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Abstract. It is well known that the distribution of simple random walks on Z conditioned on returning to the origin after 2n steps
does not depend on p = P(S1 = 1), the probability of moving to the right. Moreover, conditioned on {S2n = 0} the maximal
displacement maxk≤2n |Sk | converges in distribution when scaled by

√
n (diffusive scaling).

We consider the analogous problem for transient random walks in random environments on Z. We show that under the quenched
law Pω (conditioned on the environment ω), the maximal displacement of the random walk when conditioned to return to the origin
at time 2n is no longer necessarily of the order

√
n. If the environment is nestling (both positive and negative local drifts exist) then

the maximal displacement conditioned on returning to the origin at time 2n is of order nκ/(κ+1), where the constant κ > 0 depends
on the law on environments. On the other hand, if the environment is marginally nestling or non-nestling (only non-negative local
drifts) then the maximal displacement conditioned on returning to the origin at time 2n is at least n1−ε and at most n/(lnn)2−ε for
any ε > 0.

As a consequence of our proofs, we obtain precise rates of decay for Pω(X2n = 0). In particular, for certain non-nestling
environments we show that Pω(X2n = 0) = exp{−Cn − C′n/(lnn)2 + o(n/(lnn)2)} with explicit constants C,C′ > 0.

Résumé. Il est bien connu que la distribution d’une marche aléatoire simple sur Z, conditionée à retourner à l’origine au temps 2n

est indépendante de p = P(S1 = 1), la probabilité d’un pas vers la droite. De plus, conditionellement à {S2n = 0}, le déplacement
maximum maxk≤2n |Sk |, divisé par

√
n, converge en distribution.

Nous considérons le mème problème pour les marches transientes en environnement aléatoire sur Z. Nous montrons que sous
la loi “quenched,” le déplacement maximum pour la marche conditionnée à retourner à l’origine au temps 2n n’est pas toujours de
l’ordre de

√
n. Si l’environement a des drifts locaux positifs et negatifs alors cet ordre de grandeur est nκ/(κ+1), où κ > 0 dépend

de la loi de l’environement. Mais, si l’environement n’a que des drifts locaux positifs ou nuls, alors cet ordre de grandeur est proche
de n.

Les preuves fournissent de plus l’ordre de grandeur de Pω(X2n = 0). Dans le cas où les drifts locaux sont tous positifs nous
montrons que Pω(X2n = 0) = exp{−Cn − C′n/(lnn)2 + o(n/(lnn)2)}.
MSC: 60K37
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1. Introduction

Let (Sn)n≥1 be a random walk with drift on the integers: let p ∈ (0,1) and let Y1, Y2, . . . be a sequence of i.i.d. random
variables with P(Y1 = +1) = p = 1 − P(Y1 = −1), and Sn = ∑n

i=1 Yi, n = 1,2,3, . . . . Consider the conditioned law

1Supported in part by National Science Foundation Grant DMS-0802942.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/10-AIHP378
mailto:gantert@math.uni-muenster.de
mailto:peterson@math.cornell.edu


664 N. Gantert and J. Peterson

of (
Sk√
2n

)1≤k≤2n, conditioned on the event {S2n = 0}. It is easy to see that this conditioned laws converge to the law

of a Brownian bridge for n → ∞, for any value of p ∈ (0,1). In fact, for p = 1
2 , this is a consequence of Donsker’s

invariance principle, but by symmetry, the conditioned laws do not depend on the value of p. In particular, the laws

P

(
1√
2n

max
1≤k≤2n

|Sk| ∈ ·∣∣S2n=0

)
(1)

converge, for n → ∞, to the law of the maximum of the absolute value of a Brownian bridge.
In this paper, we address a question originally posed to us by Benjamini. The question is, what happens if we

replace (Sn) with a random walk in random environment (Xn)n≥1? In particular, what is the order of growth of
max1≤k≤2n |Xk|, conditioned on the event {X2n = 0}? Is it diffusive as in (1) or superdiffusive or subdiffusive, respec-
tively?

The random walk in random environment (abbreviated RWRE) is defined as follows. Let ω = (ωx)x∈Z be a collec-
tion of random variables taking values in (0,1) and let P be the distribution of ω. The random variable ω is called the
“random environment.” For each environment ω ∈ Ω = (0,1)Z and y ∈ Z, we define the RWRE starting at y as the
time-homogeneous Markov chain (Xn) taking values in Z, with X0 = y and transition probabilities

P y
ω [Xn+1 = x + 1|Xn = x] = ωx = 1 − P x

ω [Xn+1 = x − 1|Xn = x], n ≥ 0.

We equip Ω with its Borel σ -field F and Z
N with its Borel σ -field G . The distribution of (ω, (Xn)) is the probability

measure P on Ω × Z
N defined by

P[F × G] =
∫

F

P 0
ω[G]P(dω), F ∈ F , G ∈ G.

Since we will usually be concerned with random walks starting from the origin we will use Pω and Eω to denote P 0
ω

and E0
ω , respectively. Expectations with respect to P , Pω and P will be denoted by EP , Eω and E, respectively. Pω is

referred to as the quenched law of the random walk, while P is referred to as the averaged (or annealed) law.
The goal of this paper is to study the magnitude of the maximal displacement max1≤k≤2n |Xk| of a RWRE under

the quenched law Pω, conditioned on the event {X2n = 0}. For a simple random walk, (1) tells us that the scaling
is of order

√
n (diffusive scaling). This is not the case for RWRE as we will show below. In fact, super-diffusive,

sub-diffusive and diffusive scaling are possible (depending on the law P of the environment).
Throughout the paper we will make the following assumptions.

Assumption 1. The environment is i.i.d. and uniformly elliptic. That is, the random variables {ωx}x∈Z are i.i.d. under
the measure P , and there exists a constant c > 0 such that P(ωx ∈ [c,1 − c]) = 1.

Let ρi = ρi(ω) := (1 − ωi)/ωi , i ∈ Z.

Assumption 2. EP logρ0 < 0.

As shown in [13], the second assumption implies that for P -almost all ω, the Markov chain (Xn) is transient and we
have Xn → +∞, Pω-a.s. A lot more is known about this one-dimensional model; we will not give background here,
but we refer to the survey by Zeitouni [14] for limit theorems, large deviations results, and for further references.

