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Abstract: Here we explore general asymptotic properties of Predictive
Recursion (PR) for nonparametric estimation of mixing distributions. We
prove that, when the mixture model is mis-specified, the estimated mixture
converges almost surely in total variation to the mixture that minimizes the
Kullback-Leibler divergence, and a bound on the (Hellinger contrast) rate of
convergence is obtained. Simulations suggest that this rate is nearly sharp
in a minimax sense. Moreover, when the model is identifiable, almost sure
weak convergence of the mixing distribution estimate follows.

PR assumes that the support of the mixing distribution is known. To
remove this requirement, we propose a generalization that incorporates a
sequence of supports, increasing with the sample size, that combines the
efficiency of PR with the flexibility of mixture sieves. Under mild conditions,
we obtain a bound on the rate of convergence of these new estimates.
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1. Introduction

Despite a well-developed theory and numerous applications of mixture models,
estimation of a mixing distribution remains a challenging statistical problem.
However, some recent progress has been made through a computationally effi-
cient nonparametric estimate due to Newton [17]; see also Newton, et al. [18]
and Newton and Zhang [19]. A mixture model views data (X1 , . . . , Xn) ∈ X n
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as independent observations from a density m(x) of the form

mF (x) =

∫

Θ

p(x|θ) dF (θ), x ∈ X , F ∈ F (1.1)

where F = F(Θ, µ) is the class of probability measures on a parameter space
(Θ, B) dominated by a σ-finite measure µ, and {p(·|θ) : θ ∈ Θ} is a para-
metric family of densities on (X , A ), dominated by a σ-finite measure ν . More
succinctly, the mixture model (1.1) assumes m ∈ M := {mF : F ∈ F}. To esti-
mate F from the data X1, . . . , Xn, Newton [17] proposed the following n-step
recursive algorithm, called Predictive Recursion (PR):

Algorithm PR. Choose an initial measure F0 ∈ F having µ-density f0, and a
sequence of weights {wi : i ≥ 1} ⊂ (0, 1). For i = 1, . . . , n, compute

fi(θ) = (1 − wi)fi−1(θ) + wi
p(Xi|θ)fi−1(θ)

∫

Θ
p(Xi|θ′)fi−1(θ′) dµ(θ′)

, θ ∈ Θ, (1.2)

and produce Fn, the measure with µ-density fn, as the final estimate of F .

Key features of PR include its speed and its unique flexibility to estimate a
mixing distribution which has a density with respect to any user-defined dom-
inating measure µ. The latter is a practically important property as a number
of modern applications demand existence of a mixing density with respect to a
specified dominating measure. For example, high-dimensional empirical Bayes
analysis, spurred mainly by recent developments in DNA microarray technolo-
gies, starts with a Bayesian model whose prior/mixing distribution is itself a
mixture of both discrete and continuous components; see Efron [5] and the ref-
erences therein. Estimation of prior/mixing distributions in this “two-groups
model” context is a promising application of PR; see Bogdan, et al. [3].

Until recently, very little was known about the large-sample behavior of PR.
Ghosh and Tokdar [8] used a novel martingale argument to prove, when Θ is
finite and m = mF ∈ M, that Fn → F a.s. Martin and Ghosh [16] proved a
slightly stronger consistency theorem using tools from stochastic approximation
theory. Most recently, Tokdar, Martin, and Ghosh [23] (henceforth, TMG) han-
dled the case of a more general parameter space Θ by extending the martingale
argument to the X -space, proving that the mixture density estimate

mn(x) := mFn
(x) =

∫

p(x|θ) dFn(θ), x ∈ X , (1.3)

converges a.s. to mF (x) in the L1 topology. From L1 convergence of mn, con-
sistency of Fn in the weak topology on Θ is obtained.

In this paper, we extend the convergence results of TMG in two important
directions. First, in the more general context, where the mixture model M need
not contain the true density m, we show that the estimated mixture mn in
(1.3) is asymptotically robust in the sense that it converges almost surely in
the total variation (or Hellinger) topology to the mixture mF that minimizes



R. Martin and S.T. Tokdar/Asymptotic properties of PR 1457

the Kullback-Leibler (KL) divergence K(m, mΦ) =
∫

log(m/mΦ)mdν . When
the mixing distribution is identifiable, we also obtain weak convergence of Fn.
Our second main result is a bound on the rate of convergence for mn. For a
unified treatment of the well- and mis-specified cases, we consider the Hellinger
contrast

ρ(mn, mF ) =

[

1

2

∫
(√

mn

mF
− 1

)2

mdν

]1/2

, (1.4)

where mF is a mixture that minimizes K(m, mΦ). The Hellinger contrast has
been previously used to study asymptotics of maximum likelihood and Bayes
estimates under model mis-specification; see, for example, Patilea [20], and
Kleijn and van der Vaart [10]. In Section 4, we show that if F is compact,
then

