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Variance estimation for estimators of state, county, and school district
quantities derived from the Census 2000 long form are discussed. The vari-
ance estimator must account for (1) uncertainty due to imputation, and
(2) raking to census population controls. An imputation procedure that im-
putes more than one value for each missing item using donors that are neigh-
bors is described and the procedure using two nearest neighbors is applied
to the Census long form. The Kim and Fuller [Biometrika 91 (2004) 559–
578] method for variance estimation under fractional hot deck imputation is
adapted for application to the long form data. Numerical results from the
2000 long form data are presented.

1. Introduction. In Census 2000 income data were collected on the long form
that was distributed to about one of every 6 households in the United States. These
data were used to produce various income and poverty estimates for the US, and
for states, counties, and other small areas. The state and county income and poverty
estimates from the Census 2000 long form sample have been used in various ways
by the Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) pro-
gram. The poverty estimates produced by SAIPE have been used by the US De-
partment of Education in allocating considerable federal funds each year to states
and school districts. In 2008 the Department of Education used SAIPE estimates,
directly and indirectly, to allocate approximately $16 billion to school districts.

The Census 2000 long form had questions for eight different types of income
for each individual in a household. (For details, see Table 1 in Section 5.) If there
was nonresponse for an income item, a version of nearest neighbor imputation
(NNI) was used, where the nearest neighbor was determined by several factors
such as response pattern, number of household members, and other demographic
characteristics. NNI is a type of hot deck imputation that selects the respondent
closest, in some metric, to the nonrespondent, and inserts the respondent value
for the missing item. Most imputation rates for income items in the Census 2000
long form data were more than double the corresponding imputation rates from the
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1990 census [Schneider (2004), pages 17–18, and Table 1, page 27]. For example,
the Census 2000 imputation rate for wage and salary income was 20%, while in
1990 it was 10%, and for interest and dividend income the imputation rates were
20.8% in 2000 and 8.1% in 1990. Overall, 29.7% of long form records in 2000
had at least some income imputed, compared to 13.4% in 1990. Given the 2000
imputation rates, it is important that variance estimates for income and poverty
statistics reflect the uncertainty associated with the imputation of income items.

The Census Bureau performed nearest neighbor imputation for eight income
items in producing the long form estimates. The estimation procedure had been
implemented and the estimates were not subject to revision. Our task was to esti-
mate the variances of the existing long form point estimates that are used by the
SAIPE program. The problem is challenging because of the complexity of the es-
timates. While total household income is a simple sum of the income items for
persons in a household, and average household income (for states and counties)
is a simple linear function of these quantities, our interest centers on (i) median
household income, and (ii) numbers of persons in poverty for various age groups.
Poverty status is determined by comparing total family income to the appropriate
poverty threshold, with the poverty status of each person in a family determined
by the poverty status of the family. For such complicated functions of the data, the
effects of imputation on variances are difficult to evaluate.

It is well known that treating the imputed values as if they are observed and ap-
plying a standard variance formula leads to underestimation of the true variance.
Variance estimation methods accounting for the effect of imputation have been
studied by Rubin (1987), Rao and Shao (1992), Shao and Steel (1999), and Kim
and Fuller (2004), among others. Sande (1983) reviewed the NNI approach, Ran-
court, Särndal, and Lee (1994) studied NNI under a linear regression model, and
Fay (1999) and Rancourt (1999) considered variance estimation in some simple
situations. Chen and Shao (2000) gave conditions under which the bias in NNI is
small relative to the standard error and proposed a model-based variance estimator.
Chen and Shao (2001) described a jackknife variance estimator. Shao and Wang
(2008) discussed interval estimation and Shao (2009) proposed a simple nonpara-
metric variance estimator.

Our approach to estimating variances under NNI is based on the fractional im-
putation approach suggested by Kalton and Kish (1984) and studied by Kim and
Fuller (2004). In fractional imputation, multiple donors, say, M , are chosen for
each recipient. We combine fractional imputation with the nearest neighbor crite-
rion of selecting donors, modifying the variance estimation method described in
Kim and Fuller (2004) to estimate the variance due to nearest neighbor imputa-
tion. Replication permits estimation of variances for parameters such as median
household income and the poverty rate. Also, replication is used to incorporate the
effect of raking, another feature of the estimation from the Census 2000 long form
sample.
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It should be noted that the official estimation and imputation procedures for the
long form were fixed and production was completed before the research described
here was even started. Hence, our objective was to develop variance estimates,
accounting for imputation and raking, for the production point estimates, not to
explore alternative imputation procedures in an attempt to improve the point esti-
mates. Thus, we used M = 2 nearest neighbor imputations in developing variance
estimates for the production long form estimates that used M = 1 nearest neighbor
imputation.

