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CONVERGENCE RATE OF LINEAR TWO-TIME-SCALE
STOCHASTIC APPROXIMATION1

BY VIJAY R. KONDA AND JOHN N. TSITSIKLIS

Massachusetts Institute of Technology

We study the rate of convergence of linear two-time-scale stochastic ap-
proximation methods. We consider two-time-scale linear iterations driven
by i.i.d. noise, prove some results on their asymptotic covariance and estab-
lish asymptotic normality. The well-known result [Polyak, B. T. (1990).Au-
tomat. Remote Contr. 51 937–946; Ruppert, D. (1988). Technical Report 781,
Cornell Univ.] on the optimality of Polyak–Ruppert averaging techniques
specialized to linear stochastic approximation is established as a consequence
of the general results in this paper.

1. Introduction. Two-time-scale stochastic approximation methods [Borkar
(1997)] are recursive algorithms in which some of the components are updated
using step-sizes that are very small compared to those of the remaining compo-
nents. Over the past few years, several such algorithms have been proposed for
various applications [Konda and Borkar (1999), Bhatnagar, Fu, Marcus and Fard
(2001), Baras and Borkar (2000), Bhatnagar, Fu and Marcus (2001) and Konda
and Tsitsiklis (2003)].

The general setting for two-time-scale algorithms is as follows. Letf (θ, r)

andg(θ, r) be two unknown functions and let(θ∗, r∗) be the unique solution to
the equations

f (θ, r) = 0, g(θ, r) = 0.(1.1)

The functionsf (·, ·) and g(·, ·) are accessible only by simulating or observ-
ing a stochastic system which, givenθ and r as input, producesF(θ, r,V )

andG(θ, r,W). Here,V andW are random variables, representing noise, whose
distribution satisfies

f (θ, r) = E[F(θ, r,V )], g(θ, r) = E[G(θ, r,W)] ∀ θ, r.

Assume that the noise(V,W) in each simulation or observation of the stochastic
system is independent of the noise in all other simulations. In other words, assume
that we have access to an independent sequence of functionsF(·, ·,Vk) and
G(·, ·,Wk). Suppose that for any givenθ , the stochastic iteration

rk+1 = rk + γkG(θ, rk,Wk)(1.2)
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is known to converge to someh(θ). Furthermore, assume that the stochastic
iteration

θk+1 = θk + γkF
(
θk, h(θk),Vk

)
(1.3)

is known to converge toθ∗. Given this information, we wish to construct an
algorithm that solves the system of equations (1.1).

Note that the iteration (1.2) has only been assumed to converge whenθ is
held fixed. This assumption allows us to fixθ at a current valueθk , run the
iteration (1.2) for a long time, so thatrk becomes approximately equal toh(θk),
use the resultingrk to updateθk in the direction ofF(θk, rk,Wk), and repeat
this procedure. While this is a sound approach, it requires an increasingly large
time between successive updates ofθk . Two-time-scale stochastic approximation
methods circumvent this difficulty by using different step sizes{βk} and{γk} and
updateθk andrk, according to

θk+1 = θk + βkF (θk, rk,Vk),

rk+1 = rk + γkG(θk, rk,Wk),

whereβk is very small relative toγk . This makesθk “quasi-static” compared tork
and has an effect similar to fixingθk and running the iteration (1.2) forever. In
turn, θk seesrk as a close approximation ofh(θk) and therefore its update looks
almost the same as (1.3).

How small should the ratioβk/γk be for the above scheme to work? The answer
generally depends on the functionsf (·, ·) andg(·, ·), which are typically unknown.
This leads us to consider a safe choice wherebyβk/γk → 0. The subject of this
paper is the convergence rate analysis of the two-time-scale algorithms that result
from this choice. We note here that the analysis is significantly different from the
case where limk(βk/γk) > 0, which can be handled using existing techniques.

Two-time-scale algorithms have been proved to converge in a variety of contexts
[Borkar (1997), Konda and Borkar (1999) and Konda and Tsitsiklis (2003)].
However, except for the special case of Polyak–Ruppert averaging, there are no
results on their rate of convergence. The existing analysis [Ruppert (1988), Polyak
(1990), Polyak and Juditsky (1992) and Kushner and Yang (1993)] of Polyak–
Ruppert methods rely on special structure and are not applicable to the more
general two-time-scale iterations considered here.

The main result of this paper is a rule of thumb for calculating the asymptotic
covariance of linear two-time-scale stochastic iterations. For example, consider the
linear iterations

θk+1 = θk + βk(b1 − A11θk − A12rk + Vk),(1.4)

rk+1 = rk + γk(b2 − A21θk − A22rk + Wk).(1.5)
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We show that the asymptotic covariance matrix ofβ
−1/2
k θk is the same as

that of β
−1/2
k θ̄k , where θ̄k evolves according to the single-time-scale stochastic

iteration:

θ̄k+1 = θ̄k + βk(b1 − A11θ̄k − A12r̄k + Vk),

0 = b2 − A21θ̄k − A22r̄k + Wk.

Besides the calculation of the asymptotic covariance ofβ
−1/2
k θk (Theorem 2.8),

we also establish that the distribution ofβ
−1/2
k (θk − θ∗) converges to a Gaussian

with mean zero and with the above asymptotic covariance (Theorem 4.1). We
believe that the proof techniques of this paper can be extended to nonlinear
stochastic approximation to obtain similar results. However, this and other possible
extensions (such as weak convergence of paths to a diffusion process) are no
pursued in this paper.

In the linear case, our results also explain why Polyak–Ruppert averaging is
optimal. Suppose that we are looking for the solution of the linear system

Ar = b

in a setting where we only haveaccess to noisy measurements ofb − Ar . The
standard algorithm in this setting is

rk+1 = rk + γk(b − Ark + Wk),(1.6)

and is known to converge under suitable conditions. (Here,Wk represents zero-
mean noise at timek.) In order to improve the rate of convergence, Polyak (1990)
and Ruppert (1988) suggest using the average

θk = 1

k

k−1∑
l=0

rl(1.7)

as an estimate of the solution, instead ofrk. It was shown in Polyak (1990) that
if kγk → ∞, the asymptotic covariance of

√
kθk is A−1�(A′)−1, where� is the

covariance ofWk . Furthermore, this asymptotic covariance matrix is known to be
optimal [Kushner and Yin (1997)].