Our main results are as follows. Let ωmin := inf{x: P(ω0 ≤ x) > 0}. We will distinguish between three different
cases: ωmin < 1

2 (nestling case), ωmin = 1
2 (marginally nestling case) and ωmin > 1

2 (non-nestling case). It turns out that
in the nestling case, the magnitude of max1≤k≤2n |Xk| under the conditioned law is of order nβ , where the exponent
β = κ/(κ + 1) for a parameter κ > 0 which depends on the law of the environment (see Theorem 2.1 for the precise
statement). The cases β > 1

2 , β = 1
2 and β < 1

2 are all possible, and we have β > 1
2 if and only if (Xn) has a positive

linear speed. In the marginally nestling and the non-nestling cases, we give additional assumptions excluding the
deterministic case (i.e., the case of constant environment). We then show that the magnitude of max1≤k≤2n |Xk| under
the conditioned law is between n1−ε and n/(lnn)2−ε for any ε > 0 (see Theorems 3.1 and 4.1 for precise statements).
We conjecture in fact that the correct order of magnitude is n/(lnn)2 (see Conjecture 5.1).
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As a consequence of the proofs of our main theorems we also obtain precise asymptotics on the rate of de-
cay of the quenched probabilities Pω(X2n = 0). In the nestling and marginally nestling cases the decay rates are
exp{−nκ/(κ+1)+o(1)} and exp{−Cn/(lnn)2 + o(n/(lnn)2)} for an explicit constant C > 0, respectively (see Lemmas
2.4 and 3.3). These decay rates are not surprising given the previous results on moderate and large deviations for
RWRE in [5] and [11]. The non-nestling case turns out to be more interesting. It was known previously from large
deviation results that Pω(X2n = 0) = exp{−Cn + o(n)} for an explicit constant C > 0. For our results, however, we
needed some sub-exponential corrections to this rate of decay. In Corollary 4.4 we show in fact that

Pω(X2n = 0) = exp
{−Cn − C′n/(lnn)2 + o

(
n/(lnn)2)}, P -a.s.,

for explicit positive constants C and C′ depending on the law on environments.
A brief remark is in order about what our main results tell us about what a RWRE bridge looks like. One of

the dominating features of one-dimensional RWRE is the trapping effect of the environment. Informally, a “trap” is
an atypical section of the environment for which the probability to stay confined to the interval for a long time is
abnormally large. One way for the random walk to be back at the origin after 2n steps is for the random walk to go
quickly to a certain large trap, stay in the trap until almost time 2n, and then go quickly back to the origin at the end.
For such a strategy, there is both a cost and a benefit for a larger maximal displacement. Travelling to and from a
trap that is far from the origin requires backtracking a large distance, but travelling farther from the origin allows the
random walk to reach a larger trap. Balancing these costs and benefits leads to a lower bound on the rate of decay of
Pω(X2n = 0). The difficulty in deriving the asymptotic decay of Pω(X2n = 0) lies in proving a corresponding upper
bound which suggests that indeed a RWRE bridge typically spends most of its time in a few large traps. Figure 1
shows the simulation of a RWRE bridge where this trapping behavior is clearly seen to occur.

The paper is organized as follows. In Sections 2, 3 and 4, respectively, the nestling, marginally nestling and non-
nestling cases are treated. In Section 5 we state a conjecture on an improved lower bound for the maximal displacement
in the marginally nestling and non-nestling cases.

We conclude this section with some notation that will be used throughout the rest of the paper. We will use θ to
denote the standard shift operation on doubly infinite sequences. That is, (θxω)y = ωx+y . Also, we will use Tk :=
inf{n ≥ 0: Xn = k} to be the hitting time of the site k by the random walk. The law of a simple symmetric random
walk (i.e., ωx ≡ 1/2) will be denoted by P1/2 with corresponding expectations denoted E1/2.

Fig. 1. A simulation of a RWRE bridge of 2000 steps. The distribution on the environment used was such that P(ω0 = 3/4) = 0.9 and
P(ω0 = 1/4) = 0.1. Using the notation from Section 2, this distribution on environments has the parameter κ = 2, and thus Theorem 2.1 im-
plies that the maximal displacement of a bridge of length 2n in this case should be roughly of the order n2/3 when n is large.



666 N. Gantert and J. Peterson

2. Case I: Nestling environment

Throughout this section we will make the following assumption on environments in addition to Assumptions 1 and 2.

Assumption 3 (Nestling). P(ω0 < 1/2) > 0 and P(ω0 > 1/2) > 0.

If Assumptions 1–3 are satisfied, then we can define a parameter κ = κ(P ) by

κ = κ(P ) is the unique positive solution of EP ρκ
0 = 1. (2)

The parameter κ first appeared in [9] in relation to the scaling exponent for the averaged limiting distributions of
transient one-dimensional RWRE. Moreover, the law of large numbers for transient RWRE derived by Solomon in
[13] may be re-stated in terms of the parameter κ .

lim
n→∞

Xn

n
=

{
1−EP ρ0
1+EP ρ0

=: vP > 0, κ > 1,
0, κ ≤ 1.

(3)

If κ < 1, then the typical displacement of Xn is sub-linear and of the order nκ (see [9] or [4]).
The main result of this section is that the the maximal displacement of bridges for RWRE under the above assump-

tions is approximately of the order nκ/(κ+1).

Theorem 2.1. Let Assumptions 1–3 hold. Then, for P -a.e. environment ω,

lim
n→∞Pω

(
max
k≤2n

|Xk| ≥ nβ
∣∣X2n = 0

)
=

{
1, β < κ

κ+1 ,
0, β > κ

κ+1 ,

where κ > 0 is defined by (2).

Remark 2.2. The cases κ
κ+1 > 1

2 , κ
κ+1 = 1

2 and κ
κ+1 < 1

2 are possible. Note that, due to (3), κ
κ+1 > 1

2 if and only if
(Xn) has a.s. positive linear speed.

An important ingredient in the proof of Theorem 2.1 is the following lemma.

Lemma 2.3. Let Assumptions 1–3 hold. If β ∈ (0,1 ∧ κ), then for P -a.e. environment ω,

Pω

(
max
k≤n

|Xk| < nβ
)

= exp
{−n1−β/κ+o(1)

}
.

Proof. For any environment ω, let ω− and ω+ be the modified environment by adding a reflection to the left or right,
respectively, at the origin. That is,

(
ω−)

x
:=

{
ωx, x �= 0,
0, x = 0,

and
(
ω+)

x
:=

{
ωx, x �= 0,
1, x = 0.

