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This paper is motivated by a Eurobarometer survey on science knowl-
edge. As part of the survey, respondents were asked to rank sources of science
information in order of importance. The official statistical analysis of these
data however failed to use the complete ranking information. We instead pro-
pose a method which treats ranked data as a set of paired comparisons which
places the problem in the standard framework of generalized linear models
and also allows respondent covariates to be incorporated.

An extension is proposed to allow for heterogeneity in the ranked re-
sponses. The resulting model uses a nonparametric formulation of the random
effects structure, fitted using the EM algorithm. Each mass point is multival-
ued, with a parameter for each item. The resultant model is equivalent to a
covariate latent class model, where the latent class profiles are provided by
the mass point components and the covariates act on the class profiles. This
provides an alternative interpretation of the fitted model. The approach is also
suitable for paired comparison data.

1. Introduction. Ranked data commonly arise in many substantive areas such
as psychology, social research and marketing research when the interest is focused
on the relative ordering of various items, options, stimuli or objects. A typical aim
of such studies is to estimate the mean or average ordering of a set of items, and to
investigate how this ordering changes with respondent characteristics. This paper
focuses on the analysis of a survey question from a special Eurobarometer survey
on science knowledge, which asked respondents to rank six sources of science
information in order of importance.

Eurobarometer public opinion surveys have been carried out in all member
states of the European Union since 1973. Eurobarometer 55.2 was a special survey
collected in 2001 and designed to elicit information on European experience and
perception of science and technology. 17 countries in total were surveyed—with
Northern Ireland, Great Britain, East Germany and West Germany being treated
as separate countries for the purposes of the survey. Within each country a multi-
stage sampling scheme was used. Primary sampling units (PSUs) were randomly
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Eurobarometer 55.2 May–June 2001 Question 5.
Here are some sources of information about scientific developments.
Please rank them from 1 to 6 in terms of their importance to you
(1 being the most important and 6 the least important)
(a) Television .....
(b) Radio .....
(c) Newspapers and magazines .....
(d) Scientific magazines .....
(e) The internet .....
(f) School/University .....

FIG. 1. The ’Sources of science information’ question.

selected with probability based on population size after stratification by admin-
istrative region and by the degree of urbanization. Within each PSU, a cluster of
addresses was sampled, and random route methods were used to select households.
Finally, a respondent was selected at random from within each household. Face to
face interviewing was used to elicit responses.

Our question of interest in this paper is given in Figure 1. The survey report
[Christensen (2001)] describes how this question was analyzed. Only the first two
rank positions were examined, and the percentage of times a source was mentioned
in either the first or second position was reported. This was presented as given in
Table 1.

This method of analysis, however, does not use the respondent’s last four ranked
positions, and also does not distinguish in importance between the first and second
ranked position. Thus, information is wasted and other issues such as the influence
of covariates and respondent heterogeneity are not considered.

We proceed by examining current approaches to ranked data in Section 2, be-
fore describing our modeling approach in Sections 3–5. This approach combines
the modeling of ranked data patterns through the Bradley–Terry model, We para-
meterize the items through a set of worth parameters which sum to 1, and which
we allow to depend on covariates. The model also incorporates discrete or non-
parametric (mass-point) random effects to account for heterogeneity. This model

TABLE 1
Respondents mentioning source of information in first or second position

a b c d e f

Television Radio Press Scientific Internet School and
magazines university

(TV) (Radio) (Press) (SciM) (WWW) (Edu)

60.3% 27.3% 37.0% 20.1% 16.7% 20.3%
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can also be thought of as a mixture or latent class model on the ranks. Algorith-
mic and computational issues are discussed in Section 6, and the results of the
new analysis on the Eurobarometer question above are discussed in Section 7. The
paper finishes with a discussion of the methodology.

2. Existing approaches to ranked data. Three simple approaches to analyz-
ing ranked data are common in the literature. The crudest method is simply to
analyze only the first ranked response, but this wastes information by not using
the other ranks. Another approach is to assume that the rankings are from a con-
tinuous scale, and to analyze mean ranks, perhaps invalidly assuming normality.
A third approach, used by sensory perception researchers, uses the nonparametric
Friedman two-way analysis of variance. This test, however, simply examines the
null hypothesis that the median ranks for all items are equal, and does not consider
any differences in ranking between respondents [Sheskin (2007)]. Moreover, if the
Friedman test rejects the null hypothesis, no quantitative interpretation, such as the
odds of preferring one item over another, is provided.

All of these simple approaches fail both to consider the underlying psycholog-
ical mechanism for ranking, and to formulate correct statistical models for this
mechanism. In contrast, the approach taken in this paper is statistically more rigor-
ous, and involves modeling the observed ranks by assuming that they are generated
through an underlying choice or preference model.

