3.13)

and K(−) has the right eigenvector k− corresponding to π−. Normalize k− in
such a way that π−k− = 1. Then, k− is unique and positive and k−π− − K(−) is
nonsingular.

PROOF. Since Q̃(−)e− = 0− and R̃+−e− = e+ by (3.10), (3.12) impl-
ies (3.13).(k−)′
−−

π is the stationary distribution of̃Q(−), since(k−)′
−−
π e =

π−k− = 1. Hence,k− is unique and positive. Assume that(
k−π− − K(−)

)
x = 0,(3.14)

for an S−-dimensional vectorx. Pre-multiplying K(−) to (3.14), we get
K(−)(K(−)x) = 0. Hence,K(−)x must be ak− for some constanta. Since
π−K(−) = 0 andπ−k− = 1, we arrive ata = 0, which concludesx = 0. So the
matrix k−π− − K(−) is nonsingular. �

We remark that similar eigenvectors have been reported for the case thatS+ = ∅

in Section 2 of Chapter VI in Asmussen (2000). Let us compute the ascending
ladder height distribution. For this computation we need one more lemma.

LEMMA 3.3. Let 
c be the diagonal matrix whose j th diagonal entry is
c(j) = −Cjj , then, for j ∈ S+ and i ∈ S−,∫ ∞

0
ewc(j)/v(j) dw

[∫ ∞
0

Ũ (dy)

(
I−−
R̃+−

)
e(y+w)Q̃(−)

]
j i

= [

++

v R̃+−]
j i .(3.15)

PROOF. By (3.9), the left-hand side of (3.15) is∫ ∞
0

ewc(j)/v(j) dw

[∫ ∞
0

(
C̃(dy) + D̃(dy) − δ(dy)(−
c)

)(
I−−
R̃+−

)
e(y+w)Q̃(−)

]
j i

= −
∫ ∞

0
ewc(j)/v(j) dw

[(

v

(
I−−
R̃+−

)
Q̃(−) + (−
c)

(
I−−
R̃+−

))
ewQ̃(−)

]
j i

= [

++

v R̃+−]
j i . �

THEOREM 3.1. For i ∈ S−, j ∈ S and x ≥ 0,

P
(
M(τ+

0 ) = j,Y (τ+
0 ) ≤ x|M(0) = i

)
= 1

−v(i)

(∫ x

0
dw

[∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)

]
ij

(3.16)

+ 1(j ∈ S+)L−+
ij v(j)

)
.
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PROOF. LetJij (x) = P (M(τ+
0 ) = j,Y (τ+

0 ) ≤ x|M(0) = i). We first consider
the case thatY (τ+

0 ) = 0. From (3.5) and Lemma 3.3, we have

Jij (0) = πj

πi

v(j)R̃+−
j i

−1

v(i)
.

Using πj R̃
+−
j i = πiL

−+
ij , this yields (3.16) forx = 0. We next consider the case

thatY (τ+
0 ) > 0. From Lemmas 3.1 and 3.2, we have

Jij (x) − Jij (0) = πj

πi

∫ x

0
dw

[∫ ∞
w

D̃(dy)

(
I−−
R̃+−

)
e(y−w)Q̃(−)

]
j i

−1

v(i)
.

Thus, we get (3.16) by converting to the notation of the forward processes.�

4. The hitting probability. We now consider the hitting probability at an
upper levelx > 0. Since(X(t), Y (t)) is a Markov additive process with a real
additive component, we can obtain the hitting probabilities as a Markov renewal
function using the appropriate ladder height distribution as a semi-Markov kernel.
However, we can not use (3.16) of Theorem 3.1 as this kernel because the additive
component may increase continuously. To have an appropriate kernel, we consider
the ladder height atσ+(τ+

0 ), that is, the first transition instant ofM(t) after
crossing level 0. For convenience, define a random variableξ+

x for x ≥ 0 as

ξ+
x = σ+(τ+

x ).

Clearly,ξ+
x is a stopping time with respect to the additive process{(Y (t),M(t))}.

DefineS × S matricesH(x) andG(x) by

Hij (x) = P
(
M(ξ+

0 ) = j,Y (ξ+
0 ) ≤ x|M(0) = i

)
,

Gij (x) = P
(
M(τ+

0 ) = j,Y (ξ+
0 ) ≥ x|M(0) = i

)
, i, j ∈ S,x ≥ 0.