(4)

The random walk starting at the origin stays in the interval (−nβ,nβ) if both the left excursions and the right excur-
sions from the origin take at least n steps to leave the interval. Therefore,

Pω

(
max
k≤n

|Xk| < nβ
)

≥ Pω−(T−�nβ
 > n)Pω+(T�nβ
 > n). (5)

Explicit formulas for hitting probabilities (see Eq. (2.1.4) in [14]) imply that

Pω−(T−�nβ
 > n) ≥ P −1
ω (T−�nβ
 > T0)

n ≥
(

1 −
∏

−�nβ
<i<0

ρi

)n

.
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The law of large numbers implies that
∏

−x<i<0 ρi = exp{x(EP (logρ0)+o(1))} as x → ∞, P -a.s. Since EP logρ0 <

0, this implies that the first probability on the right-hand side of (5) tends to 1 as n → ∞, P -a.s. In Theorem 1.2 in
[5], it was shown that for any β < κ

Pω+(T�nβ
 > n) = exp
{−n1−β/κ+o(1)

}
, P -a.s. (6)

Recalling (5), this completes the proof of the lower bound.
To prove the corresponding upper bound, note that Pω(maxk≤n |Xk| < nβ) depends only on the ωx with |x| < nβ .

Therefore, the probability is unchanged by modifying the environment so that ω−�nβ
 = 1. By the strong Markov
property, the probability of staying confined to the interval (−nβ,nβ) when starting at the origin in the original
environment is less than the probability of taking more than n steps to reach �nβ
 when starting at −�nβ
 in the
modified environment. That is,

Pω

(
max
k≤n

|Xk| < nβ
)

≤ P
(θ−�nβ 
ω)+(T2�nβ
 > n). (7)

At this point, we would like to again apply (6) to the probability on the right in (7). However, the presence of the
shifted environment in the quenched probability does not allow for a direct application. We claim that the proof of (6)
in [5] may be easily modified to obtain that for any fixed sequence xn,

P(θxnω)+(T�nβ
 > n) = exp
{−n1−β/κ+o(1)

}
, P -a.s. (8)

Indeed, in [5], it was shown that there were collections of typical environments Ωn ⊂ Ω such that
∑

n P (Ωc
n) < ∞ so

that the Borel–Cantelli lemma implied that ω ∈ Ωn for all n large enough, P -a.s. Then, upper and lower bounds were
developed for the probabilities Pω+(T�nβ
 > n) which are uniform over ω ∈ Ωn. These upper and lower bounds and
the fact that ω ∈ Ωn for all n large enough imply (6). For any fixed sequence xn the shift invariance of P implies that
P(ω ∈ Ωn) = P(θxnω ∈ Ωn), and thus the Borel–Cantelli lemma implies that θxnω ∈ Ωn for all n large enough, P -a.s.
Therefore, the statement (8) follows from the uniform upper and lower bounds for environments in Ωn. Applying (8)
to (7) with the sequence xn = −�nβ
 gives the needed upper bound. �

As a first step in computing the magnitude of displacement of bridges, we first calculate the asymptotic probability
of being at the origin at time 2n.

Lemma 2.4. Let Assumptions 1–3 hold. Then, for P -a.e. environment ω,

Pω(X2n = 0) = exp
{−nκ/(κ+1)+o(1)

}
,

where κ > 0 is defined by (2).

Proof. This lemma follows easily from Lemma 2.3 and the moderate deviation asymptotics derived in [5]. If ν ∈
(0,1 ∧ κ), then Theorem 1.2 in [5] implies that

lim
n→∞

ln(− lnPω(Tnν > n))

lnn
= lim

n→∞
ln(− lnPω(Xn < nν))

lnn
=

(
1 − ν

κ

)
∧ κ

κ + 1
, P -a.s.

Note that 1 − ν
κ

< κ
κ+1 if and only if ν > κ

κ+1 . Therefore, for ν ≤ κ
κ+1 ,

Pω(X2n = 0) ≤ Pω

(
X2n < (2n)ν

) = exp
{−nκ/(κ+1)+o(1)

}
.

To get a corresponding lower bound, we will exhibit a strategy for obtaining X2n = 0. Force the random walk to
stay in the interval [−nκ/(κ+1), nκ/(κ+1)] for the first 2n − �nκ/(κ+1)� steps, and then choose a deterministic path
from the random walks current location to force the random walk to be at the origin at time 2n. Uniform ellipticity
(Assumption 1) and Lemma 2.3 imply

Pω(X2n = 0) ≥ Pω

(
max
k≤2n

|Xk| ≤ nκ/(κ+1)
)
c2�nκ/(κ+1)� = exp

{−nκ/(κ+1)+o(1)
}
. �
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We are now ready to give the proof of the main result in this section.

Proof of Theorem 2.1. We first give a lower bound for Pω(maxk≤n |Xk| ≥ nβ |X2n = 0).

Pω

(
max
k≤2n

|Xk| ≥ nβ
∣∣X2n = 0

)
= 1 − Pω(maxk≤2n |Xk| < nβ,X2n = 0)

Pω(X2n = 0)

≥ 1 − Pω(maxk≤2n |Xk| < nβ)

Pω(X2n = 0)

= 1 − exp{−n1−β/κ+o(1)}
exp{−nκ/(κ+1)+o(1)} ,

where the last inequality is from Lemmas 2.3 and 2.4. Since 1 − β
κ

> κ
κ+1 when β < κ

κ+1 , we have thus proved
Theorem 2.1 in the case β < κ

κ+1 .
Next we turn to the case β > κ

κ+1 . First of all, note that

Pω

(
max
k≤2n

|Xk| ≥ nβ
∣∣X2n = 0

)
= Pω(maxk≤2n |Xk| ≥ nβ,X2n = 0)

exp{−nκ/(κ+1)+o(1)} .

Therefore, it is enough to show that, P -a.s., there exists a β ′ ∈ ( κ
κ+1 , β) such that for all n sufficiently large,

Pω

(
max
k≤2n

|Xk| ≥ nβ,X2n = 0
)

≤ e−nβ′
. (9)

To this end, note that the event {maxk≤2n |Xk| ≥ nβ,X2n = 0} implies that either the random walk reaches −�nβ� in
less than 2n steps, or after first reaching �nβ� the random walk returns to the origin in less than 2n steps. Thus, the
strong Markov property implies that

Pω

(
max
k≤2n

|Xk| ≥ nβ,X2n = 0
)

≤ Pω(T−�nβ
 < 2n) + P
θ�nβ 
ω(T−�nβ
 < 2n). (10)

It was shown in Theorem 1.4 in [5] that for any β ∈ (0,1),

lim
n→∞

ln(− ln P(T−�nβ
 < 2n))

lnn
= lim

n→∞
ln(− lnPω(T−�nβ
 < 2n))

lnn
= β, P -a.s. (11)

This implies that, P -a.s., the first term on the right-hand side of (10) is less than e−nβ′
for any β ′ < β and all n

large enough. To show that the same is true of the second term on the right-hand side of (10), note that Chebychev’s
inequality and the shift invariance of P imply that

P
(
P

θ�nβ 
ω(T−�nβ
 < 2n) > e−nβ′ ) ≤ enβ′
P(T−�nβ
 < 2n) = enβ′

e−nβ+o(1)

.

