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COORDINATE DESCENT ALGORITHMS FOR NONCONVEX
PENALIZED REGRESSION, WITH APPLICATIONS TO
BIOLOGICAL FEATURE SELECTION
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A number of variable selection methods have been proposed involving
nonconvex penalty functions. These methods, which include the smoothly
clipped absolute deviation (SCAD) penalty and the minimax concave penalty
(MCP), have been demonstrated to have attractive theoretical properties, but
model fitting is not a straightforward task, and the resulting solutions may be
unstable. Here, we demonstrate the potential of coordinate descent algorithms
for fitting these models, establishing theoretical convergence properties and
demonstrating that they are significantly faster than competing approaches.
In addition, we demonstrate the utility of convexity diagnostics to determine
regions of the parameter space in which the objective function is locally con-
vex, even though the penalty is not. Our simulation study and data examples
indicate that nonconvex penalties like MCP and SCAD are worthwhile alter-
natives to the lasso in many applications. In particular, our numerical results
suggest that MCP is the preferred approach among the three methods.

1. Introduction. Variable selection is an important issue in regression. Typ-
ically, measurements are obtained for a large number of potential predictors in
order to avoid missing an important link between a predictive factor and the out-
come. This practice has only increased in recent years, as the low cost and easy
implementation of automated methods for data collection and storage has led to an
abundance of problems for which the number of variables is large in comparison
to the sample size.

To reduce variability and obtain a more interpretable model, we often seek a
smaller subset of important variables. However, searching through subsets of po-
tential predictors for an adequate smaller model can be unstable [Breiman (1996)]
and is computationally unfeasible even in modest dimensions.

To avoid these drawbacks, a number of penalized regression methods have been
proposed in recent years that perform subset selection in a continuous fashion.
Penalized regression procedures accomplish this by shrinking coefficients toward
zero in addition to setting some coefficients exactly equal to zero (thereby selecting
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the remaining variables). The most popular penalized regression method is the
lasso [Tibshirani (1996)]. Although the lasso has many attractive properties, the
shrinkage introduced by the lasso results in significant bias toward O for large
regression coefficients.

Other authors have proposed alternative penalties, designed to diminish this
bias. Two such proposals are the smoothly clipped absolute deviation (SCAD)
penalty [Fan and Li (2001)] and the mimimax concave penalty [MCP; Zhang
(2010)]. In proposing SCAD and MCP, their authors established that SCAD and
MCP regression models have the so-called oracle property, meaning that, in the
asymptotic sense, they perform as well as if the analyst had known in advance
which coefficients were zero and which were nonzero.

However, the penalty functions for SCAD and MCP are nonconvex, which in-
troduces numerical challenges in fitting these models. For the lasso, which does
possess a convex penalty, least angle regression [LARS; Efron et al. (2004)] is
a remarkably efficient method for computing an entire path of lasso solutions in
the same order of time as a least squares fit. For nonconvex penalties, Zou and Li
(2008) have proposed making a local linear approximation (LLA) to the penalty,
thereby yielding an objective function that can be optimized using the LARS algo-
rithm.

More recently, coordinate descent algorithms for fitting lasso-penalized models
have been shown to be competitive with the LARS algorithm, particularly in high
dimensions [Friedman et al. (2007); Wu and Lange (2008); Friedman, Hastie and
Tibshirani (2010)]. In this paper we investigate the application of coordinate de-
scent algorithms to SCAD and MCP regression models, for which the penalty is
nonconvex. We provide implementations of these algorithms through the publicly
available R package, ncvreg (available at http://cran.r-project.org).

Methods for high-dimensional regression and variable selection have applica-
tions in many scientific fields, particularly those in high-throughput biomedical
studies. In this article we apply the methods to two such studies—a genetic as-
sociation study and a gene expression study—each possessing a different motiva-
tion for sparse regression models. In genetic association studies, very few genetic
markers are expected to be associated with the phenotype of interest. Thus, the
underlying data-generating process is likely to be highly sparse, and sparse regres-
sion methods likely to perform well. Gene expression studies may also have sparse
underlying representations; however, even when they are relatively “dense,” there
may be separate motivations for sparse regression models. For example, data from
microarray experiments may be used to discover biomarkers and design diagnos-
tic assays. To be practical in clinical settings, such assays must use only a small
number of probes [Yu et al. (2007)].

In Section 2 we describe algorithms for fitting linear regression models penal-
ized by MCP and SCAD, and discuss their convergence. In Section 3 we discuss
the modification of those algorithms for fitting logistic regression models. Issues
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of stability, local convexity and diagnostic measures for investigating these con-
cerns are discussed, along with the selection of tuning parameters, in Section 4.
The numerical efficiency of the proposed algorithm is investigated in Section 5
and compared with LLA algorithms. The statistical properties of lasso, SCAD and
MCP are also investigated and compared using simulated data (Section 5) and ap-
plied to biomedical data (Section 6).

2. Linear regression with nonconvex penalties. Suppose we have n obser-
vations, each of which contains measurements of an outcome y; and p features
{xi1, ..., Xip}. We assume without loss of generality that the features have been
standardized such that 37, x;; =0, n=1 30, xizj =1and )7, y; =0. This en-
sures that the penalty is applied equally to all covariates in an equivariant manner,
and eliminates the need for an intercept. This is standard practice in regularized
estimation; estimates are then transformed back to their original scale after the
penalized models have been fit, at which point an intercept is introduced.