The paper is organized as follows. In Section 2 the model for the NNI method
and the properties of the NNI estimator are discussed. In Section 3 a variance
estimation method for the NNI estimator is proposed. In Section 4 the proposed
method is extended to stratified cluster sampling. In Section 5 application of the
approach to the Census 2000 long form income and poverty estimates is described.

2. Model and estimator properties. Our finite universe U is the census pop-
ulation of the United States. The Census Bureau imputation procedure defines a
measure of closeness for individuals. Let a neighborhood of individual g be com-
posed of individuals that are close to individual g, and let Bg be the set of indices
for the individuals in the neighborhood of individual g. We assume that it is ap-
propriate to approximate the distribution of elements in the neighborhood by

yj
i.i.d.∼ (μg, σ

2
g ), j ∈ Bg,(1)

where
i.i.d.∼ denotes independently and identically distributed. Chen and Shao

(2000) have given conditions such that it is possible to define a sequence of sam-
ples, populations, and neighborhoods so that the distribution of yi can be approx-
imated by that of (1). See also Section B in the supplemental article [Kim, Fuller,
and Bell (2010)] for an alternative justification of (1). These conditions do not
necessarily hold for our population because the neighbors are defined by discrete
variables. If response is independent of y and if the value of the discrete variables
are the same for all elements in Bg , then (1) holds when the original observations
are independent. We feel (1) is reasonable because the sample is large relative to
a neighborhood composed of three sample individuals. We assume that response
is independent of the y-values so that the distribution (1) holds for both recipients
and donors.

Let θ̂n be an estimator based on the full sample. We write an estimator that is
linear in y as

θ̂n = ∑
i∈A

wiyi,

where A is the set of indices in the sample and the weight wi does not depend on yi .
An example is the estimated total T̂y = ∑

i∈A π−1
i yi, where πi is the selection
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probability. Let V (θ̂n) be the variance of the full sample estimator. Under model (1)
we can write

yi = μi + ei,

where the ei are independent (0, σ 2
i ) random variables and μi is the neighborhood

mean. Thus, μi = μg and σ 2
i = σ 2

g for i ∈ Bg . Then, under model (1) and assuming
that the sampling design is ignorable under the model in the sense of Rubin (1976),
the variance of a linear estimator of the total Ty = ∑

i∈U yi can be written

V

{∑
i∈A

wiyi − Ty

}
= V

{∑
i∈A

wiμi − ∑
i∈U

μi

}
+ E

{∑
i∈A

(w2
i − wi)σ

2
i

}
.

Assume that y is missing for some elements and assume there are always at
least M observations on y in the neighborhood of each missing value, where in
the Census long form application, M = 2. Let an imputation procedure be used to
assign M donors to each recipient. Let w∗

ij be the fraction of the original weight
allocated to donor i for recipient j , where

∑
i w

∗
ij = 1. If we define

dij =
{

1, if yi is used as a donor for yj ,
0, otherwise,

then one common choice for w∗
ij is w∗

ij = M−1dij for i �= j . Then

αi = wi + ∑
j �=i

wjw
∗
ij = ∑

j∈A

wjw
∗
ij

is the total weight for donor i, where it is understood that w∗
ii = 1 for a donor

donating to itself. Thus, the imputed linear estimator is

θ̂I = ∑
j∈A

wjyIj = ∑
i∈AR

αiyi,

where AR is the set of indices for the nR respondents and the mean imputed value
for recipient j is

yIj = ∑
i∈A

w∗
ij yi .(2)

Note that yIj = yi if j is a respondent. Then, under model (1),

V (θ̂I − Ty) = V

{∑
i∈A

wiμi − ∑
i∈U

μi

}
+ E

{ ∑
i∈AR

(α2
i − αi)σ

2
i

}
,(3)

where AR is the set of indices of respondents. The variance expression (3) is
smaller for larger M , 1 ≤ M ≤ nR , as long as model (1) holds for the M near-
est neighbors. See Kim and Fuller (2004).
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3. Variance estimation. Let the replication variance estimator for the com-
plete sample be

V̂ (θ̂ ) =
L∑

k=1

ck

(
θ̂ (k) − θ̂

)2
,(4)

where θ̂ is the full sample estimator, θ̂ (k) is the kth estimate of θN based on the
observations included in the kth replicate, L is the number of replicates, and ck is
a factor associated with replicate k determined by the replication method. Assume
that the variance estimator V̂ (θ̂ ) is design unbiased for the sampling variance of θ̂ .
If the missing yi are replaced in (4) with yIj of (2), the resulting variance estimator
V̂naive(θ̂) satisfies

E{V̂naive(θ̂)} = V

{∑
i∈A

wiμi − ∑
i∈U

μi

}
+ E

{
L∑

k=1

∑
i∈AR

ck

(
α

(k)
i1 − αi

)2
σ 2

i

}
,(5)

where α
(k)
i1 = ∑

j w
(k)
j w∗

ij and w
(k)
j is the weight for element j in replicate k. The

weights α
(k)
i1 are called the naive replication weights.