There are also a variety of modeling approaches to ranked data. One common
approach assumes that the respondent carries out the ranking by first choosing
the most preferred item, and then the next preferred, and so on. This has led to
the choice set explosion model of Chapman and Staelin (1982) and the multistage
model of Fligner and Verducci (1988). For example, a series of papers by Gorm-
ley and Murphy [Gormley and Murphy (2008a, 2008b)] have suggested model-
ing ranks through the Plackett–Luce and Benter models and have illustrated the
methodology using Irish electoral data. However, more generally, the choice set
approach has the disadvantage of inconsistency: models which assume instead that
respondents first choose the least preferred, then the next least preferred, and so on
lead to different conclusions and estimates of worths.

Other modeling approaches have assumed an underlying distance metric on
the ranks—thus, Busse, Orbanz and Buhmann (2007) assumed that differences
between ranks can be measured through the Kendall distance, which measures
the number of adjacent transpositions needed to transform one rank into another.
D’Elia and Piccolo (2005) suggested that a two-component mixture of a shifted
binomial and a uniform distribution be used to model the rank of an specific item.

In this paper we assume that a ranking of items is produced by the respondent
making a set of consistent paired comparison experiments, comparing each item
mentally with each of the others, until a consistent ranking is obtained.
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Fligner and Verducci (1993) described suitable probability models for ranked
data such as the Babington Smith model, where the probability for rankings are de-
fined via parameters for paired comparisons. The usual model for paired compar-
isons [Bradley and Terry (1952)] was extended to ranked data by Mallows (1957)
(the Mallows–Bradley–Terry model).

Critchlow and Fligner (1991, 1993) showed that the Mallows–Bradley–Terry
model is a Generalized linear model (GLM) and extended the model by introduc-
ing item-specific variables. We adopt this approach in this paper, extending it by
the addition of respondent covariates and random effects structures.

Ranked responses will vary between respondents. While measured covariates
can be taken into account [Dittrich, Hatzinger and Reisinger (2000); Francis et al.
(2002)], there are likely to be other unmeasured or unmeasurable characteristics
of the respondents which will also affect the response. This will give rise to het-
erogeneity in the data which need to be taken into account. One approach is to use
a mixing distribution approach. Lancaster and Quade (1983) considered random
effects models for paired comparison data and fitted a beta-binomial distribution.
Matthews and Morris (1995) later extended the model to involve ties and used a
Dirichlet mixing distribution; Böckenholt (2001a) fitted a binomial-Normal distri-
bution.

In this paper we use a random effects approach, but adopt a discrete nonpara-
metric mass point distribution rather than a continuous mixing distribution. The
use of a discrete distribution both avoids the considerable computational complex-
ity of multiple integrals in the continuous case, and also avoids the need to spec-
ify a specific distribution which may by inappropriate. Heterogeneity in effect is
modeled through the incorporation of a missing latent factor representing group
membership. If there are no respondent covariates, then the approach reduces to
a latent class model [Formann (1992)]. While Böckenholt (2001b), Croon (1989)
and Gormley and Murphy (2008a) have considered the use of latent class models
for ranked data, they take a choice-based rather than a paired comparison approach.

3. Ranked data and paired comparisons. The ranking of items can be de-
scribed either by a rank vector (which gives the ranks of the items) or by an order
vector (which gives the items in rank order).

Paired comparisons have much in common with ranking tasks. In a paired com-
parison task the respondents are asked to choose the preferred item in each pair
of items. The number of pairs for a set of J items is given by

(J
2

)
. In general, the

observed paired comparison response for two items i and j can be coded as

yij =
{

1 if item i is preferred to item j (i � j),
−1 if item j is preferred to item i (j � i).

It is straightforward to transform a rank order into derived paired comparison data.
Suppose the order vector of a respondent on four items is (c, a, b, d), then we
know that item c is preferred to item a, item a is preferred to item b and so on.
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However, true paired comparison data and derived paired comparison data from
ranks differ in two ways:

(1) In true paired comparison tasks, respondents might be inconsistent in their
preferences, producing an intransitive pattern where the respondent is not
choice consistent. In ranking tasks inconsistent response patterns cannot oc-
cur.

(2) The mode of presenting the items is different for the two tasks. In ranking data
all items are presented at once, while in a paired comparison task all item pairs
are presented in turn. Accordingly, different effects concerning the order of the
presentation of the items may occur.