√
anρ(mn , mF ) → 0 almost surely, where an =

∑n
i=1 wi. This establishes

a direct connection between the choice of weights wi and the performance of
the resulting PR estimate. Moreover, this bound is derived without using any
structural knowledge about the mixands p(x|θ) and applies to a wide range
of such densities, including Normal, Gamma, and Poisson. The conditions on
wi required for this result are satisfied by wn ≍ n−γ , γ ∈ (2/3, 1], leading
to an ≍ n1−γ . Consequently, the Hellinger contrast convergence rate of mn is
strictly faster than n−(1−γ)/2. How this relates to the rate of convergence for Fn

remains an important open problem.
Our nearly n−1/6 bound on the convergence rate for mn closely matches the

results in Genovese and Wasserman [6] derived for the special case of finite
Gaussian mixtures. But it falls short of the nearly parametric rates obtained in
Li and Barron [14] and Ghosal and van der Vaart [7]. However, the simulation
results presented in Section 4.3 indicate that our rate is minimax in nature and,
therefore, should not be directly compared to the rates in these two papers.
In fact, empirical evidence suggests that, in some cases, the PR estimates can
converge faster than what our bounds indicate.

A shortcoming of PR is that one needs to specify the compact mixing param-
eter space Θ a priori. To remove this requirement, we propose, in Section 5, a
generalized PR (GPR) algorithm that features an increasing sieve-like sequence
of supports Θi ⊂ Θi+1. We obtain a bound on the rate of convergence for GPR
in the special case where m = mF and F has an unknown compact support.

2. Almost supermartingales

The primary tool used to prove the new results of this paper is an “almost su-
permartingale” convergence theorem of Robbins and Siegmund [22]. For conve-
nience, we give the statement of this result here. Let {Mn : n ≥ 1} be a sequence
of non-negative random variables adapted to a filtration {Fn : n ≥ 1}. Suppose
there are non-negative random variables {βn, ξn, ζn} such that

E(Mn|Fn−1) ≤ (1 + βn−1)Mn−1 + ξn−1 − ζn−1, n ≥ 1. (2.1)
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If both βn ≡ 0 and ξn ≡ 0, then Mn would be exactly a supermartingale. But,
more generally, Robbins and Siegmund [22] call a sequence {Mn} that satisfies
(2.1) an almost supermartingale.

Theorem 2.1 (Robbins-Siegmund). Suppose (2.1) holds, and that
∑

n βn <
∞ and

∑

n ξn < ∞ a.s. Then Mn converges a.s. and
∑

n ζn < ∞ a.s.

That is, even if the sequence is not exactly a supermartingale, as long as
the perturbations βn and ξn vanish fast enough, then the conclusions of the
usual martingale convergence theorem remain valid. For further discussion on
Theorem 2.1 and its extensions, see Lai [11].

3. Kullback-Leibler projections

It is quite natural to use the KL divergence to study the large-sample proper-
ties of PR. Indeed, Martin and Ghosh [16] remark that, for Θ finite, ℓ(Φ) =
K(m, mΦ) is a Lyapunov function for the differential equation that character-
izes the asymptotics of PR: roughly, the KL divergence controls the dynamics
of PR, driving the estimates toward a stable equilibrium. But when m /∈ M,
this equilibrium cannot be m. In such cases, we consider the mixture mF that
is closest to m in a KL sense; that is,

K(m, mF ) = K(m, M) := inf{K(m, mΦ) : Φ ∈ F}, (3.1)

where F is the weak closure of F, and M = {mF : F ∈ F}. We call mF the KL
projection of m onto M. Similar ideas may be found in [12, 20, 10].

Existence of the KL projection is an important issue, and various results are
available; see, for example, Liese and Vadja [13, Chap. 8]. Here we prove a simple
result which gives sufficient conditions for the existence of a KL projection in
our special case of mixtures. Assume the following:

A1. F is pre-compact with respect to the weak topology.
A2. θ 7→ p(x|θ) is bounded and continuous for ν-almost all x.

Lemma 3.1. Under A1–A2, there exists F ∈ F such that K(m, mF ) = K(m, M).

Proof. Choose any Φ ∈ F and any {Φs} ⊂ F such that Φs → Φ weakly. Then
A2 and Scheffé’s theorem imply mΦs

→ mΦ in the L1(ν) and, hence, the weak
topology. Further,

κ(Φ) := K(m, mΦ) ≤ lim inf
s→∞

K(m, mΦs
) = lim inf

s→∞
κ(Φs),

where the inequality follows from weak lower semi-continuity of K(m, ·); see
Liese and Vadja [13], Theorem 1.47. Consequently, κ(·) is weakly lower semi-
continuous and, therefore, must attain its infimum on the compact F. A similar
proof may be given based on Lemma 4 of Brown, et al. [4].

Remark 3.2. Convexity of the set M and of the mapping K(m, ·) together imply
that the KL projection mF in Lemma 3.1 is unique. However, in general, there
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could be many mixing distributions Φ ∈ F whose mixture mΦ corresponds to
the KL projection mF . Identifiability is needed to guarantee uniqueness of F .

Next we state one more important property of the KL projection which will
be useful in what follows. Various proofs of this result can be found in the
literature; see, e.g., Patilea [20] or Kleijn and van der Vaart [10].

Lemma 3.3. If mF is the KL projection of m onto the set M of mixtures, then
∫

(mΦ/mF )mdν ≤ 1 for all mΦ ∈ M.