Since β ′ < β , this last term is summable, and thus the Borel–Cantelli lemma implies that, P -a.s., P
θ�nβ 
ω(T−�nβ
 <

2n) ≤ e−nβ′
for all n large enough. Choosing β ′ ∈ ( κ

κ+1 , β) and recalling (10), we have that, P -a.s., (9) holds for all n

large enough. This completes the proof of Theorem 2.1 in the case β > κ
κ+1 . �

3. Case II: Marginally nestling environment

In this section we will assume the following condition on environments.

Assumption 4. P(ω0 ≥ 1/2) = 1 and α = P(ω0 = 1/2) ∈ (0,1).
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Note that Assumption 4 implies Assumption 2, and so in this section we will only assume Assumptions 1 and 4.
Our main result in this section is that the displacement of bridges in this case is greater than n1−ε and less than
n/(lnn)2−ε for any ε > 0.

Theorem 3.1. Let Assumptions 1 and 4 hold. Then for any β < 2,

lim
n→∞Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β

∣∣∣X2n = 0

)
= 0, P -a.s., (12)

and for any γ < 1,

lim
n→∞Pω

(
max
k≤2n

|Xk| ≥ nγ
∣∣X2n = 0

)
= 1, P -a.s. (13)

Remark 3.2. Assumption 4 implies that ωmin = 1/2, which is sometimes referred to as the marginally nestling con-
dition. The added condition of α ∈ (0,1) was also assumed previously in the quenched and averaged analysis of
certain large deviations [2,7,11,12]. We suspect that if ωmin = 1/2 but α = 0 then there exists a γ < 2 such that the
displacement of bridges is bounded above by n/(lnn)γ−ε for any ε > 0 (cf. Remark 1 on page 179 in [7]).

The first step in the proof of Theorem 3.1 is a computation of the precise subexponential rate of decay of the
quenched probability to be at the origin.

Lemma 3.3. Let Assumptions 1 and 4 hold. Then,

lim
n→∞

(lnn)2

n
lnPω(X2n = 0) = −|π logα|2

4
.

Proof. Theorem 1 in [11] implies that for any v ∈ (0,vP )

lim sup
n→∞

(lnn)2

n
logPω(X2n = 0) ≤ lim sup

n→∞
(lnn)2

n
logPω(X2n ≤ 2nv) = −|π lnα|2

4

(
1 − v

vP

)
.

Taking v → 0 proves the upper bound needed.
For the corresponding lower bound we will force the random walk to stay in a portion of the environment where

there is a long sequence of consecutive sites with ωx = 1
2 . We say x is a fair site if ωx = 1

2 . For any n ≥ 1, let

L(n) := max

{
j − i: 0 ≤ i < j ≤ n/(lnn)3,ωx = 1

2
,∀i ≤ x < j

}

be the length of the longest interval of fair sites in [0, n/(lnn)3), and let

in := inf
{
i ∈ [

0, n/(lnn)3 − L(n)
]
: ωx = 1/2,∀i ≤ x < i + L(n)

}
be the leftmost endpoint of an interval of fair sites in [0, n/(lnn)3] of maximal length L(n). Theorem 3.2.1 in [3]
implies that

lim
n→∞

L(n)

lnn
= 1

| lnα| , P -a.s. (14)

Uniform ellipticity (Assumption 1) implies that

lim inf
n→∞

(lnn)2

n
logPω(X2n = 0)

≥ lim inf
n→∞

(lnn)2

n
logPω

(
max
k≤2n

|Xk| < n/(lnn)3
)

≥ lim inf
n→∞

(lnn)2

n
logP in

ω

(
Xk ∈ (−n/(lnn)3, in + L(n)

)
,∀k ≤ 2n

)
. (15)
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The random walk starting at in stays in the interval (−n/(lnn)3, in + L(n)) if both the left excursions and right
excursions from in take more than 2n steps to leave the interval. Recalling the definitions of ω− and ω+ given in (4)
we obtain that

P in
ω

(
Xk ∈ (−n/(lnn)3, in + L(n)

)
,∀k ≤ 2n

)
≥ P(θinω)−(T−n/(lnn)3−in

> 2n)P(θinω)+(TL(n) > 2n). (16)

As in the proof of Lemma 3.5, explicit formulas for hitting probabilities and Assumption 2 imply that the first
probability on the right-hand side of (16) tends to 1 as n → ∞, P -a.s. Due to the fact that ωx = 1/2 for all in ≤ x <

in + L(n), the second probability on the right-hand side of (16) is equal to the probability that a simple symmetric
random walk stays in the interval [−L(n),L(n)] for 2n steps. To this end, we recall the following small deviation
asymptotics for a simple symmetric random walk (see Theorem 3 in [10]).

Lemma 3.4. Let limn→∞ x(n) = ∞ and x(n) = o(
√

n). Then,

lim
n→∞

x(n)2

n
lnP1/2

(
max
k≤n

|Xk| ≤ x(n)
)

= −π2

8
.

Then, Lemma 3.4 and (14) imply that

lim
n→∞

(lnn)2

n
logP(θinω)+(TL(n) ≥ 2n) = −|π lnα|2

4
.

Recalling (15) and (16) implies the lower bound needed for the proof of the lemma. �

To prove Theorem 3.1 we need to compare the quenched probability to be at the origin at time 2n with the quenched
probability to stay confined to the interval [−nγ ,nγ ] for the first 2n steps of the random walk. The following propo-
sition says that the exponential rate of the decay of the latter probability is also of the order n/(lnn)2 but with a larger
constant than the probability to be at the origin.

Proposition 3.5. Let Assumptions 1 and 4 hold. Then, for any γ ∈ (0,1)

lim
n→∞

(lnn)2

n
lnPω

(
max
k≤2n

|Xk| ≤ nγ
)

= −|π lnα|2
4γ 2

, P -a.s.