We consider a procedure in which the individual w∗
ij are modified for the repli-

cates, with the objective of creating an unbiased variance estimator. Let w
∗(k)
ij be

the replicated fractional weights of unit j assigned to donor i at the kth replication.
Letting

θ̂
(k)
I = ∑

i∈AR

α
(k)
i yi,

where α
(k)
i = w

(k)
i +∑

j �=i w
(k)
j w

∗(k)
ij = ∑

j∈A w
(k)
j w

∗(k)
ij , define a variance estima-

tor by

V̂ (θ̂I ) =
L∑

k=1

ck

(
θ̂

(k)
I − θ̂I

)2
.

The expectation of the variance estimator V̂ (θ̂I ) is

E{V̂ (θ̂I )} = E

[
L∑

k=1

{ ∑
i∈AR

(
α

(k)
i − αi

)
μi

}2
]

(6)

+ E

[ ∑
i∈AR

{
L∑

k=1

ck

(
α

(k)
i − αi

)2
}
σ 2

i

]
.

Because the w
∗(k)
ij satisfy ∑

i∈AR

w
∗(k)
ij = 1(7)
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for all j , then, under the model (1), ignoring the smaller order terms,

E

{
L∑

k=1

[ ∑
i∈AR

(
α

(k)
i − αi

)
μi

]2
}

= E

{
L∑

k=1

[∑
i∈A

(
w

(k)
i − wi

)
μi

]2
}

= V

(∑
i∈A

wiμ − ∑
i∈U

μi

)
.

Thus, the bias of the variance estimator V̂ (θ̂I ) is

Bias{V̂ (θ̂I )} = E

{ ∑
i∈AR

[
L∑

k=1

ck

(
α

(k)
i − αi

)2 − (α2
i − αi)

]
σ 2

i

}
.

If the replicated fractional weights were to satisfy

L∑
k=1

ck

(
α

(k)
i − αi

)2 = α2
i − αi(8)

for all i ∈ AR , then the bias would be zero. However, it is difficult to define repli-
cate weights that satisfy (8). Therefore, we consider the requirement

L∑
k=1

ck

{(
α

(k)
i − αi

)2 + ∑
t∈DRi

(
α

(k)
t − αt

)2
}

= α2
i − αi + ∑

t∈DRi

(α2
t − αt),(9)

where DRi = {t;∑
j∈AM

dij dtj = 1, t �= i} is the set of donors, other than i, to
recipients from donor i. Under assumption (1), the recipients in the neighborhood
of donor i have common variance and (9) is a sufficient condition for unbiasedness.

We outline a replication variance estimator that assigns fractional replicate
weights such that (7) and (9) are satisfied. There are three types of observations
in the data set: (1) respondents that act as donors for at least one recipient, (2) re-
spondents that are never used as donors, and (3) recipients. The naive replicate
weights defined in (5) will be used for the last two types. For donors, the fractional
weights w∗

ij in replicate k will be modified to satisfy (7) and (9).
We first consider jackknife replicates formed by deleting a single element. The

next section considers an extension to a grouped jackknife procedure. Let the su-
perscript k denote the replicate where element k is deleted. First the replicates for
the naive variance estimator (5) are computed, and the sum of squares for element i

is computed as

L∑
k=1

ck

(
α

(k)
i1 − αi

)2 = φi, i ∈ AR,

where α
(k)
i1 is defined following (5).
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In the second step the fractions for replicates for donors are modified. Let the
new fractional weight in replicate k for the value donated by k to j be

w
∗(k)
kj = w∗

kj (1 − bk),(10)

where bk is to be determined. Let t be one of the other M − 1 donors, other than k,
that donate to j . Then, the new fractional weight for donor t is

w
∗(k)
tj = w∗

tj + (M − 1)−1bkw
∗
kj .(11)

For M = 2 with w∗
kj = w∗

tj = 0.5, w
∗(k)
kj = 0.5(1 − bk) and w

∗(k)
tj = 0.5(1 + bk).