4. Robustness and rate of convergence

4.1. Preliminaries

We begin with our assumptions and some preliminary lemmas; proofs can be
found in the Appendix. Let {wi : i ≥ 1} be the user-specified weight sequence
in the PR algorithm, and define the sequence of partial sums an =

∑n
i=1 wi. In

addition to A1–A2 in Section 3, assume the following:

A3. wn > 0, wn ↓ 0,
∑

n wn = ∞, and
∑

n anw2
n < ∞.

A4. There exists B < ∞ such that

sup
θ1,θ2∈Θ

∫
[

p(x|θ1)

p(x|θ2)

]2

m(x) dν(x) < B.

Condition A3 is satisfied if wn ≍ n−γ , for γ ∈ (2/3, 1]. The square-integrability
condition A4 is the strongest assumption, but it does hold for Exponential family
mixands (including Normal or Poisson) with sufficient statistic S(x), provided
that Θ is compact and mS−1 admits a moment-generating function on Θ. If one
is willing to assume that m ∈ M, then A4 can be replaced by a less restrictive
condition, depending only on p(x|θ); cf. assumption A5 in TMG (p. 2505).

Our new developments are partially based on calculations in TMG, and we
begin by recording a few of these for future reference. First, let R(x) be the
remainder term of a first-order Taylor approximation of log(1 + x) at x = 0;
that is, log(1 + x) = x − x2R(x), x > −1, where R(x) satisfies

0 ≤ R(x) ≤ max{1, (1 + x)−2}, x > −1. (4.1)

Next, write the PR estimate mn ∈ M in (1.3) as

mn(x) = (1 − wn)mn−1(x) + wnhn,Xn
(x),

where

hn,y(x) =

∫

p(x|θ)p(y|θ)dFn−1(θ)

mn−1(y)
, x, y ∈ X .

For notational convenience, also define the function

Hn,y(x) =
hn,y(x)

mn−1(x)
− 1, x, y ∈ X .
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Then the KL divergence Kn := K(m, mn) satisfies

Kn − Kn−1 =

∫

m log(mn−1/mn) dν

= −
∫

m log(1 + wnHn,Xn
) dν

= −wn

∫

mHn,Xn
dν + w2

n

∫

mH2
n,Xn

R(wnHn,Xn
) dν

(4.2)

where R(x) satisfies (4.1). Let An−1 be the σ-algebra generated by the data se-
quence X1, . . . , Xn−1. Since Kn−1 is An−1-measurable, upon taking conditional
expectation with respect to An−1 we get

E(Kn|An−1) = Kn−1 − wnT (Fn−1) + w2
nE(Zn|An−1) (4.3)

where T (·) and Zn are defined as

T (Φ) =

∫

Θ

{
∫

X

m(x)

mΦ(x)
p(x|θ) dν(x)

}2

dΦ(θ) − 1, Φ ∈ F (4.4)

Zn =

∫

mH2
n,Xn

R(wnHn,Xn
) dν (4.5)

Note that T (Fn−1) is exactly M∗
n defined in TMG (p. 2508). The following

properties of T (·) will be critical in the proof of our main result.

Lemma 4.1. (a) T (Φ) ≥ 0 with equality iff K(m, mΦ) = K(m, M).
(b) Under A1, A2 and A4, T is continuous in the weak topology on F.

Remark 4.2. For some further insight into the relationship between T (Φ) and
the KL divergence K(m, mΦ), define

D(θ; Φ) =

∫

m(x)

mΦ(x)
p(x|θ) dν(x)− 1

and notice that T (Φ) =
∫

D2(θ; Φ) dΦ(θ). Some analysis shows that D(θ; Φ) is
the negative Gâteaux derivative of K(m, η) at η = mΦ in the direction of p(·|θ).
Now, if T (Φ) = 0, then D(θ; Φ) = 0 for µ-almost all θ and, hence,

D(Ψ; Φ) =

∫

D(θ; Φ) dΨ(θ),

the negative Gâteaux derivative of K(m, η) at η = mΦ in the direction of mΨ, is
zero for all Ψ ∈ F. The fact that the Gâteaux derivative vanishes in all directions
suggests that mΦ is a point at which the infimum K(m, M) is attained, and this
is exactly the conclusion of Lemma 4.1(a). A similar characterization of the
NPMLE is given in Lindsay [15].

In light of Lemma 4.1(a) and (4.3), we see in Kn the makings of an almost
supermartingale (2.1). The following bound on Zn is needed to push through
the argument based on Theorem 2.1.
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Lemma 4.3. Under condition A4, Zn ≤ 1 + B a.s. for all n.

Our last preliminary result of this section gets is needed to bound the con-
vergence rate of K(m, mn). Define K∗

n := K(m, mn) − K(m, M) ≥ 0.

Lemma 4.4. Suppose a KL minimizer F exists in the interior of F. Then under
conditions A3–A4,

∑∞
n=1 wnK∗

n−1 < ∞ a.s.

4.2. Main results

We are now ready to state and prove our main results. Those convergence prop-
erties advertised in Section 1 are corollaries to Theorems 4.5 and 4.8 that follow.

Theorem 4.5. Under conditions A1–A4, K∗
n → 0 a.s.