Proof. As in the proof of Lemma 3.3, a lower bound is obtained by forcing the random walk to stay near a long
stretch of fair sites (i.e., sites x ∈ Z with ωx = 1/2). However, Theorem 3.2.1 in [3] implies that for any γ > 0, the
longest stretch of consecutive fair sites contained in [0, nγ ] is (

γ
| lnα| + o(1)) lnn. The remainder of the proof of the

lower bound is the same as in the proof of Lemma 3.3 and is therefore omitted.
The proof of the upper bound is an adaptation of the upper bound for quenched large deviations of slowdowns given

by Pisztora and Povel [11]. It turns out that an upper bound for Pω(maxk≤2n |Xk| ≤ nγ ) with γ < 1 is substantially
easier to prove than the upper bounds for large deviations of the form Pω(Xn < nv) with v ∈ (0,vP ). (In fact the
multi-scale analysis present in [11] can be avoided entirely.)

We begin by dividing up space into fair and biased blocks as was done in [11]. Fix a δ ∈ (0,1/3) and let ε, ξ > 0
be such that 0 < ε < P(ω0 ≥ 1/2 + ξ) (ε and ξ will eventually be arbitrarily small). Divide Z into disjoint intervals
(which we will call blocks)

Bj = Bj (n) := [
j
⌊
(lnn)1−δ

⌋
, (j + 1)

⌊
(lnn)1−δ

⌋)
, j ∈ Z.

A block Bj is called biased if the proportion of sites x ∈ Bj with ωx ≥ 1/2 + ξ is at least ε. Otherwise, the block is
called fair. Let J (n, δ, ε, ξ) = J := {j ∈ Z: Bj is biased} be the indices of the biased blocks, and let J = ⋃

k∈Z
{jk},

with jk increasing in k and j−1 < 0 ≤ j0. Collect blocks into (overlapping) regions Rk defined by

Rk :=
jk+1⋃
j=jk

Bj , k ∈ Z,
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where Bj = [j�(lnn)1−δ�, (j + 1)�(lnn)1−δ�]. Each region Rk begins and ends with a biased block and all interior
blocks (possibly none) are fair blocks.

Note that with this construction the adjacent regions overlap, but each site x ∈ �(lnn)1−δ�Z (which are the end-
points of the blocks) is contained in the interior of exactly one region. The random walk may then be decomposed into
excursions within the different regions. Let T0 = 0 and let T1 be the first time the random walk reaches the boundary
of the region having XT0 = 0 in its interior. For k ≥ 2, let Tk be the first time after Tk−1 that the random walk reaches
the boundary of the region containing XTk−1 in its interior. Let N := max{k: Tk−1 < 2n} be the number of excursions
within regions started before time 2n. The following lemma allows us to bound N from above.

Lemma 3.6. For any environment ω,

lim
n→∞

(lnn)2

n
lnPω

(
max
k≤2n

|Xk| ≤ nγ ,N ≥ 5n

(lnn)3−2δ

)
= −∞.

Proof. As in [11], let N←
2n denote the total number of instances before time 2n that the random walk crosses a biased

block from right to left. Lemma 4 in [11] implies that for any environment ω,

lim sup
n→∞

(lnn)2

n
lnPω

(
N←

2n ≥ 2n

(lnn)3−2δ

)
= −∞. (17)

Also, note that on the event {maxk≤n |Xk| ≤ nγ } (cf. (45) in [11]),

0 ≤ N ≤ 2nγ

(lnn)1−δ
+ 2N←

2n .

Indeed, there are at most 2nγ /(lnn)1−δ regions intersecting [−nγ ,nγ ] and each of these can be crossed once without
any left crossings of biased blocks. Since each region begins and ends with a biased block, additional excursions
within regions can only be accomplished by crossing a biased block from right to left and each such right-left crossing
of a biased block can contribute to at most two more excursions within regions. Therefore, for n sufficiently large,

Pω

(
max
k≤2n

|Xk| ≤ nγ ,N ≥ 5n

(lnn)3−2δ

)
≤ Pω

(
N←

2n ≥ 2n

(lnn)3−2δ

)
.

Recalling (17) finishes the proof of Lemma 3.6. �

To finish the proof of Proposition 3.5, we need to show that

lim sup
n→∞

(lnn)2

n
lnPω

(
max
k≤2n

|Xk| ≤ nγ ,N <
5n

(lnn)3−2δ

)
≤ −|π lnα|2

4γ 2
, P -a.s. (18)

We next modify the hitting times Tk to account for exiting the interval [−nγ ,nγ ] as well as reaching the boundary
of a region. Let T ∗

0 = 0, and T ∗
1 be the first time the random walk either exits the interval [−nγ ,nγ ] or reaches the

boundary of the region containing XT ∗
0

in its interior. Similarly, for k ≥ 2 let T ∗
k be the first time after T ∗

k−1 that the
random walk either exits the interval [−nγ ,nγ ] or reaches the boundary of the region containing XT ∗

k−1
in its interior.

Note that on the event {maxk≤2n |Xk| ≤ nγ } we have Tk = T ∗
k for all k < N . Then, for any K ∈ N and any λ > 0, the

strong Markov property implies that

Pω

(
max
k≤2n

|Xk| ≤ nγ ,N = K
)

≤ Pω

(
K∑

k=1

(
T ∗

k − T ∗
k−1

)
> 2n; |XT ∗

k
| ≤ nγ ,∀k < K

)
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≤ e−2λnEω

[
exp

{
λ

K∑
k=1

(
T ∗

k − T ∗
k−1

)}
1
{|XT ∗

k
| ≤ nγ ,∀k < K

}]

≤ e−2λnEω

[
exp

{
λ

K−1∑
k=1

(
T ∗

k − T ∗
k−1

)}
E

XT ∗
K−1

ω

[
eλT ∗

1
]
1
{|XT ∗

k
| ≤ nγ ,∀k < K

}]
. (19)

The inner expectation in the last line above is of the form Ex
ω[eλTI ], where TI = min{k ≥ 0: Xk /∈ I } is the first time

the random walk exits the interval I , I = R◦
j ∩[−nγ ,nγ ], and Rj is the region with x in its interior R◦

j . As was shown
in [12] (see Eq. (47) through Lemma 3) we can choose an appropriate λ and bound such expectations uniformly in x,
I , and all environments ω with ωx ≥ 1/2 for all x ∈ I . Indeed, for any ρ ∈ (0,1) there exists a constant χ(ρ) ∈ (1,∞)

such that

Ex
ω

[
eλ′TI

] ≤ χ(ρ), where λ′ = (1 − ρ)π2

8(|I | − 1)2
.