For any choice of bk , condition (7) is satisfied. The variance estimator will be
unbiased if bk satisfies

ck

(
α

(k)
k1 − αk − bk

∑
j∈AM

w
(k)
j w∗

kj

)2

− ck

(
α

(k)
k1 − αk

)2

+ ∑
t∈DRk

ck

[
α

(k)
t1 − αt + bk(M − 1)−1

∑
j∈AM

w
(k)
j w∗

kj dtj

]2

(12)

− ∑
t∈DRk

ck

(
α

(k)
t1 − αt

)2 = α2
k − αk − φk,

where DRk is defined following (9). The difference α2
k − αk − φk is the difference

between the desired sum of squares for observation k and the sum of squares for the
naive estimator. Under the assumption of a common variance in a neighborhood
and the assumption that the variance estimator V̂ (θ̂ ) of (4) is unbiased for the
full sample, the resulting variance estimator with w

∗(k)
ij defined by (10)–(12) is

unbiased for the imputed sample. An illustration of the construction of replicates
for variance estimation is provided in Section A of the supplement [Kim, Fuller,
and Bell (2010)].

4. Extension. The proposed method in Section 3 was described under the sit-
uation where the jackknife replicates are formed by deleting a single element. In
practice, grouped jackknife is commonly used where the jackknife replicates are
often created by deleting a group of elements. The group can be the primary sam-
pling units (PSU) or, as in the Census long form case, groups are formed to reduce
the number of replicates. In the discussion we use the term PSU to denote the
group. To extend the proposed method, assume that we have a sample composed
of PSUs and let PSU k be deleted to form a replicate. Let Pk be the indices of the
set of donors in PSU k that donate to a recipient in a different PSU. For fractional
imputation of size M , let the fractional replication weight in replicate k for the
value donated by element i in PSU k to j be

w
∗(k)
ij = w∗

ij (1 − bk) if i ∈ Pk and M �= Mjk,(13)
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where bk is to be determined and Mjk = ∑
i∈Pk

dij is the number of donors to
recipient j that are in PSU k. Note that (13) is a generalization of (10). The corre-
sponding replication fraction for a donor to a recipient j , where the donor is not in
PSU k, is

w
∗(k)
tj = w∗

tj (1 + �jkbkdij ) for t ∈ P c
k and i ∈ Pk,

where

�jk =
∑

i∈Pk
w∗

ij∑
i∈P c

k
w∗

ij

.

The determining equation for bk is

∑
i∈Pk

ck

{(
α

(k)
i1 − αi − bk

∑
j∈AM

w
(k)
j w∗

ij

)2

− (
α

(k)
i1 − αi

)2
}

+ ∑
i∈Pk

∑
t∈P c

k

ck

[{
α

(k)
t1 − αt + bk

∑
j∈AM

w
(k)
j dij�jkw

∗
tj

}2

− (
α

(k)
t1 − αt

)2
]

= ∑
i∈Pk

{α2
i − αi − φi},

which generalizes (12). Here, we assume common variances for the units in the
same PSU.

We extend the fractional nearest neighbor imputation to the case of M1 frac-
tions for point estimation and M2 (>M1) fractions for variance estimation. The
motivation for this extension is the application to the Census long form where the
official estimates are based on a single imputed value. A second imputed value was
generated to be used only in variance estimation. Let d1ij and d2ij be the donor–
recipient relationship indicator function used for point estimation and for variance
estimation, respectively. Also, let w∗

1ij and w∗
2ij be the fractional weights of recip-

ient j from donor i that are computed from d1ij and d2ij , respectively. For missing
unit j , one common choice is w∗

1ij = d1ijM
−1
1 and w∗

2ij = d2ijM
−1
2 . Of particular

interest is the case where M1 = 1 and M2 = 2.
If M1 �= M2, the variance estimator is defined by

V̂ (θ̂I ) =
L∑

k=1

ck

(
θ̂

(k)
I − θ̂I

)2
,(14)

where (
θ̂

(k)
I , θ̂I

) =
( ∑

i∈AR

α
(k)
i2 yi,

∑
i∈AR

αi1yi

)

with α
(k)
i2 = ∑

j w
(k)
j w

∗(k)
2ij and αi1 = ∑

j wjw
∗
1ij . Here, w∗(k)

2ij is the replicated frac-

tional weight of unit j assigned to donor i in the kth replication. Note that θ̂I is
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based on the point estimation weights and α
(k)
i2 is based on the variance estimation

weights. If w
∗(k)
2ij satisfy (7), the bias of the variance estimator (14) is

Bias{V̂ } = E

{ ∑
i∈AR

[
L∑

k=1

ck

(
α

(k)
i2 − αi1

)2 − (α2
i1 − αi1)

]
σ 2

i

}
.