The calculation of the asymptotic covariance in Polyak (1990) and Ruppert
(1988) uses the special averaging structure. We provide here an alternative
calculation based on our results. Note thatθk satisfies the recursion

θk+1 = θk + 1

k + 1
(rk − θk),(1.8)

and the iteration (1.6)–(1.8) forrk andθk is a special case of the two-time-scale
iterations (1.4) and (1.5), with the correspondenceb1 = 0, A11 = I , A12 = −I ,
Vk = 0, b2 = b, A21 = 0, A22 = 0. Furthermore, the assumptionkγk → ∞
corresponds to our general assumptionβk/γk → 0.
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By applying our rule of thumb to the iteration (1.6)–(1.8), we see that the
asymptotic covariance of(

√
k + 1)θk is the same as that of(

√
k + 1)θ̄k , where

θ̄k satisfies

θ̄k+1 = θ̄k + 1

k + 1

(−θ̄k + A−1(b + Wk)
)
,

or

θ̄k = 1

k

k−1∑
l=0

(A−1b + A−1Wl).

It then follows that the covariance of
√

kθ̄k is A−1�(A′)−1, and we recover
the result of Polyak (1990), Polyak and Juditsky (1992) and Ruppert (1988) for
the linear case.

In the example just discussed, the use of two time-scales is not necessary for
convergence, but is essential for the improvement of the convergence rate. This
idea of introducing two time-scales to improve the rate of convergence deserves
further exploration. It is investigated to some extent in the context of reinforcement
learning algorithms in Konda (2002).

Finally, we would like to point out the differences between the two-time-scale
iterations we study here and those that arise in the study of the tracking ability
of adaptive algorithms [see Benveniste, Metivier and Priouret (1990)]. There, the
slow component represents the movement of underlying system parameters and
the fast component represents the user’s algorithm. The fast component, that is,
the user’s algorithm, does not affect the slow component. In contrast, we consider
iterations in which the fast component affects the slow one and vice versa.
Furthermore, the relevant figures of merit are different. For example, in Benveniste,
Metivier and Priouret (1990), one is mostly interested in the behavior of the
fast component, whereas we focus on the asymptotic covariance of the slow
component.

The outline of the paper is as follows. In the next section, we consider
linear iterations driven by i.i.d. noise and obtain expressions for the asymptotic
covariance of the iterates. In Section 3, we compare the convergence rate of two-
time-scale algorithms and their single-time-scale counterparts. In Section 4, we
establish asymptotic normality of the iterates.

Before proceeding, we introduce some notation. Throughout the paper,| · | rep-
resents the Euclidean norm of vectors or the induced operator norm of matrices.
Furthermore,I and 0 represent identity and null matrices, respectively. We use the
abbreviation w.p.1 for “with probability 1.” We usec, c1, c2, . . . to represent some
constants whose values are not important.

2. Linear iterations. In this section, we consider iterations of the form

θk+1 = θk + βk(b1 − A11θk − A12rk + Vk),(2.1)

rk+1 = rk + γk(b2 − A21θk − A22rk + Wk),(2.2)
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whereθk is in Rn, rk is in Rm, andb1, b2, A11, A12, A21, A22 are vectors and
matrices of appropriate dimensions.

Before we present our results, we motivate various assumptions that we will
need. The first two assumptions are standard.

ASSUMPTION 2.1. The random variables(Vk,Wk), k = 0,1, . . . , are inde-
pendent ofr0, θ0, and of each other. They have zero mean and common covariance

E[VkV
′
k] = �11,

E[VkW
′
k] = �12 = �′

21,

E[WkW
′
k] = �22.

ASSUMPTION 2.2. The step-size sequences{γk} and{βk} are deterministic,
positive, nonincreasing, and satisfy the following:

1.
∑

k γk = ∑
k βk = ∞.

2. βk, γk → 0.

The key assumption that the step sizesβk and γk are of different orders of
magnitude is subsumed by the following.

ASSUMPTION2.3. There exists someε ≥ 0 such that

βk

γk

→ ε.

For the iterations (2.1) and (2.2) to be consistent with the general scheme of two-
time-scale stochastic approximations described in the Introduction, we need some
assumptions on the matricesAij . In particular, we need iteration (2.2) to converge
to A−1

22 (b2 − A21θ), whenθk is held constant atθ . Furthermore, the sequenceθk

generated by the iteration

θk+1 = θk + βk

(
b1 − A12A

−1
22 b2 − (A11 − A12A

−1
22 A21)θk + Vk

)
,

which is obtained by substitutingA−1
22 (b2 − A21θk) for rk in iteration (2.1), should

also converge. Our next assumption is needed for the above convergence to take
place.

Let � be the matrix defined by

� = A11 − A12A
−1
22 A21.(2.3)

Recall that a square matrixA is said to be Hurwitz if the real part of each
eigenvalue ofA is strictly negative.
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ASSUMPTION2.4. The matrices−A22, −� are Hurwitz.

It is not difficult to show that, under the above assumptions,(θk, rk) converges
in mean square and w.p.1 to(θ∗, r∗). The objective of this paper is to capture
the rate at which this convergence takes place. Obviously, this rate depends on
the step-sizesβk, γk , and this dependence can be quite complicated in general.
The following assumption ensures that the rate of mean square convergence
of (θk, rk) to (θ∗, r∗) bears a simple relationship (asymptotically linear) with the
step-sizesβk, γk .

ASSUMPTION2.5. 1. There exists a constantβ̄ ≥ 0 such that

lim
k

(β−1
k+1 − β−1

k ) = β̄.

2. If ε = 0, then

lim
k

(γ −1
k+1 − γ −1

k ) = 0.