Note that λ′ decreases in the size of the interval I . Thus, choosing λ according to the largest region intersecting
[−nγ ,nγ ] and iterating the computation in (19) we obtain that

Pω

(
max
k≤2n

|Xk| ≤ nγ ,N = K
)

≤ exp

{
−n

(1 − ρ)π2

4(maxj |R◦
j ∩ [−nγ ,nγ ]|)2

}
χ(ρ)K. (20)

It remains to give an upper bound on maxj |R◦
j ∩[−nγ ,nγ ]|. To this end, for any p ∈ (0,1) and x ∈ [0,1] let Λ∗

p(x) =
x ln(x/p)+ (1 − x) ln((1 − x)/(1 −p)) be the large deviation rate function for a Bernoulli(p) random variable. Then,
Lemma 3 in [11] implies that for any ε and ξ fixed as in the definition of the blocks, P -a.s., there exists an n1(ω, ε, ξ)

such that

max
j

∣∣R◦
j ∩ [−nγ ,nγ

]∣∣ ≤ (1 + ε)γ

Λ∗
P(ω0≥1/2+ξ)(ε)

lnn ∀n ≥ n1(ω, ε, ξ).

Therefore, recalling (20),

lim sup
n→∞

(lnn)2

n
lnPω

(
max
k≤2n

|Xk| ≤ nγ ,N <
5n

(lnn)3−2δ

)
≤ − (1 − ρ)π2(Λ∗

P(ω0≥1/2+ξ)(ε))
2

4(1 + ε)2γ 2
. (21)

Note that the left-hand side does not depend on ρ, ε or ξ and that

lim
ξ→0

lim
ε→0

Λ∗
P(ω0≥1/2+ξ)(ε) = lim

ξ→0
− lnP(ω0 < 1/2 + ξ) = − lnP(ω0 = 1/2) = − lnα.

Thus, taking ρ, ε, and then ξ to zero in (21) implies (18) and thus finishes the proof of Proposition 3.5. �

Proof of Theorem 3.1. We first prove (12) for β < 2 which gives an upper bound on the maximal displacement of a
bridge. First, note that

Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β
,X2n = 0

)
≤ Pω(T−n/(lnn)β < n) + P

θn/(lnn)β ω
(T−n/(lnn)β < n). (22)

The shift invariance of P and Chebychev’s inequality imply that for any δ > 0

P

(
Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β
,X2n = 0

)
≥ 2e−δn/(lnn)β

)

≤ 2P
(
Pω(T−n/(lnn)β < n) > e−δn/(lnn)β

)
≤ 2eδn/(lnn)β

P(T−n/(lnn)β < n). (23)
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Lemma 2.2 in [2] gives that P(T−x < ∞) ≤ (EP ρ0)
x

1−EP ρ0
for any x ≥ 0 (note that Assumption 4 implies that EP ρ0 <

1). Therefore, if 0 < δ < − ln(EP ρ0), then (23) and the Borel–Cantelli lemma imply that Pω(maxk≤2n |Xk| ≥
n

(lnn)β
,X2n = 0) ≤ 2e−δn/(lnn)β for all sufficiently large n, P -a.s. Therefore, Lemma 3.3 implies that, P -a.s., for

δ < − ln(EP ρ0), C >
|π logα|2

4 , and n large enough,

Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β

∣∣∣X2n = 0

)
≤ 2e−δn/(lnn)β

e−Cn/(lnn)2 .

If β < 2 the right-hand side vanishes as n → ∞.
To get the lower bound on the maximal displacement fix γ ∈ (0,1). Then,

Pω

(
max
k≤2n

|Xk| > nγ
∣∣X2n = 0

)
= 1 − Pω

(
max
k≤2n

|Xk| ≤ nγ
∣∣X2n = 0

)

≥ 1 − Pω(maxk≤2n |Xk| ≤ nγ )

Pω(X2n = 0)
.

Lemma 3.3 and Proposition 3.5 imply that the right-hand side tends to 1 as n → ∞, P -a.s., thus completing the proof
of (13). �

4. Case III: Non-nestling environment

In this section we will make the following assumptions on the environment.

Assumption 5. ωmin > 1
2 , and α := P(ω0 = ωmin) ∈ (0,1).

Assumption 6. There exists an η > 0 such that P(ω0 ∈ (ωmin,ωmin + η)) = 0.

Assumption 5 is the crucial assumption needed for the main results. Assumption 6 is a technical assumption and all
the main results should be true under only Assumption 5. Note that Assumption 5 implies Assumption 2.

The main result in this section is that the magnitude of displacement in bridges is the same in the non-nestling case
as it is in the marginally nestling case.

Theorem 4.1. Let Assumptions 1, 5, and 6 hold. Then for any β < 2,

lim
n→∞Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β

∣∣∣X2n = 0

)
= 0, P -a.s., (24)

and for any γ < 1,

lim
n→∞Pω

(
max
k≤2n

|Xk| ≥ nγ
∣∣X2n = 0

)
= 1, P -a.s. (25)

The quenched large deviation principle for Xn/n, established in [1,8] implies that there exists a deterministic
function I (v) such that Pω(Xn/n ≈ v) ≈ e−nI (v). While there is a probabilistic formula for I (v), it is not computable
in practice for most values of v. However, when v = 0, the value is known. If the environment is nestling or marginally
nestling then I (0) = 0, but in the non-nestling case

I (0) = −1

2
ln

(
4ωmin(1 − ωmin)

)
> 0.
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As was the case for Theorem 3.1, the keys to the proof of Theorem 4.1 are the asymptotics of the quenched proba-
bilities to be at the origin at time 2n or to stay confined to the interval [−nγ ,nγ ] for the first 2n steps of the random
walk. As will be shown below, both of these probabilities have the same exponential rate of decay:

lim
n→∞

1

n
lnPω(X2n = 0) = lim

n→∞
1

n
lnPω

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0
)

= −2I (0), P -a.s.

Thus, in order to prove Theorem 4.1, more precise asymptotics of the decays of these quenched probabilities will be
needed.

A key tool of our analysis in the non-nestling case will be a transformation of the environment ω into an environ-
ment ω̃ that is marginally nestling. For any environment ω, let ω̃ be the environment defined by

ω̃x = ρmax

ρx + ρmax
, x ∈ Z, (26)

where ρmax = 1−ωmin
ωmin

. Note that under Assumption 5, P(ω̃x ≥ 1
2 ) = 1 and P(ω̃x = 1

2 ) = P(ωx = ωmin) = α > 0. The
usefulness of this transformation stems from the following lemma.

Lemma 4.2. Let Assumptions 5 and 6 hold, and let

Bn := #{k < 2n: ωXk
> ωmin}.

Then there exist constants c1, c2 ∈ (0,1) (depending on ωmin and η) such that for any event A ∈ σ(X0,X1, . . . ,X2n)

depending only on the first 2n steps of the random walk such that A ⊂ {X2n = 0},
e−2I (0)nEω̃

[
c
Bn

1 1A

] ≤ Pω(A) ≤ e−2I (0)nEω̃

[
c
Bn

2 1A

]
, P -a.s.

