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QUANTILE CALCULUS AND CENSORED REGRESSION

BY YIJIAN HUANG1

Emory University

Quantile regression has been advocated in survival analysis to assess
evolving covariate effects. However, challenges arise when the censoring time
is not always observed and may be covariate-dependent, particularly in the
presence of continuously-distributed covariates. In spite of several recent ad-
vances, existing methods either involve algorithmic complications or impose
a probability grid. The former leads to difficulties in the implementation and
asymptotics, whereas the latter introduces undesirable grid dependence. To
resolve these issues, we develop fundamental and general quantile calculus
on cumulative probability scale in this article, upon recognizing that proba-
bility and time scales do not always have a one-to-one mapping given a sur-
vival distribution. These results give rise to a novel estimation procedure for
censored quantile regression, based on estimating integral equations. A nu-
merically reliable and efficient Progressive Localized Minimization (PLMIN)
algorithm is proposed for the computation. This procedure reduces exactly to
the Kaplan–Meier method in the k-sample problem, and to standard uncen-
sored quantile regression in the absence of censoring. Under regularity condi-
tions, the proposed quantile coefficient estimator is uniformly consistent and
converges weakly to a Gaussian process. Simulations show good statistical
and algorithmic performance. The proposal is illustrated in the application to
a clinical study.

1. Introduction. Quantile regression [Koenker and Bassett (1978)], concern-
ing models for conditional quantile functions, has developed into a primary sta-
tistical methodology to investigate functional relationship between a response and
covariates. Targeting the full spectrum of quantiles, it provides a far more complete
statistical analysis than, say, classical linear regression. This technique has a long
history in econometric applications. More recently, quantile regression has also
been advocated for survival analysis to address evolving covariate effects which is
a common phenomenon in demographic and clinical research among others. For
instance, the aging process as well as the effects of its determinants can be vastly
different at various stages of life [cf. Koenker and Geling (2001)]. On the other
hand, a clinical intervention can rarely be expected to have a constant effect, due
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to the time lag in reaching full effect and to drug resistance. The quantile regression
model allows for varying regression coefficients and thus suits these applications
well. However, a main challenge arises from censoring.

Denote the survival time by T and the censoring time by C. As a result of
censoring, T is not directly observed but through follow-up time X = T ∧ C and
censoring indicator � = I (T ≤ C), where ∧ is the minimization operator and I (·)
is the indicator function. Of interest is the relationship between T and a p × 1
covariate vector Z with constant 1 as the leading component. Quantile function
is an inverse of the distribution function FZ(t) ≡ Pr(T ≤ t |Z). However, ambi-
guities arise in the presence of zero-density intervals; for example, zero mortality
is not uncommon at the beginning of many clinical trials since new enrollees are
relatively healthy. To be definitive, we adopt the cadlag inverse, that is, the inverse
function that is right-continuous with left-hand limits. The τ th conditional quantile
of T given Z is defined as

QZ(τ) ≡ sup{t :FZ(t) ≤ τ }, τ ∈ [0,1).(1)

The quantile regression model postulates that

QZ(τ) = Z�β0(τ ) ∀τ ∈ [0,1),(2)

where β0(τ ), referred to as the quantile coefficient, is a function of probability τ .
This model is semiparametric in general, but nonparametric in the k-sample prob-
lem. The interest in evolving covariate effects necessitates the functional modeling
of (2), which distinguishes itself from the modeling on a specific quantile as in,
for example, median regression; see Section 6 for further discussion. Note that the
time scale may be, say, logarithm-transformed, and accordingly the supports of T ,
C and X are not necessarily restricted to the nonnegative half line. When all com-
ponents of β0(τ ) except the intercept are constant in τ , this model reduces to the
accelerated failure time mode as studied by Buckley and James (1979) and Tsiatis
(1990) among others. In this regard, the quantile regression model is a varying-
coefficient generalization. To provide an interpretation, suppose for the moment
that model (2) holds on the logarithmic time scale. Then, the effect of a covariate,
other than the leading 1 of Z, is to stretch or compress the baseline survival time
(on the original scale) with a quantile-dependent stretching or compressing factor.

With uncensored data, Koenker and Bassett (1978) generalized sample quantile
and proposed regression quantile as a quantile coefficient estimator via a convex
objective function. An adaptation of the well-known Barrodale–Roberts algorithm
was later suggested by Koenker and D’Orey (1987) for the computation. The re-
liability and efficiency of this algorithm contribute to broader acceptance of the
standard methodology. In the presence of censoring, Powell (1984, 1986) proposed
an estimation procedure when censoring time C is always observed. His approach
applies uncensored quantile regression to X as the τ th quantile of X turns out to
be QZ(τ) ∧ C = Z�β0(τ ) ∧ C.
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However, in most survival studies, not only is the survival time subject to censor-
ing but also the censoring time is unobserved for uncensored individuals. Taking
the missing-data perspective of censoring, Ying, Jung and Wei (1995) and Hon-
oré, Khan and Powell (2002) developed different methods but with the common
consistent estimation requirement of the censoring distribution given covariates.
This amounts to either an unconditional independence censoring mechanism, or a
finite-number limitation on covariate values, or additional censoring-time model-
ing to achieve a root-n convergence rate of the estimated censoring distribution.
Obviously, none of these is desirable. Ying, Jung and Wei (1995) indicated that
such a restriction may be relieved by employing smoothing techniques to nonpara-
metrically estimate the conditional censoring distribution. As an alternative, Wang
and Wang (2009) developed a method by nonparametrically estimating the condi-
tional survival distribution via kernel smoothing. Nevertheless, Robins and Ritov
(1997) argued that these smoothing-based methods may not be practical with mod-
erate sample size in the presence of multiple continuously-distributed covariates;
see also Portnoy (2003).

Our investigation focuses on the same preceding data structure, but aims to al-
low for generalities on both the censoring mechanism and covariates. Specifically,
we consider conditional independence censoring mechanism:

T ⊥ C|Z,(3)

where ⊥ denotes statistical independence. This problem was first investigated by
Portnoy (2003), who suggested the pivoting method employing the redistribution-
to-the-right imputation scheme for censoring [Efron (1967)]. The mass of censored
observations is recursively redistributed to adopt standard uncensored quantile re-
gression. However, one premise is the quantile monotonicity so that the “right,” or
future, is unequivocal in the redistribution. In the k-sample case, the monotonicity
holds in uncensored sample quantile, and the method reduces to the Kaplan–Meier
method, that is, taking an inverse of the Kaplan–Meier estimator. Unfortunately,
uncensored quantile regression in general does not respect the monotonicity, lead-
ing to both algorithmic and analytic difficulties with Portnoy (2003). Indeed, the
asymptotic properties of the estimator have not yet been established; see Neo-
cleous, Vanden Branden and Portnoy (2006). As an alternative, Neocleous, Van-
den Branden and Portnoy (2006) advocated a closely related grid method. Most
recently, Peng and Huang (2008) proposed a functional estimating function upon
discovering a martingale structure, and developed a grid-based quantile coefficient
estimator. Both uniform consistency and weak convergence have been established.
As for the last two methods, the grid dependence, however, might not be com-
pletely satisfactory.

This article makes two main contributions to this problem. First of all, funda-
mental and general quantile calculus is developed on probability scale, establish-
ing the probability-scale dynamics with allowance for zero-density intervals and



1610 Y. HUANG

discontinuities in a distribution. Second, from quantile calculus a well-defined es-
timator and a reliable and efficient algorithm for censored quantile regression natu-
rally emerge on the basis of estimating integral equations. As compared with Port-
noy (2003), Neocleous, Vanden Branden and Portnoy (2006) and Peng and Huang
(2008), this new approach entails neither algorithmic complications nor a proba-
bility grid. For the rest of this article, quantile calculus is presented in Section 2,
and the proposed estimator and algorithm in Section 3. The asymptotic proper-
ties are investigated and an inference procedure suggested in Section 4. Section 5
presents simulation results on statistical and algorithmic performance, and an il-
lustration with a clinical study. Section 6 concludes with discussion. The proofs
are collected in Appendices A–E.

