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Abstract. The covariance structure among other properties of the square of
the purely diagonal bilinear time series model is obtained. The time series
properties of these squares are compared with those of the linear moving av-
erage time series model. It was discovered that the square of a linear moving
average process is also identified as a moving average process whereas, while
the nonlinear purely diagonal bilinear process is identified as a linear moving
average process, its square is identified as an autoregressive moving average
process.

1 Introduction

The majority of work on time series has been centered on linear models. The tra-
ditional search has been for a class of models that can be analyzed with reason-
able ease, yet are sufficiently general to be able to well approximate most series
that arise in the real world. The class of models considered by Box and Jenk-
ins (1976), known as autoregressive moving average (ARMA) models have this
property and have been used with considerable success in many scientific fields,
including economic forecasting [see Granger and Newbold (1977)]. Nevertheless
ARMA models are linear models and are evaluated using only criteria appropri-
ate to such models, whereas in most disciplines, the theory may be on nonlinear
relationships between variables.

A special class of nonlinear models which have been found useful and gained
wide acceptability is the bilinear time series model proposed by Granger and
Andersen (1978) and studied further by Subba Rao (1981). Let et , t ∈ Z,
Z{. . . ,−1,0,1, . . .} be a sequence of independent identically distributed random
variables with E(et ) = 0 and E(e2

t ) = σ 2 < ∞. Let a1, a2, . . . , ar , b1, b2, . . . , bh,

θij , 1 ≤ i ≤ m, 1 ≤ j ≤ l, be real constants. The general bilinear autoregressive
moving average process of order (r, h,m, l), denoted by BARMA(r, h,m, l) as
defined by Granger and Andersen (1978) is given by

Xt =
r∑

j=1

ajXt−j +
h∑

j=1

bj et−j +
m∑

i=1

�∑
j=1

θijXt−iet−j + et (1.1)
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for every t ∈ Z. Special cases of (1.1) are discussed by the following authors,
amongst others; Granger and Andersen (1978), Subba Rao (1981), Subba Rao and
Gabr (1981), Tong (1981), Bhashara Rao, Subba Rao and Walker (1983), Aka-
manam, Bhaskara Rao and Subramanyam (1986).

A bilinear model is one which is linear in both Xt , t ∈ Z, and et , t ∈ Z, but not
in those variables jointly. The first part of (1.1) is identifiable as the autoregressive
(AR) part, the second as the moving average (MA) part and the third part is the
pure bilinear part of the process Xt , t ∈ Z. When θij = 0 for all i and j in (1.1),
we obtain the linear ARMA process. Thus a study of bilinear models subsumes the
study of AR models as well as MA and ARMA models.

The model (1.1) is said to be a purely bilinear process when aj = bj = 0 for
all j . A purely bilinear process is said to be a purely diagonal bilinear process if
in addition θij = 0 for all i �= j . Let Xt , t ∈ Z, and et , t ∈ Z, be two stochastic
processes defined on some probability space (�,A,P ),Xt , t ∈ Z, is said to be a
purely diagonal bilinear process of order q (PDB(q)) with respect to the process
et , t ∈ Z, if

Xt =
q∑

j=1

θjjXt−j et−j + et (1.2)

for every t ∈ Z. Akamanam (1983) established that the covariance function of (1.2)
is the same as that of the moving average process of order q (MA(q)) given by

Xt = β0 +
q∑

j=1

βjμt−j + μt, (1.3)

where μt , t ∈ Z, may not be a purely random process. The necessary and sufficient
condition of stationarity of (1.2) has been discussed in Terdik (1999). For a time
series model to be useful for forecasting purposes, it is necessary that it should
be invertible. A sufficient condition for the invertibility of model (1.2) have been
derived by Guegan and Pham (1987).