Define the hitting probability matrix�(x) by

�ij (x) = P
(
M(τ+

x ) = j |M(0) = i
)
.

Then,�(x) is obtained as the unique solution of the Markov renewal equation,

�(x) = G(x) + H ∗ �(x), x ≥ 0,(4.1)

where the convolutionA ∗ B(x) is defined for a matrix nondecreasing function
A(x) and a matrix functionB(x) as

[A ∗ B(x)]ij = ∑
k

∫ ∞
0

Aik(dy)Bkj (x − y).

The Markov renewal equation (4.1) will be the key for our arguments to obtain
an asymptotic behavior of the hitting probability. Thus, what we all need is to get
H(x) andG(x). We first consider the case thatY (τ+

0 ) = 0.
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LEMMA 4.1. For i ∈ S−, j ∈ S and x ≥ 0,

P
(
M

(
σ+(τ+

0 )
) = j,Y

(
τ+

0
) = 0, Y

(
σ+(τ+

0 )
) ≤ x|M(0) = i

)
(4.2)

= πj

πi

∑
k∈S+

∫ x

0
Ũjk(dy)

(
1− e−c(k)(x−y)/v(k))v(k)

c(k)
R̃+−

ki

−1

v(i)
.

PROOF. We need the following version of (3.3), fori ∈ S−, j, l ∈ S and
k ∈ S+:

−v(i)P
(
M(0) = i,M−(τ+

0 ) = (l, k),M
(
σ+(τ+

0 )
) = j,

Y (τ+
0 ) = 0, Y

(
σ+(τ+

0 )
) ≤ x

)
(4.3)

= λ

∫ ∞
0

dw

∫ ∞
0

F̃jk(dy)PN

(
M̃(σ̃−(0)

) = j,

M̃+(0) = (k, l), M̃(τ̃−−w) = i,

y < w < T̃ + y, T̃ + T̃ ′ + y ≤ x + w
)
,

where T̃ ′ = −Ỹ (σ−(0)) + Ỹ (σ−(0)+). Since this can be proved in exactly the
same way as (3.3), we omit its proof. Thus, the right-hand side of (4.3) divided by
−v(i) becomes

− λ

v(i)

∫ ∞
0

dw

∫ ∞
0

F̃jk(dz)

∫ ∞
0

c(k)

v(k)
e−c(k)u/v(k) du

∫ ∞
0

F̃kl(dy)

× PN

(
M̃(σ̃−(0)) = j,M̃+(0) = (k, l), M̃(τ̃−−w) = i,

y ≤ w < u + y,u + y + z ≤ x + w
)

(changing variablew to w − y)

= − λ

v(i)

∫ ∞
0

dw

∫ ∞
0

F̃kl(dy)

∫ ∞
0

c(k)

v(k)
e−c(k)u/v(k) du

∫ ∞
0

F̃jk(dz)

× PN

(
M̃(σ̃−(0)) = j,M̃+(0) = (k, l), M̃

(
τ̃−
−(y+w)

) = i,

0≤ w < u,u + z ≤ x + w
)

= − λ

v(i)

∫ ∞
0

dw

∫ ∞
0

F̃kl(dy)

∫ x+w

w

c(k)

v(k)
e−c(k)u/v(k) du

∫ x+w−u

0
F̃jk(dz)

× PN

(
M̃(σ̃−(0)) = j,M̃+(0) = (k, l), M̃

(
τ̃−
−(y+w)

) = i
)
,

where we have used the following fact. Conditionally, given that(σ̃−(0)) = j,

M̃(0) = k, M̃(0+) = l, M̃(τ̃−−w) = i,

−Ỹ (0) 
 F̃kl,

T̃ = −Ỹ (σ̃−(0)+) + Ỹ (0) 
 Exp
(
c(k)/v(k)

)
,

T̃ ′ = −Ỹ (σ̃−(0)) + Ỹ (σ̃−(0)+) 
 F̃jk,
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where
 stands for equality in distribution and Exp(a) denotes the exponential
distribution with mean 1/a. Hence, using a decomposition similarly to (3.6) and
Lemma 3.2, the left-hand side of (4.2) is computed as

πj

πi

∫ ∞
0

(∫ ∞
0

dw

∫ x+w

w
du

∫ x+w−u

0

(
1(j �= k)C̃jk + D̃jk

)
F̃jk(dz)

× c(k)

v(k)
e−c(k)u/v(k)

)