We will consider models in which the expected value of the outcome depends on
the covariates through the linear function E(y) = n = XB. The problem of interest
involves estimating the vector of regression coefficients 8. Penalized regression
methods accomplish this by minimizing an objective function Q that is composed
of a loss function plus a penalty function. In this section we take the loss function
to be squared error loss:

1 & P
(2.1) Qiy(B)= -3 i =1+ 3 pry (B,

i=1 j=1

where p;. , (-) is a function of the coefficients indexed by a parameter A that con-
trols the tradeoff between the loss function and penalty, and that also may be
shaped by one or more tuning parameters . This approach produces a spectrum
of solutions depending on the value of A; such methods are often referred to as
regularization methods, with A the regularization parameter.

To find the value of $ that optimizes (2.1), the LLA algorithm makes a linear
approximation to the penalty, then uses the LARS algorithm to compute the so-
lution. This process is repeated iteratively! until convergence for each value of A
over a grid. Details of the algorithm and its implementation may be found in Zou
and Li (2008).

The LLA algorithm is inherently inefficient to some extent, in that it uses the
path-tracing LARS algorithm to produce updates to the regression coefficients. For

I1n Zou and Li (2008), the authors also discuss a one-step version of LLA starting from an initial
estimate satisfying certain conditions. Although this is an interesting topic, we focus here on algo-
rithms that minimize the specified MCP/SCAD objective functions and thereby possess the oracle
properties demonstrated in Fan and Li (2001) and Zhang (2010) without requiring a separate initial
estimator.
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example, over a grid of 100 values for A that averages 10 iterations until conver-
gence at each point, the LLA algorithm must calculate 1000 lasso paths to produce
a single approximation to the MCP or SCAD path.

An alternative to LLA is to use a coordinate descent approach. Coordinate de-
scent algorithms optimize a target function with respect to a single parameter at a
time, iteratively cycling through all parameters until convergence is reached. The
idea is simple but efficient—each pass over the parameters requires only O (np)
operations. If the number of iterations is smaller than p, the solution is reached
with even less computation burden than the np? operations required to solve a
linear regression problem by QR decomposition. Furthermore, since the computa-
tional burden increases only linearly with p, coordinate descent algorithms can be
applied to very high-dimensional problems.

Coordinate descent algorithms are ideal for problems that have a simple closed
form solution in a single dimension but lack one in higher dimensions. The ba-
sic structure of a coordinate descent algorithm is, simply: For j in {1, ..., p}, to
partially optimize Q with respect to 8; with the remaining elements of 8 fixed at
their most recently updated values. Like the LLA algorithm, coordinate descent
algorithms iterate until convergence is reached, and this process is repeated over a
grid of values for A to produce a path of solutions.

The efficiency of coordinate descent algorithms comes from two sources:
(1) updates can be computed very rapidly, and (2) if we are computing a continu-
ous path of solutions (see Section 2.4), our initial values will never be far from the
solution and few iterations will be required. Rapid updates are possible because the
minimization of Q with respect to 8; can be obtained from the univariate regres-
sion of the current residuals r =y — X on Xj, at a cost of O(n) operations. The
specific form of these updates depends on the penalty and whether linear or logis-
tic regression is being performed, and will be discussed further in their respective
sections.

In this section we describe coordinate descent algorithms for least squares re-
gression penalized by SCAD and MCP, as well as investigate the convergence of
these algorithms.

2.1. MCP. Zhang (2010) proposed the MCP, defined on [0, co) by
2

A0 — 0—, ifo <y,
Py ©) = 2y
—ykz, if 0 > yA,
2.2) 2 0
0, if6 > yA

for A > 0 and y > 1. The rationale behind the penalty can be understood by con-
sidering its derivative: MCP begins by applying the same rate of penalization as
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F1G. 1. Shapes of the lasso, SCAD and MCP penalty functions. The panel on the left plots the
penalties themselves, whereas the panel on the right plots the derivative of the penalty. Note that
none of the penalties are differentiable at $; = 0.

the lasso, but continuously relaxes that penalization until, when 6 > y A, the rate
of penalization drops to 0. The penalty is illustrated in Figure 1.

The rationale behind the MCP can also be understood by considering its uni-
variate solution. Consider the simple linear regression of y upon x, with unpenal-
ized least squares solution z = n~!x'y (recall that x has been standardized so that
x'x = n). For this simple linear regression problem, the MCP estimator has the
following closed form:

A S(z, 1)
(2.3) B=fmce(z, A, y) =1 1-1/y’
zZ, if |z] > YA,

where S is the soft-thresholding operator [Donoho and Johnstone (1994)] defined
for A > 0 by

if [z] < YA,

z—A, ifz > A,
2.4) S(z,A)=10, if |z] <A,
z4+ A, ifz < —A\.

Noting that S(z, A) is the univariate solution to the lasso, we can observe by
comparison that MCP scales the lasso solution back toward the unpenalized solu-
tion by an amount that depends on y. As y — oo, the MCP and lasso solutions are
the same. As y — 1, the MCP solution becomes the hard thresholding estimate
zlzj>. Thus, in the univariate sense, the MCP produces the “firm shrinkage” es-
timator of Gao and Bruce (1997).

In the special case of an orthonormal design matrix, subset selection is equiv-
alent to hard-thresholding, the lasso is equivalent to soft-thresholding, and MCP
is equivalent to firm-thresholding. Thus, the lasso may be thought of as perform-
ing a kind of multivariate soft-thresholding, subset selection as multivariate hard-
thresholding, and the MCP as multivariate firm-thresholding.