We have seen that linear and bilinear models have the same covariance struc-
ture under second-order analysis. The problem of differentiating a linear ARMA
process from a nonlinear BARMA process has therefore engaged the attention
of many authors. Third-order moments and cumulants are the widely accepted
method [see Gabr (1988), Sessay and Subba Rao (1991), Oyet and Iwueze (1993),
Iwueze and Chikezie (2006)] of differentiating between the two competing models.
Little attention has been paid to the fourth moments or the time series properties
of the squares of the series.

The purpose of this paper is to carry out a second-order analysis on the squares
(Yt = X2

t ) of the purely diagonal bilinear process (1.2) and that of the linear mov-
ing average process (1.3), with a view to providing an alternate differentiation
technique. Section 2 will consider the first-order and second-order moments of
Yt = X2

t for (1.2), while Section 3 will consider the same moments for (1.3). Sec-
tion 4 contains the concluding remarks.
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2 Covariance analysis for the square of the diagonal completely
bilinear process

Given that Xt, t ∈ Z, satisfies (1.2), we obtain

Yt = X2
t =

q∑
j=1

θ2
jjX

2
t−j e

2
t−j + 2

q∑ q∑
i<j

θiiθjjXt−iet−iXt−iet−j

(2.1)

+ 2
q∑

j=1

θjjXt−j et−j et + e2
t .

In obtaining the expressions in this section, we assume that the random variables
et , t ∈ Z, are Gaussian with E(et ) = 0 and E(e2

t ) = σ 2 < ∞. We shall also use the
assumption that by expression (1.2), et , t ∈ Z, is independent of Xh,h < t . Based
on these assumptions, it can easily be shown that

E(Xtet ) = σ 2, (2.2)

E(X2
t e

2
t ) = σ 2E(X2

t ) + 2σ 4, (2.3)

E(Xt−iet−iXt−j et−j ) = σ 4. (2.4)

Thus

E(Yt ) = E(X2
t ) = σ 2 + 2σ 4

q∑ q∑
i<j

θiiθjj +
q∑

j=1

θ2
jj [σ 2E(X2

t ) + 2σ 4].

Therefore(
1 − σ 2

q∑
j=1

θ2
jj

)
E(Xt) = σ 2 + 2σ 4

q∑ q∑
i<j

θiiθjj + 2σ 4
q∑

j=1

θ2
jj .

This implies that

E(Yt ) = E(X2
t ) = σ 2(1 + 2σ 2 ∑q ∑q

i<j θiiθjj + 2σ 2 ∑q
j=1 θ2

jj )

(1 − σ 2 ∑q
j=1 θ2

jj )
= μy (2.5)

provided, σ 2 ∑q
j=1 θ2

jj < 1. It is clear from (2.5) that

(
1 − σ 2

q∑
j=1

θ2
jj

)
= σ 2(1 + 2σ 2 ∑q ∑q

i<j θiiθjj + 2σ 2 ∑q
j=1 θ2

jj )

μy

. (2.6)

We now proceed to find the autocorrelation function, Ry(k), k = 0,1,2, . . . for
the variable Yt = X2

t , where

Ry(k) = E(YtYt+k) − μ2
y = E(X2

t X
2
t+k) − (E(X2

t ))
2. (2.7)
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Before we proceed, it is very important to highlight the fact that after a series of
algebraic manipulations using (2.6) the following results were established:

(i) For k < q , we have that

E(X2
t X

2
t+k) = θ2

kkE(X4
t e

2
t ) + ∑

j=1,j �=k

θ2
jjE(X2

t+k−j e
2
t+k−jX

2
t )

+ 2
∑

(i=k)<j

θkkθjjE(X3
t Xt+k−j et+k−j et )

+ 2
∑

i<(k=j)

θiiθkkσ
2E(X3

t et )

+ 2
∑
i<j

∑
i �=k,j,j �=k

θiiθjjE(Xt+k−iet+k−iXt+k−j et+k−jX
2
t )

+ σ 2E(X2
t )

and consequently it was found that Ry(k) does not satisfy the Yule–Walker type
difference equation.

