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Abstract: We consider a two dimensional stochastic process (X, Y ), which
may have jump components and is not necessarily ergodic. There is an
unknown parameter θ within the coefficients of (X, Y ). The aim of this
paper is to estimate θ from a regularly spaced sample of the process (X, Y ).
When the dynamic of X is known, an estimator is constructed by using
a moment-based method. We show that our estimators will work if the
Blumenthal-Getoor index of the jump part of Y is less than 2. What is
perhaps the most interesting is the rate at which the estimators converge: it
is 1/

√
n (as when the underlying processes are not contaminated by jumps)

when that index is not greater than 1. When the dynamic of X is unknown,
we introduce a spot volatility estimator-based approach to estimate θ. This
approach can work even if the sample is contaminated by microstructure
noise.
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1. Introduction

In this work, we consider a process (X,Y ) defined by the following stochastic
differential equation

dYt = b(θ,Xt, Yt)dt+ σ(θ,Xt)dWt + dJt,

whereW denotes a standard Brownian motion, J a Lévy process with no Brow-
nian part. The process (X,Y ) depends on an unknown parameter θ. The goal
of this note is to estimate this parameter θ from regularly spaced observations
of the process (X,Y ).

The parametric estimations for discretely observed processes have been in-
tensively studied in the case that the underlying processes (X,Y ) possess some
ergodic properties (see [12, 33, 34] and the references therein). To the best of
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our knowledge there are very few results about the non-ergodic situation and
most are in the case of continuous diffusion processes (see [11, 31]).

This note is thus the first attempt to construct estimators which work even
when the underlying processes X and Y contain jump components, and with-
out any assumption about ergodicity. It should be mentioned here that from
a practical point of view, one may think of X for instance as either the (log)
price of an asset or the exchange rates process and Y as a state variable such
as the (log) price of another asset which is correlated with X (see [4, 9]). Al-
lowing X and Y to have jump components is nowadays of great interest. Some
recent researches show that the models where jumps occur are able to fit skews
and smiles that can hardly be captured by continuous models (see [5] and the
references therein). It is needless to say that many classical estimation schemes
for continuous diffusion processes are not suitable for processes with jumps.

In this paper, we present two classes of estimators for the parameter θ. When
the dynamic of X is known, an estimator is constructed by using a moment-
based method. This estimator is in the spirit of Jacod’s recent work [11] for
continuous diffusion processes. As far as the author knows, there are basically
two ways to overcome the difficulty while working with jump processes. The
first approach makes use of a threshold parameter (see [18, 33]). Although this
approach can deal with jump processes of infinite activity, its results depend
very sensitively on the threshold parameter, which is very difficult to efficiently
detect in general. We adopt here the second approach called multipower method,
which has been developed recently in [2, 23, 29, 30]. We will show that our es-
timator will work whenever the Blumenthal-Getoor index α of J is less than
2. In particular, if α ≤ 1 then the estimator θ̂n will converge to the true pa-
rameter θ∗ at the optimal rate 1/

√
n (as when the underlying processes are not

contaminated by jumps, see [11]) in the sense that

nδ(θ̂n − θ)
P−→ 0,

for any δ < 1/2. On the other hand, if the index α ∈ (1, 2), the level of activity of

the jump process J does effect the behavior of the estimator θ̂n. More precisely,
the rate of convergence of θ̂n is 1/n1/α−1/2.

When the dynamics of X are unknown, we introduce a new method called
spot volatility estimator-based approach to estimate θ. More precisely, under
some assumptions, we approximate σ(θ,X(tni ))

2, i = 1, . . . , n by a sequence of
statistics σ̂(tni )

2, i = 1, . . . , n which depends only on the observation data of Y .

Then the estimator θ̂n of θ is selected such that it minimizes

1

n

n
∑

i=1

(

σ(θ,X(tni ))
2 − σ̂(tni )

2

A(Xn
i )

2

)2

,

with a suitable function A. An interesting feature of this method is that it can
work even if the observations of Y are contaminated by microstructure noise.
This situation happens, for example, when process Y is observed on a high fre-
quency time scale (e. g. intradaily data) whileX is observed on a lower frequency
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time scale (e. g. daily data). A näıve way to avoid the effect of microstructure
noise to the estimators is to sample Y over longer time scale. However, it is not
wise to accept that throwing away such a lot of data can be an optimal solution.

Nevertheless, it is visibly clear that the rate of convergence of estimators
θ̂n depends on the efficiency of the spot volatility estimators and hence, when
microstructure noise and jump effects occur, the rates are slower than in the
non-noisy case and a 1/

√
n-rate can not be attained. Estimators θ̂n could also

hardly reach the rate which is achieved when the dynamic of X is known. A
comprehensive discussion about spot volatility estimation in various situations
can be found in [1, 15–17, 19, 23–28] and [21]1.

The present paper is organized in the following way. The moment-based ap-
proach and spot volatility estimator-based approach are presented in Sections 2
and 3, respectively. In each section a numerical example is carried out to illus-
trate the behavior of the estimators. Some spot volatility estimation schemes
are provided in Section 4.

2. Moment-based approach

2.1. Preliminary

Throughout this section, we consider the process (X,Y ) defined on a filtered
probability space (Ω,F, (Ft)t≥0,P) by

{

dYt = b(θ,Xt, Yt)dt+ σ(θ,Xt)dWt + dJt

dXt = a(θ,Xt)dt+ σ̃(θ,Xt)dW̃t + dJ̃t
(0 ≤ t ≤ T ), (2.1)

where W, W̃ denote two Brownian motions which can be correlated but the
sigma algebra σ{Wt−Ws, W̃t−W̃s; t ≥ s} is independent of Fs for all s ∈ [0, T ).
Functions a(θ, x), σ(θ, x), σ̃(θ, x) are known; function b is unknown. Parameter
θ belongs to the set Θ which is a compact subset of R. J and J̃ are Lévy pro-
cesses with no Brownian component. We also assume that the sigma algebra
σ{Jt−Js, J̃t− J̃s; t ≥ s} is independent of Fs for all s ∈ [0, T ). The common as-
sumptions in the literature suppose that the jump processes J and J̃ are either
independent of the sigma algebra σ{W, W̃} or of finite activity (see [2]). Nev-
ertheless, we remark that in our discussion we do not need these assumptions.
The rate of convergence of our estimator depends on the Blumenthal-Getoor
index α of J which is defined by

α := inf

{

p > 0 :

∫

|x|≤1

|x|pν(dx) <∞
}

,

where ν is the Lévy measure of J . Necessarily, α ∈ [0, 2]. In this paper, we
suppose that process J has finite second moment and Blumenthal-Getoor index
α < 2. Furthermore, we suppose that the Lévy process J̃ has a characteristic

1The author would like to thank the first Referee for pointing him to paper [21].
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triplet (µ̃, 0, ν̃) which is known. Here µ̃ and ν̃ denote the drift and the Lévy
measure of J̃ , respectively (see [5]). In order to simplify our argument, J̃ is also
supposed to have finite moment of all orders.

We now assume that the coefficients of equations (2.1) satisfy the following
conditions.

(A1).