× 1(k �= l)C̃kl + D̃kl

c(k)
F̃kl(dy)

[(
I−−
R̃+−

)
e(y+w)Q̃(−)

]
li

−1

v(i)

= πj

πi

∫ ∞
0

(∫ ∞
0

e−c(k)w/v(k) dw

∫ x

0
du

×
∫ x−u

0
Ũjk(dz)

c(k)

v(k)
e−c(k)u/v(k)

)
1

c(k)
Ũkl(dy)

×
[(

I−−
R̃+−

)
e(y+w)Q̃(−)

]
li

−1

v(i)

= πj

πi

∫ ∞
0

(∫ ∞
0

e−c(k)w/v(k) dw

∫ x

0
Ũjk(dz)

× (
1− e−c(k)(x−z)/v(k)

)) −1

−c(k)
Ũkl(dy)

×
[(

I−−
R̃+−

)
e(y+w)Q̃(−)

]
li

−1

v(i)
.

Summing this over alll ∈ S andk ∈ S+ and applying Lemma 3.3 yield (4.2).�

THEOREM 4.1. For i, j ∈ S and x ≥ 0, Hij (x) is given by

Hij (x) = 1

−v(i)

(∫ x

0
dw

[∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)

]
ij

+ ∑
k∈S+

∫ x

0
L−+

ik

(
1− e−c(k)(x−y)/v(k)

)v(k)

c(k)
Ukj (dy)

)
,

(4.4)
i ∈ S−

Hij (x) =
∫ x

0

(
1− e−c(i)(x−y)/v(i)

) 1

c(i)
Uij (dy), i ∈ S+.
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PROOF. We first consider the case thati ∈ S−. From Lemma 4.1, we get
Hij (0) of (4.4). On the other hand, from Theorem 3.1,

P
(
M(τ+

0 ) = j,0 < Y(τ+
0 ) ≤ x|M(0) = i

)
= 1

−v(i)

∫ x

0
dw

[∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)

]
ij

.

Thus, we get (4.4) converting to the notation of the forward processes. Fori ∈ S+,
(4.4) is immediate, sinceξ+

0 is the first transition instant after time 0 in this case.
�

ForG, we can get the following expression similarly to Theorem 4.1, using the
fact that the first hitting over levelx is attained either continuously or by a jump.

COROLLARY 4.1. For i ∈ S+, j ∈ S,

Gij (x) = 1(i = j)e−xc(i)/v(i)

(4.5)
+

∫ x

0

c(i)

v(i)
e−c(i)y/v(i) dy

∫ ∞
x−y

1

c(i)
Uij (dw), x ≥ 0,

and, for i ∈ S−, j ∈ S,

Gij (x) = −1

v(i)

[∫ ∞
x

dw

[∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)

]
ij

+ L−+
ij v(j)exCjj/v(j)

(4.6)
+ ∑

k∈S+
L−+

ik

v(k)

c(k)

∫ x

0

∫ ∞
x−y

Ukj (dw)
c(k)

v(k)
e−yc(k)/v(k) dy

]
,

x ≥ 0.

5. Asymptotic behavior of the hitting probability. In this section, we study
the asymptotic behavior of the hitting probabilities as the hitting level goes to
infinity. Throughout this section we assume a negative drift, that is,

E(Y (1)) = π
ve + π

∫ ∞
0

D(du)e < 0.(5.1)

Under this condition,Y (t) → −∞ as timet → ∞. Hence, the hitting probability
P (τ+

x < ∞|M(0) = i) converges to zero asx → ∞. Assume that the jump size
distributions have light tails. Then, it is expected that the hitting probability decays
exponentially fast, which is known asthe Cramér–Lundberg approximation for
the conventional risk model. Furthermore, a Brownian component may be added
[see Schmidli (1995)]. Instead of a Brownian component, we here have signed
continuous movements.
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The decay rates for the hitting probabilities have been extensively studied by the
change of measure technique based on martingales [see, e.g., Asmussen (2000)
and Rolski, Schmidli, Schmidt and Teugels (1999)], but this approach has not
yet fully covered the Markov modulated model even for the case thatv(i) ≡ −1
[see Section VI of Asmussen (2000)]. Here we use the Markov renewal theorem
as in Miyazawa (2002), which considers the case thatv(i) ≡ −1. This approach
also uses a change of measure, but it is more straightforward.