Thus, condition (9) for the unbiasedness of the variance estimator is changed to

L∑
k=1

ck

{(
α

(k)
i2 − αi1

)2 + ∑
t∈DRi

(
α

(k)
t2 − αt1

)2
}

= α2
i1 − αi1 + ∑

t∈DRi

(α2
t1 − αt1).(15)

To create the replicated fractional weights satisfying (7) and (15), the sum of
squares of the naive replication weights is first computed,

L∑
k=1

ck

(
α

(k)
i1 − αi1

)2 = φi1, i ∈ AR,

where α
(k)
i1 = ∑

j∈A w
(k)
j w∗

1ij . In the second step the fractions for replicates for
donors in the point estimation are modified. Let the new fractional weight in repli-
cate k for the value donated by i ∈ Pk to j be

w
∗(k)
2ij = w∗

1ij (1 − bk), if i ∈ Pk and M2 �= M2jk,

where bk is to be determined and M2jk = ∑
i∈Pk

d2ij . Now, M2 (>M1) donors are
identified for variance estimation. The new fractional weight for the other M2 − 1
donors to recipient j , denoted by t , is

w
∗(k)
2tj = w∗

1tj + �jkbkd1ijw
∗
2tj for t ∈ P c

k and i ∈ Pk,(16)

where

�jk =
∑

i∈Pk
w∗

1ij∑
i∈P c

k
w∗

2ij

.

Then the bk that gives the correct sum of squares is the solution to the quadratic
equation

∑
i∈Pk

ck

{(
α

(k)
i1 − αi1 − bk

∑
j∈AM

w
(k)
j w∗

1ij

)2

− (
α

(k)
i1 − αi1

)2
}

+ ∑
i∈Pk

∑
t∈P c

k

ck

[{
α

(k)
t1 − αt1 + bk

∑
j∈AM

w
(k)
j �jkd1ijw

∗
2tj

}2

− (
α

(k)
t1 − αt1

)2
]

= ∑
i∈Pk

(α2
1i − α1i − φ1i ).
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If M1 = 1, the adjustment in the replication fractional weights can be made
at the individual level. Let the new fractional weight in replicate k for the value
donated by i ∈ Pk to j , j ∈ P c

k , be

w
∗(k)
2ij = w∗

1ij (1 − bi), if i ∈ Pk and M2 �= M2jk,

where bi is to be determined. The new fractional weight for each of the other
M2 − 1 donors to recipient j , denoted by t , is

w
∗(k)
2tj = w∗

1tj + �jkbid1ijw
∗
2tj for t ∈ P c

k and i ∈ Pk,

where �jk is defined following (16). Then the bi that gives the correct sum of
squares is the solution to the quadratic equation

ck

{(
α

(k)
i1 − αi1 − bi

∑
j∈AM

w
(k)
j w∗

1ij

)2

− (
α

(k)
i1 − αi1

)2
}

+ ∑
t∈P c

k

ck

[{
α

(k)
t1 − αt1 + bi

∑
j∈AM

w
(k)
j �jkd1ijw

∗
2tj

}2

− (
α

(k)
t1 − αt1

)2
]

= α2
1i − α1i − φ1i .

5. Application to US Census long form data.

5.1. Introduction. We use long form data from the states of Delaware and
Michigan to provide examples of the variance estimation methods. Table 1 shows
the individual income items and their state level imputation rates for Delaware and
Michigan.

The sampling design for the Census 2000 long form used stratified systematic
sampling of households, with four strata in each state. Sampling rates varied from
1 in 2 for very small counties and small places to 1 in 8 for very populous areas.

The weighting procedure for the Census 2000 long form was performed sep-
arately for person estimates and for housing unit estimates. For the income and
poverty estimates considered here, the person weights are needed.

The census long form person weights are created in two steps. In the first step,
the initial weights are computed as the ratio of the population size (obtained from
the 100% population counts) to the sample size in each cell of a cross-classification
of final weighting areas (FWAs) by person types [Housing unit person, Service
Based Enumeration (SBE) person, other Group Quarters (GQ) person]. Thus,
the initial weights take the form of post-stratification weights. The second step
in the weighting is raking, where, for person weights, there are four dimensions
in the raking. The dimensions are household type and size (21 categories), sam-
pling type (3 categories), householder classification (2 categories), and Hispanic
origin/race/sex/age (312 categories). Therefore, the total number of possible cells
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TABLE 1
Imputation rate and the person-level average income for each income item

(age ≥ 15) for two states, Delaware (n = 87,280) and Michigan (n = 1,412,339)

Delaware Michigan

Imputation Average Imputation Average
Income item rate (%) income rate (%) income

Wage 20 21,892 21 20,438
Self employment 10 1286 10 1234
Interest 22 1989 22 1569
Social security 20 1768 20 1672
Supplemental security 20 125 20 148
Public assistance 19 38 19 47
Retirement 20 2018 20 1664
Other 19 543 19 529

Total 31 29,659 31 27,301

is 39,312, although many cells in a FWA will be empty. The raking procedure is
performed within each FWA. There are about 60,000 FWAs in the whole country
and the FWAs are nested within counties.