(i) The functions a, σ, σ̃ are three times differentiable in θ;

(ii) the functions
∂ja

∂θj
,
∂jσ

∂θj
,
∂j σ̃

∂θj
, for j = 0, 1, 2, 3, are three times differen-

tiable in x;

(iii) the functions
∂j+ka

∂θj∂xk
,
∂j+kσ

∂θj∂xk
,
∂j+kσ̃

∂θj∂xk
, for j = 0, 1, 2, 3 and k = 1, 2, 3,

are bounded by a constant;

(iv) we have

3
∑

j=0

∣

∣

∣

∣

∂ja(θ, x)

∂θj

∣

∣

∣

∣

+

∣

∣

∣

∣

∂jσ(θ, x)

∂θj

∣

∣

∣

∣

+

∣

∣

∣

∣

∂j σ̃(θ, x)

∂θj

∣

∣

∣

∣

≤ A(x), |b(θ, x, y)| ≤ A(x),

for some C∞ function A : R → [1,∞), whose derivatives of any order
m ≥ 1 are bounded and such that A(x) ≤ C(1 + |x|), where C is a
positive constant.

Let denote θ∗ the true value of the parameter θ. Following the paper of Jacod
[11], we introduce the following mild assumptions about the identifiablitily of
θ∗ from the diffusion term σ(θ, x).

(A2). For any ǫ > 0,

inf
θ∈Θ:|θ−θ∗|>ǫ

∫ T

0

(σ(θ,Xs)
2 − σ(θ∗, Xs)

2)2

A(Xs)6
ds > 0 a.s,

furthermore,
∫ T

0

A(Xs)
−6

[

∂

∂θ
σ(θ∗, Xs)

2

]2

ds > 0 a.s.

In the following we denote ∆n = T/n, tni = i∆n, X
n
i = Xtni−1

,∆n
i Z = Ztni

−
Ztn

i−1
for any process Z.

Before establishing our estimator for the parameter θ, we give some remarks
on the model (2.1). First, in our setting, though process X is observable, the
discrete sample of X only may not be sufficient to make inferences about θ. This
situation happens when, for example, the dynamic of X does not depend on θ at
all (see Section 2.3 for a non-trivial example). Second, the model (2.1) appears in
mathematical control and system theory of stochastic systems where processes
X and Y are respectively the input and output of a real-time stochastic system
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(see [35] and the references therein). Third, if we consider a special case where
processes X and Y coincide, the model (2.1) becomes

dYt = dXt = a(θ,Xt)dt+ σ̃(θ,Xt)dW̃ + dJ̃t.

This jump-diffusion model is widely used not only in finance to model the asset
price [6, 20, 32] but also in soil moisture model [22], hydrology [3], popula-
tion model [8], etc. However, as we already mentioned above, it seems that the
estimation for θ in the non-ergodic setting has not been discussed so far in
literature.

2.2. Estimator

For each x ∈ R, θ ∈ Θ, let Xθ,x
t , 0 ≤ t ≤ T, be the solution of

dXθ,x
t = a(θ,Xθ,x

t )dt+ σ̃(θ,Xθ,x
t )dW̃t + dJ̃t, Xθ,x

0 = x a.s. (2.2)

Thank to Assumption (A1), the above equation always has a unique solution.
Let

ψn(θ, x) =
1

∆n

∫ ∆n

0

E(σ(θ,Xθ,x
s ))2ds. (2.3)

In practice, because functions a, σ̃ and the triple charateristics of J̃ are known,
ψ can be calculated by using for instance Monte Carlo methods. We denote

ζni (θ) =
1

nA(Xn
i )

6

(

ψn(θ,X
n
i )

2−ψn(θ,X
n
i )

|∆n
i Y∆n

i+1Y |
∆n

π

)

, i = 1, . . . , n− 1.

(2.4)
The contrast function is defined by

Un(θ) =

n−1
∑

i=1

ζni (θ). (2.5)

We will show that function Un is continuous in θ; hence it attains a minimum
on the compact set Θ and due to the measurable selection theorem we can find
a measurable variable θ̂n such that

Un(θ̂n) = min
θ∈Θ

Un(θ). (2.6)

Denote δ0 = min{1/2, 1/α− 1/2}. We now state the main result of this paper.

Theorem 2.1. Assume that θ∗ is in the interior of Θ, then

nδ(θ̂n − θ∗)
P−→ 0, (2.7)

for any δ less than δ0.

It should be noted that in [33], an estimator for θ∗ is proposed, whose rate
of convergence is n1/2 independently of the jump behavior of J . However, the
situation in [33] is quite different from ours because they treat the case that the
underlying processes are ergodic and let the terminal time T tend to infinity in
the estimator.
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2.3. Numerical Example

In this section we consider the following toy model
{

dYt =
√
θXtdWt + dJt

dXt = θXtdt+XtdW̃t,

where Y (0) = X(0) = 1, t ∈ [0, 1], θ ∈ [θ1, θ2] ⊂ (0,∞) and J is a α stable Lévy
process with jumps truncated by 1, or in other words, J is a Lévy process with
no Brownian component and has a Lévy measure ν defined by

ν(dx) =

(

A

xα+1
I[0<x≤1] +

B

|x|α+1
I[−1≤x<0]

)

dx,

for some positive constants A and B (see [5]).
It is worth to mention here that in this model, though processX does depend

on parameter θ, a discrete sample of X , or even a continuous one, is not enough
to infer a consistent estimation for θ when the terminal time T is fixed (see
[12]). It is easy to verify that this model satisfies conditions (A1) and (A2) with
A(x) = L

√
1 + x2 for some positive constant L. The experiment is designed as

follows: we fix θ = θ∗ = 2 and simulate the values of processes X and Y by
using Euler’s method with a very small time-discretization step. We consider
the error defined by

Errorn = θ̂n − θ∗.

We consecutively take the number of observations n = 103, n = 104 and the
Blumenthal-Getoor index α = 0, α = 0.7, α = 1.2. After iterating the simulation
1000 times for each case, we get the histograms for the distribution of Error in
Figures 1 and 2.

We see that the asymptotic behavior of our estimator is better for a small
α. The quality becomes slightly worse when the jump part has higher activity,
however it remains acceptable.

2.4. Proofs

From now on the symbol C stands for a positive generic constant which can be
changed from a line to another but not depend on t, n or θ.

2.4.1. Estimates on moments

We first state a few lemmata which will be used later.

Lemma 2.2. Let f(t, ω) be a nonanticipative function with

E

∫ T

0

f(t, ω)2mdt <∞ a.s,

for some m ∈ Z
+. Then, for any 0 ≤ s ≤ t ≤ T ,

E

((
∫ t

s

f(u, ω)dWu

)2m

|Fs

)

≤ [m(2m−1)]m(t−s)m−1
E

(
∫ t

s

f(u, ω)2mdu|Fs

)

.
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Fig 1. Histogram of Error with n = 103, α = 0(left), α = 0.7(center), α = 1.2(right).
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Fig 2. Histogram of Error with n = 104, α = 0(left), α = 0.7(center), α = 1.2(right).

This lemma can be proved by carefully following the argument in [13], Lem-
ma 4.12.

The next lemma gives a bound for conditional moments of process X defined
in (2.1).