Let us briefly introduce this Markov renewal approach, following Section 2 of
Miyazawa (2002). LetS × S matrix P (x) = {Pij (x)} be a Markov renewal kernel
that may be defective, that is,P (x)e ≤ e. Denote the moment generating function
of P (x) by P̂ (θ) ≡ ∫ ∞

0 eθxP (dx). SinceP̂ (θ) is a nonnegative and substochastic
matrix, it has a positive eigenvalueγ (θ), such that the absolute values of all other
eigenvalues are less thanγ (θ) and the associated right and left eigenvectors are
nonnegative [see, e.g., Seneta (1980)]. Denote these associated eigenvectors by
ν(θ) andh(θ), respectively. Suppose that anS × S matrix functions�(x) andB(x)

for x ≥ 0 satisfies the Markov renewal equation,

�(x) = B(x) + P ∗ �(x), x ≥ 0.(5.2)

Then, Theorem 2.6 of Chapter X in Asmussen (1987) [see Miyazawa (2002) for
the present context] reads as

LEMMA 5.1. Suppose the following four conditions: (5.a)P (x) has a single
irreducible recurrent class that can be reached from any state in S with probability
one, and the return time to each state in the irreducible recurrent class has a
nonarithmetic distribution, (5.b) there exists a positive α such that γ (α) = 1,
(5.c) each entry of eαxB(x) is directly Riemann integrable, (5.d)ν(α)P̂(1)(α)h(α)

is finite. Then, we have

lim
x→∞ eαx�(x) = 1

ν(α)P̂(1)(α)h(α)
h(α)ν(α)

∫ ∞
0

eαuB(u) du,(5.3)

where P̂(1)(α) = d
dθ

P̂ (θ)|θ=α.

Let us putP (x) = H(x), �(x) = �(x) andB(x) = G(x). Then, (5.2) holds
by (4.1). Clearly, condition (5.a) is satisfied by the irreducibility ofC + D and
the exponential sojourn times ofM(t). We next compute the moment generating
functionĤ (θ) of H(x). From Theorem 4.1, the following results are obtained.

LEMMA 5.2.

Ĥ (θ) = I − 
−1
v T (θ)

(
C + D̂(θ) + θ
v

)
,(5.4)

where

T (θ) =
[(

θI−− − K(−)
)−1 (

θI−− − K(−)
)−1

L−+ + L−+
++
v (
++

c−θv)
−1

0+− −
++
v (
++

c−θv)
−1

]
.
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REMARK 5.1. SinceT (θ) is invertible as we will see, (5.4) can be written as

C + D̂(θ) + θ
v = T (θ)−1
v
(
I − Ĥ (θ)

)
.(5.5)

This can be considered as a generator version of the Wiener–Hopf factorization
[see, e.g., Arjas and Speed (1973)].

Since this lemma is just computations, we defer its proof to Appendix A. We
notice thatĤ (θ) exists only forθ < min{c(i)/v(i); i ∈ S+}. We shall use the
following light tail assumption onD(x) and related regularity assumption:

(i) D(θ) is finite for someθ > 0,
(ii) sup{D′

ij (θ) < ∞; i, j ∈ S, θ > 0} = ∞.

Condition (ii) can be relaxed, but it is sufficient for most applications.
Note that condition (5.1) implies that̃Q(−) is a rate matrix. SinceC + D̂(θ) +

θ
v is an ML matrix for eachθ > 0, it has a real eigenvalueκ(θ) such that it
dominates the real parts of all other eigenvalues, and the associated left and right
eigenvectors are positive. Denote these eigenvectors byµ(θ) andh(θ), respectively.
Let k− be the right eigenvector ofK(−) for eigenvalue 0, wherek− is unique and
positive (see Corollary 3.1). We normalizeµ(θ) andh(θ) so that(

µ(θ)
)−k− = 1, µ(θ)h(θ) = 1.

Sinceκ(θ) = µ(θ)(θ
v + C + D̂(θ))h(θ), we have

κ ′(θ) = κ(θ)
((

µ(θ)
)′h(θ) + µ(θ)

(
h(θ)

)′ ) + µ(θ)
(

v + D̂′(θ)

)
h(θ)

= µ(θ)
(

v + D̂′(θ)

)
h(θ),

where we have used the fact thatµ(θ)h(θ) = 1. This implies thatκ ′(0) =
E(Y (1)) < 0 becauseµ(0) = π . Hence, from the fact thatκ(0) = 0 andκ(θ) is
a convex function [see Kingman (1961)], condition (ii) guarantees thatκ(θ) = 0
has a unique positive solution. Thus, condition (5.b) is satisfied. Denote this
solution byα.