2. Quantile calculus. Given a survival distribution, a one-to-many mapping
from probability to time scale may arise from zero-density intervals; adopting the
cadlag definition of quantile function is a solution given in the Introduction. Recip-
rocally, a one-to-many mapping from time to probability scale may also arise,
resulting from distributional discontinuities. Thus, time-scale theories including
counting-process martingales cannot be applied to probability scale, unless conti-
nuity restriction is imposed on the distribution. In uncensored quantile regression,
this issue may be bypassed by formulating the estimation as an optimization prob-
lem. However, such an approach may not be feasible in censored quantile regres-
sion, which calls for the development of quantile calculus.

2.1. The one-sample case. Drop Z from the notation in this case. By defin-
ition, Pr{T < Q(τ)} ≤ τ ≤ Pr{T ≤ Q(τ)}. Thus, Q(τ) does not correspond to a
unique probability τ when Pr{T = Q(τ)} > 0. To fill in the missing piece, we
introduce the τ th quantile equality fraction:

ξ(τ ) = τ − Pr{T < Q(τ)}
Pr{T = Q(τ)} ,

which is the fraction of the probability mass at the quantile that brings the cumu-
lative probability up to τ . Here and throughout, we define 0/0 ≡ 0. Elementary
algebra then gives

Pr{T < Q(τ)} + Pr{T = Q(τ)}ξ(τ )
(4)

=
∫ τ

0
[Pr{T ≥ Q(ν)} − Pr{T = Q(ν)}ξ(ν)] dν

1 − ν
∀τ ∈ [0,1).

This result establishes the quantile dynamics on probability scale. More signifi-
cantly, it can be readily exploited to accommodate censoring. Denote the limit of
identifiability by τ = sup{τ : Pr{C ≥ Q(τ)} > 0}.
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PROPOSITION 1. Suppose that T and C are independent and their distribu-
tions do not have jump points in common. Consider integral equation

E
(
�[I {X < q(τ)} + I {X = q(τ)}η(τ)])

(5)

= E

∫ τ

0
[I {X ≥ q(ν)} − I {X = q(ν)}η(ν)] dν

1 − ν
∀τ ∈ [0,1),

where q(·) is a cadlag function and η(·) takes values in [0,1].
(i) If q(·) = Q(·) and η(τ) = ξ(τ ) for all τ such that Pr{T = Q(τ)} > 0, then

(5) holds.
(ii) If (5) holds, then

q(τ) = Q(τ),(6)

E[�I {X = q(τ)}η(τ)] = E[�I {X = Q(τ)}ξ(τ )](7)

for all τ ∈ (0, τ ).

REMARK 1. The condition that the distributions of T and C do not share jump
points is practically needed for the identifiability of the former and therefore the
corresponding quantile function as well. The role of η(τ) is to split probability
mass in the case of Pr{T = Q(τ)} > 0. Equation (5), however, does not determine
η(τ) elsewhere. But instead of, say, setting η(τ) to 0 in those occasions, keeping
the more general form would be advantageous for later developments.

2.2. Quantile coefficient dynamics. Similar to the one-sample case, we as-
sume the following assumption.

ASSUMPTION 1. The conditional distribution functions of T and C given Z

do not have jump points in common for all values of Z.

Write ξZ(τ ) as the τ th quantile equality fraction for the distribution of T

given Z. Generalize the definition of identifiability limit as

τ = sup
{
τ :E[Z⊗2I {C ≥ Z�β0(τ )}] is nonsingular

}
,

where v⊗2 ≡ vv�. The one-sample result of Proposition 1 can then be extended.

PROPOSITION 2. Suppose that quantile regression model (2) and censoring
mechanism (3) hold along with Assumption 1. Consider integral equation

E
(
Z�[I {X < Z�β(τ)} + I {X = Z�β(τ)}ηZ(τ)])

= E

∫ τ

0
Z[I {X ≥ Z�β(ν)} − I {X = Z�β(ν)}ηZ(ν)] dν

1 − ν
(8)

∀τ ∈ [0,1),

where β(·) is a cadlag function and Z-dependent ηZ(·) takes values in [0,1].
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(i) If β(·) = β0(·) and, for any given Z, ηZ(τ) = ξZ(τ ) for all τ such that
Pr{T = QZ(τ)|Z} > 0, then (8) holds.

(ii) In the case that both C and Z are discretely distributed, if (8) holds, then

β(τ) = β0(τ ),(9)

E[Z�I {X = Z�β(τ)}ηZ(τ)] = E[Z�I {X = Z�β0(τ )}ξZ(τ )](10)

for all τ ∈ (0, τ ).

REMARK 2. The admission of β0(·) as a solution to integral equation (8) is
general in the sense that no restriction on the survival and censoring distributions
is imposed other than Assumption 1. But the uniqueness result of β0(·) is provided
only for the case that C and Z are discretely distributed. It is also established under
some other conditions in Section 4. However, we do not yet have a proof for the
most general case.

REMARK 3. Consider the censoring-absent special case with nonsingular
E(Z⊗2). Then, integral equation (8) reduces to

D(τ) =
∫ τ

0
{EZ − D(ν)} dν

1 − ν
,

where D(τ) is the left-hand side of (8). This equation has a unique and closed-form
solution D(τ) = τEZ, or

E
(
Z[I {T < Z�β(τ)} + I {T = Z�β(τ)}ηZ(τ)]) = τEZ.(11)

Note that ηZ(τ) affects the left-hand side at a nonsmooth point only, that is, when
Pr{T = Z�β(τ)} �= 0. With fixed ηZ(τ), the left-hand side may not be smooth
in β(τ). Nonetheless, thanks to ηZ(τ), it can always be smooth in τ and therefore,
the equality of (11) is attainable. As far as β(τ) is concerned, the equation is equiv-
alent to the minimization problem with E[{T − Z�β(τ)}− + τ {T − Z�β(τ)}],
where a− ≡ −aI (a < 0). Thus, Proposition 2 reduces to a well-known result in
uncensored quantile regression.

REMARK 4. Quantile equality fraction ξZ(τ ) is a nuisance parameter. When
Pr(Z = z) = 0 for a given value z, Pr{T = QZ(τ)|Z = z} and thus ξz(τ ) are not
identifiable. Nevertheless, only quantity E[Z�I {X = Z�β0(τ )}ξZ(τ )] as a whole
is relevant to integral equation (8) and it is identifiable. As evident from Remark 3,
the notion of ξZ(τ ) might not be necessary for uncensored quantile regression, by
employing minimization. But it is instrumental for our development of censored
quantile regression.

REMARK 5. Proposition 2 is more general than the martingale result of Peng
and Huang [(2008), equation (4)], whose validity is limited to the circumstance
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of continuous survival distribution. In that special case, the former may reduce to
the latter since the mapping between time and probability scales becomes one to
one and all terms involving ηZ(·) in integral equation (8) may vanish. Even so, the
more general form of (8) is still desirable in order to derive a natural estimating
integral equation by the plug-in principle. After all, an empirical distribution is
always discrete, that is, full of discontinuities and zero-density intervals.

2.3. Relative quantile. To facilitate probability-scale analysis both conceptu-
ally and algebraically, we introduce the notion of relative quantile. Anchored at
the τ th quantile, the {τ + λ(1 − τ)}th quantile coefficient for λ ∈ [0,1) is referred
to as the λth relative quantile coefficient, written as β0(λ, τ ) ≡ β0{τ + λ(1 − τ)}.
This notion provides a convenient vehicle to study quantile coefficient β0(·) for-
ward from a given probability, similar in spirit to the concept of hazard in survival
analysis.