Lemma 2.3. Under assumption (A1), for each p ≥ 1, there exists a constant
Cp such that for any 0 ≤ s < t ≤ T ,

E
(

|Xt −Xs|2p|Fs

)

≤ CpA(Xs)
2p(t− s). (2.8)

Proof. For any 0 ≤ s < t ≤ T we have

|Xt −Xs|2p

=

∣

∣

∣

∣

J̃t − J̃s + a(θ,Xs)(t− s) + σ̃(θ,Xs)(W̃t − W̃s)

+

∫ t

s

(a(θ,Xu)− a(θ,Xs))du +

∫ t

s

(σ̃(θ,Xu)− σ̃(θ,Xs))dWu

∣

∣

∣

∣

2p

≤ 52p−1

(

|J̃t − J̃s|2p +A(Xs)
2p(t− s)2p +A(Xs)

2p|W̃t − W̃s|2p

+

∣

∣

∣

∣

∫ t

s

(a(θ,Xu)− a(θ,Xs))du

∣

∣

∣

∣

2p

+

∣

∣

∣

∣

∫ t

s

(σ̃(θ,Xu)− σ̃(θ,Xs))dW̃u

∣

∣

∣

∣

2p)

.
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On the other hand, by Theorem 1 in [14], for any p ≥ 1, there exists a constant
K = K(p, T, J̃) such that

E(|J̃t − J̃s|2p) ≤ K(t− s),

for any 0 ≤ s < t ≤ T . Hence, it follows from Jensen’s inequality, assumption
(A1) and Lemma 2.2 that

E
(

|Xt −Xs|2p|Fs

)

≤ K52p−1(t− s) + CA(Xs)
2p(t− s)p + C

∫ t

s

E(|Xu −Xs|2p|Fs)du

≤ CA(Xs)
2p(t− s) + C

∫ t

s

E(|Xu −Xs|2p|Fs)du.

Applying Gronwall’s inequality, we get the desired result.

Now we split the proof of the Theorem 3.1 into several lemmata. First we
give some estimates for function ψ(θ, x).

Lemma 2.4. For any x ∈ R, j = 1, 2, 3,

i) |ψn(θ, x)| ≤ CA(x)2;
ii) |ψn(θ, x)− σ(θ, x)2| ≤ CA(x)2

√
∆n;

iii)
∣

∣

∂jψn(θ, x)

∂θj

∣

∣ ≤ CA(x)j+1 .

Proof. i) Because of condition (A1), there exists a constant C such that

|σ(θ,Xθ,x
s )− σ(θ, x)| ≤ C|Xθ,x

s − x|,

hence, for any s ≤ 1,

E|σ(θ,Xθ,x
s )|2 ≤ C(σ(θ, x)2 + E|Xθ,x

s − x|2)
≤ C(A(x)2 +A(x)2s)

≤ CA(x)2.

ii) Since σ(θ, x) is differentiable in x, there exists u such that

|σ(θ,Xθ,x
s )2 − σ(θ, x)2| = 2|(Xθ,x

s − x)σ(θ, u)σ′
x(θ, u)|

≤ C|Xθ,x
s − x|(|σ(θ, x)| + |σ(θ, u)− σ(θ, x)|)

≤ C(A(x)|Xθ,x
s − x|+ |Xθ,x

s − x|2).

Hence

|ψn(θ, x)− σ(θ, x)2| ≤ 1

∆n

∫ ∆n

0

E|σ(θ,Xθ,x
s )2 − σ(θ, x)2|ds

≤ C

∆n

∫ ∆n

0

(A(x)E|Xθ,x
s − x|+ E|Xθ,x

s − x|2)ds

≤ CA(x)2
√

∆n.
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iii) By classical differentiation properties for stochastic differential equations
(see for example [31]), we have

∂Xθ,x
t

∂θ
=

∫ t

0

(

a′θ(θ,X
θ,x
s ) + a′x(θ,X

θ,x
s )

∂Xθ,x
s

∂θ

)

ds

+

∫ t

0

(

σ̃′
θ(θ,X

θ,x
s ) + σ̃′

x(θ,X
θ,x
s )

∂Xθ,x
s

∂θ

)

dW̃s.

Using condition (A1), Gronwall’s lemma and following a routine argument in
SDE theory, we could end up with

E

∣

∣

∣

∣

∂Xθ,x
t

∂θ

∣

∣

∣

∣

p

≤ CpA(x)
ptp/2, ∀p ≥ 1, t ∈ (0, 1),

where Cp is a constant which depends only on p. Next, we have

∂ψn(θ, x)

∂θ
=

1

∆n
E

∫ ∆n

0

2σ(θ,Xθ,x
s )

(

σ′
θ(θ,X

θ,x
s ) + σ′

x(θ,X
θ,x
s )

∂Xθ,x
s

∂θ

)

ds,

and hence
∣

∣

∣

∣

∂ψn(θ, x)

∂θ

∣

∣

∣

∣

≤ C

∆n

∫ ∆n

0

(

E|σ(θ,Xθ,x
s )|+ E

∣

∣

∣

∣

σ(θ,Xθ,x
s )

∂Xθ,x
s

∂θ

∣

∣

∣

∣

)

ds

≤ C

∆n

∫ ∆n

0

(

A(x) + (A(x)2A(x)2s)1/2
)

ds.

This estimation implies iii) for j = 1. The demonstration for the case j = 2, 3
is similar and will be omitted.

Lemma 2.5. Let us define

ϕn(θ, x) =
1

(∆n)2
E

(
∫ ∆n

0

σ(θ,Xθ,x
s )dWs

)4

,

then there exists a constant C such that

|ϕn(θ, x)| ≤ CA(x)4, (2.9)

and
|ϕn(θ, x) − 3σ(θ, x)4| ≤ CA(x)4

√

∆n. (2.10)

Proof. Since for any s ∈ (0, 1),

Eσ(θ,Xθ,x
s )4 ≤ C(σ(θ, x)4 + E(Xθ,x

s − x)4)

≤ C(A(x)4 +A(x)4s)

≤ CA(x)4,
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we have

E

(
∫ ∆n

0

σ(θ,Xθ,x
s )dWs

)4

≤ 36∆n

∫ ∆n

0

Eσ(θ,Xθ,x
s )4ds ≤ CA(x)4(∆n)

2,

which implies (2.9). Next, we denote

ξ1 = σ(θ, x)W∆n
and ξ2 =

∫ ∆n

0

(σ(θ,Xθ,x
s )− σ(θ, x))dWs.

For each k = 1, 2, 3, we have

E(|ξ1|2k) ≤ CA(x)2k(∆n)
k, E(|ξ1|4) = 3(∆n)

2σ(θ, x)4,

and

E(|ξ2|2k) ≤ C(∆n)
k−1

∫ ∆n

0

E|σ(θ,Xθ,x
s )− σ(θ, x)|2kds

≤ C(∆n)
k−1

∫ ∆n

0

E|Xθ,x
s − x|2kds

≤ C(∆n)
k+1A(x)2k.

Hence it follows from Hölder’s inequality that

|ϕn(θ, x)− 3σ(θ, x)4| =
∣

∣

∣

∣

1

(∆n)2
E(ξ1 + ξ2)

4 − 3σ(θ, x)4
∣

∣

∣

∣

≤ C

(∆n)2

4
∑

j=1

E(|ξ1|4−j |ξ2|j)

≤ CA(x)4
√

∆n.

