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Motivated by a risk process with positive and negative premium rates,
we consider a real-valued Markov additive process with finitely many
background states. This additive process linearly increases or decreases
while the background state is unchanged, and may have upward jumps at
the transition instants of the backgnd state. It is known that the hitting
probabilities of this additive process at lower levels have a matrix exponential
form. We here study theitting probabilities at upper levels, which do not
have a matrix exponential form in gemaérThese probalities give the ruin
probabilities in the terminology of the risk process. Our major interests are in
their analytic expressions and their asymptotic behavior when the hitting level
goes to infinity under light tail condiins on the jump sizes. To derive those
results, we use a certain duality on the hitting probabilities, which may have
an independent interest because it does not need any Markovian assumption.

1. Introduction. Consider a risk process in which premium rates, claim
arrivals and claim sizes depend on a background state, which is governed by
a continuous time Markov chain. The premium rate is usually assumed to be
positive, and can be reduced to unit by a random time change. Suppose that the
premium includes returns from investments. Then, it may happen that the premium
rate takes negative values since the returns may be negative. This motivates us to
consider a risk process with positive and negative premium rates. Our primary
interest is in an asymptotic behavior of the ruin probability when the initial reserve
goes to infinity, provided the claim size distributions have light tails, that is,
decrease exponentially fast.

Similarly to Asmussen (2000), we model the risk process as a Markov additive
process (¢) with upward jumps and' (0) = 0. Then, forx > 0,x — Y (¢) is a risk
process with initial reserve, and ruin occurs whefi(¢) hits levelx. We assume
the following setting. The background continuous-time Markov chain has a finite
state space. The additive component linearly increases or decreases while the
background state is unchanged. At the transition instants of the background
Markov chain, the additive component may have upward jumps whose sizes may
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depend on the background states before and after the transitions. This additive
process was recently studied by Takada (2001) and Miyazawa and Takada (2002)
for extending the Markov modulated fluid queue [see, e.g., Asmussen (1995) and
Rogers (1994)].

A key observation in Miyazawa and Takada (2002) and Takada (2001) is that
the hitting probabilities in the downward direction have a matrix exponential form,
which follows from the fact that the additive process is skip free in this direction.
The result generalizes the matrix exponential forms in the literature [see, e.g.,
Asmussen (1995, 1995), Rogers (1994) and Takine (2001)]. However, we can
not directly apply this result to the ruin probability since this requires the hitting
probabilities in the upward direction.

In this paper we consider these hitting probabilities. We represent the hitting
probabilities as a Markov renewal function. Then, their asymptotic behaviors
are studied through the Markov renewal theorem. This renewal approach for
the asymptotic behavior is rather classical, but has not been so popular for the
Markov additive process. A typical approach is the change of measures based on
martingales [see, e.g., Asmussen (2000)]. The large deviation technique has also
been used. The latter can be applied for a larger class of additive processes, but is
less informative. In this paper we show that the Markov renewal approach is yet
powerful, in particular, it provides the prefactor of the decay function.

To fully utilize this approach, we need to get the Markov renewal kernel in
a closed form, which is the conditional joint distribution of the ladder height and
associated background state given an initial background state. To this end, we use
a dual additive process similarly to Asmussen (1991) and Sengupta (1989). This
dual process is obtained from the Markov additive process by time reversal and
changing the sign of the additive component. However, our approach is different
from those in Asmussen (1991) and Sengupta (1989), which use the occupation
measure. We directly derive the joint distribution, including the ladder epoch, in
terms of the dual process, which does not require any drift condition on the additive
process. Furthermore, we do not need any Markovian assumption, but only need
stationarity. This result may be of independent interests, so we derive it under
the stationary regime. We then specialize it to the Markov additive process and
perform detailed computations.

This paper is made up by six sections. In Section 2 we introduce the
additive process with upward jumps under the stationary regime, and compute the
ascending ladder height distribution in terms of the dual process. In Section 3
we specialize this result to the Markov additive processes. In Section 4 we
derive a Markov renewal equation for the hitting probabilities. In Section 5 those
probabilities are shown to have asymptotically exponential decay. In Section 6 we
discuss applications to risk processes and fluid queues.

2. Theadditiveprocessunder thestationary framework. In this section we
introduce a stationary additive process and consider its ascending ladder height,
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not using any Markovian assumption. L§gt,, M,,, A,); n € Z} be a stationary
marked point process, such that the counting meaauref {r,} has a finite
intensityx and the markKM,,, A,) takes values ii§ x R, whereS is a countable
set,Z is the set of all integers anll, = [0, co). In our applicationsS is finite,
but this does not matter in this section. In the terminology of a risk process,
t, is the arrival time of a claim if4,, is positive andM,, is a background state.
Note that not allz, represent claim arrivals sincg, = 0 is allowed. This gives
a great flexibility when we assuni,, to be Markov. Namely, the claim arrivals
are subject to the Markovian arrival process due to Neuts (1989) [see Asmussen
(2000) for applications to a risk process].

Let M(¢r) and A(¢) be continuous-time processes such th&y) = M,, and
A(t) = A, respectively, forr € [1,,1,11). As usual, we can choose a canonical
probability space(2, £, P) with a shift operator groudd;} on Q such that
P({6,(w) e D}) = P(D) forall D € ¥, and, forw € 2,s € R = (—00, +00),

N(B)(6s(w)) = N(B + s5)(w), B e B(R),
M) (O () = M(t +5) (@), A@)(Os(@)) = A +5) (@), 1eR,

whereB +s = {u +s; u € B}. We shall use abbreviated notation sucid&s) o 6,
for M (1) (05 (w)).

We next define an additive process. Lét) be a function fromS to R \ {0}.
For simplicity, we exclude the casgi) = 0, but this is not essential. TheF(r)
is defined as

+ +
/ v(M () du +/O A@W)N (du), >0,
1)  Y(@)= o * o
—/ v(M(u))du—/ AW)N(du),  t<O0.
t_

t—

Thus Y (¢) is the additive process that linearly changes whil¢r) is constant
and may have jumps when it changes. Note thé&), M (r) and A(¢) are right
continuous andY (0) = 0. By definition, Y () has stationary increments and
satisfieqY (t) — Y(s)) 00, =Y ( +u) — Y (s +u). In particular,Y (0) = 0 implies

(2.2) Y#)00,=Y({+u)—Yu).