5.2. Computational details. The variance estimation methodology is based on
the grouped jackknife, where the method described in Section 3 is used to estimate
the variance due to imputation. We summarize the main steps of variance estima-
tion and then discuss the steps in more detail:

Step 1: Create groups and then define initial replication weights for the grouped
jackknife method. The elements within a stratum are systematically divided into
groups. A replicate is created by deleting a group.

Step 2: Using the initial replication weights, repeat the weighting procedure to
compute the final weights for each replicate.

Step 3: Using fractional weighting, modify the replicate weights to account for
the imputation effect on the variance. In the process, a replicate imputed total
income variable is created for each person with missing data.

Step 4: Using the replicate total income variables, compute the jackknife variance
estimates for parameters such as the number of poor people by age group and
the median household income.

In step 1, the sample households in a final weighting area are sorted by their
identification numbers, called MAFIDs. Let n be the sample number of households
in a final weighting area. The first n/50 sample households are assigned to variance
stratum 1, the next n/50 sample households are assigned to variance stratum 2, and
so on, to create 50 variance strata. Within each variance stratum, the sample house-
holds are further grouped into two groups by a systematic sample of households
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arranged in a half-ascending-half-descending order based on the MAFID. Using
the two groups in each of the 50 strata, L = 100 replication factors are assigned
to each unit in the sample. For unit i in variance stratum h (h = 1,2, . . . ,50), the
replication factor for the replicate formed by deleting group k in variance stratum h

is

F
(hk)
i =

⎧⎨
⎩

1, if unit i does not belong to variance stratum h,
2 − δi, if unit i belongs to variance stratum h and i /∈ Phk,
δi, if unit i ∈ Phk,

where δi = 1 − {(1 − 1/wi0)0.5}1/2, wi0 is the initial weight of unit i, and Phk is
the set of sample indices in group k in variance stratum h. With this replication
factor, ck of (4) is one.

In step 2, the step 1 replication weights are modified using the production rak-
ing operation. The weighting procedure consists of two parts. The first part is a
poststratification in each final weighting area and the second part is raking ratio
estimation using the short form population totals as controls. If the raking was
carried to convergence, the estimated variance for controls would be zero. In the
actual operation, the replicated final weights produce very small variance estimates
for the estimates of the population controls.

In step 3, a second nearest neighbor is identified for each nonrespondent for each
income item. There are eight income items—see Table 1 given earlier. A fractional
weight of one is assigned to the imputed value from the first donor and a fractional
weight of zero is assigned to the imputed value from the second donor for pro-
duction estimation. The fractional weights are changed for the replicate, when the
jackknife group containing the first donor is deleted. The amount of change is de-
termined so that conditions (7) and (9) are satisfied. Replicate fractional weights
are constructed separately for each income item.

Once the replicated fractional weights are computed, replicates of the person-
level total income are constructed. Let Ytis be the sth income item for person i

in family t and let Rtis be the response indicator function for Ytis . For the kth
replicate, the replicated total income for person i in family t is

TINC(k)
ti =

8∑
s=1

{
RtisYtis + (1 − Rtis)Y

∗(k)
tis

}
,(17)

where Y
∗(k)
tis is the kth replicate of the imputed value for Ytis , defined by

Y
∗(k)
tis = w

∗(k)
tisa Y ∗

t isa + w
∗(k)
tisb Y ∗

t isb,

(w
∗(k)
tisa ,w

∗(k)
tisb ) is the vector of the two kth replicate fractional weights, one for the

first donor and one for the second donor, for the sth income item, and (Y ∗
t isa, Y

∗
t isb)

is the vector of the imputed values of Ytis from the first and second donor, respec-
tively. The kth replicate of total family income for family t is

TINC(k)
t =

mt∑
i=1

TINC(k)
ti ,(18)
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where mt is the number of people in family t and TINC(k)
ti is defined in (17).

For the age group poverty estimates, a poverty status indicator function is de-
fined for the family, and applies to all family members. That is, all family members
are either in poverty or all are not in poverty. The poverty status indicator for family
t is defined as

ζt =
{

1, if TINCt < ct ,
0, if TINCt ≥ ct ,

where, as with the replicates in (17),

TINCt =
mt∑
i=1

8∑
s=1

{RtisYtis + (1 − Rtis)Y
∗
t isa}

is the total income of family t , where Y ∗
t isa is the imputed value for Ytis using the

first nearest donor, and ct is the poverty threshold value for family t . The threshold
is a function of the number of related children under 18 years of age, the size of
the family unit, and the age of the householder. (Poverty thresholds for all recent
years are available on the Census Bureau web site at http://www.census.gov/hhes/
www/poverty/threshld.html.)