3. The matrix−(� − β̄
2I ) is Hurwitz.

Note that whenε > 0, the iterations (2.1) and (2.2) are essentially single-
time-scale algorithms and therefore can be analyzed using existing techniques
[Nevel’son and Has’minskii (1973), Kusher and Clark (1978), Benveniste,
Metivier and Priouret (1990), Duflo (1997) and Kusher and Yin (1997)]. We in-
clude this in our analysis as we would like to study the behavior of the rate of
convergence asε ↓ 0. The following is an example of sequences satisfying the
above assumption withε = 0, β̄ = 1/(τ1β0):

γk = γ0

(1+ k/τ0)
α
,

1

2
< α < 1,

βk = β0

(1+ k/τ1)
,

Let θ∗ ∈ Rm and r∗ ∈ Rn be the unique solution to the system of linear
equations

A11θ + A12r = b1,

A21θ + A22r = b2.

For eachk, let

θ̂k = θk − θ∗,
(2.4)

r̂k = rk − A−1
22 (b2 − A21θk)
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and

	k
11 = β−1

k E[θ̂kθ̂
′
k],

	k
12 = (	k

21)
′ = β−1

k E[θ̂k r̂
′
k],

	k
22 = γ −1

k E[r̂kr̂ ′
k],

	k =
[

	k
11 	k

12

	k
21 	k

22

]
.

Our main result is the following.

THEOREM 2.6. Under Assumptions 2.1–2.5, and when the constant ε of
Assumption 2.3 is sufficiently small, the limit matrices

	
(ε)
11 = lim

k
	k

11, 	
(ε)
12 = lim

k
	k

12, 	
(ε)
22 = lim

k
	k

22(2.5)

exist. Furthermore, the matrix

	(0) =
[

	
(0)
11 	

(0)
12

	
(0)
21 	

(0)
22

]

is the unique solution to the following system of equations

�	
(0)
11 + 	

(0)
11 �′ − β̄	

(0)
11 + A12	

(0)
21 + 	

(0)
12 A′

12 = �11,(2.6)

A12	
(0)
22 + 	

(0)
12 A′

22 = �12,(2.7)

A22	
(0)
22 + 	

(0)
22 A′

22 = �22.(2.8)

Finally,

lim
ε↓0

	
(ε)
11 = 	

(0)
11 , lim

ε↓0
	

(ε)
12 = 	

(0)
12 , lim

ε↓0
	

(ε)
22 = 	

(0)
22 .(2.9)

PROOF. Let us first consider the caseε = 0. The idea of the proof is to study
the iteration in terms of transformed variables:

θ̃k = θ̂k, r̃k = Lkθ̂k + r̂k,(2.10)

for some sequence ofn × m matrices{Lk} which we will choose so thatthe faster
time-scale iteration does not involve the slower time-scale variables. To see what
the sequence{Lk} should be, we rewrite the iterations (2.1) and (2.2) in terms of
the transformed variables as shown below (see Section A.1 for the algebra leading
to these equations):

θ̃k+1 = θ̃k − βk(B
k
11θ̃k + A12r̃k) + βkVk,

(2.11)
r̃k+1 = r̃k − γk(B

k
21θ̃k + Bk

22r̃k) + γkWk + βk(Lk+1 + A−1
22 A21)Vk,
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where

Bk
11 = � − A12Lk,

Bk
21 = Lk − Lk+1

γk

+ βk

γk

(Lk+1 + A−1
22 A21)B

k
11 − A22Lk,

Bk
22 = βk

γk

(Lk+1 + A−1
22 A21)A12 + A22.

We wish to choose{Lk} so thatBk
21 is eventually zero. To accomplish this, we

define the sequence of matrices{Lk} by

Lk = 0, 0 ≤ k ≤ k0,
(2.12)

Lk+1 = (Lk − γkA22Lk + βkA
−1
22 A21B

k
11)(I − βkB

k
11)

−1 ∀ k ≥ k0,

so thatBk
21 = 0 for all k ≥ k0. For the above recursion to be meaningful, we

need(I − βkB
k
11) to be nonsingular for allk ≥ k0. This is handled by Lemma A.1

in the Appendix, which shows that ifk0 is sufficiently large, then the sequence
of matrices{Lk} is well defined and also converges to zero.

For everyk ≥ k0, we define

	̃k
11 = β−1

k E[θ̃kθ̃
′
k],

(	̃k
21)

′ = 	̃k
12 = β−1

k E[θ̃k r̃
′
k],

	̃k
22 = γ −1

k E[r̃kr̃ ′
k].

Using the transformation (2.10), it is easy to see that

	̃k
11 = 	k

11,

	̃k
12 = 	k

11L
′
k + 	k

12,

	̃k
22 = 	k

22 +
(

βk

γk

)
(Lk	

k
12 + 	k

21L
′
k + Lk	

k
11L

′
k).

SinceLk → 0, we obtain

lim
k

	k
11 = lim

k
	̃k

11,

lim
k

	k
12 = lim

k
	̃k

12,

lim
k

	k
22 = lim

k
	̃k

12,

provided that the limits exist.
To compute limk 	̃k

22, we use (2.11), the fact thatBk
21 = 0 for large enoughk,

the fact thatBk
22 converges toA22, and some algebra, to arrive at the following

recursion for	̃k
22:

	̃k+1
22 = 	̃k

22 + γk

(
�22 − A22	̃

k
22 − 	̃k

22A
′
22 + δk

22(	̃
k
22)

)
,(2.13)
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whereδk
22(·) is some matrix-valued affine function (on the space of matrices) such

that

lim
k

δk
22(	22) = 0 for all 	22.

Since−A22 is Hurwitz, it follows (see Lemma A.2 in the Appendix) that the limit

lim
k

	k
22 = lim

k
	̃k

22 = 	
(0)
22

exists, and	(0)
22 satisfies (2.8).