Proof. From (4.3) we have

E(K∗
n|An−1) = K∗

n−1 + w2
nE(Zn|An−1) − wnT (Fn−1). (4.6)

This is of the form (2.1) with βn ≡ 0, ξn−1 = w2
nE(Zn|An−1), and ζn−1 =

wnT (Fn−1). Therefore, from Theorem 2.1 we get K∗
n → K∗

∞ ≥ 0 a.s. and

∑

n

wnT (Fn−1) < ∞ a.s. (4.7)

It remains to show that K∗
∞ = 0 a.s. Suppose, on the contrary, that K∗

∞ > 0
with positive probability. Then there exists ε > 0 such that

K(m, mn) > K(m, M) + ε

for all but perhaps finitely many n. Recall the proof of Lemma 3.1, which shows
that the mapping κ(Φ) = K(m, mΦ) is lower semi-continuous with respect to
the weak topology on F. Consequently,

Fε := {Φ ∈ F : κ(Φ) > K(m, M) + ε} ⊂ F

is a weakly open set, and its closure Fε is compact by A1. Since Fn ∈ Fε for
all but finitely many n, Lemma 4.1 implies that T (Fn−1) is bounded away from
zero. But this and A3 together contradict (4.7). Therefore, K∗

∞ = 0 a.s.

Next we show that K∗
n → 0 implies ‖mn −mF ‖ → 0, where ‖ · ‖ denotes the

L1(ν) norm.

Corollary 4.6. Under A1–A4, mn converges to mF a.s. in L1(ν).

Proof. Suppose not; that is, there is an ε > 0 and a subsequence {ns} such
that ‖mns

− mF ‖ > ε for all s. Then, by A1, this sequence has a further
subsequence {ns(t)} such that Fns(t)

converges weakly to some F∞ ∈ F. By A2,
mns(t)

converges to m∞ := mF∞
pointwise and in L1(ν) by Scheffé’s theorem;
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therefore, m∞ 6= mF . Define ut = mns(t)
/m∞ − 1. Then ut → 0 pointwise and

{ut} is uniformly integrable with respect to mdν by A4 and Jensen’s inequality:

sup
t

∫

u2
tmdν = sup

t

∫
(

mns(t)

m∞
− 1

)2

mdν < 1 + B.

Theorem 4.8, together with Vitali’s theorem [2, Theorem 25.10], implies that

0 ≤ K(m, m∞) − K(m, mF )

= K(m, m∞) − lim
t→∞

K(m, mns(t)
)

= lim
t→∞

∫

m log(mns(t)
/m∞) dν ≤ lim

t→∞

∫

utmdν = 0

Therefore, K(m, m∞) = K(m, mF ), and uniqueness of the KL projection im-
plies m∞ = mF , which contradicts our supposition.

Corollary 4.6 suggests that Fn converges to some F ∈ F at which the infimum
K(m, M) is attained. However, to conclude weak convergence of Fn from L1

convergence of mn, we need two additional conditions:

A5. Identifiability: mΦ = mΨ ν-a.e. implies Φ = Ψ; cf. Remark 3.2.
A6. For any ε > 0 and any compact X ′ ⊂ X , there exists a compact Θ′ ⊂ Θ

such that
∫

X ′
p(x|θ) dν(x) < ε for all θ 6∈ Θ′.

With conditions A5–A6 and Theorem 3 of TMG, the next result follows imme-
diately from Corollary 4.6.

Corollary 4.7. Under A1–A6, Fn → F a.s. in the weak topology, where F ∈
F is the unique mixing distribution that satisfies K(m, mF ) = K(m, M). In
particular, if m ∈ M, then Fn is a consistent estimate of the true mixing density,
in the weak topology.

A slight modification of Theorem 4.5 produces a bound on the rate of conver-
gence. But one extra assumption is needed to push through the proof, namely,
that the KL minimizer F is dominated by µ. The precise result is next.

Theorem 4.8. In addition to A1–A4, assume a KL minimizer F exists in the
interior of F. Then anK∗

n → 0 a.s.

Proof. Multiply through (4.6) by an to get

E(anK∗
n | An−1) = an

[

K∗
n−1 + w2

nE(Zn|An−1) − wnT (Fn−1)
]

= an−1K
∗
n−1 + wnK∗

n−1 + anw2
nE(Zn|An−1) − anwnT (Fn−1)

This last line is also of the almost supermartingale form (2.1), with βn ≡ 0,
ζn−1 = anwnT (Fn−1), and

ξn−1 = anw2
nE(Zn|An−1) + wnK∗

n−1.

Since
∑

n ξn < ∞ a.s. by Lemmas 4.3–4.4, it follows from Theorem 2.1 that
anK∗

n → K∗
∞ a.s., and

∑

n anwnT (Fn−1) < ∞ a.s. To show that K∗
∞ = 0 a.s.,

proceed by contradiction as in the proof of Theorem 4.5.
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Remark 4.9. The extra condition that the KL minimizer F sits inside F can be
viewed as an assumption about the quality of the model. That is, F should be
inside F unless the mixture model M is “too bad.” This notion of model quality
is not yet fully understood, so sufficient conditions are currently not available.
However, an example of a “bad” model is one where m(x) = p(x|θ) for some θ,
which amounts to a mis-specification of the dominating measure µ. We suspect
that the conclusion of Theorem 4.8 holds without this extra condition—see
Section 4.3—but our proof hinges on Lemma 4.4, which we are unable to prove
unless the KL minimizer F has a density f with respect to µ.