An integral equation for β0(λ, τ ) can be derived with given D(τ), the left-hand
side of (8) at τ . By algebraic manipulation, integral equation (8) implies

E
(
Z�[I {X < Z�β(λ, τ )} + I {X = Z�β(λ, τ )}ηZ(λ, τ )]) − D(τ)

= E

∫ λ

0
Z[I {X ≥ Z�β(ν, τ )} − I {X = Z�β(ν, τ )}ηZ(ν, τ )] dν

1 − ν
(12)

∀λ ∈ [0,1),

where β(λ, τ ) ≡ β{τ + λ(1 − τ)} and ηZ(λ, τ ) ≡ ηZ{τ + λ(1 − τ)}. Apparently,
this is a dual equation since equation (8) becomes a special case when τ = 0.

3. Proposed estimator and algorithm.

3.1. Estimating integral equation. The data consist of (Xi,�i,Zi), i = 1,

. . . , n, as n i.i.d. replicates of (X,�,Z). Proposition 2 leads naturally to our pro-
posed estimation procedure based on the empirical version of integral equation (8):

n∑
i=1

Zi�i[I {Xi < Z�
i β(τ )} + I {Xi = Z�

i β(τ )}wi(τ )]
(13)

=
n∑

i=1

∫ τ

0
Zi[I {Xi ≥ Z�

i β(ν)} − I {Xi = Z�
i β(ν)}wi(ν)] dν

1 − ν
,

where wi(·) takes values in [0,1]. Representing a convenient reparameterization
of ηZ(τ) in (8), fraction wi(τ ) serves the purpose of splitting the empirical prob-
ability mass associated with individual i when and only when Xi = Z�

i β(τ ).
For an uncensored individual, this ensures the continuity of φi(τ ) ≡ I {Xi <

Z�
i β(τ )} + I {Xi = Z�

i β(τ )}wi(τ ).
We shall say that b interpolates an observation (X,�,Z) if X = Z�b.
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THEOREM 1. Suppose that
∑n

i=1 Z⊗2
i is nonsingular. Estimating integral

equation (13) admits a solution β̂(·) over τ ∈ [0,1) with the following properties:
(i) β̂(·) is cadlag; and (ii) β̂(τ ) interpolates at least p individuals and the covariate
matrix for the interpolated set is of full rank, for each and every τ ∈ [0,1).

REMARK 6. Estimating integral equation (13) also admits a solution in the
case of singular

∑n
i=1 Z⊗2

i , by Theorem 1 upon eliminating parametrization re-
dundancy of the quantile coefficient.

REMARK 7. A subtle issue concerns the fact that identifiability limit τ is un-
known. Empirically, τ cannot even be determined definitively to exceed any τ > 0,
which may be easily seen in the one-sample case. Although it is possible to esti-
mate τ , we do not terminate the estimation of β0(·) at such an estimate but rather
provide β̂(τ ) for all τ ∈ [0,1); the properties of β̂(·) would otherwise become
more complicated. Precisely speaking, β̂(τ ) is an estimator of β0(τ ) provided
τ < τ . This strategy of separating the estimation of β0(τ ) provided τ < τ from
that of τ is similar to that adopted by Peng and Huang (2008). In contrast, Portnoy
(2003) and Neocleous, Vanden Branden and Portnoy (2006) terminated their esti-
mation of β0(·) once the estimate becomes nonunique, which might partly explain
the difficulties in their interval estimation.

Geometrically, β̂(τ ) for each τ is a hyperplane, partitioning the sample into⎧⎪⎨⎪⎩
{i :Xi < Z�

i β̂(τ )}, below set,

{i :Xi = Z�
i β̂(τ )}, interpolated set,

{i :Xi > Z�
i β̂(τ )}, above set.

Each interpolated individual on the hyperplane may be split in a ratio of wi(τ ) :
{1 − wi(τ )} to be associated with the below and above sets, respectively. This
gives rise to a sample bipartition indexed by τ , and estimating integral equation
(13) governs its evolution.

3.2. Structuring the computation. Estimating integral equation (13) may be
solved exactly with the proposed Progressive Localized Minimization (PLMIN)
algorithm. The algorithm proceeds from the 0th quantile coefficient upward in a
progressive fashion. Due to sample discreteness, β̂(·) is piecewise constant. We
thus conveniently decompose the computation into sequential rounds, each involv-
ing that of a 0th relative quantile coefficient and a potential breakpoint.

Suppose that (13) is solved up to τ−, and thus φi(τ−) of every uncensored indi-
vidual is available. Then, by continuity φi(τ ) = φi(τ−) of uncensored individual
i is determined; obviously φi(τ ) = 0 in the case of τ = 0. Inherited from the rela-
tionship between integral equations (8) and (12), estimating integral equation (13)
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is equivalent to the following equation for relative quantile coefficient:

n∑
i=1

Zi�i[I {Xi < Z�
i β(λ, τ )} + I {Xi = Z�

i β(λ, τ )}wi(λ, τ ) − φi(τ )]

=
n∑

i=1

∫ λ

0
Zi[I {Xi ≥ Z�

i β(ν, τ )}(14)

− I {Xi = Z�
i β(ν, τ )}wi(ν, τ )] dν

1 − ν
,

where wi(λ, τ ) ≡ wi{τ + λ(1 − τ)}. Since β(λ, τ ) remains constant from λ = 0
up to a potential relative breakpoint, say, λb, H = ∑n

i=1 Zi[I {Xi ≥ Z�
i β(λ, τ )} −

I {Xi = Z�
i β(λ, τ )}wi(τ )] is locally constant, that is, for λ ∈ [0, λb). In the case

that a censored individual becomes interpolated, adopt the convention that its
wi(λ, τ ) remains constant locally. Write L(λ) as the left-hand side of (14). Then,
estimating integral equation (14) is locally equivalent to

L(λ) =
∫ λ

0
{H − L(ν)} dν

1 − ν
, λ ∈ [0, λb),

which admits a unique solution L(λ) = λH or equivalently,

n∑
i=1

Zi�i[I {Xi < Z�
i β(λ, τ )} + I {Xi = Z�

i β(λ, τ )}wi(λ, τ ) − φi(τ )]
(15)

= λ

n∑
i=1

Zi[I {Xi ≥ Z�
i β(λ, τ )} − I {Xi = Z�

i β(λ, τ )}wi(τ )].

Write β̂(λ, τ ) ≡ β̂{τ +λ(1−τ)}. Since β̂(·) is cadlag, β̂(0, τ ) is the solution to the
above equation with λ ↓ 0. Subsequently, λb is a λ, typically the supremum λ, such
that the equation holds with β(λ, τ ) = β̂(0, τ ). Furthermore, wi(λb−, τ ) of every
interpolated uncensored individual will be determined. Thus, solving equation (13)
moves forward to τ + λb(1 − τ). The PLMIN algorithm is so named since the
computation will be conveniently carried out via minimization.

3.3. Computing 0th relative quantile coefficient and potential breakpoint.
With the same arguments following (11), solving (15) for β̂(0, τ ) can be refor-
mulated as a minimization problem:

β̂(0, τ ) = lim
λ↓0

arg min
b

n∑
i=1

(Xi − Z�
i b)

× [I (Xi ≥ Z�
i b) − λ−1�i{I (Xi < Z�

i b) − φi(τ )}],
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which no longer involves wi(·, τ ). Further algebraic simplification gives

β̂(0, τ ) = arg min
b

n∑
i=1

(Xi − Z�
i b)+(16)

subject to

Xi ≤ Z�
i b ∀i ∈ D− ≡ {j :�j = 1, φj (τ ) = 1},

Xi = Z�
i b ∀i ∈ D0 ≡ {j :�j = 1, φj (τ ) ∈ (0,1)},

Xi ≥ Z�
i b ∀i ∈ D+ ≡ {j :�j = 1, φj (τ ) = 0},

where a+ ≡ aI (a > 0). For the special case of the 0th quantile coefficient,

β̂(0) = arg min
b

n∑
i=1

(Xi − Z�
i b)+(17)

subject to

Xi ≥ Z�
i b ∀i :�i = 1.