Similarly, 	̃k
12 satisfies

	̃k+1
12 = 	̃k

12 + γk

(
�12 − A12	

(0)
22 − 	̃k

12A
′
22 + δk

12(	̃
k
12)

)
(2.14)

where, as before,δk
12(·) is an affine function that goes to zero. (The coefficients

of this affine function depend, in general, on	̃k
22, but the important property is

that they tend to zero ask → ∞.) Since−A22 is Hurwitz, the limit

lim
k

	k
12 = lim

k
	̃k

12 = 	
(0)
12

exists and satisfies (2.7). Finally,	̃k
11 satisfies

	̃k+1
11 = 	̃k

11 + βk

(
�11 − A12	

(0)
21 − 	

(0)
12 A′

12 − �	̃k
11

(2.15)
− 	̃k

11�
′ + β̄	̃k

11 + δk
11(	̃

k
11)

)
,

whereδk
11(·) is some affine function that goes to zero. (Once more, the coefficients

of this affine function depend, in general, on	̃k
22 and	̃k

12, but they tend to zero

ask → ∞.) Since−(� − β̄
2I ) is Hurwitz, the limit

lim
k

	k
11 = lim

k
	̃k

11 = 	
(0)
11

exists and satisfies (2.6).
The above arguments show that forε = 0, the limit matrices in (2.5) exist

and satisfy (2.6)–(2.8). To complete the proof, we need to show that these limit
matrices exist for sufficiently smallε > 0 and that the limiting relations (2.9) hold.
As this part of the proof uses standard techniques, we will only outline the analysis.

Define for eachk,

Zk =
(

θ̂k

r̂k

)
.

The linear iterations (2.1) and (2.2) can be rewritten in terms ofZk as

Zk+1 = Zk − βkBkZk + βkUk,

whereUk is a sequence of independent random vectors and{Bk} is a sequence
of deterministic matrices. Using the assumption thatβk/γk converges toε, it can
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be shown that the sequence of matricesBk converges to some matrixB(ε) and,
similarly, that

lim
k

E[UkU
′
k] = �(ε)

for some matrix�(ε). Furthermore, whenε > 0 is sufficiently small, it can be

shown that−(B(ε) − β̄
2I ) is Hurwitz. It then follows from standard theorems

[see, e.g., Polyak (1976)] on the asymptotic covariance of stochastic approxima-
tion methods, that the limit

lim
k

β−1
k E[ZkZ

′
k]

exists and satisfies alinear equation whose coefficients depend smoothly onε

(the coefficients are infinitely differentiable w.r.t.ε). Since the components of the
above limit matrix are	(ε)

11 , 	(ε)
12 and	

(ε)
22 modulo some scaling, the latter matrices

also satisfy a linear equation which depends onε. The explicit form of this equation
is tedious to write down and does not provide any additional insight for our
purposes. We note, however, that when we setε to zero, this system of equations
becomes the same as (2.6)–(2.8). Since (2.6)–(2.8) have a unique solution, the
system of equations for	(ε)

11 , 	
(ε)
12 and 	

(ε)
22 also has a unique solution for all

sufficiently smallε. Furthermore, the dependence of the solution onε is smooth
because the coefficients are smooth inε. �

REMARK 2.7. The transformations used in the above proof are inspired by
those used to study singularly perturbed ordinary differential equations [Kokotovic
(1984)]. However, most of these transformations were time-invariant because the
perturbation parameter was constant. In such cases, the matrixL satisfies a static
Riccati equation instead of the recursion (2.12). In contrast, our transformations
are time-varying because our “perturbation” parameterβk/γk is time-varying.

In most applications, the iteraterk corresponds to some auxiliary parameters
and one is mostly interested in the asymptotic covariance	

(0)
11 of θk . Note that

according to Theorem 2.6, the covariance of the auxiliary parameters is of the order
of γk, whereas the covariance ofθk is of the order ofβk . With two time-scales, one
can potentially improve the rate of convergence ofθk (cf. to a single-time-scale
algorithm) by sacrificing the rate of convergence of the auxiliary parameters. To
make such comparisons possible, we need an alternative interpretation of	

(0)
11 , that

does not explicitly refer to the system (2.6)–(2.8). This is accomplished by our next
result, which provides a useful tool for the design and analysis of two-time-scale
stochastic approximation methods.
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THEOREM2.8. The asymptotic covariance matrix 	
(0)
11 of β

−1/2
k θk is the same

as the asymptotic covariance of β
−1/2
k θ̄k , where θ̄k is generated by

θ̄k+1 = θ̄k + βk(b1 − A11θ̄k − A12r̄k + Vk),(2.16)

0 = b2 − A21θ̄k − A22r̄k + Wk.(2.17)

In other words,

	
(0)
11 = lim

k
β−1

k E[θ̄kθ̄
′
k].

PROOF. We start with (2.6)–(2.8) and perform some algebraic manipulations
to eliminate	

(0)
12 and	

(0)
22 . This leads to a single equation for	

(0)
11 , of the form

�	
(0)
11 + 	

(0)
11 �′ − β̄	

(0)
11

= �11 − A12A
−1
22 �21 − �12(A

′
22)

−1A′
12 + A12A

−1
22 �22(A

′
22)

−1A′
12.

Note that the right-hand side of the above equation is exactly the covariance of
Vk − A12A

−1
22 Wk . Therefore, the asymptotic covariance ofθk is the same as the

asymptotic covariance of the following stochastic approximation:

θ̄k+1 = θ̄k + βk(−�θ̄k + Vk − A12A
−1
22 Wk).

Finally, note that the above iteration is the one obtained by eliminatingrk from
iterations (2.16) and (2.17).�

REMARK. The single-time-scale stochastic approximation procedure in The-
orem 2.8 is not implementable when the matricesAij are unknown. The theorem
establishes that two-time-scale stochastic approximation performs as well as if
these matrices are known.

REMARK. The results of the previous section show that the asymptotic
covariance matrix ofβ−1/2

k θk is independent of the step-size schedule{γk} for
the fast iteration if

βk

γk

→ 0.