We refer toY (¢) as a stationary additive process with background prot&ss.
Let rj be the hitting time whet¥ (¢) gets into[x, oo) for x > 0. Namely,

tr=inf{r >0, Y () > x}.

Then, Y(r0+) is called the ascending ladder height, which is zero wili€n
continuously crosses the origin. Note thgt and, hencey (z5) and M (=) are
defective (proper) if

E(Y (1) < (>)0 respectively
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As is well known, this can be proved using Loynes’ (1962) argument® ()
is a Markov processE (Y (1)) > 0 implies thatro+ is proper [see Lemma 2.1 of
Miyazawa and Takada (2002)]. In what follows, fog S, the eveni{M(r0+) =i}
means the evert, < oo, M(zg) =i}.

The purpose of this section is to express the joint distribution at the ascending
ladder epoch, that is, far j € S, u, x,z > 0,

P(tg <u; M) =i, M(tg =) = j, M(zg) =k, ~Y (1) <z, Y(z5) < x),

in terms of dual processeéé(r), A(r) andY (¢) defined below. In our applications
we only need the case that= z = oo, but the joint distribution may be of
independent interests, as we shall see.

Define dual processéd (r) andY (¢) by

M(1) = M(—1), A@t) = A(-1), Y(t)=—Y(—t)+ Y (0-), teR.

Note thatY (r) is also a stationary additive process with upward jumps satisfying
Y(0+) = 0. The termY (0—) is irrelevant in the definition off () under the
stationary setting, that is, with respect &g sinceP(Y(0) = Y(0—) =0) = 1.
However, this is not the case under the conditional probability measure, given
that there is a point ofV at the origin. Note that the dual proce®ss) is

not right continuous but left continuous. Thus(0) = ¥ (0—) may be negative.
Similarly to Y(t), M(r) and A(¢) are left continuous. Furthermore, M (r) = i,
thenY () changes at rate(i), that is,Y () andY (r) have the same rate when their
corresponding background states are identical. Let

=inf{r > 0; Y () < w}, w <0.

That is,7,, is the hitting time of? (1) at levelw < 0. Note thatY (1) is skip free
in the downward direction. So the distributionsigf and M (%) are easier to get
when the background procea&(t) is Markov. This fact will be used.

SinceAr = E(N(0, 1]) < oo, we can define the Palm distribution with respect to
the point proces#/, which is denoted byy . Let

o (t)=supu <t; N([u,t)) > 0},
ot (@) =influ>t; N(t,u)) > 0.

We also use their dualsi—(t) and 67 (¢), by changingN to its dual N,
where N(B) = N(—B) for B € B(R) in which —B = {x € R; —x € B}. For
example,5~(r) is the last transition instant o#f before times. Note that
the dual processes undé? coincide with the original processes undgr,
which is a canonical probability measure fa¥ (-), M (1), A(t)). For example,
En(p(t_))) = EN(¢(T:X)). Keeping these facts in mind, we present the following
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results, using the following notation:
S™={ieS;v@i) <0}, St ={ieS;v@i) >0},
M~() = (M(o™()—), M(1)), |v|+(z) = (M(t), M(G5T(1)+)).
NotethatM ~—(t) = (M (t—), M (1)) if N({t}) =1.
LEMMA 2.1. For anonnegative measurableg, i€ S~, j,ke Sandx,z >0,
—v()E(p(t9); M(0) =i, M~ (zg) = (J, k),
2.3) —Y(tg—)<z,0<Y(rg) <x)
=i [ Enlp(E2,): MO = k. ). W1(E,) =i,
0<A(0) —w < x)dw,
and, using the notation 7 = Y (0) — Y (6 ~(0)+),for i e S—, k € ST,
—v(@)E(p(rg); M) =i, M~ (r) = (j, k), Y (zg) =0)
(2.4) = [T En(e(2,) MO = (k). MG, =1
AO) <w <T +y)dw,

where E(X; D) = E(X1p) for arandomvariable X and an event D.

PROOF  We first consider the case thEtzy) > 0. In this case the additive
process (¢) only up crosses level 0 by a jump. Hence, we have

E(p(tg); M(0) =i, M~ (zg)) = (j, k), =Y (r5) <z,0< Y (zrg) < x)

=E(f o(OL(MO) =i, M~ (1) = (j. k),
0
Y(u)<0,uec(0,1),

(2.5)

Y-y <Y e <0,x])N<dr>),

where 1(-) is the indicator function of the statement’.”To (2.5), we apply
Campbell's formula [see, e.g., (3.3.1) of Baccelli and Brémaud (2002)], which
is given for a random functiop(z) by

E(/o g(t)o@,N(dt)):AEN</() g(t)dt).

To this end, we apply_; to the events in the indicator function of (2.5). By (2.2),
Y()ob_,=—Y(—1)=Y () — Y (0).
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Thus, using the fact that(0+) = 0, we have
(MO)=i,M(—)=j,Mt)=k}ob_,
= {M(0) =k, M(O+) = j, M(t) =i},
{Y(u) <0,u €(0,1)} 06—
={Y() <Y(u),ue0n)},
(=Y (t—)<z,Y(t) €(0,x]}ob_,
={-Y()<z,-Y(0) —x <V (1) < -V (0O)}.
Hence, applying Campbell’s formula to the right-hand side of (2.5) yields
E(p(tg): M0) =i, M~ (zg) = (j, k), 0 < Y (1g) =< x)

=AEpN (/0 (p(ff,_(t))]l(l\] T(0) = (k, j), M(f;(t)) =i,
Y(&) <Y),ue(0,1),—-Y() <z,

—Y(0) —x<-Y() < —17(0))dt>,

where the fact that= f;(t) whent is the descending ladder epoch is used. We now
change variable in the integral in (2.6). Let

w(t)=— inf Y(u).

O<u<t

Clearly, w(z) is nondecreasing, and(t) = —Y(t) whenw(¢) increases because
the dual procesg (¢) is left continuous and skip free in the downward direction.
So, we have

w'(t) = —v(M(@©)L(Y () < Y (u), u € (0,1)).