COORDINATE DESCENT FOR NONCONVEX PENALIZED REGRESSION 237

The univariate solution of the MCP is employed by the coordinate descent al-
gorithm to obtain the coordinate-wise minimizer of the objective function. In this
setting, however, the role of the unpenalized solution is now played by the unpe-
nalized regression of X;’s partial residuals on X, and denoted z;. Introducing the
notation —j to refer to the portion that remains after the jth column or element is
removed, the partial residuals of x; arer_; =y —X_;B_;, where B_; is the most
recently updated value of 8. Thus, at step j of iteration m, the following three
calculations are made:

(1) calculate

1y

e 1
Zj=n"X;

=1 (m)

1
(2) update B" " « fuce(z;. 1. ¥),
(3) update r <—r — (,31(~m+1) - ﬂ](m))Xj,
where the last step ensures that r always holds the current values of the residuals.
Note that z; can be obtained by regressing x; on either the partial residuals or

the current residuals; using the current residuals is more computationally efficient,
however, as it does not require recalculating partial residuals for each update.

2.2. SCAD. The SCAD penalty Fan and Li (2001) defined on [0, c0) is given
by

A0, if 6 <A,
20 —0.5(0% + 22
Y ©"+ ), if A <6 <y,
P,y (0) = ) 2)/—1
A -1
»ot=b i£0 > ya.
2(y = 1)
(2.5) .
A, if0 <A,
A—0
po={T— <oy
‘)/_
0, ifo>ya

for A > 0 and y > 2. The rationale behind the penalty is similar to that of MCP.
Both penalties begin by applying the same rate of penalization as the lasso, and
reduce that rate to 0 as 8 gets further away from zero; the difference is in the way
that they make the transition. The SCAD penalty is also illustrated in Figure 1.

The univariate solution for a SCAD-penalized regression coefficient is as fol-
lows, where again z is the unpenalized linear regression solution:

S(z, 1), if |z] < 24,
o Sz, yAr —1 .
(26) B=fscap(z, A, y) = (1Z—y1//(§/y— 1)))’ if 20 <zl = v4,

Z, if |z| > yA.
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This solution is similar to, although not the same as, the MCP solution/firm shrink-
age estimator. Both penalties rescale the soft-thresholding solution toward the un-
penalized solution. However, although SCAD has soft-thresholding as the limiting
case when y — o0, it does not have hard thresholding as the limiting case when
y — 2. This univariate solution plays the same role in the coordinate descent al-
gorithm for SCAD as fmcp(zj, A, y) played for MCP.

2.3. Convergence. We now consider the convergence of coordinate descent
algorithms for SCAD and MCP. We begin with the following lemma.

LEMMA 1. Let Qj ;. ,(B) denote the objective function Q, defined in (2.1), as
a function of the single variable B, with the remaining elements of B fixed. For
the SCAD penalty with y > 2 and for the MCP with y > 1, Q; 5., (B) is a convex
function of B; forall j.

From this lemma, we can establish the following convergence properties of co-
ordinate descent algorithms for SCAD and MCP.

PROPOSITION 1. Let {BX)} denote the sequence of coefficients produced at
each iteration of the coordinate descent algorithms for SCAD and MCP. For all
k=0,1,2,...,

Q)»,y (ﬂ(k+l)) =< Q)»,y (ﬂ(k))-

Furthermore, the sequence is guaranteed to converge to a point that is both a local
minimum and a global coordinate-wise minimum of Q5 .

Because the penalty functions of SCAD and MCP are not convex, neither the co-
ordinate descent algorithms proposed here nor the LLA algorithm are guaranteed
to converge to a global minimum in general. However, it is possible for the objec-
tive function Q to be convex with respect to 8 even though it contains a noncon-
vex penalty component. In particular, letting ¢, denote the minimum eigenvalue
of n~1X’X, the MCP objective function is convex if ¥ > 1/c,, while the SCAD
objective function is convex if y > 1 4+ 1/c, [Zhang (2010)]. If this is the case,
then the coordinate descent algorithms converge to the global minimum. Section 4
discusses this issue further with respect to high-dimensional settings.

2.4. Pathwise optimization and initial values. Usually, we are interested in
obtaining ,@ not just for a single value of A, but for a range of values extending
from a maximum value Ap,x for which all penalized coefficients are O down to
A =0 or to a minimum value Anj, at which the model becomes excessively large
or ceases to be identifiable. When the objective function is strictly convex, the
estimated coefficients vary continuously with A € [Amin, Amax] and produce a path
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of solutions regularized by A. Examples of such paths may be seen in Figures 2
and 5.

Because the coefficient paths are continuous (under strictly convex objective
functions), a reasonable approach to choosing initial values is to start at one ex-
treme of the path and use the estimate ﬁ from the previous value of A as the initial
value for the next value of A. For MCP and SCAD, we can easily determine Amgax,
the smallest value for which all penalized coefficients are 0. From (2.3) and (2.6),
it is clear that Amax = Zmax, Where zmax = max j{n_lx’jy} [for logistic regression
(Section 3) Amax is again equal to max{z;}, albeit with z; as defined in (3.4) and
the quadratic approximation taken with respect to the intercept-only model]. Thus,
by starting at Apax With ,B(O) = 0 and proceeding toward Apin, We can ensure that
the initial values will never be far from the solution.

For all the numerical results in this paper, we follow the approach of Friedman,
Hastie and Tibshirani (2010) and compute solutions along a grid of 100 A values
that are equally spaced on the log scale.