4. Modeling ranked data.

4.1. Modeling a single paired comparison. The standard approach to mod-
eling paired comparisons is the Bradley–Terry (BT) model [Bradley and Terry
(1952)]. We define the response in a single paired comparison (ij) to be Yij . It
is assumed that the probability of an item i being preferred to j depends on the
nonnegative parameters πi and πj of the items i and j , defined as follows:

P {Yij = 1|πi,πj } = πi

πi + πj

and

P {Yij = −1|πi,πj } = πj

πi + πj

,

where we later ensure that the πi sum to one for identifiability.
Thus,

P {Yij = yij |πi,πj } =
(

πi

πi + πj

)(1+yij )/2(
πj

πi + πj

)(1−yij )/2

(4.1)

= cij

( √
πi√
πj

)yij

,

with yij ∈ {1,−1} and with a constant c−1
ij = √

πi/πj + √
πj/πi which does not

depend on yij . We now reparameterize πi as λi = 1
2 lnπi or πi = exp(2λi). Equa-

tion (4.1) then becomes

P {Yij = yij |λi, λj } = cij exp
(
yij (λi − λj )

)
(4.2)

with c−1
ij = exp(λi − λj ) − exp(λj − λi).
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4.2. Response patterns. When transforming ranked data to paired comparison
data with J items, we form all possible pairs of items. The number of such pairs
is

(J
2

)
and can be ordered in a standard sequence: (12), (13), . . . , (1J ); (23), (24),

. . . , (2J ); . . . ; ((J − 1)J ). The ranking outcome can therefore be recorded as a
paired comparison response pattern vector denoted by y = (y12, y13, . . . , yJ−1,J )

and consists of a series of 1’s and −1’s representing the values of the yij ’s.
In the case of a true paired comparison task where all possible comparisons are

made, the number of all possible response patterns is given by the number of pos-
sible outcomes to the power of the number of paired comparisons. If yij can take

only two values, there are 2(J
2) possible response patterns in the space �. However,

these response patterns also include intransitive patterns which can not be gener-
ated from a ranking task. Removing these intransitive patterns, the total number
of patterns is considerably reduced to L = J !. The space of transitive patterns
is denoted by �T . For instance, the intransitive paired comparison pattern (1 � 2,
2 � 3, 3 � 1) has no correspondence with any pattern generated from ranking three
items, since ranking patterns are transitive by nature. Incorporation of intransitive
patterns in the contingency table would generate structural zeros and neglecting
them leads to biased estimates. Therefore, the use of a simple BT model, which
corresponds to a pattern model including intransitive patterns, is not appropriate.
Moreover, the dependence introduced by rankings transformed to paired compar-
isons would not be addressed properly. For instance, assuming independence, and
in the simple case of three items, given Y12 = 1, Y23 = 1, the probability of Y13 = 1
is one, whereas the probability of Y13 = −1 is zero. However, modeling the proba-
bilities of whole response patterns and reducing the number of possible patterns to
those which are transitive removes these dependencies. We want to emphasize that
we only consider complete rankings throughout the paper. It is possible, however,
to allow for partial rankings where only a subset of items is ranked (see Section 8).

4.3. Modeling and estimation of transitive response patterns. The probability
for observing a sequence of paired comparisons y is defined by

P(y) = P(y12, y13, . . .) = ∏
i<j

P (yij ),

assuming independence between the comparisons. Using the probabilities for a
single paired comparison defined in (4.1), we then get

P(y) = ∏
i<j

cij exp
(
yij (λi − λj )

)
(4.3)

or, equivalently,

P(y) = ηy
∏
i<j

cij with ηy = exp
∑
i<j

yij (λi − λj ).
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Parameter estimation is based on multinomial sampling over the transitive
paired comparison patterns where it is supposed that each of the N respondents
have completely ranked all J items and thus contribute to one of the L transi-
tive response patterns. The probability for observing a certain response pattern y�,
� = 1, . . . ,L, given J comparisons and transitive relations only, is given as

P(y�|J,�T ) = P(y�)∑L
�′=1 P(y�′)

= exp(η�)
∏

i<j cij∑
�′ exp(η�′)

∏
i<j cij

= exp(η�)∑
�′ exp(η�′)

,(4.4)

where

η� = ∑
i<j

yij ;�(λi − λj ).(4.5)

To ease notation, P(y�|J,�T ) is denoted as P(y�) throughout the paper.
Let n� be the number of times the response pattern � is observed, then the n�’s

are multinomially distributed where N = ∑
� n� is the total number of respondents

and the probability P(y�) for a certain response pattern � is given in (4.3).
Thus, the likelihood function is

L = ∏
�

P (y�)
n� .

The parameters λj can be estimated (using suitable parameter restrictions, e.g.,
setting the last parameter to zero for identifiability) by using standard software
such as the prefmod package in R [Hatzinger (2009)]. To fit the model, a variable
containing the counts n� and a specific design matrix X both need to be set up.
The method corresponds to a Poisson log-linear formulation of model (4.4) which
is described in detail in Dittrich et al. (2007), who also describe the more general
case when undecided responses can occur.

All parameters in η have interpretation in terms of log odds. Comparing two
response patterns � and �′ where only one yij differs, that is, yij ;� = 1 and yij ;�′ =
−1, the log odds are ln(P (y�)/P (y�′)) = η� − η′

� = 2(λi −λj ). If the item j is the
reference item J , the odds reduce to exp(2λi).