Hence, changing variables fromto w = w(t) in (2.6) and using the fact that
A(0) = —Y(0), we obtain (2.3). We next consider the case that ST and
Y(zg) =0. Similarly to (2.5), we have

E(p(tg); M(0) =i,M~(zg) = (j, k), Y (zrg) =0)
=E(f eML(M©0) =i, M~ (1) = (j, k),
0

2.7)
Y(u)<0,uc(,1)),

Y1) <0< Y(o*(t)—))N(dt)).
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Hence, we can apply similar arguments as for the (Ya(sgL) > 0, but we need to
replace the everfD < Y (t) <x}o6_; by

Y1) <0< Y(oT(t)—)}ob_,
={-Y(-1)<0<Y(cT(0)—) — Y (-1}
={A(0) <w < Y(0) — Y (6 (0)+) + A(0)},

for w = —Y (r). Hence, (2.4) follows. O

REMARK 2.1. (a) A key fact in Lemma 2.1 is that the ladder height
distribution, given the initial state, can be obtained via the hitting times in the
skip free direction.

(b) Lemma 2.1 does not need any drift conditionofa). So, the distribution
in the left-hand side of (2.3), witlh = 1, may or may not be defective.

(c) Consider the special case thtis Poisson and (1) = —1 with S = {1}.

This constitutes the classical risk process. Then, (2.3) is compatible with standard
results, such as Theorem 2.2 in Chapter lll of Asmussen (2000), provided
E(Y(1)) <O.

In the rest of this section we shall give further remarks and results on
Lemma 2.1. We first note the interesting feature of (2.3), that the sample path of
the forward process is traced back under the Palm distribution. Figure 1 illustrates
this sample path behavior. This fact is also related to the following conditional trace
back for the conventional Markov modulated risk process, that is, in the Markovian

Y(t)
AN O (=T(0)
/ Y(0) (=¥() K t
/ : X
N AN o |
y—X (=y) :
/———w@) >0 i LY(t) (=¥(0+))

Base line of|the dual process ~ \
-«— Time reversed direction Y(;)

FIG. 1. The additive process Y (¢) and its dual Y().
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setting withv = —1.
Pz <tIM©O) =i,M ™ (z) = (j, k), =Y (z§ —) =2)
= P(E, <tIMT(0) =k, j), M(GZ,)=i), 1,z>0.
See, for example, (2.1) of Asmussen and Hgjgaard (1996) and Proposition 2.2 of
Asmussen and Klippelberg (1996) for the derivation of (2.8). Let us show how

(2.8) is obtained in our approach. From (2.3), we havejferS—, j,k € S and
t,z>0,

29) —v(@)P(rg <t,MO0)=i,M ™ (15) = (j,k),0< Y (r§ —) <2)

(2.8)

—w

:,\/OZ Py(t2, <t,MT(0) = (k, j), M(iZ,) =i, w < A(0)) dw.

Hence, taking the derivative of (2.9) with respectcand dividing by this
derivative withs = co, we get, forr > 0,

P(rg <tIM(0)=i,M~(z) = (j, k), —Y (tg —) =2)

(2.10) i ~ ~
= Py(=, <tIMT(0) = (k, j), M(~) =i, w < A(0)).

In the Markovian settingPy in (2.10) can be replaced by, and7_ andM(f_‘Z)
do not depend or (0) sinceY (0+) = 0. So we arrive at (2.8). Note that (2.10) is
less informative than (2.9), equivalently, (2.3). Namely, we need (2.9)mwitlvo
to get (2.9) from (2.10).

We next sum (2.3) witlp(y) = 1(y <t) over alli, j, k, which yields

COROLLARY 2.1. Ifv(i)=-1fori e S~,wehave, for ¢, x,z > 0,
Pzt <1, —Y(r+—)§ Z, O<Y(r+) <x
011 (@ =r s SR
=k/ Py(TZ,<t,0< A0 —w <x)dw,
0

where v(i) can be an arbitrary positive number for i € S*.

REMARK 2.2. If St =@ andE(Y (1)) < 0O, then (2.11) withr = co agrees
with the well-known formula for the severity in a risk process [see, e.g., Asmussen
(2000)], sinceP (i ~,, < o0) = 1 andPy (A(0) < x) = Py(A(0) < x). Onthe other
hand, ifx = z = oo, it generalizes Proposition 2.3 in Chapter IV of Asmussen
(2000), which is obtained for the case tiéis Poisson.

Lemma 2.1 also generalizes Proposition 3.1 and Theorem 3.1 of Asmussen
(1991), which assumes thati) = —1. We here note another aspect of Lemma 2.1.

COROLLARY 2.2. |If there are no jumps, that is, F;;(0) =1for all i, j € S,
thenwe have, fori e S~ andk e ST,

(2.12) —v(i)P(M(0) =i, M(z) =k) =v(k)P(M(0) =k, M(Z;) =i).
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PROOF SinceY(rar) = 0 with probability one, (2.4) witlp = 1 yields
—v(@)P(M©O)=i,M(c~ (x)—) = j, M(xi) =k)
= A/OOO dw Py(M(©Q) =k, M(O+) = j, M(i~,) =i,w <T).

Summing over all possiblg and using the fact thal’ = —v(k)6~(0) and
M(T_,) 00_w vk = M(7y) on M(0) =k, we have

—v(@)P(M(©0) =i, M(zy) =k)

= A/OOO dwPy(M©Q) =k, M(-,) =i,w < T)

T -
—Ey (f L[3 (—w/v(K)) = k, T (E5) 0 6oy = i]dw).
0
SinceT = v(k)o T (0), we get (2.12) by the Palm inversion formulel]

Equation (2.12) explains how upward hitting is interpreted in the dual additive
process when there are no jumps. Suppese < E(Y (1)) < 0. Then (2.12) also
yields

at
P(r+ <0o0)=—,
0 a—

whereat =3¢+ v(()P(M(0) =i) anda™ = — Y ;cg- v(i) P(M(0) = ).

3. The Markov additive process. From now on we specializéZ(¢) to be
a continuous-time Markov chain with finite state spa&cand assume that ()
only depend orM (t—) and M (¢). In this setting(M (¢), Y (¢)) is called a Markov
additive process. In this section we derive the ascending ladder height distribution
in a closed form for this additive process.

Let C;; fori # j andD;; for all i, j € S be nonnegative numbers and let

Cii=_<ZCij+ZDij>, ieds.
J#i jes
For convenience, let(i) = —C;;. LetC = {C;;} andD = {D;;} be S x S matrices.