3. Logistic regression with nonconvex penalties. For logistic regression, it
is not possible to eliminate the need for an intercept by centering the response
variable. For logistic regression, then, y will denote the original vector of 0-1
responses. Correspondingly, although X is still standardized, it now contains an
unpenalized column of 1’s for the intercept, with corresponding coefficient 8y. The
expected value of y once again depends on the linear function n = Xp, although
the model is now

14eni’

Estimation of the coefficients is now accomplished via minimization of the objec-
tive function

3.1 P(yi =1|xj1, ..., xjp) =7 =

1 & P
32 OQyB=— > fyilogmi + (1 —y)log(1 =)} + D pay (1BD.
i=1

j=1

Minimization can be approached by first obtaining a quadratic approximation
to the loss function based on a Taylor series expansion about the value of the
regression coefficients at the beginning of the current iteration, ™. Doing so
results in the familiar form of the iteratively reweighted least squares algorithm
commonly used to fit generalized linear models [McCullagh and Nelder (1989)]:

1 _ _ P
(3.3) 0ry (B~ - F—XBWGF —XB) + 3 pry(B)D,
j=1
where y, the working response, is defined by

§y=XB" + Wy —m)
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and W is a diagonal matrix of weights, with elements
w; =7 (1 — ),

and 7 is evaluated at ™. We focus on logistic regression here, but the same
approach could be applied to fit penalized versions of any generalized linear model,
provided that the quantities § and W [as well as the residuals r = § — X", which
depend on y implicitly] are replaced with expressions specific to the particular
response distribution and link function.

With this representation, the local linear approximation (LLA) and coordinate
descent (CD) algorithms can be extended to logistic regression in a rather straight-
forward manner. At iteration m, the following two steps are taken:

(1) Approximate the loss function based on ﬂ(m).
(2) Execute one iteration of the LLA/CD algorithm, obtaining 81,

These two steps are then iterated until convergence for each value of A. Note that
for the coordinate descent algorithm, step (2) loops over all the covariates. Note
also that step 2 must now involve the updating of the intercept term, which may be
accomplished without modification of the underlying framework by setting A =0
for the intercept term.

The local linear approximation is extended in a straightforward manner to
reweighted least squares by distributing W, obtaining the transformed covariates
and response variable W!/2X and W!/2¥, respectively. The implications for coor-
dinate descent algorithms are discussed in the next section.

Briefly, we note that, as is the case for the traditional iteratively reweighted
least squares algorithm applied to generalized linear models, neither algorithm
(LLA/CD) is guaranteed to converge for logistic regression. However, provided
that adequate safeguards are in place to protect against model saturation, we have
not observed failure to converge to be a problem for either algorithm.

3.1. Fixed scale solution. The presence of observation weights changes the
form of the coordinate-wise updates. Let v; = n_lx’jWX j» and redefine r =

W-l(y — x) and

(3.4) zj= %x’jW(i—X_jﬂ_,-)
(3.5) = lx’er +v ",
n
Now, the coordinate-descent update for MCP is
M, if |z;] <vjyA,
(3.6) Bi < 55—1/3’

—, if |z;] > v;yA
vj
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for y > 1/v; and for SCAD,

S(zj, A :

), if 2] < Av; + 1),
j

Szj, ya/(y = 1) ,

(37 B« U.J_y1//(yy—1) . ifAj 4+ 1) <|zjl vy,

J

Zj .

v—{, if |z > vy A

J

for y > 1+ 1/v;. Updating of r proceeds as in the linear regression case.

As is evident from comparing (2.3)/(2.6) with (3.6)/(3.7), portions of both nu-
merator and denominator are being reweighted in logistic regression. In compar-
ison, for linear regression, v; is always equal to 1 and this term drops out of the
solution.

This reweighting, however, introduces some difficulties with respect to the
choice and interpretation of the y parameter. In linear regression, the scaling fac-
tor by which solutions are adjusted toward their unpenalized solution is a constant
[1 —1/y for MCP, 1 — 1/(y — 1) for SCAD] for all values of A and for each
covariate. Furthermore, for standardized covariates, this constant has a universal
interpretation for all linear regression problems, meaning that theoretical argu-
ments and numerical simulations investigating ¥ do not need to be rescaled and
reinterpreted in the context of applied problems.

In logistic regression, however, this scaling factor is constantly changing, and
is different for each covariate. This makes choosing an appropriate value for y
difficult in applied settings and robs the parameter of a consistent interpretation.

To illustrate the consequences of this issue, consider an attempt to perform lo-
gistic regression updates using y = 3.7, the value suggested for linear regression
in Fan and Li (2001). Because w; cannot exceed 0.25, y cannot exceed 1/v; and
the solution is discontinuous and unstable. Note that this problem does not arise
from the use of any particular algorithm—it is a direct consequence of the poorly
behaved objective function with this value of y.

3.2. Adaptive rescaling. To resolve these difficulties, we propose an adaptive
rescaling of the penalty parameter y to match the continually changing scale of
the covariates. This can be accomplished by simply replacing p; , (I8;]) with
P,y (JvjB;1). The algorithmic consequences for the LLA algorithm are straight-
forward. For coordinate descent, the updating steps become simple extensions of
the linear regression solutions:

f(@j, A y)
g L1V
vj
Note that, for MCP,
S(zj,A)  S(zj, M)

vil=1/y) v —1/y*
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where y* = y/v;. Thus, the adaptively rescaled solution is still minimizing the
objective function (3.3), albeit with an alternate set of shape parameters {yjf"} that
are unknown until convergence is attained.

Note that rescaling by v; does not affect the magnitude of the penalty (1), only
the range over which the penalty is applied (y ). Is it logical to apply different scales
to different variables? Keep in mind that, since X’;x; = n for all j, the rescaling
factor v; will tend to be quite similar for all covariates. However, consider the case
where a covariate is predominantly associated with observations for which 7; is
close to 0 or 1. For such a covariate, adaptive rescaling will extend the range over
which the penalization is applied. This seems to be a reasonable course of action,
as large changes in this coefficient produce only small changes in the model’s fit,
and provide less compelling evidence of a covariate’s importance.