Estimates of the worths π̂j are calculated through the expression

πj = exp(2λj )∑
j exp(2λj )

to ensure that the sum of the worths is equal to 1.

4.4. Respondent covariates in ranked data. In most practical applications it is
important to determine if the importance of items depend on respondent covariates.
This can be viewed as a mixture of experts model. Gormley and Murphy (2008a)
give an example analyzing ranked data using a choice-based modeling approach.
Initially, we consider categorical covariates only. In this case, each distinct com-
bination of covariates observed will form a covariate set; assume that there are K
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such sets (1 < K ≤ N ). For example, with two factors AGE (with four levels) and
SEX (with two levels), there will be eight covariate sets. To model the effect of
the covariates, the J ! = L response patterns now become LK response patterns.
The number of times the �th response pattern occurs within each covariate set k is
denoted by n�k . The linear predictor η becomes

η�k = ∑
i<j

yij ;�k(λik − λjk).(4.6)

Each λjk is an interaction effect of the item j and the covariates. Thus, two covari-
ates A and B could potentially lead to the following effects λj.A + λj.B + λj.A.B

if an interaction effect on the items between A and B needs to be considered.
With continuous covariates, in general, each respondent will be likely to have

his/her own distinct set of covariates, and K will usually be close to N . In the
particular example of a single covariate x, the linear predictor of the model gener-
alizes to be of the form

η�k = ∑
i<j

yij ;�k(λi + xkβi − λj − xkβj ).

5. The random effects model. While the previous section has allowed for
known covariates, there may be other variables which are unmeasured or omitted
from the data set, and these will produce heterogeneity between respondents in
the item parameters. One common way to account for such heterogeneity is to
introduce random effects for each respondent. These random effects would adjust
each item parameter up or down to allow for these missing covariates and, thus,
we need J random effect components, one for each of the items being ranked.

We now extend the above model to allow for random effects. As before, we
work with data aggregated into patterns and covariate sets. For each covariate set
and response pattern we need to specify J random effect components δjlk . The
linear predictor now becomes

η�k = ∑
i<j

yij ;�k(λik + δi�k − λjk − δj�k).(5.1)

On the worth scale, the random effects become multiplicative, which will multiply
the worths by adjustment factors, shifting the worth for each item up or down in
an unique way for each �k combination. We set δJ�k to be zero for identifiability,
and we define

δ�k = (δ1�k, δ2�k, . . . , δJ−1;�k),

a (J − 1)-component random effect vector for each combination of response pat-
tern and covariate pattern.
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Integrating over the unknown (J −1)-component random effects, the likelihood
then becomes

L = ∏
�k

(∫ ∞
−∞

. . .

∫ ∞
−∞

P(y�k|δ�k)g(δ�k) dδ1�k dδ2�k · · · dδJ−1;�k
)n�k

,

where g(δ�k) is the multivariate probability density function or mixing distribu-
tion of the random effects vector. For dealing with the multivariate random ef-
fect, Hartzel, Agresti and Caffo (2001) suggest a number of possible approaches.
The first approach is to assume multivariate normality for g(·): δ�k ∼ MVN(0,�),
where � is an unknown (J − 1) × (J − 1) covariance matrix which would be
estimated from the data. For example, Coull and Agresti (2000) explored a multi-
variate binomial logit-normal distribution, where the mixing distribution is multi-
variate normal.

An alternative method, and one which we explore in this paper, is to adopt a
nonparametric solution. This solution replaces the parametric multivariate normal
distribution by a series of mass point components with unknown mass or proba-
bility, and unknown location. This nonparametric maximum likelihood (NPML)
technique [Mallet (1986); Aitkin (1996)] has the advantage of being able to iden-
tify subpopulations of the respondents with specific response patterns, as well as
identifying the effect of respondent covariates on these patterns. The mass-point
approach is in fact a mixture model, with the earlier multinomial covariate model
being replaced by a mixture of multinomials.

Initially, we suppose that the number of components is known and is set to R.
Then we have R mass-point vectors; a typical mass point component r would have
unknown mass-point locations

δr = (δ1r , δ2r , . . . , δJ−1;r )

and unknown component probability qr . If R is small, this substantially simplifies
the problem by replacing a J − 1 dimensional integral with a sum over R terms.

The likelihood now becomes

L = ∏
�k

(
R∑

r=1

qrP�kr(y�k|δr )

)n�k

where
∑
�

P�kr = 1, ∀k, r.(5.2)

The model can be interpreted in two ways. If we consider the discrete mass
point components as approximating an underlying multivariate distribution, then
we should ignore any interpretation of the mixing structure and interpret the λjk

alone. However, we can also think of the model as representing underlying sub-
populations (or latent classes) of the respondents, and we can then interpret the δjr

(which for a specific latent class r gives the extra increase or decrease in item j ’s
parameter over the reference latent class R).