We takeC + D for the rate matrix of Markov chaiM () and assume that + D

is irreducible. Since$ is finite, this implies that the Markov chain has a unique
stationary distribution, which is represented as a row veeter{r;}.

Note that the Markov chaiM (r) may include transitions that do not change
their states, sinc®;; may be positive. Of course, these transitions are irrelevant for
the sample path od (r), but they are convenient to include Markov modulated
Poisson arrivals for the jumps in our formulation. So weNebe the point process
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generated by all the transition instants. IE# be the jump size distribution associ-

ated with transitions due tD;;, WhereFlP(O) = 0, while no jumps are associated
with transitions due ta;;. Then, the conditional distribution;; of A(z), given
thatM(t—) =i andM(¢) = j, is obtained as

FP (), i=j,
Fij(x) = Cij Dj; b

— +7F X i i,

c +Du 8(x) Gt Dy (x), #j

for x > 0, wheres(x) is the Dirac distribution which has a unit mass at the origin.
In this way the additive proced¥t) is completely specified for the rate function
DefineC,-j(x) andD,-j(x) as

Cij(x) = Cij8(x), Djj(x) = D;; ,J(x) i,j€S.

We denote the matrices which have these entrie§ @y and D(x), respectively.
For convenience, we also define mattixx) whoseij-entry is defined as

3.1 Uij(x) =13 # j)Cij(x) + Djj(x), i,jeS,x>0.

Clearly, the additive process(r) is specified byC, D(x) and the rate function.

We now evaluate (2.3) and (2.4) in the Markov setting. To this end, we first
consider the dual Markov chait (r) for M () and the dual additive proce¥st),
defined in Section 2. Defing x S matrices:

Cx)=AC(x) Ay, D(x)=A;1D(x) Ay,
Ux) =AU x) A,

where A, is the diagonal matrix whosgh entry isz (i) and *'” stands for
transpose. Obviously, we see tht(s) has transition rate matri€ + D, where
C = C(o0) and D = D(c0). Y(t) andY (r) have the same rate functienfor the
continuous movements. ThuE(r) is the Markov additive process, specified by
C(x), D(x) andv.

We next modify Lemma 2.1 in a convenient form for the Markov additive
process. Leil:“jk = Fy;. Then, from (2.3) and (2.4), we have, foe S—, j,ke S
andx > 0,

—v()EM(©)=i,M ™ (t) = (j,k),0< Y (z5) < x)
=A/O a’w/w Fij(dy) Py (M*(0) = (k, j), M(Z,_,,)) =i),

and, fori e S7, ke ST,
—v(EM©O)=i,M~(zg) = (j, k), Y(r5) =0)

(3.2)

(3.3) — /O dw /o Fij (dy) Py (M (0) = (k, j), (=) =i,

y<w<T+y).
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LEMMA 3.1. Forie S, j,keSandx >0,

64 P(M™ (1) = (j.k).0 < Y (rg) <x|M(0) =1i)

—Efxd /OOD (dy)Py(M(F=,_, ) =iM(O0+) = j)—
T Jo M, IV o) = IR0
and,forieS—,jeSandke ST,

PM~(z) = (j, k), Y(rg") =0|M(0) =)

Tk

00 0o
(3.5) e_c(k)w/”(k)dw/o Uk;j(dy)

7 Jo
~ - L 1
x Py(M(T2, ) =i1MO+) :J)Fi)'

PrROOF We only need to evaluate the Palm probabilities in (3.2) and (3.3).
SinceM (¢) is the Markov chain with rate matri€ + D, it is easy to see that
APN(M0) =k, M(O+) = j, M(TZ,_,,)) =1)

= Py(M(T7,_,,)) =ilM(O0+) = j)(1(k # j)Cij + Dj) 7.

Hence, (3.2) and (3.1) yields (3.4). Sin@e of Lemma 2.1 is exponentially
distributed with mean-c(k) /v (k), the right-hand side of (3.3) becomes

(3.6)

xfo ij(dy)/o dw Py(MT Q) = (k, j),MGF-,) =i,y <w<y+T)

00 00 —c(k
=nk/ Ukj(dy)/ e‘c(k)“/”(")—c( )du
0 0 v(k)

« [ " dw Py (M(G,) = i 1M(04) = )
y

. o0 oo k) k) —C(k)
:nk/ Ukj(dy)/ dw/ emcbuiv®) _—=2 gy
0 y w—y v(k)

x Py(M(%=,) =i|M(O+) = j)
00 00
=7Tk/ Ukj(dy)/ e CRYw=y)/vk) 1.,
0 y
x Py(M(£Z,) =i|M(O+) = j).
Hence, (3.3) yields (3.5).

In (3.4) and (3.5), it remains to evaluate

(3.7) Rj;j(x)=P(M@E-)=jMO0)=i), x>0,ieS, jeS" .



1040 M. MIYAZAWA

By R~ (x) andR*~(x), we denote th&~ x S~ andS+ x $~ matrices whosej
entry is given by (3.7), respectively. We shall use this convention widely. Namely,
for S x S matrix A, its submatrices of size§™ x 7, S~ x §*, ST x S~ and

ST x St are denotedbyr =, A=, AT~ andA ™™, respectively. Similarly, for an
S-vectorx, x~ andx™ are the subvectors whose entries are indexesibgnds,
respectively. Note thaR~—(x) is substochastic, that is, a nonnegative matrix
satisfyingR~—(x)e~ < e~, whereeis the column vector whose entries are all 1.

We now refer to recent results on the matrix exponential form in the Markov
additive process in Miyazawa and Takada (2002) and Takada (2001). The results
there are obtained for the forward proc¢€s(s), M (¢))} that is right-continuous.
On the other hand, we here need the corresponding results for the dual process
{(Y (1), M(1))} that is left-continuous. However, this left-continuity is irrelevant in
the definition (3.7), sinc& (¢) is skip free in the downward direction.

This skip free property also implies that the ladder height indexed process

{M(i=,);x > O} is Markov. Hence,R——(x) = ¢*¢” for some subrate ma-
trix O(7), thatis,0(")e” < 0. Itis also easy to see, at least intuitively, that
_d (R R~ (u+x)
dx \RT™(x) RT(u+x))"
Then, the following results would be intuitively reasonable. Their formal proofs
not for Y(¢), but for the forward proces¥ (r) are given in Theorem 3.2 of
Miyazawa and Takada (2002) and Theorem 4.1 of Takada (2001). Clearly, the

results are immediately transferred frdftr) to Y (r). In what follows, a square
matrix is said to be ML if its off-diagonal entries are nonnegative.