The minimization of (16) is a piecewise-linear programming problem with con-
vex objective function, characterized by the following lemma to Theorem 1. Note
that, once β̂(0, τ ) is determined, so is wi(τ ) of a β̂(0, τ )-interpolated uncensored
individual by continuity of φi(τ ).

LEMMA 1. Suppose that the condition of Theorem 1 holds and that covariates
Zi , i ∈ D0, are linearly independent. There exists a minimizer β̂(0, τ ) for problem
(16) such that the covariate matrix for β̂(0, τ )-interpolated observations is of full
rank. Furthermore, there exist (i) a p-member subset S of β̂(0, τ )-interpolated ob-
servations with D0 ⊂ S; and (ii) for any β̂(0, τ )-interpolated censored individual i,

wi(τ ) ∈
{ [0,1], if i ∈ S,

{0,1}, otherwise,

such that (iii) ZS = {Zi : i ∈ S} is of full rank; and (iv) Ĥ ≡ ∑n
i=1 Zi[I {Xi ≥

Z�
i β̂(0, τ )} − I {Xi = Z�

i β̂(0, τ )}wi(τ )] as determined satisfies∑
i∈S

Zi�iγi = Ĥ(18)

for some γi , where γi ≤ 0 for i ∈ D− and γi ≥ 0 for i ∈ D+.

Piecewise-linear programming can be viewed as extended linear programming,
although a β̂(0, τ )-interpolated individual may be a censored one and thus not in-
volved in the constraints. We devise an algorithm aiming at the determination of
the p-member interpolated subset S, the same strategy as the simplex method of
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linear programming [e.g., Gill, Murray and Wright (1991)]. To locate a candidate
member of S, the method of steepest descent is used. Note that a feasible value
for β̂(0, τ ) is readily available. In the case of τ = 0, any value with a sufficiently
small intercept component is feasible. Subsequently, β̂(τ−) is feasible as neces-
sary by continuity of φi(·) for uncensored individuals. The minimization along a
given feasible direction is reached once an uncensored observation becomes inter-
polated, or potentially so if the interpolated observation is a censored one instead.
The constrained space is of dimension p minus the size of D0. For β̂(0), there is no
equality constraint and the dimension is p. For following 0th relative quantile coef-
ficients, typically the dimension is 1 in which case the minimization involves only
a line search. To deal with the possibility of more than p interpolated individuals,
the perturbation anti-cycling technique in linear programming [e.g., Gill, Murray
and Wright (1991), Section 8.3.3] can be adapted. In the perturbation, one may
follow a tie-breaking convention to let individuals in D+ precede censored ones,
which in turn precede those in D−. This minimization is numerically reliable and
efficient.

The minimization determines β̂(0, τ ), S, wi(τ ) for each in S, and γi for each
uncensored in S. Plugging them into (15) yields∑

i∈S

Zi�i{wi(λ, τ ) − wi(τ )} = λ
∑
i∈S

Zi�iγi.(19)

Simple algebra then gives the potential relative breakpoint

λb =
⎧⎨⎩ min

i∈S : �i=1,γi �=0

I (γi > 0) − wi(τ )

γi

, {i ∈ S :�i = 1, γi �= 0} �= ∅,

1, otherwise,
(20)

which is proper in the sense of 0 < λb ≤ 1. The lower bound of λb is obvious,
whereas the upper bound can easily be established by analyzing the intercept com-
ponent of (18) and (19). If λb = 1, the final quantile is reached. Otherwise, for
those uncensored,

wi(λb−, τ ) = wi(τ ) + λbγi, i ∈ S :�i = 1.

At least one wi(λb−, τ ) above reaches 0 or 1, so is the corresponding φi{τ +
λb(1 − τ)}. Note that λb is a breakpoint if β̂(τ ) interpolates exactly p individuals;
but not necessarily so otherwise. Nevertheless, of importance in both cases is that
the solution moves forward in a sensible fashion.

When τ is small, S typically consists of uncensored individuals only. But as τ

becomes larger, interpolated censored individuals could emerge when β̂(τ ) might
still be uniquely determined nonetheless. Eventually, the computation could reach
a point beyond which β̂(τ ) is no longer unique. Apparently, this phenomenon re-
lates to the identifiability issue; see Remark 7. On a different note, just like un-
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censored quantile regression, this censored quantile regression may not respect
quantile monotonicity in general.

3.4. Relationships with standard methods in special cases. In the absence of
censoring, estimating integral equation (13) reduces to

n∑
i=1

Zi[I {Ti < Z�
i β(τ )} + I {Ti = Z�

i β(τ )}wi(τ )] = τ

n∑
i=1

Zi(21)

by the same approach to obtaining (11) from (8). Thus, β̂(·) is the cadlag function
β(·) that minimizes

∑n
i=1[{Ti − Z�

i β(τ )}− + τ {Ti − Z�
i β(τ )}], reducing to one

regression quantile of Koenker and Bassett (1978); note that the Koenker–Bassett
estimator is not always uniquely defined. In the mean time, 1 − φi(τ ) becomes
I {Ti ≥ Z�

i β(τ )} − I {Ti = Z�
i β(τ )}wi(τ ), which is the regression rank score of

Gutenbrunner and Jurec̆ková (1992).
On the other hand, in the one-sample case, β̂(·) reduces exactly to the cadlag

inverse of the Kaplan–Meier estimator. It is clear from (17) that β̂(0) is the first
failure time and from (20) that the breakpoint is the Nelson–Aalen estimate of
the hazard at β̂(0). Subsequently and more generally, each estimated 0th relative
quantile is a failure time and the relative breakpoint is the Nelson–Aalen hazard
estimate. In case that the last observation is censored, the final estimated quantile is
defined as this last follow-up time by convention. More generally, in the k-sample
problem, β̂(·) is a linear combination of cadlag inverses of the k Kaplan–Meier
estimators.

4. Asymptotic study and inference. In our developments thus far, we have
kept our assumptions to minimal. But the generality challenges large-sample de-
velopments in both exposition and technicalities; see Section 6 for further dis-
cussion. In this section, we shall focus on the situation that FZ is continuous and
free of zero-density intervals, and additionally C is continuously distributed. These
regularity conditions were also adopted in previous investigations [Portnoy (2003),
Neocleous, Vanden Branden and Portnoy (2006), Peng and Huang (2008)]. Nev-
ertheless, Portnoy (2003) and Neocleous, Vanden Branden and Portnoy (2006) re-
quired the absence of censoring prior to and around the 0th quantile. On the other
hand, Peng and Huang (2008) presumed that the 0th quantile is −∞. In contrast,
we do not impose any conditions on the 0th quantile.

A parameter space needs to be specified. In light of the interpolation property
of the estimator by Theorem 1, we require that any b in such a parameter space
satisfies that E[Z⊗2I {Z�β0(0) ≤ Z�b ≤ Z�β0(1−) ∧ C}] is nonsingular. Write
eigmin as the minimum eigenvalue of a matrix. Specifically, a parameter space
containing β0(τ ) for all τ ∈ [0, u] is given by

B(u) = {
b ∈ R × Cp−1 : eigminE[Z⊗2I {Z�β0(0) ≤ Z�b

≤ Z�β0(1−) ∧ C}] > c(u)
}
,
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where constant u < τ , compact space Cp−1 ⊂ R
p−1, and positive constant c(u) <

eigminE[Z⊗2I {C ≥ Z�β0(u)}]. Thus, all slope components are bounded but the
intercept may be −∞.

Write ‖ · ‖ as the Euclidean norm. Let FZ(t) = 1 − FZ(t) and GZ(t) = 1 −
GZ(t) = Pr(C > t |Z). Adopt the following regularity conditions:

C1. τ > 0 and ‖Z‖ is bounded;
C2. FZ and GZ have density functions fZ and gZ , which both are continuous and

bounded, uniformly in t and Z;
C3. β0(·) is Lipschitz-continuous on [τ1, τ2] for any τ1 and τ2 such that 0 < τ1 <

τ2 < 1;
C4. there exist u ∈ (0, τ ) and a parameter space B(u) such that the maximum

singular value of

�(b) = E{Z⊗2FZ(Z�b)gZ(Z�b)}[E{Z⊗2GZ(Z�b)fZ(Z�b)}]−1

is bounded uniformly in b ∈ B(u) \ ∂B(u), where ∂ denotes the boundary.