SCAD does not have the property that its adaptively rescaled solution is equal
to a solution of the regular SCAD objective function with different shape para-
meters. This is due to the fact that the scale of the penalty is tied to the scale of
the coefficient by the 6 < A clause. One could make this clause more flexible by
reparameterizing SCAD so that p’(6) = A in the region 6 < y»A, where y, would
be an additional tuning parameter. In this generalized case, adaptively rescaled
SCAD would minimize a version of the original objective function in which the y
parameters are rescaled by v;, as in the MCP case.

As we will see in Section 5, this adaptive rescaling increases interpretability and
makes it easier to select .

4. Convexity, stability and selection of tuning parameters.

4.1. Convexity and stability. As mentioned in Section 2.3, the MCP/SCAD-
penalized linear regression objective function is convex provided that y > 1/c,
(MCP)or y > 1 +1/c, (SCAD). This result can be extended to logistic regression
as well via the following proposition.

PROPOSITION 2. Let cy(B) denote the minimum eigenvalue of n~'X'WX,
where W is evaluated at B. Then the objective function defined in (3.2) is a

convex function of B on the region where c.(B) > 1/y for MCP, and where
cx(B) > 1/(y — 1) for SCAD.

A convex objective function is desirable for (at least) two reasons. First, for any
algorithm (such as coordinate descent) which converges to a critical point of the
objective function, convexity ensures that the algorithm converges to the unique
global minimum. Second, convexity ensures that [3 is continuous with respect to
A, which in turn ensures good initial values for the scheme described in Section 2.4,
thereby reducing the number of iterations required by the algorithm.

There are obvious practical benefits to using an algorithm that converges rapidly
to the unique global solution. However, convexity may also be desirable from a
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statistical perspective. In the absence of convexity, B is not necessarily continu-
ous with respect to the data—that is, a small change in the data may produce a
large change in the estimate. Such estimators tend to have high variance [Breiman
(1996); Bruce and Gao (1996)] in addition to being unattractive from a logical
perspective. Furthermore, discontinuity with respect to A increases the difficulty
of choosing a good value for the regularization parameter.

4.2. Local convexity diagnostics. Howebver, it is not always necessary to attain
global convexity. In high-dimensional settings where p > n, global convexity is
neither possible nor relevant. In such settings, sparse solutions for which the num-
ber of nonzero coefficients is much lower than p are desired. Provided that the ob-
jective function is convex in the local region that contains these sparse solutions,
we will still have stable estimates and smooth coefficient paths in the parameter
space of interest.

Of considerable practical interest, then, is a diagnostic that would indicate, for
nonconvex penalties such as SCAD and MCP, which regions of the coefficient
paths are locally convex and which are not. Here, we introduce a definition for local
convexity and a diagnostic measure which can be easily computed from the data
and which can indicate which regions of the coefficient paths retain the benefits of
convexity and which do not.

Recall the conditions for global convexity: y must be greater than 1/c, for MCP
(1 + 1/c, for SCAD), where c, denoted the minimum eigenvalue of n~1X'X. We
propose modifying this cutoff so that only the covariates with nonzero coefficients
(the covariates which are “active” in the model) are included in the calculation
of c,. Note that neither y nor X change with A. What does vary with A is set
of active covariates; generally speaking, this will increase as A decreases (with
correlated/collinear data, however, exceptions are possible). Thus, local convexity
of the objective function will not be an issue for large A, but may cease to hold as
A is lowered past some critical value A*.

Specifically, let ﬁ(k) denote the minimizer of (2.1) for a certain value of A,
AN ={j: ﬁj (A) #£ 0} denote the active set of covariates, U(L) = A(A) U A(A7)
denote the set of covariates that are either currently active given a value A or that
will become active imminently upon the lowering of A by an infinitesimal amount,
and let Xy (1) denote the design matrix formed from only those covariates for
which j € U (A), with c, (1) denoting the minimum eigenvalue of n_lXU(;L)/ Xum)-
Now, letting

A =inf{A:y > 1/ce(M)} for MCP
and
A =inf{A:y > 1+ 1/cs(1)} for SCAD,

we define the XA interval over which the objective function is “locally convex”
to be (oo, A*). Correspondingly, the objective function is locally nonconvex (and
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FIG. 2. Example MCP coefficient paths for simulated data where p > n. The shaded region is the
region in which the objective function is not locally convex. Note that the solutions are continuous
and stable in the locally convex regions, but discontinuous and erratic otherwise.

globally nonconvex) in the region [A*, 0]. Because c,(1) changes only when the
composition of U (X) changes, it is clear that A* must be a value of A for which
AN #EAOQT).

For logistic regression, let c,(A) represent the minimum eigenvalue of
n_IXU(A)/WXU(A) — D,, where W is evaluated at ﬁ(k) and D, is a diagonal
matrix that depends on the penalty function. For the fixed scale estimation of Sec-
tion 3.1, D), has elements {1/y} for MCP and {1/(y — 1)} for SCAD, while for
the adaptively rescaled estimation of Section 3.2, D, has elements {n_IX;(WXk /v}
for MCP and {n_IXZWXk /(y — 1)} for SCAD. For c,()) defined in this manner,
A* equals the smallest value of A such that c,(A) > 0.