To findν(α) for Lemma 5.1, we compute the inverse matrix ofT (α):

T (α)−1 =
[
αI−− − K(−) L−+
++

c−αv(

++
v )−1 + (αI−−− K(−))L−+

0+− −
++
c−αv(


++
v )−1

]
.

Defineν(α) as

ν(α) = −µ(α)T (θ)−1
v.(5.6)

Clearly,ν(α) is the left invariant vector ofĤ (α). We show thatν(α) is positive. To
this end, we introduce a twisted Markov transition kernel forH . Define

H †(x) = 
−1
h(α)

∫ x

0
eαuH(du)
h(α), x ≥ 0.
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Then, by our choice ofh(α), H †(∞)e = e, that is,H †(∞) is a stochastic kernel.
From (5.4), we have

ν(α)
h(α)H
†(∞) = ν(α)Ĥ (α)
h(α)

= ν(α)
h(α) + µ(α)
(
α
v + C + D̂(α)

) = ν(α)
h(α) .

Hence,ν(α)
h(α) is the left invariant vector of stochastic kernelH †(∞). From
(5.6) and the normalization ofµ(α), it follows that (ν(α))−(−
−−

v )−1k− = α,
andk− is positive by Corollary 3.1. So,ν(α) must be nonnegative andν(α)
h(α) is
also nonnegative. SinceH †(∞) is a finite stochastic matrix and irreducible, which
follows from the irreducibility ofC + D, ν(α)
h(α) must be a positive vector and
unique up to a multiplicative constant. Hence,ν(α) is a positive vector.

It is easy to see thath(α) is the right positive eigenvector of̂H(α) for the
eigenvalue 1. Thus, we are now in a position to apply Lemma 5.1, forP = H

andB = G. We first compute the following integrals. Fori ∈ S+, (4.5) yields∫ ∞
0

eαxGij (x) dx

= δij

∫ ∞
0

eαxe−c(i)/(v(i))x dx

(5.7)
+ 1

v(i)

∫ ∞
0

eαx dx

∫ x

0
e−c(i)/(v(i))y dy

∫ ∞
x−y

Uij (du)

= 1

α

[

−1

c−αv
(
C + D̂(α) + α
v − (C + D)

)]
ij .

Similarly, for i ∈ S−, we have∫ ∞
0

eαxGij (x) dx

= −1

αv(i)

[(
αI−− − K(−)

)−1
(I−−,L−+)

(
C + D̂(α) + α
v

)

+ (0−−,L−+)
v

−1
c−αv

(
C + D̂(α) + α
v − (C + D)

)
(5.8)

− k−π−(I−−,L−+)

(

v +

∫ ∞
0

yD(dy)

)

− (
k−π− − K(−)

)−1
(I−−,L−+)(C + D)

]
ij

.

See Section A.2 for the detailed derivation of this formula. Thus, condition (5.c) is
satisfied. Then, applying Lemma 5.1, we have the following asymptotics.

THEOREM 5.1. Suppose the stability condition (5.1) and the light tail
conditions (i) and (ii). Then, the maximal eigenvalue κ(θ) of C + D̂(θ) + θ
v
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equals 0 for a unique θ = α > 0, and we have, for i, j ∈ S,

lim
x→∞ eαxP

(
M(τ+

x ) = j |M(0) = i
)

(5.9)
= 1

η(α)

[
h(α)µ(α)

(
�(α) − 1

α
(C + D)

)]
ij

,

where η(α) = µ(α)(D̂(1)(α) + 
v)h(α) for the first derivative D̂(1)(α) of D̂(θ) at
θ = α, and �(α) is a S × S-matrix such that(

�(α)+−,�(α)++) = (0−+,0++),(
�(α)−−,�(α)−+) = −k−π

(

v + D̂′(0)

)
− 1

α
(αI−− − k−π−)

(
k−π− − K(−)

)−1

× (I−−,L−+)(C + D).