The first two conditions are self-explanatory. Conditions C3 implies that the
survival distribution does not have zero-density intervals between QZ(0) and
QZ(1−). Imposing constraints on censoring, condition C4 is a sufficient and tech-
nical one to accommodate the possibility of unbounded β0(0).

Throughout this section, β̂(·) is any cadlag solution to estimating integral equa-
tion (13). The solution may not be unique, nor is the interpolation property in
Theorem 1 necessary.

THEOREM 2. Suppose that quantile regression model (2) and censoring
mechanism (3) hold along with conditions C1–C4. Equation (8) implies β(τ) =
β0(τ ) for all τ ∈ (0, u]. For any l ∈ (0, u), supτ∈[l,u]‖β̂(τ ) − β0(τ )‖ → 0 almost
surely. Furthermore, n1/2{β̂(τ ) − β0(τ )} converges weakly to a Gaussian process
on [l, u].

REMARK 8. Integral equation (8) is an initial value problem, and estimating
integral equation (13) is its empirical version. Accordingly, the large-sample study
as provided in Appendix D exploits classical differential equation theory and mod-
ern empirical process theory. Our study bears similarities with that of Peng and
Huang (2008). Indeed, under the continuity condition of C2, (13) is essentially
equivalent to the estimating function of Peng and Huang [(2008), equation (5)]
since wi(·) becomes negligible; see also Remark 5. Nevertheless, we spare the
inductive arguments of Peng and Huang (2008) in their asymptotic study as typi-
cally necessary for a grid method, by virtue of the fact that β̂(·) is an exact solution
to (13). Equally noteworthy is that the generality here on the 0th quantile requires
a more delicate treatment.
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REMARK 9. In the case that Z�β0(0) is −∞ for all Z, our estimator β̂(·) is
asymptotically equivalent to that of Peng and Huang (2008) provided that mesh
size of the grid as required by the latter is of order o(n−1/2).

To make inference, the distribution of n1/2{β̂(·) − β0(·)} needs to be estimated.
For their estimator, Peng and Huang (2008) adapted the resampling approach of
Jin, Ying and Wei (2001). We adopt the same approach by perturbing estimating
integral equation (13). This procedure is equivalent to a multiplier bootstrap as
described in Kosorok [(2008), Section 2.2.3].

THEOREM 3. Suppose that the conditions of Theorem 2 hold, and that
nonnegative random variable ξ has unit mean and unit variance and satisfies∫ ∞

0 Pr(ξ > x)1/2 dx < ∞. Perturb estimating integral equation (13) by assign-
ing i.i.d. random variables of the same distribution as ξ and independent of the
data to individuals in the sample, and denote a solution to the perturbed equa-
tion by β̂∗(·). On [l, u], n1/2{β̂(·)−β0(·)} has the same asymptotic distribution as
n1/2{β̂∗(·) − β̂(·)} conditionally on the data.

The standard exponential distribution, for example, may be used to generate
these perturbing random variables. By repeatedly simulating perturbed samples,
the conditional distribution of β̂∗(·) can be obtained as an approximation for the
distribution of β̂(·).

5. Numerical studies. The quantile regression model is formulated in β0(·).
But alternative covariate-effect measures can be practically useful and were used
in our application (Section 5.3). Write

μ0(τ1, τ2) ≡ (τ2 − τ1)
−1

∫ τ2

τ1

β0(ν) dν.

Model (2) implies

(τ2 − τ1)
−1

∫ τ2

τ1

QZ(ν)dν = Z�μ0(τ1, τ2),(22)

where the left-hand side is a trimmed mean of T . Therefore, μ0(τ1, τ2) measures
trimmed mean effect. This measure is versatile through the choices of τ1 and τ2.
In fact, β0(τ ) = limν↓τ μ0(τ, ν) is a special case. On the other hand, μ0(0,1) is
the mean effect, that is, the regression coefficient in the linear regression model.
Originally suggested as an average effect measure by Peng and Huang (2008),
μ0(τ1, τ2) becomes even more appealing in light of its specific interpretation as
revealed. With censored data, μ0(τ1, τ2) is identifiable when τ2 ≤ τ , and a natural
estimator is given by

μ̂(τ1, τ2) = (τ2 − τ1)
−1

∫ τ2

τ1

β̂(ν) dν.
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Obviously, μ̂(τ1, τ2) with 0 < τ1 < τ2 ≤ u is strongly consistent and asymptoti-
cally normal under the conditions of Theorem 2. The variance can be estimated by
using the simulated distribution of β̂∗(·). Our numerical experience suggested that
μ̂(τ1, τ2) behaves reasonably well even when τ1 takes 0.

5.1. Finite-sample statistical performance. Simulations were conducted to
mimic a clinical trial. On the original time scale, the baseline survival distribution
was standard exponential and the censoring distribution was uniform on [0,5].
The quantile regression model held on the logarithmic time scale, with two non-
constant covariates: Z1 was Bernoulli of probability 0.5 and Z2 uniform on [0,1].
We considered two scenarios with the following conditional quantile functions:

QZ(τ) = log{− log(1 − τ)} + (1.25τ ∧ 0.5)Z1 + 0.5Z2,

QZ(τ) = log{− log(1 − τ)} + 0.5Z1 + 0.5Z2.

Scenario 1 above involved a ramp-up effect of Z1, going from none to full linearly
with probability τ and staying constant afterwards. In contrast, scenario 2 followed
the accelerated failure time model.

The sample size was 200. Under each scenario, simulations were conducted
with 1000 iterations. For both scenarios, the censoring rate was approximately
32%. Table 1 reports the summary statistics for the proposed τ th quantile coef-
ficient estimates ranging from τ = 0.1 to 0.7, along with estimates based on the
pivoting method of Portnoy (2003), the grid method of Portnoy [Neocleous, Van-
den Branden and Portnoy (2006)], and Peng and Huang (2008). The two Portnoy’s
methods are available in R Quantreg package, of which the latest version at the
time of this research, 4.20, was used. The default mesh size, 0.01 in this case,
was adopted for the grid method of Portnoy, and the same mesh size for Peng
and Huang. For point estimation, the pivoting method of Portnoy had large bias
and variance at τ = 0.7 under both scenarios. Other than that, these estimators all
had negligible bias and similar efficiency. But the bias of the proposed estimator
seemed smaller. These findings are not surprising since the estimator of Peng and
Huang is asymptotically equivalent to the proposed in the settings under study; see
Remark 9. In addition, similar efficiency between Peng and Huang and the grid
method of Portnoy was already observed in Peng and Huang (2008). For interval
estimation, Peng and Huang employs the same procedure as the proposed, whereas
the methods of Portnoy use bootstrap. The resampling size was set to 200 for all
these methods. The standard error of the proposed estimator agreed with the stan-
dard deviation well. The Wald-type 95% confidence intervals of both the proposed
and Peng and Huang achieved reasonably accurate coverage probability. In con-
trast, the bootstrap confidence intervals of Portnoy’s methods had undercoverage
particularly for the intercept, a finding consistent with that reported in Peng and
Huang (2008).