2.4.2. Contrast function

We denote

Zt =

∫ t

0

b(θ,Xs, Ys)ds+

∫ t

0

σ(θ,Xs)dWs, 0 ≤ t ≤ T.

ζ̃ni (θ) =
1

nA(Xn
i )

6

(

ψn(θ,X
n
i )

2 − ψn(θ,X
n
i )

|∆n
i Z∆

n
i+1Z|

∆n
π

)

, i = 1, . . . , n− 1,

Ũn(θ) =

n−1
∑

i=1

ζ̃ni (θ).

Lemma 2.6. For any j = 0, 1, 2, 3 and k = 1, 2, . . ., we have

sup
i=2,...,n

E

(∣

∣

∣

∣

∂j ζ̃ni (θ)

∂θj

∣

∣

∣

∣

k

|Fn
i−1

)

≤ Ck

nk
, (2.11)

where F
n
i = Ftni

.
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Proof. By Lemma 2.2, it follows that

E

((
∫ tni

tni−1

σ(θ∗, Xs)dWs

)2k

|Fn
i−1

)

≤ [k(2k − 1)]k(∆n)
k−1

E

(
∫ tni

tni−1

σ(θ∗, Xs)
2kds|Fn

i−1

)

≤ C(∆n)
k−1

∫ tni

tni−1

(

|σ(θ∗, Xn
i )|2k + E(|Xs −Xn

i |2k|Fn
i−1)

)

ds

≤ C

(

A(Xn
i )

2k(∆n)
k + (∆n)

k−1

∫ tni

tni−1

A(Xn
i )

2k(s− tni−1)ds

)

≤ CA(Xn
i )

2k(∆n)
k.

Furthermore,

E

((
∫ tni

tni−1

b(θ,Xs, Ys)ds

)2k

|Fn
i−1

)

≤ (∆n)
2k−1

E

(
∫ tni

tni−1

A(Xs)
2kds|Fn

i−1

)

≤ C

(

A(Xn
i )

2k(∆n)
2k + (∆n)

2k−1

∫ tni

tni−1

E(|Xs −Xn
i |2k|Fn

i−1)ds

)

≤ CA(Xn
i )

2k(∆n)
2k.

Hence
E(|∆n

i Z|2k|Fn
i−1) ≤ CA(Xn

i )
2k(∆n)

k. (2.12)

Similarly,
E(|∆n

i+1Z|2k|Fn
i−1) ≤ CA(Xn

i )
2k(∆n)

k. (2.13)

Now we prove (2.11) for j = 0. We have

E(|ζ̃ni (θ)|k|Fn
i−1)

≤ 2k−1

nkA(Xn
i )

6k

(

ψn(θ,X
n
i )

2k + ψn(θ,X
n
i )

k
E
(

(
π|∆n

i Z∆
n
i+1Z|

∆n
)k|Fn

i−1

)

)

,

by Lemma 2.4, it follows that

E(|ζ̃ni (θ)|k|Fn
i−1)

≤ Ck

nkA(Xn
i )

4k

(

A(Xn
i )

2k + (∆n)
−k
(

E(|∆n
i Z|2k|Fn

i−1)E(|∆n
i+1Z|2k|Fn

i−1)
)1/2

)

.

Taking into account (2.12) and (2.13) we get the desired result. The demonstra-
tion for j = 1, 2, 3 is similar and will be omitted.



H.-L. Ngo/Parametric estimation for stochastic processes with jumps 1454

We recall the following result about moment estimate for Lévy process (see
[14, 23]).

Lemma 2.7. For each q > α and r ∈ [0, 2], there exists a constant C such that

E|J(t)|r ≤ Ctmin{r,1,r/q}, ∀t ∈ (0, T ).

The following lemma gives a uniform estimate for Un(θ)− Ũn(θ).

Lemma 2.8. For each δ ∈ (0, δ0), there exists a constant Cδ such that

E sup
θ∈Θ

∣

∣

∣

∣

∂k(Un(θ)− Ũn(θ))

∂θk

∣

∣

∣

∣

≤ Cδ(∆n)
δ, (2.14)

with k = 0, 1, 2.

Proof. By virtue of Lemma 2.4, we get

∣

∣

∣

∣

∂k(Un(θ) − Ũn(θ))

∂θk

∣

∣

∣

∣

≤ π

n−1
∑

i=1

1

A(Xn
i )

6

∣

∣

∣

∣

∂kψn(θ,X
n
i )

∂θk
(

∆n
i Z∆

n
i+1Z −∆n

i Y∆n
i+1Y

)

∣

∣

∣

∣

≤ C

n−1
∑

i=1

(
∣

∣

∣

∣

∆n
i Z

A(Xn
i )

∆n
i+1J

∣

∣

∣

∣

+

∣

∣

∣

∣

∆n
i+1Z

A(Xn
i )

∆n
i J

∣

∣

∣

∣

+ |∆n
i J∆

n
i+1J |

)

.

We denote r1 = (δ + 1
2 )

−1 > max{1, α} and r2 = r1
r1−1 > 0. It follows from

Hölder’s inequality, (2.12), (2.13) and Lemma 2.7 that

E

(∣

∣

∣

∣

∆n
i Z

A(Xn
i )

∆n
i+1J

∣

∣

∣

∣

+

∣

∣

∣

∣

∆n
i+1Z

A(Xn
i )

∆n
i J

∣

∣

∣

∣

+ |∆n
i J∆

n
i+1J |

)

≤
∥

∥

∥

∥

∆n
i Z

A(Xn
i )

∥

∥

∥

∥

r2

‖∆n
i+1J‖r1 +

∥

∥

∥

∥

∆n
i Z

A(Xn
i+1)

∥

∥

∥

∥

r2

‖∆n
i J‖r1 + E|∆n

i J |E|∆n
i+1J |

≤ C(∆n)
1+δ,

this estimation implies (2.14).

We introduce the following auxiliary function

F (θ, x) =
1

A(x)6
(

σ(θ, x)4 − 2σ(θ, x)2σ(θ∗, x)2
)

. (2.15)

Lemma 2.9. F (θ, x) is three times differentiable in θ, and

i)

∣

∣

∣

∣

E(ζ̃ni (θ)|Fn
i−1)−

1

n
F (θ,Xn

i )

∣

∣

∣

∣

≤ C(∆n)
3/2;

ii)

∣

∣

∣

∣

E

(

∂2ζ̃ni (θ)

∂θ2

∣

∣

∣

∣

F
n
i−1

)

− 1

n

∂2F (θ,Xn
i )

∂θ2

∣

∣

∣

∣

≤ C(∆n)
3/2.
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Proof. It follows by Lemma 2.4 that
∣

∣

∣

∣

E(ζ̃ni (θ)|Fn
i−1)−

1

n
F (θ,Xn

i )

∣

∣

∣

∣

≤ 1

nA(Xn
i )

6

(

|ψn(θ,X
n
i )

2 − σ(θ,Xn
i )

4|+ 2σ(θ∗, Xn
i )|σ(θ,Xn

i )
2 − ψ(θ,Xn

i )|

+ 2ψn(θ,X
n
i )|σ(θ∗, Xn

i )
2 − π

2∆n
E(|∆n

i Z∆
n
i+1Z||Fn

i−1)|
)

≤ C

√
∆n

n
+ C

1

nA(Xn
i )

4

∣

∣

∣

∣

σ2(θ∗, Xn
i )−

π

2∆n
E(|∆n

i Z∆
n
i+1Z||Fn

i−1)

∣

∣

∣

∣

.