We determine the number of mass point components by choosing the model
which minimizes the Bayesian Information Criterion (BIC) proposed by Schwarz
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(1978), which provides a penalty on the deviance which is a function of the number
of pattern–covariate sets,

BIC = −2 ln L + p ln(LK),

where LK represents the number of pattern–covariate combinations and p is the
number of parameters in the model.

We need to make clear that the likelihood in (5.2) does not necessarily account
for the complex sampling design in the Eurobarometer survey. As the latent classes
account for heterogeneity, it is likely that some of the latent classes will reflect
clustering and design effects. We return to this point later in the discussion section.

6. Algorithmic and computational issues. The EM algorithm provides a
computationally elegant solution to the maximization of the the likelihood given
in equation (5.2) [Aitkin (1996)]. The use of this algorithm is well known; we give
brief details here and provide more detail in the online supplement [Francis, Dit-
trich and Hatzinger (2010)]. We start by observing that we can view the problem
as a missing data problem, where the latent class membership indicators for each
pattern and covariate set are missing. We can write these as z�kr , with z�kr = 1 if
pattern �k belongs to class r , and zero otherwise. The expected values of the z’s
are defined to be w�kr and are the posterior probabilities of class membership for
a respondent with pattern � and covariate set k. The E-step of the EM algorithm
computes the conditional expectation of the complete log-likelihood (involving the
calculation of the w’s), whereas the M-step maximizes the multinomial likelihood
with respect to the λ’s and δ’s, given the current expected values of the z’s, which
can be carried out through an expanded Poisson log-linear model with weights
w�kr . Fitting the multinomial through a Poisson log-linear model necessitates that
a set of nuisance parameters be included in the linear predictor; these constrain the
marginal totals for each covariate set to be equal to the observed totals.

The w�kr can potentially be used to assign respondents to classes. If a respon-
dent belongs to covariate set k and has response pattern �, then we can assign to
the class with the highest posterior probability w�kr over the r classes.

There are a number of specific problems related to the fitting of latent class mod-
els of this kind. The first is that of multiple maxima. The EM algorithm guarantees
convergence to a local maximum of the likelihood, but not to a global solution.
To minimize this problem, we chose fifty different sets of starting values for each
value of R and for each covariate model, and quote the best value of −2 ln L and
BIC found.

The second problem relates to the well-known slow convergence of the EM
algorithm. A relatively tight convergence criterion of 0.001 on the deviance differ-
ence was chosen to ensure convergence of parameter estimates.

Additionally, the EM algorithm does not give correct standard errors for the
parameters, as the method assumes that the z’s are known rather than estimated.
Two solutions are used in this paper. First, it is possible to adopt a hybrid scheme
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where the EM algorithm is used to obtain convergence, and then a series of Gauss–
Newton steps are used to obtain the full Hessian matrix [Aitkin and Aitkin (1996)].
A second method which is appropriate where the likelihood is likely to be non-
quadratic is to use a procedure described by Aitkin (1994) and Dietz and Böhning
(1995) to obtain correct standard errors. This sets the Wald test statistic equal to the
likelihood ratio chi-squared statistic obtained by equating one of the parameters in
the model to zero. From the Wald-test statistic, the appropriate standard error is
obtained for the λ’s associated with effect X,

s.e.(λ̂jX) = λ̂jX√
2 lnL(λjX = λ̂jX) − 2 lnL(λjX = 0)

.

It is important that this second procedure is carried out by using as starting values
the final estimates of w�kr obtained from the final model. This will ensure that the
algorithm will not converge to a local maximum with higher deviance.

Both methods have advantages. The first method, while computationally com-
plex, gives asymptotic standard errors for all estimated parameters, provided that
good starting values are used for the Gauss–Newton steps. The second method has
the advantage of providing a standard error which gives a t-test p-value equiva-
lent to the appropriate likelihood ratio test. However, label switching problems can
occur in using the second method especially when setting, for example, a specific
delta parameter to zero.

Finally, for large K , the algorithm will take longer to converge and require more
memory, both because of the need to increase the size of the table [y�k] to be
analyzed, and the large number of lambda parameters λjk and nuisance parameters
needed to fit the multinomial by means of a Poisson log-linear model. Numerical
procedures such as those described in Hatzinger and Francis (2004) can be used to
remove the need to estimate the nuisance parameters and to speed convergence.

For this paper, models were fitted using the pattnpml.fit function of the
R [R Development Core Team (2009)] package prefmod [Hatzinger (2009)].
The pattnpml.fit function is a modification of the alldist function in the
package npmlreg [Einbeck, Darnell and Hinde (2007)], and has been adapted
to allow multiple random effects terms and more flexibility in the choice of start
values.