These preceding stimulation settings conform to the conditions of the asymp-
totic study in Section 4. Additional settings with distributional discontinuities and
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TABLE 1
Statistical assessment under models with two nonconstant covariates

Proposed Portnoy, pivoting Portnoy, grid Peng–Huang

τ B SD SE CI B SD CI B SD CI B SD CI

Scenario 1: with varying covariate effect

0.1 1 521 551 93.6 −1 518 90.5 −51 526 90.6 10 518 93.5
3 474 518 96.2 3 474 95.2 −7 479 94.7 4 475 95.7
7 794 866 95.1 8 793 95.2 6 805 93.7 8 793 95.1

0.3 1 325 337 94.4 3 324 92.4 −17 323 91.8 16 323 94.2
3 311 325 94.3 3 310 93.9 −3 312 93.5 6 310 94.8

−7 540 549 94.9 −9 539 93.3 −8 537 93.5 −9 541 93.6
0.5 −6 254 258 93.4 −1 286 89.8 −19 253 90.3 9 253 93.2

0 232 240 94.9 −3 238 92.8 −1 231 94.2 −1 231 95.1
5 408 414 94.3 −1 451 93.2 4 408 92.7 6 411 94.2

0.7 −5 235 248 95.9 −16 294 90.5 −20 233 90.6 12 240 95.2
9 220 239 95.8 −6 400 95.0 6 213 95.2 14 223 95.9
5 384 405 96.0 53 1096 94.3 2 383 94.1 11 391 96.5

Scenario 2: accelerated failure time model

0.1 3 506 534 94.2 1 502 91.2 −50 511 90.8 14 504 93.5
−4 447 490 96.6 −3 445 95.5 −6 451 95.5 −3 444 95.8

8 756 820 95.4 9 750 94.4 6 768 94.3 5 755 95.4
0.3 1 303 316 93.8 1 302 92.1 −17 301 91.8 16 302 94.6

2 270 286 94.9 1 270 94.5 0 269 94.6 −1 268 95.5
−4 480 497 94.7 −6 481 93.7 −6 479 93.7 −5 481 94.3

0.5 −5 252 254 93.2 4 324 89.8 −19 250 90.9 11 251 92.7
2 229 234 94.7 −2 254 92.9 1 227 93.7 1 229 94.2
5 405 404 94.0 −7 473 92.4 4 404 92.8 4 406 93.7

0.7 −3 235 248 95.7 101 2395 90.9 −19 233 90.4 13 240 95.3
7 221 239 95.6 76 2532 94.1 5 214 94.9 12 223 95.7
2 384 405 96.0 −192 5077 93.8 0 384 94.5 9 391 96.5

Three rows for each τ correspond to the intercept and two slope components of estimated τ th quantile
coefficient.
B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: empirical mean of the
standard error (×1000); CI: empirical coverage (%) of 95% confidence interval.

zero-density intervals of the survival time were also considered. One such simu-
lation involved a setting similar to the preceding ones but having a discontinuous
baseline survival distribution:

QZ(τ) = log{− log(1 − τ ∨ 0.4)} + (τ ∨ 0.4)Z1 + 0.5Z2,

where ∨ denotes the maximization operator. Unfortunately, the pivoting and grid
methods of Portnoy as implemented in R Quantreg package had numerical diffi-
culties and their appropriate evaluation was not permitted. Both the estimator of
Peng and Huang and the proposed had negligible bias at τ = 0.1 and 0.3. However,
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for τ = 0.5 and 0.7, the absolute median-bias of Peng and Huang reached 0.136,
0.065 and 0.041 for the intercept and two slopes, respectively. In comparison, the
absolute median-bias of the proposed estimator was no larger than 0.026 for all
three coefficients. Here, median-bias is a more appropriate summary than mean-
bias due to the skewness of these estimators resulting from discontinuity in the
survival distribution. These results were expected since the validity of Peng and
Huang is tied to the assumption of continuous survival distribution; see Remark 5.

5.2. Algorithmic performance. The proposed method was compared against
the pivoting method of Portnoy, the grid method of Portnoy, and the Peng and
Huang method implemented by Koenker (2008). All these existing methods are
implemented with Fortran source code in R Quantreg package. The original im-
plementation of Peng and Huang in R language was inappropriate for comparison
due to the inherent slower speed of R. For the two grid methods, the default mesh
size, 0.01 ∧ n−0.7/2 for sample size n, was adopted. The proposed method was
also implemented in R with Fortran source code. To minimize the impact of R
overhead, calling the Fortran function of a method from R was timed. The compu-
tation was performed on a Dell 2950 computer with 3.0 GHz Pentium Xeon X5365
CPUs.

The survival time followed the accelerated failure time model with p − 1 non-
constant covariates

logT = ε +
p∑

m=2

(−1)m−1

2
Z(m),

where ε followed the extreme-value distribution, and Z(m), m = 2, . . . , p, were
independent and uniformly distributed on [0,1]. The number of nonconstant co-
variates ranged from 1 to 8, and the sample size from 100 to 1600. Three levels of
censoring, 0%, 25% and 50%, were investigated. Unless there was no censoring,
the censoring time followed the uniform distribution between 0 and a censoring
rate-determined upper bound. Computational reliability and efficiency of various
methods for point estimation of the quantile coefficient process were assessed with
1000 iterations, shown in Table 2.

Both the proposed and Peng and Huang methods were reliable. However, the
pivoting and grid methods of Portnoy tended to cause frequent R session crashes
in case of no censoring and more covariates. Furthermore, in the presence of cen-
soring, the pivoting method of Portnoy might terminate with warning or error mes-
sages. This rate increased with the number of covariates and censoring rate, up to
67%.

The computer time of the proposed method was roughly constant over differ-
ent censoring levels, given sample size and number of covariates. Comparatively,
the proposed is faster than other methods uniformly in all scenarios considered.
Specifically, the pivoting method of Portnoy cost 1.6 to 6.7 times as much com-
puter time, the grid method of Portnoy cost 1.8 to 5.9 times, and the Peng and
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TABLE 2
Algorithmic evaluation of timing and reliability

Number of nonconstant covariates

Sample size 1 2 4 8

100 Prop T 0.6 0.5 0.5 0.7 0.6 0.6 1.0 0.9 0.9 1.6 1.4 1.5
PP R 1.9 1.9 1.6 1.9 1.9 1.7 2.4 2.4 2.2 3.6 3.6 3.2

W 0 0 4 0 1 11 0 8 24 0 28 65
PG R 3.4 3.4 2.4 3.9 3.6 2.8 4.9 4.4 3.4 5.9 5.4 4.2

PHK R 47.5 37.7 19.7 42.5 34.8 20.5 40.4 32.4 19.4 32.0 26.6 16.3
200 Prop T 1.4 1.3 1.3 1.7 1.7 1.6 2.4 2.2 2.3 4.1 3.9 4.0

PP R 2.3 2.2 1.7 2.4 2.3 2.0 3.2 3.2 2.9 — 4.9 4.4
W 0 1 4 0 2 12 0 6 26 — 31 67

PG R 3.0 2.7 2.0 3.4 2.9 2.3 4.5 3.9 2.9 — 4.7 3.6
PHK R 43.4 31.3 16.9 37.1 28.3 16.9 35.3 27.8 16.4 27.1 20.8 12.7

400 Prop T 4.5 4.3 4.4 5.5 5.5 5.8 7.7 7.7 8.0 13.2 13.1 13.7
PP R 2.7 2.4 1.8 2.7 2.5 2.1 3.8 3.6 3.1 — 5.6 5.0

W 0 0 8 0 2 13 0 6 27 — 32 67
PG R 2.8 2.5 1.8 3.2 2.7 2.0 4.2 3.6 2.7 — 4.9 3.4

PHK R 39.0 28.4 15.1 33.4 24.5 13.8 31.4 23.1 13.9 23.4 17.6 10.8
800 Prop T 16.3 16.4 16.9 20.4 20.7 21.4 29.2 29.2 30.1 48.1 47.6 49.5

PP R 2.9 2.5 1.9 2.9 2.7 2.2 3.9 3.7 3.2 — 6.1 5.5
W 0 1 7 0 2 18 0 7 27 — 30 67

PG R 3.1 2.6 1.8 3.4 2.9 2.1 4.6 3.8 2.8 — 5.3 4.0
PHK R 39.1 27.9 14.8 33.0 24.1 13.9 29.5 21.9 13.4 22.6 17.1 10.7

1600 Prop T 63.1 63.9 66.0 80.5 79.6 81.9 112.6 109.3 113.1 177.6 173.3 180.0
PP R 3.0 2.7 2.0 2.9 2.7 2.2 4.0 3.8 3.3 — 6.7 6.0