The practical benefit of these diagnostics can be seen in Figure 2, which depicts
examples of coefficient paths from simulated data in which » =20 and p = 50.
As is readily apparent, solutions are smooth and well behaved in the unshaded,
locally convex region, but discontinuous and noisy in the shaded region which lies
to the right of A*. Figure 2 contains only MCP paths; the corresponding figures for
SCAD paths look very similar. Figure 2 displays linear regression paths; paths for
logistic regression can be seen in Figure 5.

The noisy solutions in the shaded region of Figure 2 may arise from numerical
convergence to suboptimal solutions, inherent statistical variability arising from
minimization of a nonconvex function, or a combination of both; either way, how-
ever, the figure makes a compelling argument that practitioners of regression meth-
ods involving nonconvex penalties should know which region their solution resides
in.

4.3. Selection of y and ). Estimation using MCP and SCAD models depends
on the choice of the tuning parameters y and A. This is usually accomplished
with cross-validation or using an information criterion such as AIC or BIC. Each
approach has its shortcomings.

Information criteria derived using asymptotic arguments for unpenalized re-
gression models are on questionable ground when applied to penalized regression
problems where p > n. Furthermore, defining the number of parameters in models
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with penalization and shrinkage present is complicated and affects lasso, MCP and
SCAD differently. Finally, we have observed that AIC and BIC have a tendency,
in some settings, to select local mimima in the nonconvex region of the objective
function.

Cross-validation does not suffer from these issues; on the other hand, it is com-
putationally intensive, particularly when performed over a two-dimensional grid
of values for y and X, some of which may not possess convex objective functions
and, as a result, converge slowly. This places a barrier in the way of examining the
choice of y, and may lead practitioners to use default values that are not appropri-
ate in the context of a particular problem.

It is desirable to select a value of y that produces parsimonious models while
avoiding the aforementioned pitfalls of nonconvexity. Thus, we suggest the fol-
lowing hybrid approach, using BIC, cross-validation and convexity diagnostics in
combination, which we have observed to work well in practice. For a path of solu-
tions with a given value of y, use AIC/BIC to select A and use the aforementioned
convexity diagnostics to determine the locally convex regions of the solution path.
If the chosen solution lies in the region below A*, increase y to make the penalty
more convex. On the other hand, if the chosen solution lies well above A*, one can
lower y without fear of nonconvexity. Once this process has been iterated a few
times to find a value of y that seems to produce an appropriate balance between
parsimony and convexity, use cross-validation to choose A for this value of y. This
approach is illustrated in Section 6.

5. Numerical results.

5.1. Computational efficiency. In this section we assess the computational ef-
ficiency of the coordinate descent and LLLA algorithms for fitting MCP and SCAD
regression models. We examine the time required to fit the entire coefficient path
for linear and logistic regression models.

In these simulations, the response for linear regression was generated from the
standard normal distribution, while for logistic regression, the response was gen-
erated as a Bernoulli random variable with P(y; = 1) = 0.5 for all i.

To investigate whether or not the coordinate descent algorithm experiences dif-
ficulty in the presence of correlated predictors, covariate values were generated in
one of two ways: independently from the standard normal distribution (i.e., no cor-
relation between the covariates), and from a multivariate normal distribution with
a pairwise correlation of p = 0.9 between all covariates.

To ensure that the comparison between the algorithms was fair and not unduly
influenced by failures to converge brought on by nonconvexity or model satura-
tion, n was chosen to equal 1000 and y was set equal to 1/c,, thereby ensuring
a convex objective function for linear regression. This does not necessarily ensure
that the logistic regression objective function is convex, although with adaptive
rescaling, it works reasonably well. In all of the cases investigated, the LLA and
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FI1G. 3. Time required (in seconds) to fit the entire coefficient paths for linear and logistic regres-
sion, employing either the local linear approximation (LLA) algorithm or the coordinate descent
(CD) algorithm. Both axes are on the log scale. Times displayed are averaged over 100 indepen-
dently generated data sets. The coordinate descent algorithm is at least 100 times faster than the
LLA algorithm at all points.

coordinate descent algorithms converged to the same path (within the accuracy of
the convergence criteria). The median times required to fit the entire coefficient
path are presented as a function of p in Figure 3.

Interestingly, the slope of both lines in Figure 3 is close to 1 in each setting
(on the log scale), implying that both coordinate descent and LLA exhibit a linear
increase in computational burden with respect to p over the range of p investi-
gated here. However, coordinate descent algorithm is drastically more efficient—
up to 1000 times faster. The coordinate descent algorithm is somewhat (2—5 times)
slower in the presence of highly correlated covariates, although it is still at least
100 times faster than LLA in all settings investigated.

5.2. Comparison of MCP, SCAD and lasso. We now turn our attention to the
statistical properties of MCP and SCAD in comparison with the lasso. We will
examine two instructive sets of simulations, comparing these nonconvex penalty
methods to the lasso. The first set is a simple series designed to illustrate the pri-
mary differences between the methods. The second set is more complex, and de-
signed to mimic the applications to real data in Section 6.

In the simple settings, covariate values were generated independently from the
standard normal distribution. The sample sizes were n = 100 for linear regression
and n = 400 for logistic regression. In the complex settings, the design matrices
from the actual data sets were used.
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For each data set, the MCP and SCAD coefficient paths were fit using the co-
ordinate descent algorithm described in this paper, and lasso paths were fit using
the glmnet package [Friedman, Hastie and Tibshirani (2010)]. Tenfold cross-
validation was used to choose .

Setting 1. We begin with a collection of simple models in which there are four
nonzero coefficients, two of which equal to +s, the other two equal to —s. Given
these values of the coefficient vector, responses were generated from the normal
distribution with mean n; and variance 1 for linear regression, and for logistic
regression, responses were generated according to (3.1).