To compute the replicate of ζt , we use the following procedure:

1. For person i in family t , compute two total incomes, TINCt ia and TINCt ib, by

TINCt ia =
8∑

s=1

{RtisYtis + (1 − Rtis)Y
∗
t isa},

TINCt ib =
8∑

s=1

{RtisYtis + (1 − Rtis)Y
∗
t isb}.

Also, compute the two total family incomes

(TINCta,TINCtb) =
mt∑
i=1

(TINCt ia,TINCt ib).

Using the replicated total family income TINC(k)
t defined in (18), define

α
(k)
t = TINC(k)

t − TINCtb

TINCta − TINCtb

, if TINCta �= TINCtb,(19)

and α
(k)
t = 1 otherwise. The α

(k)
t is the weight satisfying

TINC(k)
t = α

(k)
t TINCta + (

1 − α
(k)
t

)
TINCtb.

2. The replicated poverty status variable is now computed by

ζ
(k)
t = α

(k)
t POV ta + (

1 − α
(k)
t

)
POV tb,(20)

http://www.census.gov/hhes/www/poverty/threshld.html
http://www.census.gov/hhes/www/poverty/threshld.html
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where POV ta is computed by

POV ta =
{

1, if TINCta < ct ,
0, if TINCta ≥ ct

and POV tb is computed similarly using TINCt ib.

The replication adjustment α
(k)
t is computed from family-level total income and is

applied in (20) to get a replicated poverty estimate.
The estimated variance for the estimated total number of people in poverty is

V̂p =
L∑

k=1

(
θ̂ (k)
p − θ̂ (·)

p

)2
,(21)

where L is the number of replications (here L = 100),

θ̂ (k)
p =

n∑
t=1

mt∑
i=1

w
(k)
tj ζ

(k)
t , θ̂ (·)

p = 1

L

L∑
k=1

θ̂ (k)
p ,

ζ
(k)
t is defined in (20), and w

(k)
ti is the person level replication weight after the

raking operation.
The number of people in poverty in a given age group can be estimated by

θ̂pz =
n∑

t=1

mt∑
i=1

wtiztiζt ,

where zti = 1 if the person i in family t belongs to the age group and zti = 0
otherwise. The kth replicate of the estimate is

θ̂ (k)
pz =

n∑
t=1

mt∑
i=1

w
(k)
ti ztiζ

(k)
t

and the variance is estimated by (21) using θ̂
(k)
pz defined above.

The variance estimation for median household income estimates is based on the
test-inversion methodology described in Francisco and Fuller (1991). Also, see
Woodruff (1952). Let MED be the estimated median household income defined by
MED = F̂−1(0.5), where F̂ (·) is the estimated cumulative distribution function of
total income of the household,

F̂ (u) =
(

n∑
t=1

wtt

)−1 n∑
t=1

wtt I (TINCt ≤ u),

wtt is the householder’s person weight in household t , and TINCt is the total in-
come of household t . (Note that households differ from families. The former in-
cludes all persons living in a given housing unit; the latter includes only related
persons living in a housing unit.)



838 J. K. KIM, W. A. FULLER AND W. R. BELL

To apply the test-inversion method, first create the replicated indicator variable

INV(k)
t = α

(k)
t INV ta + (

1 − α
(k)
t

)
INV tb,

where α
(k)
t is defined in (19) and

INV ta =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if
mt∑
i=1

TINCt ia < MED,

0, if
mt∑
i=1

TINCt ia ≥ MED

and INV tb is computed similarly, using TINCt ib instead of TINCt ia in the above
expressions.

The estimated variance of the estimated proportion F̂ (MED) = 0.5 is computed
by applying the variance formula (21) using INV(k)

t instead of ζ
(k)
t to get V̂inv.

Define

(p̂1, p̂2) = (
0.5 − 2

√
V̂inv,0.5 + 2

√
V̂inv

)
to be an approximate 95% confidence interval for the estimated proportion
F̂ (MED) = 0.5. The estimated variance of the estimated median is

V̂med = {F̂−1(p̂2) − F̂−1(p̂1)}2/16.

5.3. Numerical results. Variance estimates for the long form income and
poverty estimates that have been used by SAIPE were computed for all 50 states
of the US (plus DC) and their counties. The estimates considered here are the total
number of people in poverty, the number of children under age 5 in poverty (state
level only), the number of related children age 5–17 in families in poverty, the
number of children under age 18 in poverty, and the median household income.

Table 2 contains variance estimation results (the estimated standard deviations)
for the income and poverty statistics for the states of Delaware and Michigan. The
variance estimator labeled “naive” treats the imputed values as observed values.
The “imputation” variance estimator is that of Section 3 and reflects the impu-
tation effects. Both variance estimators account for the raking in the estimator.
Because Michigan is much larger than Delaware, its estimated numbers of persons
in poverty (not shown) are much larger, and thus, due to the scale effects, so are
the corresponding standard errors. The standardized standard errors in the table are
computed by dividing the estimated standard error computed by the “imputation”
procedure by the estimated standard error computed by the “naive” procedure.