) = Ay Ow(@(dm + D(du)) (

LEMMA 3.2. There exist a subrate matrix Q=) and a substochastic ma-
trix RT—, such that

R\ _ (L7 w00

©9) (Re-t) = (fe- ) =0

where O™) and R~ arethe minimal ML and nonnegative solutions, respectively,
of the following eguation:

3.9 - (11;_) 0 = A\jlfooo(f?(du) + D(duw) (1’;_ ) 0.

Furthermore, Q™) isa rate matrix, if and only if
5 00
310)  E(Y()(=E(FD))=xAvetn / xD(dx)e<0.
0

We next represent Q) and Rt~ using the original additive process. Let
K™ and L=t be the minimal solutions of the following equation, such that
K and L~* are ML and nonnegative matrices, respectively:

(3.11) —K(—)(I——,L—+)=foooe“"()(1“,L—+)(C(du)+D(du))Av—1.
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Then O) and R+~ are obtained as
(3.12) 0 =) HKD)A;7, R =@hHtaha, .

COROLLARY 3.1. If (3.10)is satisfied, then
(3.13) nK9=0, x L T=n",
and K () has the right eigenvector k~ corresponding to 7z ~. Normalize k~ in
such a way that 7 ~k~ = 1. Then, k~ is unique and positiveand k7~ — K is
nonsingular.

PROOE Since Qe = 0~ and Rt~e~ = et by (3.10), (3.12) impl-
ies (3.13).(k)’ A, ~ is the stationary distribution 0@, since(k~)'A; "e=
k™ =1. Hencek™ is unique and positive. Assume that
(3.14) k™2~ —KD)x=0,
for an S—-dimensional vectorx. Pre-multiplying K™ to (3.14), we get
K& (K)x) = 0. Hence, K(~)x must beak~ for some constanti. Since

7~ K =0andz "k~ =1, we arrive atz = 0, which concludes = 0. So the
matrixk 7~ — K is nonsingular. O

We remark that similar eigenvectors have been reported for the case thats
in Section 2 of Chapter VI in Asmussen (2000). Let us compute the ascending
ladder height distribution. For this computation we need one more lemma.

LEmMMmA 3.3. Let A be the diagonal matrix whose jth diagonal entry is
c(j)=—Cjj, then,for j e ST andi e S,

(N vl © I~ w) O S
(3.15) / Ue/P0) gy U U(dy)( ~+_)e0+w)Q ] —[AFFRY]..

0 0 R ji Jt
PROOF By (3.9), the left-hand side of (3.15) is

[ eve i | [7 (@) + bidy) = sdy-0) (o )2 |

_ /O"O SN/ gy [(Av (Ile;) 0 + (A (,I{;— ))erHL

— (AR =

Ji

THEOREM3.1. ForieS—,jeSandx >0,
P(M(zi)=j,Y(rd) <x|M(0) =i)

(3.16) _ 1 (/Oxdw[/ooeW—w)K()(1——,L‘+)D(dy)}

T —v(i) w

tj

+1(j e S+)L,;+v(j)).
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PROOF LetJ;;(x) = P(M(tg) = j, Y(z5) <x|M(0) =i). We first consider
the case thaY(rJ) =0. From (3.5) and Lemma 3.3, we have
7'[]' N p— —1
Sly(HRE—.

V()R o)
Using njlé;;_ =m;L;;", this yields (3.16) forx = 0. We next consider the case
thatY(rgr) > 0. From Lemmas 3.1 and 3.2, we have

Tio[x % I~ o] —1
Jij(x) — J;; (0 =—J/ dw|:/ D (~ _)e(y w)Q i| —.
ij(x) — Jij (0) A g @y p+ 00

Thus, we get (3.16) by converting to the notation of the forward proceskes.

Jij(0) =

T

4. The hitting probability. We now consider the hitting probability at an
upper levelx > 0. Since(X(¢), Y (¢)) is a Markov additive process with a real
additive component, we can obtain the hitting probabilities as a Markov renewal
function using the appropriate ladder height distribution as a semi-Markov kernel.
However, we can not use (3.16) of Theorem 3.1 as this kernel because the additive
component may increase continuously. To have an appropriate kernel, we consider
the ladder height atr+(raf), that is, the first transition instant ¥/ (z) after
crossing level 0. For convenience, define a random varigbler x > 0 as

gF=o0t(t)).

Clearly,£" is a stopping time with respect to the additive procgssr), M (1))}.
DefineS x S matricesH (x) andG(x) by

Hij(x) = P(M(50) = j. Y(§5) <x|M(0) =),
Gij(x)=P(M(td)=j,Y (&) > xIM(©0) =i), i,jes, x>0.
Define the hitting probability matrix/ (x) by
Vi (x)=P(M(z)=jIM(0) =i).
Then,¥(x) is obtained as the unique solution of the Markov renewal equation,
(4.1) V(x)=G(x)+ H *V(x), x>0,

where the convolutiom * B(x) is defined for a matrix nondecreasing function
A(x) and a matrix functiorB(x) as

[Ax Bl =Y /0 Aix(dy) B (x — y).
k

The Markov renewal equation (4.1) will be the key for our arguments to obtain
an asymptotic behavior of the hitting probability. Thus, what we all need is to get
H (x) andG(x). We first consider the case thﬁ(raf) =0.
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LEMMA 4.1. Forie S ,jeSandx >0,
P(M (+(r ))_], Y(rg) = OY( +(r+))<x|M(0):i)

(|'2)
k S

k) k()
PRoOOF We need the following version of (3.3), fare S—, j,l € § and
keSt:
—v()P(M©0)=i,M~(zg) =1, k), M(c T (z5)) = J,
(4.3) Y(td)=0,Y (ot (r5)) <x)
:x/o dw/o Fix(dy) Py (M(5~(0)) =
M*(0) = (k. 1), M(i~,) =i,

y<w<7~"+y,7~"+7~"’+y§x+w),

whereT’ = —Y (0~ (0)) + Y (o ~(0)+). Since this can be proved in exactly the
same way as (3.3), we omit its proof. Thus, the right-hand side of (4.3) divided by
—v(i) becomes

vu)/ dw/ Fjxd2) / C(k) e <O dy / Fu(dy)

x Py(M(G™(0) = j,MT(0) = (k, ), M(iZ,) =1,
y<w<u+yu+y+z<x+uw)
(changing variablev to w — y)