(ii) For k = q , we have that

Ry(k) = Ry(q) =
q∑

j=1

θ2
jjσ

2R(q − j) + 2σ 4

[
2

q−1∑
j=1

θiiθqq + 5θ2
qq

]
μy. (2.8)

Having noted these findings, we shall now proceed to considering when k > q . In
this case

E(X2
t X

2
t−k) = E(X2

t X
2
t+k)

=
q∑

j=1

θ2
jjE(X2

t e
2
t X

2
t+k−j ) (2.9)

+ 2
q∑ q∑
i<j

θiiθjjσ
4E(X2

t ) + σ 2E(X2
t ).

Using equations (2.2) through (2.3) via a series of algebraic manipulations it was
established that

E(X2
t e

2
t X

2
t+k−j ) = σ 2E(X2

t X
2
t+k−j ) + 2σ 2E(X2

t ). (2.10)

Thus,

Ry(k) =
q∑

j=1

θ2
jjσ

2E(X2
t X

2
t+k−j ) −

q∑
j=1

θ2
jjσ

2μ2
y +

q∑
j=1

θ2
jjσ

2μ2
y

(2.11)

+ 2σ 4
q∑

j=1

θ2
jjμy + 2

q∑ q∑
i<j

θiiθjjσ
4μy + σ 2μy − μ2

y.
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Note that in (2.11), we added and subtracted the term (
∑q

j=1 θ2
jjσ

2μ2
y) where

μy = E(Yt ) = E(X2
t ) thus

Ry(k) =
q∑

j=1

θ2
jjσ

2[E(X2
t X

2
t+k−j ) − μ2

y] − μ2
y

[
1 − ∑

θ2
jjσ

2
]

− σ 2

[
1 + 2σ 2

q∑
j=1

θ2
jj + 2

q∑ q∑
i<j

θiiθjjσ
2

]
μy.

Using equations (2.6) and (2.7), we have that

Ry(k) =
q∑

j=1

θ2
jjσ

2R(k − j) − σ 2

[
1 + 2σ 2

q∑
j=1

θ2
jj + 2

q∑ q∑
i<j

θiiθjjσ
2

]
μy

+ σ 2

[
1 + 2σ 2

q∑
j=1

θ2
jj + 2

q∑ q∑
i<j

θiiθjjσ
2

]
μy.

Since from (2.6),(
1 −

q∑
j=1

θ2
jjσ

2

)
μ2

y = σ 2

[
1 + 2σ 2

q∑
j=1

θ2
jj + 2

q∑ q∑
i<j

θiiθjjσ
2

]
μy.

Thus

Ry(k) =
q∑

j=1

θ2
jjσ

2R(k − j), k = q + 1, q + 2, . . . . (2.12)

Equation (2.12) is a Yule–Walker equation for ARMA(q, q). Thus our study of
the square of model (2.1) has lead to the following important theory needed for
model identification.

Theorem 1. Let et , t ∈ Z, be a sequence of independent and identically dis-
tributed random variables with E(et ) = 0 and E(e2

t ) = σ 2 < ∞. Suppose
there exists a stationary and invertible process Xt, t ∈ Z, satisfying Xt =∑q

j=1 θjjXt−j et−j + et for every t ∈ Z for some constants θ1, θ2, . . . , θq , for

q > 0. Then X2
t , t ∈ Z, will be an ARMA(q, q).

3 Covariance analysis for the square of the linear moving
average process

Here we shall show that if Xt, t ∈ Z, is an MA(q), then X2
t , t ∈ Z, is also an

MA(q). Before doing that, we shall first obtain the mean of X2
t , t ∈ Z, as follows:
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Given model (1.3), we have that

Yt = X2
t =

q∑
j=1

β2
j e2

t−j + 2
∑∑

i<j

βiβj et−iet−j + 2
q∑

j=1

βjet−j et + e2
t . (3.1)

From (3.1) the following results were gotten:

E(X2
t e

2
t ) = σ 4

(
3 +

q∑
j=1

β2
j

)
, (3.2)

E(X2
t ) = σ 2

(
1 +

q∑
j=1

β2
j

)
(3.3)

and

X2
t X

2
t+k =

q∑
j=1

β2
j X2

t e
2
t+k−j + 2

∑∑
i<j

βiβjX
2
t et+k−j et+k−i

(3.4)

+ 2
q∑

j=1

βjX
2
t et+k−j et+j + X2

t e
2
t+k.