To understand, at least qualitatively, the effect of the step-sizesγk on the
transient behavior, recall the recursions (2.13)–(2.15) satisfied by the covariance
matrices	̃k:

	̃k+1
11 = 	̃k

11 + βk

(
�11 − A12	

(0)
21 − 	

(0)
12 A′

12

− �	̃k
11 − 	̃k

11�
′ − β̄	̃k

11 + δk
11(	̃

k
11)

)
,

	̃k+1
12 = 	̃k

12 + γk

(
�12 − A12	

(0)
22 − 	̃k

12A
′
22 + δk

12(	̃
k
12)

)
,

	̃k+1
22 = 	k

22 + γk

(
�22 − A22	

k
22 − 	k

22A
′
22 + δk

22(	
k
22)

)
,
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where theδk
ij (·) are affine functions that tend to zero ask tends to infinity. Using

explicit calculations, it is easy to verify that the error termsδk
ij are of the form

δk
11 = A12

(
	̃k

21 − 	
(0)
21

) + (
	̃k

12 − 	
(0)
12

)
A′

12 + O(βk),

δk
12 = A12

(
	

(0)
22 − 	̃k

22
) + O

(
βk

γk

)
,

δk
22 = O

(
βk

γk

)
.

To clarify the meaning of the above relations, the first one states that the affine
function δk

11(	11) is the sum of the constant termA12(	̃
k
21 − 	

(0)
21 ) + (	̃k

12 −
	

(0)
12 )A′

12, and another affine function of	k
11 whose coefficients are proportional

to βk.

The above relations show that the rate at which	̃k
11 converges to	(0)

11 depends
on the rate at which̃	k

12 converges to	(0)
12 , through the termδk

11. The rate of
convergence of̃	k

12, in turn, depends on that of̃	k
22, through the termδk

12. Since
the step-size in the recursions for	̃k

22 and	̃k
12 is γk, and the error terms in these

recursions are proportional toβk/γk , the transients depend on both sequences{γk}
and{βk/γk}. But each sequence has a different effect. Whenγk is large, instability
or large oscillations ofrk are possible. On the other hand, whenβk/γk is large,
the error termsδk

ij can be large and can prolong the transient period. Therefore,
one would like to haveβk/γk decrease to zero quickly, while at the same time
avoiding largeγk . Apart from these loose guidelines, it appears difficult to obtain
a characterization of desirable step-size schedules.

3. Single time-scale versus two time-scales. In this section, we compare the
optimal asymptotic covariance ofβ−1/2

k θk that can be obtained by a realizable
single-time-scale stochastic iteration, with the optimal asymptotic covariance
that can be obtained by a realizable two-time-scale stochastic iteration. The
optimization is to be carried out over a set of suitable gain matrices that can be used
to modify the algorithm, and the optimality criterion to be used is one whereby a
covariance matrix	 is preferable to another covariance matrix	̃ if 	̃ − 	 is
nonzero and nonnegative definite.

Recall that Theorem 2.8 established that the asymptotic covariance of a two-
time-scale iteration is the same as in a related single-time-scale iteration. However,
the related single-time-scale iteration is unrealizable, unless the matrixA is known.
In contrast, in this section we compare realizable iterations that do not require
explicit knowledge ofA (although knowledge ofA would be required in order to
select the best possible realizable iteration).

We now specify the classes of stochastic iterations that we will be comparing.
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1. We consider two-time-scale iterations of the form

θk+1 = θk + βkG1(b1 − A11θk − A12rk + Vk),

rk+1 = rk + γk(b2 − A21θk − A22rk + Wk).

Here,G1 is a gain matrix, which we are allowed to choose in a manner that
minimizes the asymptotic covariance ofβ

−1/2
k θk .

2. We consider single-time-scale iterations, in which we haveγk = βk , but in
which we are allowed to use an arbitrary gain matrixG, in order to minimize
the asymptotic covariance ofβ

−1/2
k θk . Concretely, we consider iterations of the

form [
θk+1
rk+1

]
=

[
θk

rk

]
+ βkG

[
b1 − A11θk − A12rk + Vk

b2 − A21θk − A22rk + Wk

]
.

We then have the following result.

THEOREM 3.1. Under Assumptions 2.1–2.5, and with ε = 0, the minimal
possible asymptotic covariance of β

−1/2
k θk , when the gain matrices G1 and G can

be chosen freely, is the same for the two classes of stochastic iterations described
above.

PROOF. The single-time-scale iteration is of the form

Zk+1 = Zk + βkG(b − AZk + Uk),

where

Zk =
[
θk

rk

]
, Uk =

[
Vk

Wk

]

and

b =
[
b1
b2

]
, A =

[
A11 A12
A21 A22

]
.

As is well known [Kushner and Yin (1997)], the optimal (in the sense of positive
definiteness) asymptotic covariance ofβ

−1/2
k Zk over all possible choices ofG is

the covariance ofA−1Uk . We note that the top block ofA−1Uk is equal
to �−1(Vk − A12A

−1
22 Wk). It then follows that the optimal asymptotic covariance

matrix ofβ−1/2
k θk is the covariance of�−1(Vk − A12A

−1
22 Wk).

For the two-time-scale iteration, Theorem 2.8 shows that for any choice ofG1,
the asymptotic covariance is the same as for the single-time-scale iteration:

θk+1 = θk + βkG1(b1 − �θk + Vk − A12A
−1
22 Wk).

From this, it follows that the optimal asymptotic covariance ofβ
−1/2
k θk is the

covariance of�−1(Vk − A12A
−1
22 Wk), which is the same as for single-time-scale

iterations. �
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4. Asymptotic normality. In Section 2, we showed thatβ−1
k E[θ̂kθ̂

′
k] con-

verges to	
(0)
11 . The proof techniques used in that section do not extend easily

(without stronger assumptions) to the nonlinear case. For this reason, we develop
here a different result, namely, the asymptotic normality ofθ̂k , which is easier to
extend to the nonlinear case. In particular, we show that the distribution ofβ

−1/2
k θ̂k

converges to a zero-mean normal distribution with covariance matrix	
(0)
11 . The

proof is similar to the one presented in Polyak (1990) for stochastic approximation
with averaging.

THEOREM 4.1. If Assumptions 2.1–2.5 hold with ε = 0, then β
−1/2
k θ̂k

converges in distribution to N(0,	
(0)
11 ).