=t [ [T Aty [T S B e O O au [ o

X Py(M(G~(0) = j,M*(0) = (k,]), M(Z~, ) =i,

O<w<u,u+z<x+w)

A xX+w C(k) —c(k)u/v(k) X+w—u =
- v(l) ” dw / Fu(dy) / e du / Fir(dz)

X Py(M(G~(0) = j,M*(0) = (k, 1), M(E—, ) =i),

where we have used the following fact. Conditionally, given tft (0)) = j,
MO =k, MO+)=I,M(_,) =1,

~Y(0) = Fy,
T =—Y (6 (0)+) + ¥ (0) ~ Exp(c(k) /v (k).
T'=—YG~(0) + Y (6 (0)+) = Fiy,
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where~ stands for equality in distribution and Exp denotes the exponential
distribution with mean 1a. Hence, using a decomposition similarly to (3.6) and
Lemma 3.2, the left-hand side of (4.2) is computed as

7Tj 00 [e9] x+w X+w—u ) - ~ ~
— </ dw/ du/ (L(j #k)Cjk + Dji) Fix(dz)
T JO 0 w 0

" @e—c(k)u/wk))
v(k)

1k #1)Cu + Dy - 1= (y+w)Q<)] -1
* | uld )[<R+‘>e )

TT o0 oo X
_T ( / e—cw/vE g / du
T JO 0 0

x—u ~ @ _c(k)u/v(k))i 7
X_/o Ufk(dZ)u(k)e c(k)Ukz(dy)

— (y+w)Q()} __1
) [(m—) ‘ 0
. oo 00 x
_T ( / e—cw/vE) g f 01(d2)
0 0 0

T

-1 -
8 (1 B e_c(k)(x—z)/v(k))) — U (dy)

—c(k)
I:_ (y+w)Q()} __1
% [(R*‘)e i v(@)

Summing this over all € S andk € ST and applying Lemma 3.3 yield (4.2)[]

THEOREM4.1. Fori, jeSandx >0, H;;(x) isgiven by

1 x VK)o
. = (y—w)K +
Hyw) = —— (/0 dw| [~ 1. L )D(dy)L
x O o VK
up> fo L (=@ “”)%Ukj(dy)),
1

X Y . 1 )
Hij(x) :/; (1_6 c(i)(x y)/U(l))?l)U”(dy)’ i e S+
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PrROOF We first consider the case that S~. From Lemma 4.1, we get
H;;(0) of (4.4). On the other hand, from Theorem 3.1,
P(M(ro+) =j,0< Y(ro+) <x|M(0) =i)
_ U =KD (== - +)D(dy)] .
_v(l) ij

Thus, we get (4.4) converting to the notation of the forward processes &t
(4.4) is immediate, sinceoJr is the first transition instant after time 0 in this case.
O

For G, we can get the following expression similarly to Theorem 4.1, using the
fact that the first hitting over leval is attained either continuously or by a jump.
COROLLARY 4.1. ForieSt,jes,
Gij(x) =16 = je~*ONM®

+/X @e—c(i)y/v(i)dyfoo iU,"(dw)’ x>0,
0 v() v e .

(4.5)

and,fori e S7,j €S,
-1 X =K —— =+
Gij(x) = U dw U e (I—.L )D(dy)]
v(z) w ij
+ L (e /vy

_+v(k) c(k) o ek)/v(k) }
+ Y1 (k)/f Uiy ) 5 d

keS+

(4.6)

x>0.

5. Asymptotic behavior of the hitting probability. In this section, we study
the asymptotic behavior of the hitting probabilities as the hitting level goes to
infinity. Throughout this section we assume a negative drift, that is,

(5.1) E(Y(l)):yrAve+7r/OooD(du)e< 0.

Under this condition} (1) — —oo as timer — oco. Hence, the hitting probability

P (1] < 0o|M(0) = i) converges to zero as— oo. Assume that the jump size
distributions have light tailsThen, it is expected thatéthitting probability decays
exponentially fast, which is known ake Cramér—Lundberg approximation for

the conventional risk model. Furthermore, a Brownian component may be added
[see Schmidli (1995)]. Instead of a Brownian component, we here have signed
continuous movements.
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The decay rates for the hitting probabilities have been extensively studied by the
change of measure technigue based on martingales [see, e.g., Asmussen (2000)
and Rolski, Schmidli, Schmidt and Teugels (1999)], but this approach has not
yet fully covered the Markov modulated model even for the caseuttiat= —1
[see Section VI of Asmussen (2000)]. Here we use the Markov renewal theorem
as in Miyazawa (2002), which considers the case tfigt= —1. This approach
also uses a change of measure, but it is more straightforward.

Let us briefly introduce this Markov renewal approach, following Section 2 of
Miyazawa (2002). LeS x § matrix P(x) = {P;;j (x)} be a Markov renewal kernel
that may beAdefective, that i®(x)e<e. I;)enote the moment generating function
of P(x) by P(0) = [5° e%* P(dx). SinceP(#) is a nonnegative and substochastic
matrix, it has a positive eigenvalyg0), such that the absolute values of all other
eigenvalues are less tha{f) and the associated right and left eigenvectors are
nonnegative [see, e.g., Seneta (1980)]. Denote these associated eigenvectors by
v@ andh®, respectively. Suppose that &nx S matrix functions® (x) and B(x)
for x > 0 satisfies the Markov renewal equation,

(5.2 P(x)=Bx)+ PxP(x), x>0.