In the mis-specified case, even though K∗
n → 0 implies ‖mn − mF ‖ → 0,

the L1(ν) rate does not easily follow without extra assumptions, such as a.e.
boundedness of mF /m. But a Hellinger contrast rate is a direct consequence of
Theorem 4.8. In the well-specified case, when m = mF , the Hellinger contrast
reduces to the usual Hellinger distance, so our convergence rate results are
comparable to those of, say, Genovese and Wasserman [6].

Corollary 4.10. Choose wn ≍ n−γ, γ ∈ (2/3, 1], and assume A1–A4.

(a) ρ(mn , mF ) = o(n−(1−γ)/2) a.s.
(b) If mF /m ∈ L∞(mdν), then ‖mn − mF ‖ = o(n−(1−γ)/2) a.s.

Proof. Set Γn =
∫

(mn/mF )mdν ; then Γn ≤ 1 by Lemma 3.3. Now part (a)
follows from Lemma 2.4 of Patilea [20]. Indeed,

2ρ2(mn, mF ) =

∫
(√

mn

mF
− 1

)2

mdν

= (Γn − 1) + 2

∫
(

1 −
√

mn

mF

)

mdν

≤ 2

∫

log

√

mF

mn
mdν

= K∗
n

For part (b), let qn = mmn/mF Γn, and notice that K∗
n ≥ K(m, qn); see

Barron [1, Theorem 3]. Then, Pinsker’s inequality [9, Theorem 6.1] gives

√

2K∗
n ≥ ‖m− qn‖ =

1

Γn

∥

∥

∥

∥

mn

mF
− Γn

∥

∥

∥

∥

L1(m dν)

≥
∥

∥

∥

∥

mn

mF
− Γn

∥

∥

∥

∥

L1(m dν)

.

The triangle inequality for ‖ · ‖L1(m dν) implies

∥

∥

∥

∥

mn

mF
− 1

∥

∥

∥

∥

L1(m dν)

≤
∥

∥

∥

∥

mn

mF
− Γn

∥

∥

∥

∥

L1(m dν)

+ (1 − Γn),

and hence
√

2K∗
n + (1 − Γn) ≥

∥

∥

∥

∥

mn

mF
− 1

∥

∥

∥

∥

L1(m dν)

.
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The right-hand side is related to the L1(ν) error via Holder’s inequality

‖mn − mF ‖ =

∫

|mn − mF | dν

=

∫

mF

m

∣

∣

∣

∣

mn

mF
− 1

∣

∣

∣

∣

mdν ≤ C

∥

∥

∥

∥

mn

mF
− 1

∥

∥

∥

∥

L1(m dν)

where C := ‖mF /m‖L∞(m dν) is finite by assumption. Therefore,

‖mn − mF ‖ ≤ C
{

√

2K∗
n + (1 − Γn)

}

,

and part (b) follows from the fact that (1 − Γn) ≤ K∗
n.

4.3. Numerical illustrations

We present a brief simulation study to highlight an example where our bound on
rates appears sharp. Let p(·|θ) be a N(θ, 0.12) density, with Θ = [0, 1] and µ as
Lebesgue measure on Θ. We simulate data X1, . . . , Xn from N(0.5, 0.12), which
equals the mixture mF where F ∈ F is the point mass at 0.5. We consider weight
sequences of the form wi = (i+1)−γ for γ ∈ {0.5, 0.6, 0.67, 0.7, 0.75, 0.8, 0.9, 1.0}.
For each choice of γ, the KL distance Kn = K(m, mn) is computed for 500
simulated data sets of size n, for each n ∈ {103, 104, 105, 106}. In order to
estimate the empirical rate of convergence, set Ln = − log10 Kn and consider
the following linear models:

Model 1: E(Ln) = β0 + β1 log10 n (4.8)

Model 2: E(Ln) = β0 + β1 log10 n + β2 log10 log10 n (4.9)

Figure 1 shows Kn, averaged over the 500 replications, against n for each choice
of γ. Table 1 shows the estimated coefficients of the linear models. In either
model we would expect β1 to be close to 1−γ had our upper bound been sharp.
This indeed appears to be the case, particularly for γ not too close to 1. Also,
the two estimates of β1 sandwich 1− γ, perhaps indicating that the actual rate
is n−(1−γ) modulo a factor of log n.

We should point out that this example does not exactly satisfy the assump-
tions of Theorem 4.8. Indeed, the KL minimizer F = δ{0.5} lies on the boundary
of F and not in its interior. However, we interpret this as the limit of examples
where the optimal F gets increasingly close to the boundary, and this limit-
based argument points to a minimax-type sharpness of the derived bounds. On
the other hand, in examples where F is in the interior of F, simulation stud-
ies have shown convergence rates faster than n1−γ . For example, when F is a
Unif(Θ) distribution and γ = 0.75, a fit of Model 1 gives β̂1 = 0.73, and a fit

of Model 2 gives β̂1 = 0.53 and β̂2 = 1.98. These empirical results suggest that
a nearly parametric rate of convergence, like (log n)k/

√
n, may be attainable in

some cases.
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Fig 1. KL divergence between m and mn, averaged over 500 data sets of size n, against n

for 8 choices of the weight sequence wi = (i + 1)−γ, γ ∈ {0.5,0.6,0.67,0.7,0.75,0.8,0.9,1}.
Both axes are on the log scale. The average KL distances maintain the same ordering as of
the γ values, the bottom curve is for γ = 0.5 and the top one is for γ = 1.