W 0 1 7 0 4 20 0 10 28 — 33 62
PG R 3.5 2.9 2.0 3.7 3.1 2.2 4.9 4.0 3.0 — 5.5 4.3

PHK R 38.0 27.5 14.7 30.2 22.5 13.6 27.7 20.9 13.0 21.8 16.3 10.5

Prop: the proposed estimation; PP: the pivoting method of Portnoy (2003); PG: the grid method of Portnoy [Neocleous, Vanden Branden and Portnoy
(2006)]; PHK: Peng and Huang (2008) implemented by Koenker (2008); T: CPU time (millisecond) of point estimation; R: timing relative to the proposed
estimation; W: termination rate with warning or error (%). Timing for PP was based on iterations free of warning and error. Three columns under each
combination of sample size and number of covariates correspond to 0%, 25% and 50% censoring rates. —: unavailable due to software crash.
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Huang method cost 10.5 to 47.5 times. This result is remarkable since the grid
methods involve much fewer grid points than breakpoints of the proposed method
at larger sample size, suggesting that a grid point could be much more costly to
compute.

5.3. Application to a clinical study. For illustration, we applied the proposed
estimation procedure to the Mayo primary biliary cirrhosis dataset [Fleming and
Harrington (1991), Appendix D]. Conducted at Mayo Clinic between 1974 and
1984, the study followed 418 patients with primary biliary cirrhosis, a rare but fa-
tal chronic liver disease. One question of interest was concerned with prognostic
factors associated with survival. In this analysis, we considered five baseline mea-
sures: age, edema, log(bilirubin), log(albumin) and log(prothrombin time). Two
participants had incomplete measures and were thus removed. Our analysis data
consisted of 416 patients, with a median follow-up time of 4.74 years and a cen-
soring rate of 61.5%.

We adopted the quantile regression model on the logarithmic time scale,
with the five baseline measures as covariates. The estimated quantile coefficient
processes are shown in Figure 1, along with pointwise Wald 95% confidence in-
tervals. The resampling size for the interval estimation was 200. The maximum
cumulative probability up to which the estimated quantile coefficient was unique
is 0.91. Among the five covariates, log(prothrombin time) in particular exhibited a
prominent varying effect. It was negatively associated with survival time for short
survivors, but the effect diminished gradually for longer survivors. This result
echos findings from analyses of this dataset with other varying-coefficient mod-
els, for example, by Tian, Zucker and Wei (2005) using the varying-coefficient
Cox model. Nevertheless, this varying effect was not apparent in the model with
log(prothrombin time) as the only covariate, shown in Figure 2.

The graphical presentation is revealing of the covariate effect evolution. To
summarize, estimated upper-trimmed mean effects and standard errors are given
in Table 3. For comparison, the estimates based on the accelerated failure time
model using the log-rank and Gehan estimating functions are also included. No-
tice that the two estimated regression coefficients deviate from each other for
log(prothrombin time) with the accelerated failure time model. This disparity also
suggests a lack of fit of this sub-model. In this situation, estimates from the ac-
celerated failure time model are difficult to interpret. In contrast, the estimated
upper-trimmed mean effects from the quantile regression model are meaningful,
for covariates with constant or varying effects alike.

6. Discussion. Quantile calculus as developed proves useful and effective
for quantile regression. With uncensored data, it offers a new perspective of the
standard regression procedure. Most importantly, censoring can be naturally ac-
commodated, and it gives rise to our proposed censored regression via solving a
well-defined estimating integral equation. To focus on the main ideas, we have
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FIG. 1. Analysis of the Mayo primary biliary cirrhosis data. Estimated quantile coefficient
processes are shown in rugged lines, along with pointwise Wald 95% confidence intervals given by
vertical bars. The three regions on which the estimated quantile coefficient hyperplanes are (a) unique
with uncensored S-members only, (b) unique with both uncensored and censored S-members, and (c)
nonunique are marked on bottom horizontal lines.

not addressed second-stage inference and model diagnostics, which are practically
useful. They can be developed along the lines similar to those in Peng and Huang
(2008).

For survival data, alternative models exist to address varying covariate effects.
One better known varying-coefficient model is the additive hazards model of Aalen
(1980). There is also an extensive literature on the varying-coefficient Cox model,
but most available estimation methods require smoothing; see Tian, Zucker and
Wei (2005) and the references therein. More recently, Peng and Huang (2007) ex-
tended the class of semiparametric linear transformation models to allow for vary-
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FIG. 2. Analysis of the Mayo primary biliary cirrhosis data with log(prothrombin time) as the
only covariate. Dots and open circles represent uncensored and censored individuals, respectively.
Estimated decile coefficients are shown from τ = 0 up to 0.8. Solid, dashed, and dotted lines represent
the corresponding hyperplanes that are (a) unique with uncensored S-members only, (b) unique with
both uncensored and censored S-members, and (c) nonunique, respectively.

ing coefficients. In comparison with all these alternatives, the quantile regression
model is particularly attractive with its simple interpretation; see the Introduction.

TABLE 3
Analysis results of the Mayo primary biliary cirrhosis data

Accelerated failure time model Quantile regression model

log-rank Gehan μ0(0,0.8) μ0(0,0.9)

Est SE Est SE Est SE Est SE

Age −0.0259 0.0051 −0.0255 0.0051 −0.0238 0.0055 −0.0227 0.0056
Edema −0.7627 0.2276 −0.9241 0.2556 −0.8616 0.2413 −0.8048 0.2297
log(bilirubin) −0.5724 0.0519 −0.5581 0.0611 −0.5504 0.0638 −0.5465 0.0615
log(albumin) 1.6312 0.4436 1.4985 0.5013 1.4756 0.4729 1.4955 0.4438
log(pro. time) −1.9176 0.5807 −2.7761 0.8056 −2.1220 0.8665 −1.9426 0.8190

Est: estimate; SE: standard error.
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When the inferential goal is on a specific quantile, the quantile regression model
for the given τ only, or the singleton model, is of direct interest. In this case, meth-
ods for uncensored quantile regression [Koenker and Bassett (1978)] and censored
one with always-observed censoring time [Powell (1984, 1986)] are still applica-
ble. But when censoring time is only observed for censored individuals, the pro-
posed method as well as Portnoy (2003), Neocleous, Vanden Branden and Port-
noy (2006) and Peng and Huang (2008) may not be applied unless the quantile
regression model holds from the 0th through the τ th quantile. In contrast, the ap-
proaches of Ying, Jung and Wei (1995) and Honoré, Khan and Powell (2002) do
not necessarily require the functional model but at the price of a more restrictive
censoring mechanism. A choice between these two classes of methods depends on
whether functional survival-time modeling or censoring-time modeling might be
more reasonable and justifiable in a specific application. The method of Wang and
Wang (2009) is appealing in this regard, but might have practicality concerns in
the case of multiple continuously-distributed covariates, as discussed in the Intro-
duction.

Generalizing the asymptotic results given in Section 4 is of interest, say, to al-
low for zero-density intervals and discontinuities in the survival distribution. Un-
fortunately, difficulties include the open question on solution uniqueness for in-
tegral equation (8), as indicated in Remark 2, and more. These additional ones
can be readily seen in the one-sample case. First, the notion of consistency might
not even be appropriate in evaluating the estimated quantile corresponding to a
zero-density interval. Indeed, consistent estimation might be impossible in this cir-
cumstance but the estimated quantile is nonetheless informative of the estimand.
Second, a distributional discontinuity might ruin asymptotic normality of the cor-
responding estimated quantile. These issues become much more complex and also
have broader implication in the general case. Due to the sequential nature of the es-
timation, of concern are not only those corresponding quantile coefficients but also
the subsequent ones. Nevertheless, it seems reasonable to conjecture that consis-
tency and asymptotic normality might still hold for estimated quantile coefficients
other than those corresponding to zero-density intervals and distributional discon-
tinuities.