We denote

ξj =

∫ tni−j+1

tni−j

b(θ,Xs, Ys)dW (s)+

∫ tni−j+1

tni−j

(σ(θ∗, Xs)−σ(θ∗, Xn
i ))dWs, j = 0, 1.

By following the similar argument as in the proof of Lemma 2.6 we can show
that

E(ξ2j |Fn
i−1) ≤ CA(Xn

i )
2∆2

n, j = 0, 1.

Hence

|σ2(θ∗, Xn
i )−

π

2∆n
E(|∆n

i Z∆
n
i+1Z||Fn

i−1)|

≤
∣

∣σ2(θ∗, Xn
i )−

π

2∆n
E(σ(θ∗, Xn

i )
2|∆n

i W∆n
i+1W ||Fn

i−1)
∣

∣

+
π

2∆n
E
(

|ξ0ξ1 + σ(θ∗, Xn
i )ξ0∆

n
i W + σ(θ∗, Xn

i )ξ1∆
n
i+1W ||Fn

i−1

)

≤ CA(Xn
i )(∆n)

1/2,

this estimation implies the first part of this lemma. A proof for the second part
can be carried out by a similar argument as above.

Lemma 2.10. For each j = 0, 2,

sup
θ∈Θ

∣

∣

∣

∣

∂jUn(θ)

∂θj
− 1

T

∫ T

0

∂jF (θ,Xs)

∂θj
ds

∣

∣

∣

∣

P−→ 0.

Proof. Thank to condition (A1), A(x)j
∂jF (θ,Xn

i )
∂θj are uniformly bounded by a

constant. By applying Itô’s formula for functions F (θ, x) and ∂2F (θ,x)
∂θ2 , we have

E

∣

∣

∣

∣

1

n

n
∑

i=1

∂jF (θ,Xn
i )

∂θj
− 1

T

∫ T

0

∂jF (θ,Xs)

∂θj
ds

∣

∣

∣

∣

≤ C
√

∆n. (2.16)

This fact, together with Lemma 2.9, leads to

n−1
∑

i=1

E

(

∂j ζ̃ni (θ)

∂θj

∣

∣

∣

∣

F
n
i−1

)

− 1

T

∫ T

0

∂jF (θ,Xs)

∂θj
ds

P−→ 0. (2.17)
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On the other hand, it follows from Lemma 2.6 that

n−1
∑

i=1

E

(
∣

∣

∣

∣

∂j ζ̃ni (θ)

∂θj

∣

∣

∣

∣

2

|Fn
i−1

)

≤ C∆n.

This relation and (2.17) yield

V j
n (θ) :=

∂jŨn(θ)

∂θj
− 1

T

∫ T

0

∂jF (θ,Xs)

∂θj
ds

P−→ 0. (2.18)

Furthermore, by Lemma 2.6, we have

sup
θ∈Θ

(

E

∣

∣

∣

∣

∂j+1Ũn(θ)

∂θj+1

∣

∣

∣

∣

2

+ E

(

1

T

∫ T

0

∂j+1F (θ,Xs)

∂θj+1
ds

)2)

≤ C,

hence, for any θ1, θ2 ∈ Θ,

E(V j
n (θ1)− V j

n (θ2))
2 ≤ |θ1 − θ2|

∣

∣

∣

∣

∫ θ2

θ1

E

(

∂V j
n (u)

∂θ

)2

du

∣

∣

∣

∣

≤ C(θ1 − θ2)
2. (2.19)

It also follows from Lemma 2.6 that there exists a constant C such that

sup
θ∈Θ

E(V j
n (θ))

2 < C.

This fact, together with (2.18), (2.19) and Theorem 20 in [10], yields

sup
θ∈Θ

∣

∣

∣

∣

∂jŨn(θ)

∂θj
− 1

T

∫ T

0

∂jF (θ,Xs)

∂θj
ds

∣

∣

∣

∣

P−→ 0.

By taking into account Lemma 2.8 we get the desired result.

Lemma 2.11. For each δ ∈ (0, δ0), there exists a constant C such that

E

∣

∣

∣

∣

∂Un(θ
∗)

∂θ

∣

∣

∣

∣

≤ C(∆n)
δ.

Proof. We have

∣

∣

∣

∣

E

(

∂ζ̃ni (θ
∗)

∂θ

∣

∣

∣

∣

F
n
i−1

)
∣

∣

∣

∣

≤ C

nA(Xn
i )

4

∣

∣

∣

∣

2ψn(θ
∗, Xn

i )−
π

∆n
E(|∆n

i Z∆
n
i+1Z||Fn

i−1)

∣

∣

∣

∣

≤ C

nA(Xn
i )

4

(

∣

∣ψn(θ
∗, Xn

i )− σ(θ∗, Xn
i )

2
∣

∣

+

∣

∣

∣

∣

σ(θ∗, Xn
i )

2 − π

2∆n
E(|∆n

i Z∆
n
i+1Z||Fn

i−1)

∣

∣

∣

∣

)

≤ C(∆n)
3/2,
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hence it follows from Lemma 2.6 that

E

(

∂Ũn(θ
∗)

∂θ

)2

≤ 2E

(

n−1
∑

i=1

(

∂ζ̃ni (θ
∗)

∂θ
− E

(

∂ζ̃ni (θ
∗)

∂θ

∣

∣

∣

∣

F
n
i−1

))

)2

+ 2E

(

n−1
∑

i=1

E

(

∂ζ̃ni (θ
∗)

∂θ

∣

∣

∣

∣

F
n
i−1

)

)2

≤ 2
n−1
∑

i=1

E

(

∂ζ̃ni (θ
∗)

∂θ

)2

+ (nC(∆n)
3/2)2

≤ C∆n.

Therefore,

E

(

∂Ũn(θ
∗)

∂θ

)2

≤ C∆n.

Combining this relation with Lemma 2.8 yields the desired result.

2.4.3. Proof of Theorem 2.1

We are now in position to give proof of the main theorem. First, we will show
that

θ̂n
P−→ θ∗ as n→ ∞. (2.20)

Let us denote

ξθ =

∫ T

0

(σ(θ,Xs)
2 − σ(θ∗, Xs)

2)2

A(Xs)6
ds,

and for each ǫ, η > 0,

C(ǫ, η) = {ω : inf
θ∈Θ:|θ−θ∗|>ǫ

ξθ(ω) ≥ η}.