PROOF. Recall the iterations (2.11) in terms of transformed variablesθ̃ andr̃ .
Assuming thatk is large enough so thatBk

21 = 0, these iterations can be written as

θ̃k+1 = (I − βk�)θ̃k − βkA12r̃k + βkVk + βkδ
(1)
k ,

r̃k+1 = (I − γkA22)r̃k + γkWk + βkδ
(2)
k + βk(Lk+1 + A−1

22 A21)Vk,

whereδ
(1)
k andδ

(2)
k are given by

δ
(1)
k = A12Lkθ̃k,

δ
(2)
k = −(Lk+1 + A−1

22 A21)A12r̃k.

Using Theorem 2.6,E[|θ̃k|2]/βk andE[|r̃k|2]/γk are bounded, which implies that

E
[∣∣δ(1)

k

∣∣2] ≤ cβk|Lk|2,
(4.1)

E
[∣∣δ(2)

k

∣∣2] ≤ cγk,

for some constantc > 0. Without loss of generality assumek0 = 0 in (2.11). For
eachi, define the sequence of matrices�i

j andRi
j , j ≥ i, as

�i
i = I,

�i
j+1 = �i

j − βj��i
j ∀ j ≥ i,

Ri
i = I,

Ri
j+1 = Ri

j − γjA22R
i
j ∀ j ≥ i.

Using the above matrices,r̃k andθ̃k can be rewritten as

θ̃k = �0
kθ̃0 −

k−1∑
i=0

βi�
i
kA12r̃i +

k−1∑
i=0

βi�
i
kVi +

k−1∑
i=0

βi�
i
kδ

(1)
i(4.2)
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and

r̃k = R0
k r̃0 +

k−1∑
i=0

γiR
i
kWi +

k−1∑
i=0

βiR
i
kδ

(2)
i

(4.3)

+
k−1∑
i=0

βiR
i
k(Li+1 + A−1

22 A21)Vi.

Substituting the right-hand side of (4.3) forr̃k in (4.2), and dividing byβ1/2
k ,

we have

β
−1/2
k θ̃k = 1√

β0
�̃0

kθ̃0 +
k−1∑
i=0

βi�̃
i
kA12(β

−1/2
i R0

i r̃0)

+
k−1∑
i=0

βi�̃
i
k

(
β

−1/2
i δ

(1)
i

) + S
(1)
k + S

(2)
k + S

(3)
k(4.4)

+
k−1∑
i=0

√
βi�̃

i
k(Vi + A12A

−1
22 Wi),

where

�̃i
k =

√
βi

βk

�i
k ∀ k ≥ i,

S
(1)
k =

k−1∑
i=0

βi�̃
i
kA12

(
β

−1/2
i

i−1∑
j=0

βjR
j
i δ

(2)
j

)
,

S
(2)
k =

k−1∑
i=0

βi�̃
i
kA12

(
β

−1/2
i

i−1∑
j=0

βjR
j
i (Lj+1 + A−1

22 A21)Vj

)
,

S
(3)
k =

k−1∑
i=0

√
βi�̃

i
kA12

i−1∑
j=0

γjR
j
i Wj −

k−1∑
j=0

√
βj�̃

j
kA12A

−1
22 Wj.

We wish to prove that the various terms in (4.4), with the exception of the last
one, converge in probability to zero. Note that the last term is a martingale and
therefore, can be handled by appealing to a central limit theorem for martingales.
Some of the issues we encounter in the remainder of the proof are quite standard,
and in such cases we will only provide an outline.

To better handle each of the various terms in (4.4), we need approximations
of �i

k and Ri
k . To do this, consider the nonlinear mapA �→ exp(A) from

square matrices to square matrices. A simple application of the inverse function
theorem shows that this map is a diffeomorphism (differentiable, one-to-one
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with differentiable inverse) in a neighborhood of the origin. Let us denote
the inverse of exp(·) by ln(·). Since ln(·) is differentiable aroundI = exp(0),
the functionε �→ ln(I − εA) can be expanded into Taylor’s series for sufficiently
smallε as follows:

ln(I − εA) = −ε
(
A − E(ε)

)
,

whereE(ε) commutes withA and limε→0 E(ε) = 0. Assuming, without loss of
generality, thatγ0 andβ0 are small enough for the above approximation to hold,
we have fork ≥ 0,

�i
k = exp

(
−

k−1∑
j=i

βj

(
� − E

(1)
j

))
,

(4.5)

Ri
k = exp

(
−

k−1∑
j=i

γj

(
A22 − E

(2)
j

))
,

for some sequence of matrices{E(i)
k }, i = 1,2, converging to zero. To obtain a

similar representation for̃�i
k , note that Assumption 2.5(1) implies

βk

βk+1
= (

1+ βk(εk + β̄)
)
,(4.6)

for someεk → 0. Therefore, using the fact that 1+x = exp(x(1−o(x))) and (4.5),
we have

�̃i
k = exp

(
−

k−1∑
j=i

βj

((
� − β̄

2
I

)
− E

(3)
j

))
,(4.7)

for some sequences of matricesE
(3)
k converging to zero. Furthermore, it is not

difficult to see that the matricesE(i)
k , i = 1,2,3, commute with the matrices�, A22

and� − (β̄/2)I , respectively. Since−�, −(� − (β̄/2)I ) and−A22 are Hurwitz,
using standard Lyapunov techniques we have for some constantsc1, c2 > 0,

max
(|�i

k|, |�̃i
k|

) ≤ c1 exp

(
−c2

k−1∑
j=i

βj

)
,

(4.8)

|Ri
k| ≤ c1 exp

(
−c2

k−1∑
j=i

γj

)
.

Therefore it is easy to see that the first term in (4.4) goes to zero w.p.1. To prove
that the second term goes to zero w.p.1, note that lnβi ≈ −β̄

∑i−1
j=0βj [cf. (4.6)]

and therefore for somec1, c2 > 0,

|β−1/2
i R0

i r̃0| ≤ c1 exp

(
−c2

i−1∑
j=0

(
γj − β̄

2
βj

))
,
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which goes to zero asi → ∞ (Assumption 2.3). Therefore, it follows from
Lemma A.3 that the second term also converges to zero w.p.1. Using (4.1)
and Lemma A.3, it is easy to see that the third term in (4.4) converges in the
mean (i.e., inL1) to zero. Next, considerE[|S(1)

k |]. Using (4.1), we have for some
positive constantsc1, c2 andc3,

E

[∣∣∣∣∣β−1/2
i

i−1∑
j=0

βjR
i
j δ

(2)
j

∣∣∣∣∣
]

≤ c1

i−1∑
j=0

γj exp

(
−

i−1∑
l=j

(c2γl − c3βl)

)√
βj

γj

.