Then, Theorem 2.6 of Chapter X in Asmussen (1987) [see Miyazawa (2002) for
the present context] reads as

LEMMA 5.1. Suppose the following four conditions: (5.a) P(x) hasa single
irreduciblerecurrent classthat can be reached fromany statein S with probability
one, and the return time to each state in the irreducible recurrent class has a
nonarithmetic distribution, (5.b) there exists a positive « such that y (@) = 1,
(5.c) each entry of ** B(x) is directly Riemann integrable, (5.d) v Py (a)h®
isfinite. Then, we have

o0
(5.3) lim e**®(x) = h(o‘)v(o‘)/ e“" B(u)du,
X—00 0

v (@) 13(1) (Ol) h (@)

where Py (@) = L P(6) |90

Let us putP(x) = H(x), ®(x) = ¥(x) and B(x) = G(x). Then, (5.2) holds
by (4.1). Clearly, condition (5.a) is satisfied by the irreducibility®f D and
the exponential sojourn times &1 (). We next compute the moment generating
function H (6) of H(x). From Theorem 4.1, the following results are obtained.

LEMMA 5.2.
(5.4) H®)=1— AT O)(C+ D®O)+0A),
where
6 - [(91—— — KOt —KkO) L + L_+A\7+(Aé“_+ev)_1]'
0+~ _A\T+(Ag—+9v)_1
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REMARK 5.1. SinceT (9) is invertible as we will see, (5.4) can be written as
(5.5) C+D®)+0A,=TO) A — H(B)).

This can be considered as a generator version of the Wiener—Hopf factorization
[see, e.g., Arjas and Speed (1973)].

Since this lemma is just computations, we defer its proof to Appendix A. We
notice thatH (9) exists only for6 < min{c(i)/v(i);i € ST}. We shall use the
following light tail assumption oD (x) and related regularity assumption:

() D(®) is finite for some’ > 0,
(i) Sup{lej(H) <o0;i,j€S,0>0}=o00.

Condition (ii) can be relaxed, but it is sufficient for most applications.

Note that condition (5.1) implies th&@ () is a rate matrix. Sinc€ + D(6) +
@Ay is an ML matrix for eachv > 0, it has a real eigenvalug(®) such that it
dominates the real parts of all other eigenvalues, and the associated left and right
eigenvectors are positive. Denote these eigenvectous®yndh©@ | respectively.
Letk~ be the right eigenvector of (=) for eigenvalue 0, wherk~ is unique and
positive (see Corollary 3.1). We normalipé’’ andh® so that

W@k =1, u®h® =1
Sincex (0) = n@ B Ay + C + D(©))h® | we have
K'(0) = K(Q)((ﬂ(9))/h(9) 4 M(9)(h(9))/) + IL(Q)(AV + ﬁ/(Q))h(e)
=u®(Ay+ D'©)h?,

where we have used the fact that?h® = 1. This implies that«’(0) =
E(Y(1)) < 0 becausqu© = . Hence, from the fact that(0) = 0 and« (9) is

a convex function [see Kingman (1961)], condition (ii) guaranteesxi@t = 0

has a unique positive solution. Thus, condition (5.b) is satisfied. Denote this

solution bya.
To find v(@ for Lemma 5.1, we compute the inverse matrixiaty):

T e [al“ — KO LA (AT (@l K(_))L_+}
ot- A (AaFH? '

o

Definev® as

(5.6) @ = — @7 @) LA,

Clearly,v@ is the left invariant vector off («). We show thav® is positive. To
this end, we introduce a twisted Markov transition kernel&arDefine

X
H'x)y=a0 | e HduwAyw, x>0,
0
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Then, by our choice oh®, HT(co)e= e, that is, HT(c0) is a stochastic kernel.
From (5.4), we have

V@ Ay H(00) = v @ H () A
=1 Ape) + 1@ (@AY + C + D(@)) = v Apw.
Hence,v® A« is the left invariant vector of stochastic kerngll (co). From
(5.6) and the normalization i, it follows that (v®)~(-A; ")k~ = «,
andk ~ is positive by Corollary 3.1. S®® must be nonnegative and®”) A o) is

also nonnegative. SindeT(oo) is a finite stochastic matrix and irreducible, which
follows from the irreducibility ofC + D, v® Ay« must be a positive vector and

unique up to a multiplicative constant. Hene& is a positive vector.

It is easy to see that® is the right positive eigenvector off («) for the
eigenvalue 1. Thus, we are now in a position to apply Lemma 5.1Pfer H
andB = G. We first compute the following integrals. Foe ST, (4.5) yields

m —_
/ e*Gij(x)dx
0 4

0 . .
— 51,], eaxe—c(t)/(v(l))x dx

0
(5.7) 1 oo . .
+— / ¢ dx / e~y gy / Ui (du)
v(@) Jo 0 x—y

1 4 A
= a[AC_W(C + D(a) +aAy — (C + D))],;-
Similarly, fori € S~, we have
o0 —_
/ " Gij(x)dx
0 :

(5.8) +(077, L7 AL (C+ D(@) +aAy — (C + D))

—k (I, L—+)<AV + /OOOyD(dy))

tj

See Section A.2 for the detailed derivation of this formula. Thus, condition (5.c) is
satisfied. Then, applying Lemma 5.1, we have the following asymptotics.

—krT—KO)YTaTT, Lh(C + D)}

THEOREM 5.1. Suppose the stability condition (5.1) and the light tail
conditions (i) and (ii). Then, the maximal eigenvalue «(6) of C + D(0) + 6 Ay
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equals O for a uniqued = « > 0, and we have, for i, j € S,

lim e P(M(t)) = jIM(0) =i)
(5.9) ree 1

- [h“’” <“)<F<a>——<C+D>)} ,

ij

where @ = u@ (D 1) (a) + Ay)h@ for the first derivative D) () of D(9) at
0 =«a,andI'(x) isa S x S-matrix such that

(C@)*, T@)*)=©0"",0"),
(M@, (@~ *) =—k~z(Ay + D'(0))
- gmz—— —k )k —KO)?
x (I77,L™")(C + D).

In particular, using the notation © = E(Y (1)) <0, fori € S,

+ —n©Oh (@)
; ax o i O\~ —

PrRoOOE We first compute the denominator of (5.3). From (5.4), it is easy to
see that

d - N
Y—H@®)| h@=p@ D)+ Ay)h®@,
€8]
do O=a

since(C + D(«) + aAy)h®@ = 0. Thus the denominator ig®, which is clearly
finite. This also implies condition (5.d). We next comput®& [5° ¢*“G (u) du.
Then, (5.6) and (5.7) yield

(0, (@)h) /O G () du

_ 2(0—, (1)) (C + D@ +aAy = (C + D)),

Similarly, (5.6) and (5.8) yield
()\— 0+ o au d
(V@)™ )/OeG(u)u

= 2((#"”)‘, 0")(C+ D@ +aAy — (C + D))
— (W) k r= U, L) (Ay+ D'(0)
1

(/L(“)) (a7~ =k x7)(k ™ — K(_))_l(l__, L™ (C + D).
o
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Thus, (5.3) yields (5.9) since~(I~—, L~) = x andp® (C + D(a) +aAy) = 0.
Finally, summing up (5.9) over aji € S yields (5.10), sincéC + D)e=0 and

7 (Av + Dy (0))e= E(Y (1)). O

REMARK 5.2. WhenS*™ = @ andv = —1, the results in Theorem 5.1 are
fully compatible with those obtained in Theorem 3.1 of Miyazawa (2002).