7. Data analysis. We now apply the above model to the Eurobarometer ques-
tion. There are 12216 complete responses in the data set. We choose covariates
of AGE (4 levels: 15–24, 25–39, 40–54 and 55+) and SEX (2 levels: male, fe-
male) to illustrate the methodology. There are other important covariates, such as
educational level, income and country of origin, which have been identified by
Christensen (2001), but we exclude these in this illustration to ensure that omitted
variables and random effects are needed in the analysis. Of the 720 response pat-
terns, the most popular response is (TV,Rad,Press,SciM,WWW,Edu) with 526
respondents, followed by (TV,Rad,Press,SciM,Edu,WWW) with 507. Only 70
(9.7%) of the response patterns are not used at all by the respondents.
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7.1. Modeling “Sources of science information” data. Our model fitting strat-
egy was to determine a covariate model using simple fixed effects models (that is,
without random effects terms), then fixing the covariates in the model and increas-
ing the number of mass point vectors to allow for the unknown random effects
distribution to be approximated by the nonparametric mass point components. We
started with the “null” model without covariates (4.5), which estimated a common
set of item parameters for all respondents. We then included the respondent co-
variates AGE and SEX and examined possible main effect and interaction models.
Equation (4.6) reminds us that when we refer to the model SEX, we are in fact
fitting an interaction term between the items (TV,Rad,Press,SciM,WWW,Edu)

and SEX and specifying 12 interaction parameters in the model: λTV.SEX , λRad.SEX ,
λPress.SEX , λSciM.SEX , λWWW.SEX and λEdu.SEX . Two of these parameters (λEdu.male
and λEdu.female) are constrained to zero for identifiability. We examined changes
in deviance and the Bayesian information criterion BIC [Schwarz (1978)] to com-
pare model fits and to find the best model (that is, the model with the lowest BIC).
To allow deviances and BIC values to be compared, we fitted models to the same
sized table [y�k]—with eight covariate sets, all model fits included eight nuisance
parameters (the AGE by SEX interaction).

As can be seen in Table 2, the main effects model AGE+SEX has the lowest BIC
(= 18,100) and there is no need for the interaction between AGE and SEX. In the
paired comparison model this means both factors AGE and SEX have a separate
effect on the item parameters and, therefore, the worths of the items change with
AGE and SEX.

We can consider two forms of random effects models. We first investigated
whether a simple random effects model without covariates provides a better ex-
planation than the fixed effects model. The model without covariates is equivalent
to fitting a latent class model to the data. We then fitted random effects models
with fixed covariate terms AGE+SEX, and tested whether the covariates are still
important.

The model with a single mass point component means that all respondents are
in one latent class, and corresponds to the null fixed effect model (deviance =
21,293). Increasing the number of mass point components (Table 3a), we observed

TABLE 2
Fixed effect models

Model Deviance No. of parameters BIC

Null 21,293 13 21,406
AGE 18,078 28 18,321
SEX 21,041 18 21,197
AGE+SEX 17,815 33 18,100
AGE+SEX+AGE:SEX 17,790 48 18,206
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TABLE 3
NPML random effects models with and without covariates

(a) Without covariates (b) With AGE and SEX as covariates

No. of No. of No. of
mass para- para- Final
points r Deviance meters BIC Deviance meters BIC model

1 21,293 13 21,406 17,815 33 18,100
2 12,494 18 12,650 10,731 38 11,060
3 10,252 23 10,451 9056 43 9428
4 9792 28 10,035 8836 48 9252
5 9544 33 9830 8729 53 9187
6 9387 38 9716 8667 58 9170 �
7 9302 43 9674 8636 63 9182
8 9277 48 9693 8623 68 9212

that the BIC steadily decreases with no sign of a minimum being reached. We
stopped at eight mass point components, as we were not specifically interested
in determining the number needed for the model without covariates. However, we
can observe two features. First, through examination of BIC values, the latent class
model with two (BIC = 12,650) or more components fits substantially better than
the covariate model without random effects AGE+SEX (BIC = 18,100). Second,
a large number of latent classes will be needed to fully represent omitted covariates
(which in this model also include AGE and SEX).

Can a mixed model provide a way forward, and are the measured covariates still
important given the importance of latent class structure? Table 3b shows the results
obtained by fitting the random effects model with fixed covariates AGE+SEX. With
one mass point component, the model corresponds to the fixed effects AGE+SEX
model in Table 2. The minimum BIC is found at r = 6 classes; the deviance is
substantially less than the deviance for r = 8 classes with no covariates. It appears
that the fixed effects provide additional explanatory power, and this becomes our
final model. Removal of AGE and SEX in turn produces a large significant change
in deviance and the covariate model cannot be simplified.