For the simulations in this setting, we used the single value y = 3 in order
to illustrate that reasonable results can be obtained without investigation of the
tuning parameter if adaptive rescaling is used for penalized logistic regression.
Presumably, the performance of both MCP and SCAD would be improved if y
was chosen in a more careful manner, tailored to each setting; nevertheless, the
simulations succeed in demonstrating the primary statistical differences between
the methods.

We investigate the estimation efficiency of MCP, SCAD and lasso as s and p
are varied. These results are shown in Figure 4.

Figure 4 illustrates the primary difference between MCP/SCAD and lasso. MCP
and SCAD are more aggressive modeling strategies, in the sense that they allow
coefficients to take on large values much more easily than lasso. As a result, they
are capable of greatly outperforming the lasso when large coefficients are present
in the underlying model. However, the shrinkage applied by the lasso is beneficial
when coefficients are small, as seen in the regions of Figure 4 in which s is near
zero. In such settings, MCP and SCAD are more likely to overfit the noisy data.

Lasso oo MCP —— SCAD -----
00 05 10 15 20
| | | | | | | | | | | | | | |
Linear Linear Linear
15 P =30 P =90 P =500 |

" 10 -
o 05
S 0.0 -
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©
o

FIG. 4. Relative (to the lasso) mean squared error for MCP- and SCAD-penalized linear and logis-
tic regression. MSE was calculated for each penalty on 100 independently generated data sets, and
the ratio of the medians is plotted. MCP and SCAD greatly outperform lasso for large coefficients,
but not necessarily for small coefficients.
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This is true for both linear and logistic regression. This tendency is worse for
logistic regression than it is for linear regression, worse for MCP than it is for
SCAD, and worse when y is closer to 1 (results supporting this final comparison
not shown).

Setting 2. In this setting we examine the performance of MCP, SCAD and lasso
for the kinds of design matrices often seen in biomedical applications, where
covariates contain complicated patterns of correlation and high levels of multi-
collinearity. Section 6 describes in greater detail the two data sets, which we will
refer to here as “Genetic Association” and “Microarray,” but it is worth noting
here that for the Genetic Association case, n = 800 and p = 532, while for the
Microarray case, n = 38 and p = 7129.

In both simulations the design matrix was held constant while the coefficient
and response vectors changed from replication to replication. In the Genetic As-
sociation case, 5 coefficient values were randomly generated from the exponen-
tial distribution with rate parameter 3, given a random (+/—) sign, and randomly
assigned to one of the 532 SNPs (the rest of the coefficients were zero). In the
Microarray case, 100 coefficient values were randomly generated from the normal
distribution with mean O and standard deviation 3, and randomly assigned among
the 7129 features. Once the coefficient vectors were generated, responses were
generated according to (3.1). This was repeated 500 times for each case, and the
results are displayed in Table 1.

The Genetic Association simulation—reflecting the presumed underlying biol-
ogy in these kinds of studies—was designed to be quite sparse. We expected the
more sparse MCP method to outperform the lasso here, and it does. All methods
achieve similar predictive accuracy, but MCP does so using far fewer variables and
with a much lower percentage of spurious covariates in the model.

TABLE 1
Simulation results: Setting 2% correct refers to the percent of variables
selected by the model that had nonzero coefficients in the generating

model
Misclassification

Penalty error (%) Model size  Correct (%)
Genetic association

MCP (y =1.5) 38.7 2.1 54.7

SCAD (y =2.5) 38.7 9.5 25.0

Lasso 38.8 12.6 20.6
Microarray

MCP (y =5) 19.7 4.3 3.2

MCP (y =20) 16.7 7.5 43

SCAD (y =20) 16.4 8.7 43

Lasso 16.2 8.8 4.3
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The Microarray simulation was designed to be unfavorable to sparse model-
ing—a large number of nonzero coefficients, many of which are close to zero. As
is further discussed in Section 6, y should be large in this case; when y =5, MCP
produces models with diminished accuracy in terms of both prediction and variable
selection. However, it is not the case that lasso is clearly superior to MCP here; if
y is chosen appropriately, the predictive accuracy of the lasso can be retained, with
gains in parsimony, by applying MCP with y = 20.

In the microarray simulation, the percentage of variables selected that have a
nonzero coefficient in the generating model is quite low for all methods. This is
largely due to high correlation among the features. The methods achieve good pre-
dictive accuracy by finding predictors that are highly correlated with true covari-
ates, but are unable to distinguish the causative factors from the rest in the network
of interdependent gene expression levels. This is not an impediment for screening
and diagnostic applications, although it may or may not be helpful for elucidating
the pathway of disease.

SCAD, the design of which has similarities to both MCP and lasso, lies in be-
tween the two methodologies. However, in these two cases, SCAD is more similar
to lasso than it is to MCP.

6. Applications.

6.1. Genetic association. Genetic association studies have become a widely
used tool for detecting links between genetic markers and diseases. The example
that we will consider here involves data from a case-control study of age-related
macular degeneration consisting of 400 cases and 400 controls. We confine our
analysis to 30 genes that previous biological studies have suggested may be re-
lated to the disease. These genes contained 532 markers with acceptably high
call rates and minor allele frequencies. Logistic regression models penalized by
lasso, SCAD and MCP were fit to the data assuming an additive effect for all
markers (i.e., for a homozygous dominant marker, x;; = 2, for a heterozygous
marker, x;; = 1, and for a homozygous recessive marker, x;; = 0). As an illustra-
tion of computational savings in a practical setting, the LLA algorithm required
17 minutes to produce a single MCP path of solutions, as compared to 2.5 seconds
for coordinate descent.