In order to obtain the autocovariance function, we shall consider two cases,
namely, when k ≤ q and k > q .

Case I: When k ≤ q .
Here, we have that

X2
t X

2
t+k = β2

kX2
t +

q∑
j=1,j �=k

β2
j X2

t e
2
t+k−j + 2

∑∑
k<j

βkβjX
2
t et et+k−j

+ 2
∑∑

k<i

βkβiX
2
t et et+k−i + 2

∑
i<j

∑
i �=k,j �=k

βiβjX
2
t et+k−iet+k−j

+ 2βkX
2
t et et+k + X2

t e
2
t+k.

Therefore

E(X2
t X

2
t+k) = β2

kE(X2
t e

2
t ) + σ 2

∑
j=1,j �=k

β2
j E(X2

t ) + σ 2E(X2
t )

= β2
kE(X2

t e
2
t ) + σ 2E(X2

t )

[
1 + ∑

j=1,j �=k

β2
j

]
.

Thus when k ≤ q,Ry(k) is given by

θ2
k E(X2

t e
2
t ) + σ 2E(X2

t )

[
1 + ∑

j=1,j �=k

β2
j

]
−

[
σ 2

(
1 +

q∑
j=1

β2
j

)]
. (3.5)
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Case II: When k > q .
In this case we have that,

X2
t X

2
t+k =

q∑
j=1

β2
j X2

t e
2
t+k−j + 2

∑∑
i<j

βiβjX
2
t et+k−iet+k−j

+ 2
q∑

j=1

βjX
2
t et+k−iet+k−j + X2

t et+k.

This implies that

E(X2
t X

2
t+k) =

q∑
j=1

β2
j E(X2

t e
2
t+k−j ) + 2

∑∑
i<j

βiβjE(X2
t et+k−iet+k−j )

(3.6)

+ 2
q∑

j=1

βjE(X2
t et+k−iet+k−j ) + σ 2E(X2

t )

therefore

E(X2
t X

2
t+k) = σ 2

q∑
j=1

β2
j E(X2

t ) + σ 2E(X2
t ) = σ 2E(X2

t )

[
1 +

q∑
j=1

β2
j

]
. (3.7)

Thus

Ry(k) = σ 2E(X2
t )

[
1 +

q∑
j=1

β2
j

]
−

[
σ 2

(
1 +

q∑
j=1

β2
j

)]2

. (3.8)

If we substitute (3.3), that is, E(X2
t ) = σ 2(1 + ∑q

j=1 β2
j ) into (3.8), we have that

Ry(k) = 0. (3.9)

Theorem 2. If Xt, t ∈ Z, is an MA(q) process, X2
t , t ∈ Z, is also an MA(q) pro-

cess.

The result of Theorem 2 follows easily from the fact that if Xt is a MA(q) and
et is iid then Xt is q-dependent, therefore X2

t (and some more functions of Xt as
well) is q-dependent, hence MA(q), provided the second-order moments exist; see
Section 3.2 (Brockwell and Davies, 1987).

4 Conclusion

The fundamental findings of this study are that the squares of the linear moving
average process of order q (MA(q)) is also identified as a moving average process
of order q , whereas while the nonlinear purely diagonal bilinear process of order
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q (PDB(q)) is identified as a linear moving average process of order q , its square
is identified as some linear autoregressive moving average process ARMA(q, q)

process.
Considering the sameness in covariance structures of the linear moving aver-

age processes and that of the nonlinear purely diagonal bilinear processes, these
findings will provide a powerful differentiating technique.
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