It may be interesting to consider asymptotics of the probability f&b
overshoots levet continuously. To this end, we defirkof (5.2) as

B S _
Then, using (5.6), we have
00 _J7—+
v(“)/o e“*B(x)dx =u(“)< Iljr+ )A\J{Jr.

Hence, we obtain the following result, which extends Corollary 4.9 of
Asmussen (1994).

THEOREM5.2. Under the same conditions asin Theorem5.1,for i € § and
jest,
lim e**P(M(z}) =j, Y (z])) = x|M(0) =)

X—>00
(5.12) @ .
_ M| e (LT A
o n(a) r I++ v ]

6. Applications. We briefly discuss applications of our results to a risk
process and a fluid queue with extra jump inputs. Define a praé€gss for each
x>0as

Z,(t)=x—-Y(), t>0.

Then, Z,(¢) is a risk reserve process starting with reserve layednd —v (i) is
the premium rate under background state S, while a claim whose size has
distribution Fl.';? arrives when the background state changes fioto j with
rate D;;. For the risk procesg,(¢), a primary interest is the ruin probabilities
and their asymptotics. The latter are obtained by Theorems 5.1 and 5.2. Numerical
values of the ruin probabilities may be obtained taking Fourier transform of (4.1),
using Theorem 4.1 and Corollary 4.1, and applying numerical inversion technique.

We next consider a fluid queue. Suppose thiat) describes the net flow of
a fluid queue with extra jump inputs. Then, the buffer contént) at timer is
given by

V(t)= sup (Y () —Y(u)),

O<u<t
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if V(0) =0. As is well known, under the stability condition (5.1), which is
assumed from now or/ (t) and M (¢) converge jointly in distribution as— oo.
Denote a pair of random variables having this joint distributior{¥dyM). Then,
the well-known formulation of Loynes (1962) yields

(6.1) P(V>x,M=i):n,-P<sup17(u)>x|M(0)=i).
u>0

Hence, this stationary probability is the hitting probability at levef the additive
processY (t). Thus, converting (5.10) to the dual process, Theorem 5.1 yields the
following:

THEOREM 6.1. Under the conditions of Theorem 5.1, let o be the same one
in the theorem, Q™) be the minimal rate matrix satisfying the following matrix
equation for a substochastic matrix R+ :

6.2 - (;__) 0 = A\Tl/OOO(C(a’u) + D(du)) (12+_ ) et

and let B~ be the stationary probability vector of Q(—). Then, we have, for i € S,
; ax N j — (h()\—
(6.3) x||_>mooe P(V>x,M=i)= @ B~ (h'*)~.
APPENDIX

A.1. Proof of Lemmab5.2. We first consider the case that S*. From (4.4),
we have

H;j(0) =8

i+ m(clj + D;j () + 0[Avlij).

Thus, we get (5.4). Fare S—, we first compute the moment generating function
of the first term of (4.4).

-1 o 0 R K&, ,—— 5 _
[/ e de/ VO +)D(dy)]
0 X

v(i)
_]_ _ e’}
_ —— (-1
‘vm[(“ KO

Hence, using the following equation that is obtained from (3.11),

tj

(1 — Ky, L‘*)D(dy)} :

tj

B /ooo X (17 L) Ddy)

=" LTHCH (KD 0177 )™, L™HA+60U "7, LA,



1052 M. MIYAZAWA

we have
—17 [ ax AT ) (o .
A [Terrax [T oK LDy
v(i) LJo x ij
-1 _
=5+ — [0, L) (A + (01 —K)ta™", L7

v(i)
x (C+0Ay+D®))];;-

We next compute the moment generating function of the second term of (4.4).
Similarly to the case thdte ST, we have

-1 pCEs + o~ =) /v Y v (k) )
W Jo ¢ (/ Fir sz:+ ety V@)

(1)[(0—— LA + A QV(C+I3(0)+9AV))]ij.

A.2. Derivation of (5.8). Similarly to (5.7), (4.6) yields

w —_
/ e Gij(x)dx
0

-1 o] [e’¢) [ee) (=)
A21) = ﬁ[/ e‘”a’x/ dw/ 0K (1= [ =+) D(dy)
vl
+ = (0" L™ AyAGL,(C+ D(@) +any — (C+D))}
ij
We compute the mtegral in the bracket of (A.2.1) in the following way. Using
the fact thatk (™) — o/~ andk =~ — K are nonsingular, where the latter is
obtained by Corollary 3.1, we have

/OO ‘“dx/ dwf WK (172 L=+ D(dy)
_/ dw/ a"dX/ 0K (1=~ L=+)D(dy)

_ _/ a’w/ (e — 1)K (1== 1=+ D(dy)
o Jo w

B g(K O —ar “>_1</ooo K7 (17, L7 D(ay)

—a L‘*)b(a))

R A I AU L)

x (I77, L~ ")D(dy).
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Using the relation (3.11), the first integral in the above equation is computed as
(@I~ = KU, L HAy— "7, L™ (C + D(@) + aAy),
while the second integral is computed as
(I, L™ C+D)—(kn~—KD)U ", L7HA,

o0
+k—n—<l",L—+>(Av+ / yD(dy)).
Hence, using the fact thiit = (k- 7~ — K))~1k—, we have

0 o0 o0 K(i)
/ ¥ dx f dw f 00K (== L=F)D(dy)
0 x w

— %((al__ —KOY I, L7 (C + D(@) + aAy)

—kTmm( 7, L_+)<Av +f yD(dy)>
0
— (k2T —KO)rUTT, LT + D)).
Substituting this formula into (A.2.1), we get (5.8).
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