Sinceβj/γj → 0, Lemma A.3 implies thatS(1)
k converges in the mean to zero. To

studyS
(2)
k , consider

E

[∣∣∣∣∣β−1/2
i

i−1∑
j=0

βjR
j
i (Lj+1 + A−1

22 A21)Vj

∣∣∣∣∣
2]

.

Since theVk are zero mean i.i.d., the above term is bounded above by

c1

i−1∑
j=0

γj exp

(
−

i−1∑
l=j

(c2γl − c3βl)

)
βj

γj

for some constantsc1, c2 andc3. Lemma A.3 implies thatS(2)
k converges in the

mean to zero. Finally, considerS(3)
k . By interchanging the order of summation,

it can be rewritten as

k−1∑
j=0

√
βj�̃

j
k

[
γj

βj

k−1∑
i=j

βi(�
j
i )

−1A12R
j
i − A12A

−1
22

]
Wj .(4.9)

Since−A22 is Hurwitz, we have

A−1
22 =

∫ ∞
0

exp(−A22t) dt,

and we can rewrite the term inside the brackets in (4.9) as

k−1∑
i=j

γi

(
γjβi

βjγi

(�
j
i )

−1 − I

)
A12R

j
i

+ A12

(
k−1∑
i=j

γiR
j
i −

∫ ∑k−1
i=j γi

0
exp(−A22t) dt

)
− A12A

−1
22 exp

(
−

k−1∑
i=j

γiA22

)
.
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We consider each of these terms separately. To analyze the first term, we wish to
obtain an “exponential” representation forγjβi/βjγi . It is not difficult to see from
Assumptions 2.5 (1) and (2) that

βk+1

γk+1
= βk

γk

(1− εkγk)

= βk

γk

exp
(−εkγk + O(ε2

kγ
2
k )

)
,

whereεk → 0. Therefore, using (4.5) and the mean value theorem, we have∣∣∣∣γjβi

βjγi

(�
j
i )

−1 − I

∣∣∣∣
≤ c1 sup

l≥j

(
εl + βl

γl

)(
i−1∑
l=j

γl

)
exp

(
c2

i−1∑
l=j

(
εl + βl

γl

)
γl

)
,

which in turn implies, along with Lemma A.4 (withp = 1) and Assumption 2.3,
that the first term is bounded in norm byc supl≥j (εl + γl/βl) for some
constantc > 0. The second term is the difference between an integral and its
Riemannian approximation and therefore is bounded in norm byc supl≥j γl for
some constantc > 0. Finally, since−A22 is Hurwitz, the norm of the third term is
bounded above by

c1 exp

(
−c2

k−1∑
i=j

γi

)

for some constantsc1, c2 > 0. An explicit computation ofE[|S(3)
k |2], using

the fact that(Vk,Wk) is zero-mean i.i.d., and an application of Lemma A.3
shows thatS(3)

k converges to zero in the mean square. Therefore, the distribution

of β
−1/2
k θ̃k converges to the asymptotic distribution of the martingale comprising

the remaining terms. To complete the proof, we use the standard central limit
theorem for martingales [see Duflo (1997)]. The key assumption of this theorem
is Lindberg’s condition which, in our case, boils down to the following: for
eachε > 0,

lim
k

k−1∑
i=0

E
[∣∣X(k)

i

∣∣2I{∣∣X(k)
i

∣∣ ≥ ε
}] = 0,

whereI is the indicator function and for eachi < k,

X
(k)
i = √

βi�̃
i
k(Vi + A12A

−1
22 Wi).

The verification of this assumption is quite standard.�

REMARK. Similar results are possible for nonlinear iterations with Markov
noise. For an informal sketch of such results, see Konda (2002).
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APPENDIX: AUXILIARY RESULTS

A.1. Verification of (2.11). Without loss of generality, assume thatb1 =
b2 = 0. Then,θ∗ = 0 and

θ̃k = θ̂k = θk,

and, using the definition of̃rk [cf. (2.4) and (2.10)], we have

r̃k = Lkθk + r̂k = Lkθk + rk + A−1
22 A21θk = rk + Mkθk,(A.1)

where

Mk = Lk + A−1
22 A21.

To verify the equation for̃θk+1 = θk+1, we use the recursion forθk+1, to obtain

θk+1 = θk − βk(A11θk + A12rk − Vk)

= θk − βk

(
A11θk + A12r̃k − A12(Lk + A−1

22 A21)θk − Vk

)
= θk − βk(A11θk − A12A

−1
22 A21θk − A12Lkθk + A12r̃k − Vk)

= θk − βk(�θk − A12Lkθk + A12r̃k) + βkVk

= θk − βk(B
k
11θk + A12r̃k) + βkVk,

where the last step makes use of the definitionBk
11 = � − A12Lk .

To verify the equation for̃rk+1, we first use the definition (A.1) of̃rk+1, and
then the update formulas forθk+1 andrk+1, to obtain

r̃k+1 = rk+1 + (A−1
22 A21 + Lk+1)θk+1

= rk − γk(A21θk + A22rk − Wk) + (A−1
22 A21 + Lk+1)θk+1

= rk − γk

(
A21θk + A22

(
r̃k − (Lk + A−1

22 A21)θk

) − Wk

)
+ (A−1

22 A21 + Lk+1)θk+1

= rk − γk(A22r̃k − A22Lkθk − Wk) + Mk+1θk+1

= rk + Mk+1θk − γk(A22r̃k − A22Lkθk − Wk)

− βkMk+1(B
k
11θk + A12r̃k − Vk)

= rk + Mkθk − γk

[
Lk − Lk+1

γk

− A22Lk + βk

γk

Mk+1B
k
11

]
θk

+ γkWk − γk

(
A22 + βk

γk

Mk+1A12

)
r̃k + βkMk+1Vk

= r̃k − γk(B
k
21θ̃k + Bk

22r̃k) + γkWk + βkMk+1Vk,

which is the desired formula.
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A.2. Convergence of the recursion (2.12).