Generally speaking, imputation increases the variance so the naive variance esti-
mator underestimates the true variance. The relative increase is similar for Michi-
gan and Delaware. A result worth noting is that the increase in variance due to
imputation is higher for the poverty parameters than for the income parameters.
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TABLE 2
Variance estimation results for Delaware and Michigan

Delaware Michigan

Parameter Method Est. SE Std. SE Est. SE Std. SE

θ1 Naive 870 100 3217 100
(total in poverty) Imputation 1161 133 4096 127
θ2 Naive 221 100 776 100
(0–4 in poverty) Imputation 260 118 897 116
θ3 Naive 366 100 1314 100
(5–17 related in poverty) Imputation 467 128 1640 125
θ4 Naive 458 100 1608 100
(0–17 in poverty) Imputation 592 129 2062 128
Median Naive 177 100 70 100
HH income Imputation 207 117 85 121

This is because in both states the imputation rate is higher for persons with low
imputed income. (See Table 3.)

Table 4 contains some numerical results for the estimated standard errors for
the county estimates in Delaware. The age groups in the table are those used by
SAIPE at the county level, which are fewer than the age groups used by SAIPE
at the state level. As with state estimates, imputation increases the variance. How-
ever, the effect of imputation is much smaller for county estimates than for state
estimates. County level estimation is an example of domain estimation, where the
values used for imputation can come from donors outside the domain. Donors
from outside the domain contribute less to the imputation variance of the domain
total than donors in the domain because the imputed value from outside the do-
main is uncorrelated with the values observed in the domain. In effect, imputa-
tions from outside the domain increase the sample size on which the estimates are
based, whereas imputations from inside the domain change the weights given to
the observations in the estimates. Because the proportions of outside donors differ

TABLE 3
Imputation rates by income level (age ≥ 15)

Imputation rate (%)

Total income Delaware Michigan

0–9999 34 34
10,000–19,999 36 35
20,000–49,999 28 29
50,000–69,999 25 25
70,000 and over 25 25
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TABLE 4
County variance estimates for Delaware

County Parameter Method Est. SE Std. SE

001 θ1 Naive 409 100
(total poor) Imputation 444 109

θ3 Naive 183 100
(5–17 related poor ) Imputation 203 111

θ4 Naive 219 100
(0–17 poor) Imputation 241 110

Median Naive 323 100
HH income Imputation 336 104

003 θ1 Naive 687 100
(total poor) Imputation 838 122

θ3 Naive 317 100
(5–17 related poor) Imputation 351 111

θ4 Naive 365 100
(0–17 poor) Imputation 417 114

Median Naive 200 100
HH income Imputation 226 113

005 θ1 Naive 518 100
(total poor) Imputation 608 117

θ3 Naive 197 100
(5–17 related poor) Imputation 217 110

θ4 Naive 270 100
(0–17 poor) Imputation 300 111

Median Naive 361 100
HH income Imputation 389 108

across counties, the effect of imputation on county variances is not uniform across
counties. In Delaware, the overall imputation rates for total income (the percent of
records with at least one income item imputed) are 30.7%, 29.5%, and 34.5% for
county 1, county 3, and county 5, respectively. Table 5 presents the distribution of
donors for wage income in Delaware. In county 1, about 59% of the donors are
from outside the county, whereas in county 3, only about 25% of the donors are
from outside the county. Thus, the variance inflation due to imputation, as reflected
by the standardized standard error, is greater for county 3 than for county 1.
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TABLE 5
Donor distribution for wage income in Delaware (age ≥ 15)

Number of donors Number of donors Number of donors
County from county 1 from county 3 from county 5

1 1271 1512 325
(n = 15,735) (41%) (49%) (10%)
3 1142 7374 1343
(n = 51,869) (11%) (75%) (14%)
5 847 1137 2045
(n = 19,661) (21%) (28%) (51%)

SUPPLEMENTARY MATERIAL

Supplement A: Illustrated calculations (DOI: 10.1214/10-AOAS419SUPPA;
.pdf). We illustrate the construction of replicates for variance estimation with a
simple example where a simple random sample of original size six is selected with
two missing values and two donors per missing value.

Supplement B: Justification for (1) (DOI: 10.1214/10-AOAS419SUPPB;
.pdf). We provide a justification for (1) based on the large sample theory. The
assumptions and the proof for (1) are provided.

Supplement C: Proofs (DOI: 10.1214/10-AOAS419SUPPC; .pdf). Proofs for
equations (3), (5), and (6) are provided.
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