Proof. Let X[0,2n] = (X0,X1, . . . ,X2n) denote the path of the random walk in the time interval [0,2n]. Then,

Pω(A) = Eω̃

[
dPω

dPω̃

(X[0,2n])1A

]
, (27)

where for any x[0,2n] = (x0, x1, . . . , x2n) we have

dPω

dPω̃

(x[0,2n]) = Pω(Xk = xk,∀k ∈ [0,2n])
Pω̃(Xk = xk,∀k ∈ [0,2n]) =

2n−1∏
k=0

P
xk
ω (X1 = xk+1)

P
xk

ω̃
(X1 = xk+1)

.

Recalling the formula for ω̃x in (26), we obtain that

P
xk
ω (X1 = xk+1)

P
xk

ω̃
(X1 = xk+1)

=
{

ωx(ρx + ρmax)ρ
−1
max if xk+1 = xk + 1,

ωx(ρx + ρmax) if xk+1 = xk − 1.

Then since X2n = 0 implies that exactly half of the first 2n steps of the random walk are to the right we obtain that,

dPω

dPω̃

(X[0,2n]) = ρ−n
max

2n−1∏
k=0

ωXk
(ρXk

+ ρmax) ∀X[0,2n] ∈ {X2n = 0}. (28)

If ωx = ωmin then ωx(ρx +ρmax) = 2(1 −ωmin), and since ωx(ρx +ρmax) is decreasing in ωx there exist constants
c1, c2 < 1 (depending on ωmin and η) such that

c12(1 − ωmin) ≤ ωx(ρx + ρmax) ≤ c22(1 − ωmin) ∀ωx ∈ [ωmin + η,1].
Since Assumption 6 implies that P(ωx ∈ {ωmin} ∪ [ωmin + η,1]) = 1, (28) implies that, P -a.s.,

ρ−n
max

(
2(1 − ωmin)

)2n
c
Bn

1 ≤ dPω

dPω̃

(X[0,2n]) ≤ ρ−n
max

(
2(1 − ωmin)

)2n
c
Bn

2 ∀X[0,2n] ∈ {X2n = 0}. (29)
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Since ρ−n
max(2(1 − ωmin))

2n = (4ωmin(1 − ωmin))
n = e−2I (0)n, applying (29) to (27) completes the proof of the

Lemma. �

We now apply Lemma 4.2 to prove precise decay rates of certain quenched probabilities.

Proposition 4.3. Let Assumptions 1, 5, and 6 hold. Then, for any γ ∈ (0,1],

lim sup
n→∞

(lnn)2

n

{
lnPω

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0
)

+ 2nI (0)
}

= −|π lnα|2
γ 2

, P -a.s.

Before giving the proof of Proposition 4.3 we state the following corollary which is obtained by taking γ = 1.

Corollary 4.4. Let Assumptions 1, 5 and 6 hold. Then,

lim
n→∞

(lnn)2

n

{
lnPω(X2n = 0) + 2nI (0)

} = −|π lnα|2.

Remark 4.5. Since Bn ≥ 0 by definition and the environment ω̃ is marginally nestling, a simple application of
Lemma 4.2 and Proposition 3.5 implies that

lim sup
n→∞

(lnn)2

n

{
lnPω

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0
)

+ 2nI (0)
}

≤ lim sup
n→∞

(lnn)2

n
lnPω̃

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0
)

≤ −|π lnα|2
4γ 2

, P -a.s.

This does not quite give the correct upper bound obtained in Proposition 4.3 and reflects a subtle but important
difference between the way that a RWRE is confined to the interval [−nγ ,nγ ] in marginally nestling and non-nestling
environments. The proof of Proposition 3.5 suggests that under Assumption 4, Bn is typically of the order n/ lnn on
the event {maxk≤2n |Xk| ≤ nγ }. In contrast, the proof of Proposition 4.3 below will suggest that under Assumptions 5
and 6, Bn is typically less than n/(lnn)2−δ for any δ > 0 on the event {maxk≤2n |Xk| ≤ nγ }.

Proof of Proposition 4.3. We first give a lower bound. Lemma 4.2 implies that, P -a.s.,

Pω

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0
)

≥ Pω

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0,Bn ≤ 2n

(lnn)3

)

≥ e−2I (0)nc
n/(lnn)3

1 Pω̃

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0,Bn ≤ 2n

(lnn)3

)
, (30)

where Bn = #{k ≤ 2n: ω̃Xk
> 1/2} is the number of visits to biased sites in the environment ω̃ before time 2n. Since

ω̃ is a marginally nestling environment, we can obtain a lower bound for the last probability above in a similar manner
as the lower bounds for Lemma 3.3 and Proposition 3.5. However, because of the added condition that Bn ≤ 2n

(lnn)3 ,

instead of adding a reflection at the left edge of the longest fair stretch in [0, nγ ] (or [0, n/(lnn)3] when γ = 1), we
instead force the random walk to stay strictly inside the longest fair stretch for time 2n. Since the longest fair stretch in
[0, nγ ] (or [0, n/(lnn)3] when γ = 1) in the environment ω̃ is of size (γ /| lnα| + o(1)) lnn, we obtain from uniform
ellipticity that, P -a.s.,

lim inf
n→∞

(lnn)2

n
lnPω̃

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0,Bn ≤ 2n

(lnn)3

)

≥ lim inf
n→∞

(lnn)2

n
lnP1/2

(
max
k≤2n

|Xk| ≤ γ

2| lnα| lnn

)
= −|π lnα|2

γ 2
. (31)
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Note that the last equality is again obtained from Lemma 3.4. Combining (30) and (31) completes the proof of the
needed lower bound.

To get a corresponding upper bound, first note that by Lemma 4.2, P -a.s., considering the events {Bn > n

(lnn)2−δ }
and {Bn ≤ n

(lnn)2−δ },

Pω

(
max
k≤2n

|Xk| ≤ nγ ,X2n = 0
)

≤ e−2I (0)n

{
c
n/(lnn)2−δ

2 + Pω̃

(
max
k≤2n

|Xk| ≤ nγ ,Bn ≤ n

(lnn)2−δ

)}
.

Then, since c2 < 1, it is enough to show that for some δ > 0

lim sup
n→∞

(lnn)2

n
lnPω̃

(
max
k≤2n

|Xk| ≤ nγ ,Bn ≤ n

(lnn)2−δ

)
≤ −|π lnα|2

γ 2
.