Because of condition (A2), limη→0 P(C(ǫ, θ)) = 1. Since

C(ǫ, η) ∩
{

sup
θ∈Θ

|Un(θ)−
1

T

∫ T

0

F (θ,Xs)ds| ≤ η/2

}

⊂ {|θ̂n − θ∗| ≤ ǫ},

taking into account Lemma 2.10 we get (2.20).
Next, applying Taylor’s expansion, we have

∂Un(θ
∗)

∂θ
− ∂Un(θ̂n)

∂θ
= (θ∗ − θ̂n)

∂2Un(µn)

∂θ2
,

where µn is a random point between θ∗ and θ̂n. Since θ
∗ is in the interior of Θ,

for any n large enough we have ∂Un(θ̂n)
∂θ = 0, and

∂Un(θ
∗)

∂θ
= (θ∗ − θ̂n)

∂2Un(µn)

∂θ2
. (2.21)



H.-L. Ngo/Parametric estimation for stochastic processes with jumps 1458

It follows from (2.20) that µn
P→ θ∗, and by virtue of Lemma 2.10, we have

∂2Un(µn)

∂θ2
P−→ 1

T

∫ T

0

∂2F (θ∗, Xs)

∂θ2
> 0 a.s., (2.22)

where the last equality follows from condition (A2). By Lemma 2.11, for any
δ ∈ (0, δ0), we have

nδ ∂Un(θ
∗)

∂θ

P→ 0.

Combining this fact with (2.21), (2.22) yields

nδ(θ̂n − θ∗)
P−→ 0, as n→ ∞,

for any δ ∈ (0, δ0), and this relation completes the proof.

3. Spot volatility estimator-based approach

3.1. Preliminary

In this section, we consider a process (X,Y ) defined on a filtered probabil-
ity space (Ω,F, (Ft)t∈[0,T ],P) and given by the following stochastic differential
equation

dY (t) = b(θ,Xt, Yt)dt+ σ(θ,Xt)dW (t) + dJ(t), 0 ≤ t ≤ T, (3.1)

whereW is a Brownian motion, J is a Lévy process without Brownian part, pa-
rameter θ belongs to Θ, which is a compact subset of R. Assume that we observe
X without micorstructure noise at time grid tni = iT/n for i = 0, 1, . . . , n. Pro-
cess Y is observed with microstructure noise at another time grid tmj = jT/m
for j = 0, 1 . . . ,m. More precisely, at each time tmj , we cannot observe Y (tmj )

but Ỹ (tmj ) = Y (tmj ) + ǫ(tmj ) with ǫ(.) being a microstructure noise. We suppose
that ǫ(.) satisfies the following assumption.

(MN). i) For any p > 0, there exists a constant ϑp such that

sup
j,m

E|ǫ(tmj )|p < ϑp <∞.

ii) For each m, the random variables {ǫ(tmj ); j = 0, . . . ,m} are independent and
have the same expectations.

In the following, we will denote Xn
i = X(tni ). The following assumption plays

a key role in the construction of our estimators.

(B1). There exist estimators of {σ2(θ,Xn
i ); i = 0, . . . , n}, called {σ̂(tni )2; i =

0, . . . , n}, which is based on {Ỹ (tmj ); j = 0, . . . ,m}, such that

sup
i,n

E|σ̂(tni )2 − σ(θ∗, Xn
i )

2| ≤ L

(

1

m

)δ0

, (3.2)
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and

sup
i,n

E

(

σ̂(tni )
2

σ(θ∗, Xn
i )

2 + 1

)3

≤ L, (3.3)

for some positive constants L and δ0. Here, θ
∗ is the true value of parameter θ.

Assume further that m = O(nκ) for some κ > 0 and denote δ = κδ0.

In Section 4, under conditions on the integrability and Hölder continuity of
coefficients b and σ, we will present several classes of estimator {σ̂(tni )2} which
satisfy (B1). We will also make use of the following assumptions which are
gathered here for easy reference:

(B2). Function σ(θ, x) is two times differential in θ, and there exists a function
A : R → [1,∞) such that

sup
θ∈Θ

(

|σ(θ, x)| + |σ′
θ(θ, x)|+ |σ′′

θθ(θ, x)|
)

≤ A(x). (3.4)

(B3). For any ǫ > 0,

lim inf
n→∞

inf
θ∈Θ:|θ−θ∗|>ǫ

1

n

n
∑

i=1

∣

∣

∣

∣

σ(θ,Xn
i )

2 − σ(θ∗, Xn
i )

2

A(Xn
i )

2

∣

∣

∣

∣

> 0 a.s. (3.5)

(B4).

lim inf
n→∞

1

n

n
∑

i=1

1

A(Xn
i )

4

(

∂σ(θ∗, Xn
i )

2

∂θ

)2

> 0 a.s. (3.6)

3.2. Estimator

The contrast function is defined as follows

gn(θ) =
1

n

n
∑

i=1

(

σ(θ,Xn
i )

2 − σ̂(tni )
2

A(Xn
i )

2

)2

. (3.7)

Since function θ 7→ gn(θ) is continuous, it has a minimum on the compact set
Θ, and due to the measurable selection theorem we can find a measurable (with

respect to the observed sigma algebra at stage n) variable θ̂n satisfying

gn(θ̂n) = inf
θ∈Θ

gn(θ). (3.8)

Proposition 3.1. Suppose that Assumptions (B1) and (B3) hold. Then

θ̂n
P−→ θ∗.

Proof. For each n and ǫ > 0, we denote

ζn(ǫ) = inf
θ∈Θ:|θ−θ∗|>ǫ

1

n

n
∑

i=1

∣

∣

∣

∣

σ(θ,Xn
i )

2 − σ(θ∗, Xn
i )

2

A(Xn
i )

2

∣

∣

∣

∣

.
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It follows from Assumption (B3) that, for any ǫ > 0, there exists ǫ1 > 0 such
that the event

A∞ =
{

lim inf
n→∞

ζn(ǫ) > ǫ1
}

has probability large than 1− ǫ/3. We denote

An =

{

inf
k≥n

ζk(ǫ) >
ǫ1
2

}

.

Since the sequence {Ak; k ≥ 1} is nondecreasing and A∞ ⊂ ⋃∞
n=1An, there

exists n0 ∈ Z
+ such that

inf
n≥n0

P(An) ≥ 1− ǫ

2
. (3.9)

On the other hand, we have

P(|θ̂n − θ∗| > ǫ) ≤P
(

inf
θ∈Θ:|θ−θ∗|>ǫ

gn(θ) < gn(θ
∗)
)

≤P

(

ζn(ǫ) < 4gn(θ
∗)
)

≤P

(

ζn(ǫ) <
ǫ1
2

)

+ P

(

gn(θ
∗) >

ǫ1
8

)

.

Hence, it follows from (3.9) and Markov’s inequality that

lim sup
n→∞

P(|θ̂n − θ∗| > ǫ) ≤ ǫ

2
+ lim sup

n→∞
8ǫ1Egn(θ

∗). (3.10)

Furthermore, it follows from Hölder’s inequality and Assumption (B1) that

Egn(θ
∗) ≤ 1

n

n
∑

i=1

(

E|σ(θ,Xn
i )

2 − σ̂(tni )
2| E

∣

∣

∣

∣

σ(θ,Xn
i )

2 − σ̂(tni )
2

A(Xn
i )

2

∣

∣

∣

∣

3)1/2

≤
(

8L(1 + 8L)
)1/2 1

nδ/2
.

Therefore,

lim sup
n→∞

P(|θ̂n − θ∗| > ǫ) ≤ ǫ

2
+ 8ǫ1

(

8L(1 + 8L)
)1/2

lim sup
n→∞

1

nδ/2

=
ǫ

2
,

for any ǫ > 0. This relation yields the desired result.