We can interpret the final fitted model in two ways. We can treat the mass point
components as approximating an unknown multivariate distribution, and focus at-
tention primarily on the covariates. As an illustration, Table 4 shows the estimates
for λSciM.AGE for both the fixed effects model and the final random effects model,
with a reference category of school/university (Edu). We can see that as age in-
creases, the preference for scientific magazines compared to school/university as
a source of information increases—this is true for both fixed and random effects
models, but the effects are attenuated for the random effects model. Other age
parameters (not shown) show a relative preference decrease in the use of the inter-
net (WWW), and an increase in TV, newspapers (Press) and scientific magazines
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TABLE 4
Parameter estimates for λSciM.AGE for fixed and random effects models:

AGE+SEX

(a) Fixed effects model (b) Mixture random effects model

Raw EM Corrected
Standard standard standard

AGE Estimate error Estimate error error

15–24 0 — 0 — —
25–39 0.165 0.011 0.169 0.012 0.018
40–54 0.201 0.012 0.198 0.013 0.019
55+ 0.219 0.011 0.208 0.013 0.019

compared with school/university. Unadjusted and corrected standard errors [Aitkin
(1994)] are given for the random effects model and we can observe that the uncor-
rected and corrected standard errors are relatively close in this example.

From the estimates of λitems.SEX (not shown), we can also conclude that the
preference for both scientific magazines and the internet relative to school/univer-
sity is significantly lower for females than for males.

It is also possible to proceed by treating the mass point components as latent
classes. Table 5 shows the estimated proportions of patterns q̂r (which are ob-
tained directly from the algorithm) and the estimated proportions of respondents
which are weighted averages of the posterior probabilities of pattern membership
in each class (w�kr ), weighted by the proportion of respondents in each pattern.
Equations (3) and (4) in the online supplement provide further details. Examining
the proportions of respondents, we see that class 6 is the largest class with just
under 29% of respondents, followed by class 3 with about 25% and class 1 with
just over 18%.

Figure 2 shows the estimated random effect components δr for all items and all
classes (apart for the reference item J and class R which are set to zero) including
95% confidence intervals based on the corrected estimated standard errors. The
bars (δjr) are half the log odds ratios comparing the extra effect of item j to
the reference item J (education) and for class r related to the reference class R

(class 6).

TABLE 5
Proportions in the six classes

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Proportions of patterns 0.3156 0.1289 0.3329 0.0583 0.0984 0.0659
Proportions of respondents 0.1808 0.0739 0.2460 0.0716 0.1407 0.2890
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FIG. 2. Parameter estimates for δr and 95% confidence intervals based on corrected standard
errors.

It can be seen, for example, that for class 1 the odds for TV and Radio are
substantially lower than for Education compared to class 6 [TV: exp(−0.84 · 2) =
0.186, Radio: exp(−0.77 · 2) = 0.215]. In class 4 the odds for Press compared to
Education are about 1.5 times higher and for WWW 2.1 times higher than in class
6 [Press: exp(0.21 · 2), WWW: exp(0.37 · 2)].

Figure 3 shows, for males and for females, the plotted worths against age for
each of the six sources of information, for two of the six latent classes. We see that
the two classes represent different preference patterns in the data. Class 6 repre-
sents a large subpopulation who prefer to obtain most of their scientific information
from nontext and nonscholarly sources. For all age groups and for both males and
females, TV is the most preferred source, with radio the second most preferred
and increasing in preference with age. Class 1, in contrast, represents a smaller
subpopulation which prefers academic sources of information over more popular
information sources. In this class, for all but the youngest age group, scientific
magazines and school/university sources rank in the top two places (with scientific
magazines winning out over school/university for males but not for females). For
the youngest age group, the school/university followed by the internet are preferred
for both males and females. Class 3, the second largest group (not shown), shows a
latent class which is similar to class 6 but with a different second preference. TV is
still the most preferred source, followed by newspapers and the radio for the three
older age groups. For the youngest age group, radio declines in preference and the
third preferred source becomes the internet for males and school/university for fe-
males. In terms of the other classes which are not displayed, classes 4 and 5 also
have TV in first place, but with different orderings of other sources in other places.
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FIG. 3. Item worths by age and gender for two extreme latent classes.

Class 2 (7%) prefers school/university as the most preferred source of information
but with TV in second place.

7.2. Analysis of class membership. It is to be expected that relevant variables
not included in the model are absorbed in the latent classes. This relates to variables
which are (i) known but for various reasons not accounted for (e.g., variables with
many categories making computation unfeasible or impossible) and also to (ii)
possibly unknown sources of variation. In the Eurobarometer survey, for example,
there is a complex five-level clustering design of households within address clus-
ters within PSUs within urbanization and administrative region strata and within
countries. While some of these variables are present in the data set, others are not.
In addition, each country has used a different coding scheme for determining de-
gree of urbanization. This means that a full multilevel analysis taking account of
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all design components is not possible. However, it could be argued that the most
important strata are degree of urbanization and country, and these two levels would
account for most variability within the clustered sample. We therefore examine the
effect of these two variables below.