Table 1

Estimated coefficients for Models 1 and 2 (4.8–4.9). Standard errors for β̂1 are in

(1,2) × 10−3 and (1,2) × 10−2 for Models 1 and 2, respectively, and standard errors for β̂2

are in (1,2) × 10−1. Our upper bound suggests β1 should be close to 1 − γ. It is larger than
1 − γ for Model 1 and smaller for Model 2 with the addition of a log log n term. This
indicates that the actual rate is unlikely to be faster than n−(1−γ) by a power of n

Model 1 Model 2

γ β̂0 β̂1 β̂0 β̂1 β̂2

0.5 0.97 0.56 1.14 0.66 −0.91
0.6 1.12 0.43 1.01 0.38 0.59
0.67 1.16 0.37 1.00 0.29 0.81
0.7 1.17 0.34 1.00 0.25 0.88
0.75 1.18 0.30 0.98 0.19 1.03
0.8 1.19 0.26 0.95 0.14 1.22
0.9 1.17 0.19 0.88 0.03 1.55
1.0 1.11 0.13 0.79 −0.03 1.68

5. A generalized PR algorithm

To satisfy the conditions of Theorem 4.8, one typically needs the mixing pa-
rameter space Θ to be compact. Also, this Θ must be known in practice since
computation requires integration over Θ in (1.2). These requirements can be
somewhat restrictive, particularly when there is no natural choice of Θ. A po-
tential solution is to use a mixture sieve, which allows the support of the esti-
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mated mixing distribution to grow with the sample size. A motivation for this
dynamic choice of support would be that, eventually, the support will be large
enough so that the class of all mixtures over that support will be sufficiently rich.
Borrowing on this idea, we propose a sieve-like extension of the PR algorithm
which, instead of requiring Θ to be fixed and known, incorporates a sequence of
compact mixing parameter spaces that increases with n.

Let Θ denote the mixing parameter space, which may or may not be compact.
For example, if the model is a Gaussian location-scale mixture, then Θ = R×R+.
The generalized PR algorithm, in terms of densities, is as follows.

Algorithm GPR. Choose an increasing sequence of compact sets Θn such
that Θn ↑ Θ, a bounded, strictly positive, µ-measurable function g(θ), and a
sequence cn ≥ 0 that satisfies

∑

n log(1 + cn) < ∞. Define

gn(θ) = g(θ)IΘn\Θn−1
(θ)/dn,

where dn =
∫

Θn\Θn−1
g dµ is the normalizing constant. Start with an initial

estimate f0 on Θ0 and, for n ≥ 1, define

f∗
n(θ) = (1 − wn)fn−1(θ) + wn

p(Xn|θ)fn−1(θ)

mn−1(Xn)
, θ ∈ Θn−1

and then

fn(θ) =











1
1+cn

f∗
n(θ), θ ∈ Θn−1

cn

1+cn

gn(θ), θ ∈ Θn \ Θn−1

0, θ ∈ Θc
n

(5.1)

As in (1.3), define mn := mfn
as the final estimate of m.

Our motivation for using gn is that if Θn is small compared to the unknown
Θ, the estimate should be padded near the boundary of Θn to compensate for
the possibly heavy tails of f assigning non-negligible mass to Θ \Θn. The GPR
algorithm requires specification of two parameters, namely, the weight sequence
cn and the function g. Simple choices are cn = w2

n and g(θ) ≡ 1, but the practical
performance of GPR for these or other choices has yet to be studied.

We now consider convergence of the GPR estimate mn. The primary obstacle
in extending the results in Section 4 is that now the support of the mixing
distributions is changing with n—this makes the comparisons of the mixing
densities in the proof of Lemma 4.4 more difficult. Here we will consider only
the case where m = mf for some mixing density f , but both f and its support
Θf ⊂ Θ are unknown. Theorem 5.1 below establishes a bound on the rate of
convergence in the case where Θf is a compact subset of Θ. Note that, while we
are restricting ourselves to the compact case, we do not assume Θf is known.

Recall condition A4 in Section 4 requiring that the likelihood ratio be square
integrable uniformly over Θ. In this case, we have a sequence Θn, and we require
a bound similar to that of A4 for each Θn. To this end, define the sequence

Bn = sup
θ1,θ2,θ3∈Θn

∫
[

p(x|θ1)

p(x|θ2)

]2

p(x|θ3) dν(x), n ≥ 0. (5.2)
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Since Θn ⊂ Θn+1, the sequence Bn is clearly increasing; if we are to push the
proof of Theorem 4.8 through in this more general situation, we will need to
control how fast Bn increases.

Theorem 5.1. Assume that Θf ⊂ Θ is compact and that conditions A2–A3
hold. Furthermore, assume that

∑

n anw2
nBn < ∞. Then the GPR estimates

mn satisfy anK(mf , mn) → 0 a.s.