Now we are able to state the main theorem of this section. It tells us that the
parametric estimator θ̂n converges at the same rate as the estimator for spot
volatility does. More discussion about the rate of convergence will be provided
at the end of Section 4.
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Theorem 3.2. Suppose that Assumptions (B1)–(B4) hold. Then if the true

parameter θ∗ is in the interior of Θ, the estimators θ̂n are nδ-consistent, in the
sense that the sequence nδ(θ̂n − θ∗) is tight.

Proof. Applying Taylor’s expansion, we have

∂gn(θ
∗)

∂θ
− ∂gn(θ̂n)

∂θ
=

1

2
(θ∗ − θ̂n)

∂2gn(wn)

∂θ2
, (3.11)

where wn is a random point between θ∗ and θ̂n. Let us denote S(θ, x) = σ(θ, x)2.

We write ∂2gn(wn)
∂θ2 =

∑4
k=1 Z

n
k with

Zn
1 =

1

n

n
∑

i=1

S′′
θθ(θ

∗, Xn
i )(S(θ

∗, Xn
i )− σ̂(tni )

2)A(Xn
i )

−4,

Zn
2 =

1

n

n
∑

i=1

(S′
θ(wn, X

n
i )

2 − S′
θ(θ

∗, Xn
i )

2)A(Xn
i )

−4,

Zn
3 =

1

n

n
∑

i=1

S′′
θθ(wn, X

n
i )(S(wn, X

n
i )− S(θ∗, Xn

i ))A(X
n
i )

−4,

Zn
4 =

1

n

n
∑

i=1

S′
θ(θ

∗, Xn
i )

2A(Xn
i )

−4.

For the first term Zn
1 , it follows from Assumptions (B1) and (B2) that

E|Zn
1 | ≤

3

n

n
∑

i=1

E|σ(θ∗, Xn
i )

2 − σ̂(tni )
2| ≤ 3L

1

nδ
,

hence
nδ

E|Zn
1 | ≤ 3L. (3.12)

To estimate the second term, we apply Taylor’s expansion again,

Zn
2 =

1

n

n
∑

i=1

∂S′
θ(w

i
n, X

n
i )

2

∂θ
A(Xn

i )
−4(wn − θ∗),

where wi
n is a random point between θ∗ and wn for each i = 1, . . . , n. By virtue

of Assumption (B2), we get

∂S′
θ(θ, x)

2

∂θ
≤ 8A(x)4,

hence

|Zn
2 | ≤

8

n

n
∑

i=1

|wi
n − θ∗| ≤ 8|wn − θ∗|. (3.13)

Similarly, we have
|Zn

3 | ≤ 6|wn − θ∗|, (3.14)
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and

nδ
E

∣

∣

∣

∣

∂gn(θ
∗)

∂θ

∣

∣

∣

∣

≤ 4L. (3.15)

Furthermore, thank to Assumption (B4), for any ǫ > 0, there exist constants
κ1 > 0 and n0 ∈ Z

+ such that

P
(

inf
n≥n0

Zn
4 ≥ 15κ1

)

≥ 1− ǫ

4
. (3.16)

Since θ∗ is in the interior of Θ, there exists a positive constant κ2 such that
(θ∗ − κ2, θ

∗ + κ2) ⊂ Θ and κ2 < κ1. On the other hand, for any ǫ > 0, it follows
from Proposition 3.1 that

sup
n≥n1

P(|θ∗ − θ̂n| ≥ κ2) <
ǫ

4
, (3.17)

for some n1 ∈ Z
+, n1 ≥ n0.

For each n ≥ n1, we denote

An = {Zn
4 − 14|θ̂n − θ∗| ≥ κ2} ∩ {|θ∗ − θ̂n| < κ2}.

It follows from (3.16) and (3.17) that

inf
n≥n1

P(An) ≥ 1− ǫ

2
. (3.18)

Equation (3.11), together with (3.13) and (3.14), yields

nδ

(∣

∣

∣

∣

∂gn(θ
∗)

∂θ

∣

∣

∣

∣

+

∣

∣

∣

∣

∂gn(θ̂n)

∂θ

∣

∣

∣

∣

)

≥ nδ|θ∗ − θ̂n|(Zn
4 − 14|θ∗ − θ̂n|)− |θ∗ − θ̂n|nδ|Zn

1 |.

Hence, by the virtue of (3.18), for any constant κ3 > 0, we have

P(nδ|θ∗ − θ̂n| > κ3) ≤
ǫ

2
+ P

(

κ−1
2 nδ

∣

∣

∣

∣

∂gn(θ
∗)

∂θ

∣

∣

∣

∣

+ nδ|Zn
1 | ≥ κ3;An

)

≤ ǫ

2
+

1

κ2κ3
E

(

nδ

∣

∣

∣

∣

∂gn(θ
∗)

∂θ

∣

∣

∣

∣

+ κ2n
δ|Zn

1 |
)

for any n ≥ n1. Therefore, it follows from (3.12) and (3.15) that

sup
n≥n1

P(nδ|θ∗ − θ̂n| > κ3) ≤
ǫ

2
+

(4 + 3κ2)L

κ2κ3
,

which yields the desired result.

3.3. Numerical Examples

3.3.1. Example: X is a deterministic process

Let (X,Y, Ỹ ) defined by










X(t) = 2t− t3, 0 ≤ t ≤ 1,

dY (t) = (2 + sin(πθX(t)))dW (t) + dJ(t), Y (0) = 1

Ỹ (t) = Y (t) + ǫ(t),
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Fig 3. Histogram of Error.

where J is a stable Lévy process with stable index β = 0.7, and ǫ(.) has normal
distribution N(0, ε2).

Here we have σ(θ, x) = 2 + sin(πθx) and this function satisfies assumptions
(B2)–(B4) with A(x) = O(1 + x2) for any value of parameter θ.

Let us take θ = 4, ε = 10−3 and simulate a discrete sample path of {X(t), Y (t),
Ỹ (t)} by using Euler’s method with very small time-discretization step. We
choose m = 105, n = 103, L = M = 100 and use the estimator (4.2) to approx-
imate spot volatility σ(θ,X(ti))

2 for ti = i/n, i = 0, . . . , n. Then we calculate

the estimator θ̂ with A(x) = 1 + x2.
After iterating the simulation 1000 times, we get the histogram for the error

θ̂ − θ in Figure 3.

3.3.2. Example: X is a stochastic process

Let (X,Y, Ỹ ) defined by











dX(t) = X(t)dt+X(t)dW̃ (t), X(0) = 1, 0 ≤ t ≤ 1,

dY (t) = θX(t)dW (t) + dJ(t), Y (0) = 1

Ỹ (t) = Y (t) + ǫ(t),

where W and W̃ are two Brownian motion, J is a stable Lévy process with
stable index β = 0.7, and ǫ(.) has normal distribution N(0, ε2).

Here we have σ(θ, x) = θx and this function satisfies assumptions (B2)–(B4)
with A(x) = O(1 + |x|) for any value of parameter θ > 0.