For any ε > 0 and n large enough, Bn ≤ n/(lnn)2−δ < εn implies that the random walk must spend at least (2 − ε)n

steps at sites that are fair in ω̃. Theorem 3.2.1 in [3] implies that, P -a.s., for all n large enough the length of the longest
fair stretch in [−nγ ,nγ ] in the environment ω̃ is less than (1+ε)γ

| lnα| lnn. Therefore, P -a.s., for n sufficently large,

Pω̃

(
max
k≤2n

|Xk| ≤ nγ ,Bn ≤ n

(lnn)2−δ

)

≤ Pω̃(τ ≥ εn) + P1/2

( ∑
j≤n/(lnn)2−δ

σj,n ≥ 2n(1 − ε)

)
,

where τ := min{k ≥ 0: ω̃Xk
> 1/2} is the first time the random walk reaches a biased site in ω̃ and the σj,n are

i.i.d. with common distribution equal to that of the first time a simple random walk started at x = 1 exits the interval
[1, (1 + ε)γ lnn/| lnα|]. For any fixed environment ω̃, τ is the exit time of a simple symmetric random walk from
a fixed bounded interval and thus Pω̃(τ > εn) decays exponentially fast. Therefore, the proof of the upper bound is
reduced to showing that for some δ > 0,

lim sup
n→∞

(lnn)2

n
lnP1/2

( ∑
j≤n/(lnn)2−δ

σj,n ≥ 2n(1 − ε)

)
≤ −|π lnα|2

γ 2
. (32)

To this end, note that for any λ > 0,

P1/2

( ∑
j≤n/(lnn)2−δ

σj,n ≥ (1 − ε)2n

)
≤ e−λ(1−ε)2n

{
E1/2

[
eλσ1,n

]}n/(lnn)2−δ

. (33)

To complete the proof of the upper bound, we need the following lemma.

Lemma 4.6. Let 2� be an integer greater than 1 and let ε ∈ (0,1). Then, there exists a constant C1 < ∞ depending

only on ε such that for λ(ε, �) := (1−ε)2π2

8�2 ,

E1/2
[
eλ(ε,�)σ

]
< 1 + C1

�
,

where σ is the first time a simple random walk started at x = 1 exits the interval [1,2� − 1].
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Using Lemma 4.6, we complete the proof of the upper bound in Proposition 4.3. Let λ = λ(ε, �(n)) = (1−ε)2π2

8�(n)2 in
(33), where 2�(n) − 1 = �(1 + ε)γ lnn/| lnα|�. Then Lemma 4.6 implies that for any δ ∈ (0,1),

lim sup
n→∞

(lnn)2

n
lnP1/2

( ∑
j≤n/(lnn)2−δ

σj,n ≥ (1 − ε)2n

)

≤ lim sup
n→∞

− (1 − ε)3π2(lnn)2

4�(n)2
+ (lnn)δ ln

(
1 + C1

�(n)

)

= − (1 − ε)3|π lnα|2
(1 + ε)2γ 2

.

Taking ε → 0 finishes the proof of (32). It remains only to give the proof of Lemma 4.6.

Proof of Lemma 4.6. As was shown in the proof of Lemma 4 in [6], the moment generating function for the first
exit time of a simple random walk from an interval may be solved explicitly. In particular, for 0 ≤ λ < λcrit(�) =
− ln(cos π

2�
) we obtain that

E1/2
[
eλσ

] = cos(cλ(� − 1))

cos(cλ�)
= e−λ +

√
1 − e−2λ tan(cλ�),

where cλ = arccos(e−λ). In particular, we get the simple upper bound

E1/2
[
eλσ

]
< 1 + √

2λ tan(cλ�). (34)

Recalling the definitions of λ(ε, �) and cλ, and using the fact that arccos(e−x) <
√

2x for any x > 0 we obtain that

cλ(ε,�)� = arccos

(
exp

{
− (1 − ε)2π2

8�2

})
� <

(1 − ε)π

2
.

Therefore, tan(cλ(ε,�)�) is bounded above, uniformly in �. Recalling (34) we obtain

E1/2
[
eλ(ε,�)σ

]
< 1 + √

2λ(ε, �) tan

(
(1 − ε)π

2

)
= 1 + (1 − ε)π

2�
tan

(
(1 − ε)π

2

)
.

This completes the proof of Lemma 4.6 with C1 = (1−ε)π
2 tan(

(1−ε)π
2 ). �

We now are ready to give the proof of the main result in this section.

Proof of Theorem 4.1. Let ω̃ be the marginally nestling environment obtained from the non-nestling environment ω

as defined in (26). Lemma 4.2 implies that

Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β
,X2n = 0

)
= Eω̃

[
dPω

dPω̃

(X[0,2n])1
{

max
k≤2n

|Xk| ≥ n

(lnn)β
,X2n = 0

}]

≤ e−2nI (0)Pω̃

(
max
k≤2n

|Xk| ≥ n

(lnn)β
,X2n = 0

)
.

Then, since ω̃ is a marginally nestling environment, the proof of Theorem 3.1 implies that for δ sufficiently small,
P -a.s., for all n sufficiently large,

Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β
,X2n = 0

)
≤ e−2nI (0)−δn/(lnn)β .

This combined with Corollary 4.4 completes the proof of (24). Equation (25) follows directly from Proposition 4.3
and Corollary 4.4. �
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5. Further refinements

We believe that in the marginally nestling and non-nestling regimes, the maximal displacement of bridges is really
of the order n/(lnn)2. The proofs of Theorems 3.1 and 4.1 suggest that the most likely way for the random walk
to be back at the origin after 2n steps is to go quickly to a long interval I with ωx = ωmin for all x ∈ I and then
stay in the interval I for almost 2n steps before returning quickly to the origin. However, the longest such interval
I ⊂ [−n/(lnn)β,n/(lnn)β ] has length of order lnn/| lnα| for any β > 0. Thus, it is difficult to show that the maximal
displacement is at least n/(lnn)β for any β > 2 when conditioned on {X2n = 0}. Nevertheless, for any fixed β > 2
the longest interval I ⊂ [−n/(lnn)2, n/(lnn)2] with ωx = ωmin for all x ∈ I is with high probability not contained in
[−n/(lnn)β,n/(lnn)β ]. This leads us to the following conjecture.

Conjecture 5.1. Let Assumption 1 hold, and let ωmin ≥ 1/2 and P(ω0 = ωmin) = α > 0. Then, for any β > 2,

lim
n→∞Pω

(
max
k≤2n

|Xk| ≥ n

(lnn)β

∣∣∣X2n = 0

)
= 1, in P -probability.
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