As described in Section 4.3, we used BIC and convexity diagnostics to choose
an appropriate value of y; this is illustrated in the top half of Figure 5. The biologi-
cal expectation is that few markers are associated with the disease; this is observed
empirically as well, as a low value of y = 1.5 was observed to balance sparsity
and convexity in this setting. In a similar fashion, y = 2.5 was chosen for SCAD.

Ten-fold cross-validation was then used to choose A for MCP, SCAD and lasso.
The number of parameters in the selected model, along with the corresponding
cross-validation errors, are listed in Table 2. The results indicate that MCP is bet-
ter suited to handle this sparse regression problem than either SCAD or lasso,
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F1G. 5. MCP coefficient paths for various values of y for the two studies of Section 6. The shaded
region depicts areas that are not locally convex, and a vertical line is drawn at the value of A selected
by BIC. For the sparse genetic association data, small values of y produce the best fit, for the dense
microarray data, large values are preferred.

achieving a modest reduction in cross-validated prediction error while producing a
much more sparse model. As one would expect, the SCAD results are in between
MCP and lasso.

6.2. Gene expression. Next, we examine the gene expression study of leuke-
mia patients presented in Golub et al. (1999). In the study the expression levels
of 7129 genes were recorded for 27 patients with acute lymphoblastic leukemia
(ALL) and 11 patients with acute myeloid leukemia (AML). Expression levels
for an additional 34 patients were measured and reserved as a test set. Logistic
regression models penalized by lasso, SCAD and MCP were fit to the training
data.

Biologically, this problem is more dense than the earlier application. Potentially,
a large number of genes are affected by the two types of leukemia. In addition, the
sample size is much smaller for this problem. These two factors suggest that a
higher value of y is appropriate, an intuition borne out in Figure 5. The figure sug-
gests that y ~ 20 may be needed in order to obtain an adequately convex objective
function for this problem (we used y = 20 for both MCP and SCAD).

TABLE 2
Genetic association results

Penalty Model size CV error (%)

MCP 7 394
SCAD 25 40.6
Lasso 103 40.9
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With y so large, MCP and SCAD are quite similar to lasso; indeed, all three
methods classify the test set observations in the same way, correctly classifying
31/34. Analyzing the same data, Park and Hastie (2007) find that lasso-penalized
logistic regression is comparable with or more accurate than several other compet-
ing methods often applied to high-dimensional classification problems. The same
would therefore apply to MCP and SCAD as well; however, MCP achieved its
success using only 11 predictors, compared to 13 for lasso and SCAD. This is an
important consideration for screening and diagnostic applications such as this one,
where the goal is often to develop an accurate test using as few features as possible
in order to control cost.

Note that, even in a problem such as this one with a sample size of 38 and a
dozen features selected, there may still be an advantage to the sparsity of MCP
and the parsimonious models it produces. To take advantage of MCP, however, it
is essential to choose y wisely—using the value y =5 (much too sparse for this
problem) tripled the test error to 9/34. We are not aware of any method that can
achieve prediction accuracy comparable to MCP while using only 11 features or
fewer.

7. Discussion. The results from the simulation studies and data examples con-
sidered in this paper provide compelling evidence that nonconvex penalties like
MCP and SCAD are worthwhile alternatives to the lasso in many applications. In
particular, the numerical results suggest that MCP is often the preferred approach
among the three methods.

Many researchers and practitioners have been reluctant to embrace these meth-
ods due to their lack of convexity, and for good reason: nonconvex objective func-
tions are difficult to optimize and often produce unstable solutions. However, we
provide here a fast, efficient and stable algorithm for fitting MCP and SCAD mod-
els, as well as introduce diagnostic measures to indicate which regions of a coef-
ficient path are locally convex and which are not. Furthermore, we introduce an
adaptive rescaling for logistic regression which makes selection of the tuning pa-
rameter ¥ much easier and more intuitive. All of these innovations are publicly
available as an open-source R package (http://cran.r-project.org) called ncvreg.
We hope that these efforts remove some of the barriers to the further study and use
of these methods in both research and practice.

APPENDIX

Although the objective functions under consideration in this paper are not dif-
ferentiable, they possess directional derivatives and directional second derivatives
at all points 8 and in all directions u for 8,u € R”. We use d, Q and dﬁQ to
represent the derivative and second derivative of Q in the direction u.
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PROOF OF LEMMA 1. For all B; € (=00, 00),

1 ! for MCP,
- — or A
min{d> Q. (B),d3 Q1. (B)} = Y
1— 1 for SCAD.
y J—

Thus, Q; 5 ,(B) is a strictly convex function on (—00, o) if y > 1 for MCP and
if y > 2 for SCAD. [J

PROOF OF PROPOSITION 1. Tseng (2001) establishes sufficient conditions
for the convergence of cyclic coordinate descent algorithms to coordinate-wise
minima. The strict convexity in each coordinate direction established in Lemma 1
satisfies the conditions of Theorems 4.1 and 5.1 of that article. Because Q is con-
tinuous, either theorem can be directly applied to demonstrate that the coordinate
descent algorithms proposed in this paper converge to coordinate-wise minima.
Furthermore, because all directional derivatives exist, every coordinate-wise min-
imum is also a local minimum. [J

PROOF OF PROPOSITION 2. Forall 8 € R?,

1 1

~X'WX — —1 for MCP,
min{dg 05, (B} = 1 | Y

XWX - ——1 for SCAD.

n y—1

Thus, Q). , (B) is a convex function on the region for which c,(8) > 1/y for MCP,
and where ¢, (B8) > 1/(y — 1) for SCAD. [
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