Like in the previous example, let us take θ = 4, ε = 10−3 and simulate a
discrete sample path of {X(t), Y (t), Ỹ (t)} by using Euler’s method with very
small time-discretization step. We choose m = 106, n = 103,M = 103, L = 50
and use the estimator (4.3) to approximate spot volatility σ(θ,X(ti))

2 for ti =

i/n, i = 0, . . . , n. Then we calculate the estimator θ̂ with A(x) = 1 + |x|.
After iterating the simulation 1000 times, we get the histogram for the error

θ̂ − θ in Figure 4.
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Fig 4. Histogram of Error.

Remark. In practice, it is necessary and very important to find an effective
concrete scheme to compute θ̂n in formulae (2.6) and (3.8). This problem will
be discussed in future work.

4. Spot volatility estimators

In this section, we present some simple estimation schemes for the spot volatility
and study their rate of convergence in L1-sense. A further discussion about these
schemes can be found in [23], and an improvement of them was presented in [27].
In [29, 30], similar schemes were proposed for estimating integrated volatility.
Other estimation schemes, which use the Fourier series method, were introduced
in [15–17, 19, 21].

We consider a stochastic process (Y (t))t≥0 defined on the filtered probability
space (Ω,F, (Ft)t≥0,P) given by

dY (t) = A(t)dt+B(t)dW (t) + dJ(t), 0 ≤ t ≤ T, (4.1)

where W is a standard Brownian motion, J a Lévy process with no Brownian
part, A a measurable drift process, and B a process which is adapted to the
sigma algebra (Ft)t≥0. Let α denote the Blumenthal-Getoor index of J .

Before stating our estimators, we introduce the following assumptions:

(C1).
∀q > 0, sup

0≤t≤T
E(|A(t)|q + |B(t)|q) <∞,

and Ft is independent of the sigma algebra σ(Ws −Wt, s > t) for all t ≥ 0.

(C2). The volatility coefficient B satisfies the following Hölder continuity con-
dition

E|B(t) −B(s)|2 ≤ L|t− s|2β , ∀ 0 ≤ t < s ≤ T,

for some β ∈ (0, 1], where L is a constant.
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4.1. Ideal case

Let km = O(m
2β

2β+1 ). For i = km + 1, . . . ,m− km − 1, we denote

B̂(tmi )2 =
π

2(2km + 1)∆n

km
∑

j=−km

|∆m
i+jY∆m

i+j+1Y |I[|∆m
i+jY |<∆γ

m,|∆m
i+j+1

Y |<∆γ
m],

B̂(t)2 = B̂(tmi )2 for tmi ≤ t < tmi+1, (4.2)

with some γ ∈ [0, 1/2) and ∆m
i Y = Y (i∆m)− Y ((i − 1)∆m), ∆m = T/m.

Proposition 4.1. We assume that (C1), (C2) hold, the Blumenthal-Getoor
index α < 2. Then for any p ∈ (α, 2), there exist a constant cp such that

sup
0≤t≤T

E|B̂(t)2 −B(t)2| ≤ cpm
−min( β

2β+1
, 1
p
− 1

2
).

This proposition can be proved by following the arguments in the proofs of
Theorem 3.1[23] and Proposition 2 [25].

4.2. Noisy case

In this section, we consider the case that the observation of Y is corrupted
by noise. In other words, the observed data is not Y (tmi ) but rather Ỹ (tmi ) =
Y (tmi ) + ǫ(tmi ). We call ǫ(.) microstructure noise. It is visibly clear that the

estimator B̂(.)2 will explode as the number of observations increase if we replace
Y with Ỹ .

Let (Mm) and (Lm) be some nondecreasing sequences of positive integers.
For each LmMm ≤ i ≤ m− (Lm + 5)Mm, we denote

Y
m

i,k =
1

Mm

Mm−1
∑

j=0

Ỹ (tmi+Mmk+j), k = −Lm, . . . , Lm + 4,

and
∆Y

m

i,k = Y
m

i,k+1 − Y
m

i,k, k = −Lm, . . . , Lm + 3.

Furthermore, we denote

χ =

(

1

2π

∫

R

e−x2/2|x|2/3dx
)3

.

The estimator is defined by

B̃(tmi )2 =
3Mm

2Lm(2M2
m + 1)∆mχ

Lm−1
∑

k=−Lm

|∆Y m

i,k ∆Y
m

i,k+2 ∆Y
m

i,k+4|2/3

B̃(t)2 = B̃(tmi )2 for tmi ≤ t < tmi+1. (4.3)
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Proposition 4.2. We assume that (C1), (C2) and (MN) hold, the Blumenthal-
Getoor index α ≤ 1. Then there exists a constants C such that

sup
0≤t≤T

E|B̃(t)2 −B(t)2|

≤ C
(

(Mm∆m)1/3 + (M2
m∆m)−1/3 + (MmLm∆m)2β/3 + L−1/2

m

)

(4.4)

In particular:
i) If β = 1, we choose Mm = O(m13/20), Lm = O(m1/5), then

sup
0≤t≤T

E|B̃(t)2 −B(t)2| ≤ C
1

m1/10
.

ii) If β = 1/2, we choose Mm = O(m8/13), Lm = O(m2/13), then

sup
0≤t≤T

E|B̃(t)2 −B(t)2| ≤ C
1

m1/13
.

When process Y does not contain a jump part, i.e., J ≡ 0, we propose another
estimator, which has a better rate of convergence, as follows.

B̆(tmi )2 =
3πMm

4Lm(2M2
m + 1)∆m

Lm−1
∑

k=−Lm

|∆Y m

i,k ∆Y
m

i,k+2|,

B̆(t)2 = B̆(tmi )2 for tmi ≤ t < tmi+1. (4.5)

Proposition 4.3. We assume that (C1), (C2) and (MN) hold and J ≡ 0. Then
there exists a constant C such that

sup
0≤t≤T

E|B̆(t)2 −B(t)2|

≤ C
(

(Mm∆m)1/2 + (M2
m∆m)−1/2 + (MmLm∆m)β + L−1/2

m

)

(4.6)

In particular:
i) If β = 1, we choose Mm = O(m5/8), Lm = O(m1/4), then

sup
0≤t≤T

E|B̆(t)2 −B(t)2| ≤ C
1

m1/8
.

ii) If β = 1/2, we choose Mm = O(m3/5), Lm = O(m1/5), then

sup
0≤t≤T

E|B̆(t)2 −B(t)2| ≤ C
1

m1/10
.

Propositions 4.2 and 4.3 can be proven by closely following the argument
in [23].

Table 1 clarifies the rates of convergence of parametric estimator (θ̂n) in
Theorem 3.2 in various situations mentioned above. It is worth to note that
these rates of convergence may not be optimal. An improvement of the spot
volatility estimation scheme will lead to a better rate for estimator (θ̂n). In
particular, it has been shown in [21] that under more restricted assumptions on
the model of Y , one can propose a scheme which has better rates of convergence
in Proposition 4.3.
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Table 1

Rates of convergence of parametric estimator (θ̂n)

Ideal Case Noisy Case

J ≡ 0 J 6≡ 0 J ≡ 0 J 6≡ 0, α ≤ 1
β = 1 β = 1/2 β = 1 β = 1/2 β = 1 β = 1/2 β = 1 β = 1/2

n−
1
3
κ n−

1
4
κ n−( 1

3
∧

2−α
2α

)κ n−( 1
4
∧

2−α
2α

)κ n−
1
8
κ n−

1
10

κ n−
1
10

κ n−
1
13

κ
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