The proof is essentially the same as that of Theorem 4.8—we simply need to
check that Lemmas 4.3 and 4.4 continue to hold in this new context. The details
are provided in the Appendix.

Remark 5.2. The growth rate condition
∑

n an−1w
2
nBn < ∞ in Theorem 5.1

clearly holds provided that {wn} and {Bn} satisfy wn ≍ (nα log n)−1 for some
α ∈ [2/3, 1], and Bn = O(logn).

Example 5.3. Let p(x|θ) = e−(x−θ)2/2/
√

2π be a N(θ, 1) density (with respect
to Lebesgue measure). Then

∫
[

p(x|θ1)

p(x|θ2)

]2

p(x|θ3) dx = exp{θ2
2 − θ2

1 + 2θ3(θ1 − θ2) + 2(θ1 − θ2)
2}.

If we let Θn = [−tn, tn], then

Bn = sup
θ1,θ2,θ3∈Θn

exp{θ2
2 − θ2

1 + 2θ3(θ1 − θ2) + 2(θ1 − θ2)
2} = exp{12t2n}.

If we choose tn ≍ (c + 1
12 log log n)1/2, for some constant c > 0, then Bn =

O(log n). Taking wn as in Remark 5.2 satisfies the conditions of the theorem.

Example 5.4. Suppose that p(x|θ) = e−θθx/x! is a Poisson density (with
respect to counting measure). Then

∑

x

[

p(x|θ1)

p(x|θ2)

]2

p(x|θ3) = exp{2(θ2 − θ1) − θ3 + θ2
1θ3/θ2

2}.

Take Θn = [αn, βn] where αn and βn are to be determined. Then,

Bn = sup
θ1,θ2,θ3∈Θn

exp{2(θ2 − θ1) − θ3 + θ2
1θ3/θ2

2} ≤ exp{β3
n/α2

n}.

If βn ≍ (c + log logn)1/5, for some constant c > 0 such that Θ0 suitably large,
and αn = β−1

n , then it is easy to check that Bn = O(log n). Therefore, the
conditions of Theorem 5.1 are satisfied with wn as in Remark 5.2.

6. Discussion

PR is an exciting stochastic algorithm for mixture models that is quite different
from EM or MCMC in its focus and structure. While MCMC and EM focus ex-
clusively on the mixture distribution, PR brings the mixing density to the fore.
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Structurally, PR is not a hill-clmbing algorithm like EM or MCMC; rather, it
draws inspiration from the recursive aggregation idea of stochastic approxima-
tion (SA). Martin and Ghosh [16] have established a precise connection between
PR and SA for finite-dimensional F, and this connection is likely to extend to the
infinite-dimensional case as well. Interestingly, very little is known about con-
vergence properties of general infinite-dimensional SA algorithms, even though
their finite-dimensional counterparts are well understood. In this regard, our
convergence results here can make a major contribution to the study of SA in
general.

In this paper we have extended our recent work on asymptotic analysis of PR
in two key directions. First, we have shown that PR is robust to mixture model
mis-specification, in the sense that the PR estimate mn converges to the mixture
mF which is closest in KL divergence to the true density m. This property is
important since, typically, m itself is not a mixture, but is closely approximated
by one. Second, we have established a bound on the PR rate of convergence,
which makes a direct connection between the choice of weight sequence wn

and the performance of the PR estimates. We suspect that the extra condition
needed for the rate in Theorem 4.8—namely, that a KL minimizer F sit inside
F—can be relaxed, but more work is needed. Simulation results presented in
Section 4.3 reveal two interesting observations: (i) the bound on the rate is
of a minimax nature, and (ii) the best (minimax) rates, when wn ≍ n−γ , are
achieved for γ near 0.5. Further investigations are needed to better understand
in what sense the rate is minimax, to extend Theorem 4.8 to the case when
γ ≈ 0.5, and to characterize the rate in a typical “non-minimax” problem.

We have also proposed a practical extension of the PR algorithm which does
not require that the mixing distribution have a known compact support. In-
stead, GPR uses an increasing sieve-like sequence of increasing compact sup-
ports. Sufficient conditions are given—which essentially control the growth rate
of the sieves—that guarantee consistency of the estimated mixture and bound
the rate of convergence. Here, however, the growth of the sieve space is rather
slow (see Examples 5.3–5.4), so the advantages of a dynamic support over a
large fixed support may be difficult to see in finite samples. We suspect that
the extension of Theorem 4.8 to handle γ near 0.5 can be used here to relax the
growth rate conditions and allow the sieve space to grow more rapidly.
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Appendix A: Proofs

Proof of Lemma 4.1. For part (a), treat θ as a random element in Θ, with dis-
tribution Φ ∈ F, and define the random variable

gΦ(θ) =

∫

m(x)

mΦ(x)
p(x|θ) dν(x). (A.1)

Then EΦ{gΦ(θ)} =
∫

gΦ dΦ = 1 and T (Φ) = VΦ{gΦ(θ)} ≥ 0, with equality if
and only if gΦ = 1 µ-a.e. Next define

G(Φ) = log

{
∫

Θ

gΦ(θ) dF (θ)