In particular, using the notation η(0) = E(Y (1)) < 0, for i ∈ S,

lim
x→∞eαxP

(
τ+
x < ∞|M(0) = i

) = −η(0)h
(α)
i

η(α)

(
µ(α)

)−k−.(5.10)

PROOF. We first compute the denominator of (5.3). From (5.4), it is easy to
see that

ν(α) d

dθ
Ĥ (θ)

∣∣∣∣
θ=α

h(α) = µ(α)
(
D̂(1)(α) + 
v

)
h(α),

since(C + D̂(α) + α
v)h(α) = 0. Thus the denominator isη(α), which is clearly
finite. This also implies condition (5.d). We next computeν(α)

∫ ∞
0 eαuG(u)du.

Then, (5.6) and (5.7) yield

(
0−,

(
ν(α)

)+) ∫ ∞
0

eαuG(u)du

= 1

α

(
0−,

(
µ(α)

)+)(
C + D̂(α) + α
v − (C + D)

)
.

Similarly, (5.6) and (5.8) yield

((
ν(α)

)−
,0+) ∫ ∞

0
eαuG(u)du

= 1

α

((
µ(α)

)−
,0+)(

C + D̂(α) + α
v − (C + D)
)

− (
µ(α)

)−k−π−(I−−,L−+)
(

v + D̂′(0)

)
− 1

α

(
µ(α)

)−(
αI−− − k−π−)(

k−π− − K(−)
)−1

(I−−,L−+)(C + D).
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Thus, (5.3) yields (5.9) sinceπ−(I−−,L−+) = π andµ(α)(C+D̂(α)+α
v) = 0.
Finally, summing up (5.9) over allj ∈ S yields (5.10), since(C + D)e = 0 and

π
(

v + D̂(1)(0)

)
e = E(Y (1)). �

REMARK 5.2. WhenS+ = ∅ and v ≡ −1, the results in Theorem 5.1 are
fully compatible with those obtained in Theorem 3.1 of Miyazawa (2002).

It may be interesting to consider asymptotics of the probability thatY (t)

overshoots levelx continuously. To this end, we defineB of (5.2) as

B(x) = 
−1
v

(−L−+
I++

)

++

v e−x
++
c (
++

v )−1
.(5.11)

Then, using (5.6), we have

ν(α)
∫ ∞

0
eαxB(x) dx = µ(α)

(−L−+
I++

)

++

v .

Hence, we obtain the following result, which extends Corollary 4.9 of
Asmussen (1994).

THEOREM 5.2. Under the same conditions as in Theorem 5.1, for i ∈ S and
j ∈ S+,

lim
x→∞ eαxP

(
M(τ+

x ) = j,Y (τ+
x ) = x|M(0) = i

)
(5.12)

= h
(α)
i

η(α)

[
µ(α)

(−L−+
I++

)

++

v

]
j

.

6. Applications. We briefly discuss applications of our results to a risk
process and a fluid queue with extra jump inputs. Define a processZx(t) for each
x ≥ 0 as

Zx(t) = x − Y (t), t ≥ 0.

Then,Zx(t) is a risk reserve process starting with reserve levelx, and−v(i) is
the premium rate under background statei ∈ S, while a claim whose size has
distribution F D

ij arrives when the background state changes fromi to j with
rate Dij . For the risk processZx(t), a primary interest is the ruin probabilities
and their asymptotics. The latter are obtained by Theorems 5.1 and 5.2. Numerical
values of the ruin probabilities may be obtained taking Fourier transform of (4.1),
using Theorem 4.1 and Corollary 4.1, and applying numerical inversion technique.

We next consider a fluid queue. Suppose thatY (t) describes the net flow of
a fluid queue with extra jump inputs. Then, the buffer contentV (t) at time t is
given by

V (t) = sup
0≤u≤t

(
Y (t) − Y (u)

)
,
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if V (0) = 0. As is well known, under the stability condition (5.1), which is
assumed from now on,V (t) andM(t) converge jointly in distribution ast → ∞.
Denote a pair of random variables having this joint distribution by(V,M). Then,
the well-known formulation of Loynes (1962) yields

P (V > x,M = i) = πiP

(
sup
u≥0

Ỹ (u) > x|M(0) = i

)
.(6.1)

Hence, this stationary probability is the hitting probability at levelx of the additive
processỸ (t). Thus, converting (5.10) to the dual process, Theorem 5.1 yields the
following:

THEOREM 6.1. Under the conditions of Theorem 5.1, let α be the same one
in the theorem, Q(−) be the minimal rate matrix satisfying the following matrix
equation for a substochastic matrix R+−:

−
(

I−−
R+−

)
Q(−) = 
−1

v

∫ ∞
0

(
C(du) + D(du)

)(
I−−
R+−

)
euQ(−)

,(6.2)

and let β− be the stationary probability vector of Q(−). Then, we have, for i ∈ S,

lim
x→∞ eαxP (V > x,M = i) = −η(0)µ

(α)
i

η(α)
β−(

h(α)
)−

.(6.3)

APPENDIX

A.1. Proof of Lemma 5.2. We first consider the case thati ∈ S+. From (4.4),
we have

Ĥij (θ) = δij + 1

c(i) − v(i)θ

(
Cij + D̂ij (θ) + θ[
v]ij )

.