To evaluate the effect of known variables, a post-hoc analysis may be performed
by analyzing their association with the respondents’ class memberships. Two ap-
proaches are possible which use different definitions of class membership. We
illustrate using two covariates not in the model but which are used in the sample
design—degree of urbanization and country. For degree of urbanization, we adopt
a common three-level categorization which is consistent across countries. We use
15 countries rather than 17 for this investigation, combining East and West Ger-
many (D), and Great Britain and Northern Ireland (GB). The remaining countries
are labeled by their international licence plate country code.

The first method uses the posterior probabilities of class memberships to con-
struct the expected number of respondents in each class within each category of the
covariate of interest [see equation (4) in the online supplement]. We present two
mosaic plots [Hartigan and Kleiner (1984)] which cross-classify the expected class
membership with degree of urbanization and with country (displayed in Figure 4).

In examining the degree of urbanization mosaic plot, it can be seen that the
proportion of rural residents are underrepresented in class 1 and have a higher
proportion in class 6 as opposed to residents of large cities. The country mosaic
plot shows much greater variability. Respondents in Italy, for example, are far less
likely to belong to latent class 6 and far more likely to belong to latent class 1.
In contrast, respondents in Austria and Germany are far more likely to belong to
class 6. One explanation for this variability might be the varying quality of TV

FIG. 4. Mosaic plots showing expected class membership and degree of urbanization (left) and
country (right).
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FIG. 5. Plot of observed log-odds ratios for class 1 against class 6 for assigned class membership
classified by country and degree of urbanization.

across countries in broadcasting science information, coupled with a large number
of excellent science magazines in Italy.

A second approach, as mentioned in Section 6, assigns the respondents (who
belong to covariate set k and have response pattern �) directly to the class with the
highest posterior probability maxr (w�kr). Following this procedure, we can obtain
a response variable with categories according to the classes and investigate the
effects of some variables not included in the model via a multinomial regression
model. We then form a cross-classified table of assigned class by country and by
degree of urbanization to evaluate possible influences due to part of the multistage
sampling design. By fitting a multinomial model, we found a strong interaction
effect between degree of urbanization and country.

This interaction can be visualized by examining observed log-odds ratios in the
constructed table. Figure 5 shows the observed log-odds ratios comparing classes
1–6 for the 15 countries both for rural areas and for large cities. We can notice,
for example, that Italy has a positive log-odds ratio for both rural areas and large
cities, indicating the relative underrepresentation of class 6 is true both for urban
and rural locations. In other countries such as Finland, class 6 is more prevalent in
rural areas, and class 1 in large cities.

8. Discussion. Random effects models are often necessary in models for
ranked and paired comparison data but the multivariate nature of random effects
in these type of models adds complexity. NPML methods of the type described
here provide a suitable way forward. The models give greater insight into the na-
ture of subgroups in the data set, but interpretation can be problematic because of
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the number of parameters being estimated. We recommend the use of graphical
displays on the worth scale.

Diagnostic checks are important for these models. It is important to examine
the solution to check both that there are no overly small latent classes, and also
that the parameter estimates for each mass point component are sufficiently sepa-
rate [McLachlan et al. (1999)]. Posterior probabilities of component membership
could also be examined in relation to other covariates not in the model to aid inter-
pretation of the latent classes [Kamakura and Mazzon (1991)].

The basic model described in this paper can be extended in various ways:

• Extensions to models which allow varying coefficients with latent classes is
straightforward. This model will allow for different respondent covariate effects
within each latent class. These random coefficient models can be fitted by al-
lowing interactions between the latent class group and the covariates, but with
the disadvantage of a sizeable increase in the number of model parameters.

• It is possible to extend the model to allow for tied ranks. Such data will lead to an
underlying ordinal paired comparison model [Dittrich, Hatzinger and Katzen-
beisser (2004)].

• Item covariates could also be included along the lines suggested by Dittrich,
Hatzinger and Katzenbeisser (1998).

• The model presented here needs to be extended to allow explicitly for more
complex sampling designs and other multilevel structures which may be present
in the data. Further research is needed on this topic.

• Finally, incomplete or partial rankings could also be taken account of. This
would lead to a paired comparison model which allows for missing comparisons
within a response. The basic idea here is to extend the set of response patterns to
include patterns where certain comparisons are not available. For partial rank-
ings a composite link approach to this problem has been described in Dabic and
Hatzinger (2009); the general case for paired comparisons with missing data is
treated in Dittrich et al. (2010). Unfortunately, the number of response patterns
may increase dramatically and, thus, this approach is computationally feasible
only for a small number of items.

In conclusion, our approach provides a methodology which allows the modeling of
ranked data in many applied areas, allowing covariates to be taken into account and
latent classes to be detected. The underlying paired comparison approach provides
an attractive alternative to the choice based models dominant in the literature.
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SUPPLEMENTARY MATERIAL

The EM algorithm for NPML random effects in ranked data (DOI:
10.1214/10-AOAS366SUPP; .pdf). We provide a detailed description of the use
of the EM algorithm for fitting nonparametric random effects for ranked data by
maximum likelihood.
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