LEMMA A.1. For k0 sufficiently large, the (deterministic) sequence of
matrices {Lk} defined by (2.12)is well defined and converges to zero.

PROOF. The recursion (2.12) can be rewritten, fork ≥ k0, as

Lk+1 = (I − γkA22)Lk

(A.2)
+ βk

(
A−1

22 A21B
k
11 + (I − γkA22)LkB

k
11

)
(I − βkB

k
11)

−1,

which is of the form

Lk+1 = (I − γkA22)Lk + βkDk(Lk),

for a sequence of matrix-valued functionsDk(Lk) defined in the obvious manner.
Since−A22 is Hurwitz, there exists a quadratic norm

|x|Q = √
x′Qx,

a corresponding induced matrix norm, and a constanta > 0 such that

|(I − γA22)|Q ≤ (1− aγ )

for every sufficiently smallγ . It follows that

|(I − γA22)L|Q ≤ (1− aγ )|L|Q
for all matrices L of appropriate dimensions and forγ sufficiently small.
Therefore, for sufficiently largek, we have

|Lk+1|Q ≤ (1− γka)|Lk|Q + βk|D(Lk)|Q.

For k0 sufficiently large, the sequence of functions{Dk(·)}k≥k0 is well defined
and uniformly bounded on the unitQ-ball {L : |L|Q ≤ 1}. To see this, note that
as long as|Lk|Q ≤ 1, we have|Bk

11| = |� − A12Lk| ≤ c, for some absolute
constantc. With βk small enough, the matrixI − βkB

k
11 is invertible, and

satisfies|(I − βkB
k
11)

−1| ≤ 2. With |Bk
11| bounded byc, we have

|A−1
22 A21B

k
11 + (I − γkA22)LkB

k
11| ≤ d(1+ |Lk|),

for some absolute constantd . To summarize, for largek, if |Lk|Q ≤ 1, we
have|Dk(Lk)| ≤ 4d . Since any two norms on a finite-dimensional vector space
are equivalent, we have

|Lk+1|Q ≤ (1− γka)|Lk|Q + (γka)

(
d1βk

aγk

)
,
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for some constantd1 > 0. Recall now that the sequenceLk is initialized with
Lk0 = 0. If k0 is large enough so thatd1βk/aγk < 1, then|Lk|Q ≤ 1 for all k.
Furthermore, since 1− x ≤ e−x, we have

|Lk|Q ≤
k−1∑
j=k0

γj exp

(
−a

k−1∑
i=j

γi

)(
d1βj

γj

)
.

The rest follows from Lemma A.3 asβk/γk → 0. �

A.3. Linear matrix iterations. Consider a linear matrix iteration of the form

	k+1 = 	k + βk

(
� − A	k − 	kB + δk(	k)

)
for some square matricesA, B, step-size sequenceβk and sequence of matrix-
valued affine functionsδk(·). Assume:

1. The real parts of the eigenvalues ofA are positive and the real parts of
the eigenvalues ofB are nonnegative. (The roles ofA and B can also be
interchanged.)

2. βk is positive and

βk → 0,
∑
k

βk = ∞.

3. limk δk(·) = 0.

We then have the following standard result whose proof can be found, for example,
in Polyak (1976).

LEMMA A.2. For any 	0, limk 	k = 	∗ exists and is the unique solution to
the equation

A	 + 	B = �.

A.4. Convergence of some series. We provide here some lemmas that are
used in the proof of asymptotic normality. Throughout this section,{γk} is
a positive sequence such that:

1. γk → 0, and
2.

∑
k γk = ∞.

Furthermore,{tk} is the sequence defined by

t0 = 0, tk =
k−1∑
j=0

γk, k > 0.



CONVERGENCE RATE OF LINEAR TWO-TIME-SCALE SA 817

LEMMA A.3. For any nonnegative sequence {δk} that converges to zero and
any p ≥ 0, we have

lim
k

k∑
j=0

γj

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj = 0.(A.3)

PROOF. Let δ(·) be a nonnegative function on[0,∞) defined by

δ(t) = δk, tk ≤ t < tk+1.

Then it is easy to see that for anyk0 > 0,

k∑
j=k0

γj

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj

=
∫ tk

tk0

(tk − s)pe−(tk−s)δ(s) ds + e
k0
k ,

where

|ek0
k | ≤ c

k∑
j=k0

γ 2
j

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj

for some constantc > 0. Therefore, fork0 sufficiently large, we have

lim
k

k∑
j=k0

γj

(
k−1∑
i=j

γi

)p

exp

(
−

k−1∑
i=j

γi

)
δj

≤ lim t

∫ t
0 δ(s)(t − s)pe−(t−s) ds

1− c supk≥k0
γk

.

To calculate the above limit, note that

lim
t

∣∣∣∣
∫ t

0
(t − s)pe−(t−s)δ(s) ds

∣∣∣∣
= lim

t

∣∣∣∣
∫ t

0
spe−sδ(t − s) ds

∣∣∣∣
≤ lim

t

(
sup

s≥t−T

|δ(s)|
)∫ T

0
spe−s ds + sup

s
|δ(s)|

∫ ∞
T

spe−s ds

= sup
s

|δ(s)|
∫ ∞
T

spe−s ds.

SinceT is arbitrary, the above limit is zero. Finally, note that the limit in (A.3)
does not depend on the starting limit of the summation.�
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LEMMA A.4. For each p ≥ 0, there exists Kp > 0 such that for any k ≥ j ≥ 0,

k∑
i=j

γi

(
i−1∑
l=j

γl

)p

exp

(
−

i−1∑
l=j

γl

)
≤ Kp.

PROOF. For allj sufficiently large, we have

k∑
i=j

γi

(
i−1∑
l=j

γl

)p

exp

(
−

i−1∑
l=j

γl

)
≤

∫ (tk−tj )

0 τpe−τ dτ

1− c supl≥j γl

,

for somec ≥ 0. �
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