Thus, we get (5.4). Fori ∈ S−, we first compute the moment generating function
of the first term of (4.4).

−1

v(i)

[∫ ∞
0

eθx dx

∫ ∞
x

e(y−x)K(−)

(I−−,L−+)D(dy)

]
ij

= −1

v(i)

[(
θI−− − K(−)

)−1
∫ ∞

0

(
eyθI−− − eyK(−))

(I−−,L−+)D(dy)

]
ij

.

Hence, using the following equation that is obtained from (3.11),

−
∫ ∞

0
eyK(−)

(I−−,L−+)D(dy)

= (I−−,L−+)C + (
K(−) − θI−−)

(I−−,L−+)
v + θ(I−−,L−+)
v,
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we have
−1

v(i)

[∫ ∞
0

eθx dx

∫ ∞
x

e(y−x)K(−)

(I−−,L−+)D(dy)

]
ij

= δij + −1

v(i)

[
(0−−,L−+)(−
v) + (

θI−− − K(−)
)−1

(I−−,L−+)

× (
C + θ
v + D̂(θ)

)]
ij .

We next compute the moment generating function of the second term of (4.4).
Similarly to the case thati ∈ S+, we have

−1

v(i)

∫ ∞
0

eθx dx

(∫ x

0
L−+

ik

∑
k∈S+

(
1− e−c(k)(x−y)/v(k))v(k)

c(k)
Ukj (dy)

)

= −1

v(i)

[
(0−−,L−+)
v

(
I + 
−1

c−θv
(
C + D̂(θ) + θ
v

))]
ij .

A.2. Derivation of (5.8). Similarly to (5.7), (4.6) yields∫ ∞
0

eαxGij (x) dx

= −1

v(i)

[∫ ∞
0

eαxdx

∫ ∞
x

dw

∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)(A.2.1)

+ 1

α
(0−−,L−+)
v


−1
c−αv

(
C + D̂(α) + α
v − (C + D)

)]
ij

.

We compute the integral in the bracket of (A.2.1) in the following way. Using
the fact thatK(−) − αI−− andk−π− − K(−) are nonsingular, where the latter is
obtained by Corollary 3.1, we have∫ ∞

0
eαx dx

∫ ∞
x

dw

∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)

=
∫ ∞

0
dw

∫ w

0
eαx dx

∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)

= 1

α

∫ ∞
0

dw

∫ ∞
w

(eαw − 1)e(y−w)K(−)

(I−−,L−+)D(dy)

= 1

α

(
K(−) − αI−−)−1

(∫ ∞
0

eyK(−)

(I−−,L−+)D(dy)

− (I−−,L−+)D̂(α)

)

− 1

α

(
k−π− − K(−)

)−1
∫ ∞

0

(
yk−π− − (

eyK(−) − I−−))
× (I−−,L−+)D(dy).
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Using the relation (3.11), the first integral in the above equation is computed as(
αI−− − K(−)

)
(I−−,L−+)
v − (I−−,L−+)

(
C + D̂(α) + α
v

)
,

while the second integral is computed as

(I−−,L−+)(C + D) − (
k−π− − K(−))(I−−,L−+)
v

+ k−π−(I−−,L−+)

(

v +

∫ ∞
0

yD(dy)

)
.

Hence, using the fact thatk− = (k−π− − K(−))−1k−, we have∫ ∞
0

eαx dx

∫ ∞
x

dw

∫ ∞
w

e(y−w)K(−)

(I−−,L−+)D(dy)

= 1

α

((
αI−− − K(−)

)−1
(I−−,L−+)

(
C + D̂(α) + α
v

)

− k−π−(I−−,L−+)

(

v +

∫ ∞
0

yD(dy)

)

− (
k−π− − K(−))−1

(I−−,L−+)(C + D)

)
.

Substituting this formula into (A.2.1), we get (5.8).
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