}

= log

{
∫

X

mF

mΦ
mdν

}

,

where F ∈ F is such that K(m, mF ) = K(m, M). Note that T (Φ) = 0 implies
G(Φ) = 0. By Jensen’s inequality

G(Φ) ≥
∫

X

log

(

mF

mΦ

)

mdν = K(m, mΦ) − K(m, mF ) ≥ 0,

so that G(Φ) = 0 implies K(m, mΦ) = K(m, M).
For part (b), take a sequence {Φs} ⊂ F such that Φs converges weakly to

some Φ ∈ F, and let gΦs
and gΦ be as in (A.1). Let rs(x, θ) = p(x|θ)/mΦs

(x) so
that gΦs

(θ) =
∫

rs(x, θ)m(x) dν(x). By A4 and Jensen’s inequality,

sup
s

∫

r2
s(x, θ)m(x) dν(x) ≤ B,

which implies {rs(·, θ)} is uniformly integrable with respect to mdν ; therefore,
gΦs

→ gΦ µ-a.e. Since the weak topology on F is metrizable, to prove continuity
of T it suffices to show that T (Φs) → T (Φ). We have

|T (Φs) − T (Φ)| =

∣

∣

∣

∣

∫

g2
Φs

dΦs −
∫

g2
Φ dΦ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

(g2
Φs

− g2
Φ) dΦs

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

g2
Φ d(Φs − Φ)

∣

∣

∣

∣

(A.2)

The second term on the right-hand side of (A.2) goes to zero by definition of
weak convergence, since g2

Φ ≤ B (by A4) and g2
Φ is continuous (by A1). We also

know the following:

• |g2
Φs

− g2
Φ| → 0 µ-a.e.,

• |g2
Φs

− g2
Φ| ≤ 2B, and

• lims→∞

∫

dΦs = 1 =
∫

dΦ.

Now, for the first term on the right-hand side of (A.2),

∣

∣

∣

∣

∫

(g2
Φs

− g2
Φ) dΦs

∣

∣

∣

∣

≤
∫

|g2
Φs

− g2
Φ| dΦs → 0,
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where convergence follows from the above three properties and Theorem 1 of
Pratt [21]. Therefore, T (Φs) → T (Φ) and since the sequence {Φs} was arbitrary,
T must be continuous.

Proof of Lemma 4.3. Note that for a > 0 and b ∈ (0, 1), we have

(a − 1)2 max{1, (1 + b(a − 1))−2} ≤ max{(a − 1)2, (1/a− 1)2}. (A.3)

Combining inequalities (4.1) and (A.3) we see that

H2
n,Xn

R(wnHn,Xn
) ≤ max

{

(

hn,Xn

mn−1
− 1

)2

,

(

mn−1

hn,Xn

− 1

)2
}

and, since both hn,Xn
and mn−1 belong to M for each n, we conclude from A4

and Jensen’s inequality that Zn ≤ 1 + B a.s.

Proof of Lemma 4.4. Since F ∈ F, the KL divergence of Fn from F is well-
defined. Following the argument of TMG (p. 2505), it is possible to write a
recursion for K(F, Fn) as we did in (4.2). In particular,

E{K(F, Fn) | An−1} = K(F, Fn−1) − wnD(Fn−1) + w2
nE(Yn|An−1),

where Yn, like Zn, is uniformly bounded by B + 1, and the functional D(·) is
given by

D(Φ) =

∫
(

mF

mΦ
− 1

)

mdν.

It follows from Jensen’s inequality that

D(Φ) ≥
∫

log
mF

mΦ
mdν = K(m, mΦ) − K(m, mF ) ≥ 0, (A.4)

with equality iff mΦ = mF . This is an almost supermartingale, so we conclude
from Theorem 2.1 that K(F, Fn) converges a.s. and

∑

n wnD(Fn−1) < ∞ a.s.
But in light of (A.4), we have

∑

n wnK∗
n−1 < ∞, the desired result.

Proof of Theorem 5.1. Since Bn is increasing, the condition
∑

n anw2
nBn < ∞

implies that the conclusion of Lemma 4.3 holds, and the remainder term Zn

in (4.5) satisfies
∑

n w2
nE(Zn) < ∞. The key observation is that, since Θf is

compact, there is a number N = N(f) such that Θf ⊂ Θn for all n ≥ N .
Consequently, there are only N iterates f0, . . . , fN−1 such that K(f, fi) = ∞.
Without loss of generality, we can shift the “time scale” so that N = 0. Now
apply the same expansion as in the proof of Lemma 4.4 to get

E{K(f, fn) | An−1} − K(f, fn−1) = −
∫

f log(fn/fn−1) dµ

= −wnD(fn−1) + w2
nE(Yn|An−1) + log(1 + cn)

This is of the almost supermartingale form (2.1), and both
∑

n w2
nE(Yn|An−1)

and
∑

n log(1 + cn) are finite. Therefore, Theorem 2.1 implies K(f, fn) con-
verges, and

∑

n wnD(fn−1) < ∞. From this and (A.4) we can conclude that
∑

n wnK(mf , mn) < ∞ a.s. To finish the proof, simply throw away the first N
iterations and apply the argument used to prove Theorem 4.8.
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