Several additional problems are also worth further investigation. First, our focus
has been on the estimation of β0(τ ) provided τ < τ , and the estimation of iden-
tifiability limit τ remains to be addressed; see Remark 7. Second, the submodel
with a mixture of constant- and varying-coefficients would be useful when con-
stant effects are determined a priori for some covariates. Efficiency gain might be
expected over the more general method in this article. Third, in addition to right
censoring, quantile regression with other types of censoring and truncation is also
of interest. But new techniques might be needed. Finally, the proposed 0th quan-
tile coefficient estimator as given by (17) might be of interest in its own right. In
the absence of censoring, our estimator reduces to the extreme regression quantile
studied by Smith (1994), Portnoy and Jurec̆ková (1999) and Chernozhukov (2005)
among others. Some of their results may be extended.
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APPENDIX A: PROOF OF PROPOSITION 1

Consider assertion (i). Given that η(τ) = ξ(τ ) for all τ such that Pr{T =
Q(τ)} > 0, equation (4) still holds when ξ(·) is replaced by η(·). Therefore,∫ τ

0
[Pr{C ≥ Q(ν)} − Pr{C = Q(ν)}η(ν)]
× d[Pr{T < Q(ν)} + Pr{T = Q(ν)}η(ν)]

=
∫ τ

0
[Pr{C ≥ Q(ν)} − Pr{C = Q(ν)}η(ν)]

× [Pr{T ≥ Q(ν)} − Pr{T = Q(ν)}η(ν)] dν

1 − ν
∀τ ∈ [0,1).

The above equation simplifies to (5) under the given conditions.
For assertion (ii), only the case of τ > 0 needs to be considered. The definition

of τ implies E(�[I {X ≥ Q(τ)} − I {X = Q(τ)}ξ(τ )]) = 0. Thus,

E
(
�[I {X < Q(τ)} + I {X = Q(τ)}ξ(τ )]) = E�.(23)

Define τ ∗ = sup{τ : Pr{C ≥ q(ν)} > 0 ∀ν ∈ [0, τ ]}. The same argument as before
gives

E
(
�[I {X < q(τ ∗)} + I {X = q(τ ∗)}η(τ ∗)]) = E�.(24)

Given the continuity of the left-hand side of (5) in τ , the above equation implies
τ ∗ > 0. Since Pr{C ≥ q(τ)} > 0 for any τ ∈ [0, τ ∗), (5) under the given conditions
implies

Pr{T < q(τ)} + Pr{T = q(τ)}η(τ)

=
∫ τ

0
[1 − Pr{T < q(ν)} − Pr{T = q(ν)}η(ν)] dν

1 − ν
∀τ ∈ [0, τ ∗).

The above integral equation has a unique solution:

Pr{T < q(τ)} + Pr{T = q(τ)}η(τ) = τ ∀τ ∈ [0, τ ∗),
from which (6) and (7) follow for τ ∈ (0, τ ∗). Furthermore, (23) and (24) imply
τ∗ = τ . This completes the proof.

APPENDIX B: PROOF OF PROPOSITION 2

Existence result (i) follows directly from Proposition 1. We now prove unique-
ness result (ii) by construction. Start from τ = 0. Write H as the discrete distribu-
tional support of (C,Z), and define

τ1 = sup
{
τ : I {c ≥ z�β(ν1)} = lim

ν2↓0
I {c ≥ z�β(ν2)} and c �= z�β(ν1)

∀ν1 ∈ (0, τ ] and (c, z) ∈ H

}
.
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Thus, I {C ≥ Z�β(τ)} remains constant and C �= Z�β(τ) over τ ∈ (0, τ1) almost
surely. Locally, (8) reduces to

D(τ) =
∫ τ

0
{Y(τ) − D(ν)} dν

1 − ν
, τ ∈ [0, τ1),

where D(τ) is the left-hand side of (8) and Y(τ) ≡ E[ZI {C ≥ Z�β(τ)}] is con-
stant over τ ∈ (0, τ1). The above equation admits a unique solution D(τ) = τY (τ),
or equivalently

E
(
ZI {C ≥ Z�β(τ)}[I {T < Z�β(τ)} + I {T = Z�β(τ)}ηZ(τ) − τ ]) = 0,

τ ∈ (0, τ1).

By arguments similar to Remark 3, β(τ) is the minimizer of E[{X − Z�β(τ) ∧
C}− + τ {X − Z�β(τ) ∧ C}]. Recognizing that this minimization problem is the
basis for Powell’s (1984, 1986) estimator, we then obtain (9) for τ ∈ (0, τ1) so long
as τ > 0. Given (9), integral equation (8) implies

J (τ) = −
∫ τ

0
J (ν)

dν

1 − ν
, τ ∈ [0, τ1),

where J (τ) is the difference between the two sides of (10). Thus, (10) is obtained
for τ ∈ (0, τ1) by an application of the Gronwall’s inequality.

Under Assumption 1, one can show

lim
τ↓τ1

E
(
Z[I {X ≥ Z�β(τ)} − I {X = Z�β(τ)}ηZ(τ)])

= (1 − τ1) lim
τ↓τ1

E[ZI {C ≥ Z�β(τ)}].

Then, by taking advantage of the notion of relative quantile and integral equa-
tion (12), results (9) and (10) can be established inductively beyond τ1, up to τ .

APPENDIX C: PROOF OF LEMMA 1 AND THEOREM 1

With the developments in Section 3, it remains to establish Lemma 1. Given the
existence of a feasible value for β̂(0, τ ), nonnegativity of the objective function
in (16) ensures the existence of a minimizer. Furthermore, note that the objective
function becomes linear upon adding Xi ≤ Z�

i b or Xi ≥ Z�
i b for each censored

individual to the constraints. Therefore, this piecewise-linear programming prob-
lem becomes the minimization of a set of linear programming problems, where
each member involves additional constraints concerning censored individuals. It is
known that a linear programming problem has a vertex solution if a bounded solu-
tion exists [e.g., Gill, Murray and Wright (1991), Section 7.8.2]. Assertion (iii) of
Lemma 1 then follows.

For assertion (iv), we only consider the situation that the interpolated set is
of size p; otherwise one may work with the corresponding perturbed problem.
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Write SC as the subset of censored individuals in S. The following two linear
programming problems have the same solution as (16):

min
b

−A�b

subject to

Xi ≤ Z�
i b ∀i ∈ D−, Xi = Z�

i b ∀i ∈ D0,

Xi ≥ Z�
i b ∀i ∈ D+, Xi ≤ Z�

j b ∀i ∈ SC,

min
b

−
(
A + ∑

i∈SC

Zi

)�
b

subject to

Xi ≤ Z�
i b ∀i ∈ D−, Xi = Z�

i b ∀i ∈ D0,

Xi ≥ Z�
i b ∀i ∈ D+, Xi ≥ Z�

j b ∀i ∈ SC,

where A = ∑
i∈D0

{1 − wi(τ )}Zi + ∑
i∈D+ Zi + ∑

i : �i=0,Xi>Z�
i β̂(0,τ ) Zi . Of

course, the above two coincide in the case of SC = ∅. Applying Gill, Murray
and Wright [(1991), Theorem 7.8.1] yields

A = ∑
i∈S

Ziγ
(1)
i , A + ∑

i∈SC

Zi = ∑
i∈S

Ziγ
(2)
i

for some γ
(·)
i , where γ

(·)
i ≤ 0 for i ∈ D−, γ

(·)
i ≥ 0 for i ∈ D+, and γ

(1)
i ≤ 0 and

γ
(2)
i ≥ 0 for i ∈ SC . Since ZS is of full rank, γ

(1)
i = γ

(2)
i for i ∈ S \ SC and γ

(1)
i =

γ
(2)
i −1 for i ∈ SC . Therefore, Ĥ as determined upon setting wi(τ ) = γ

(2)
i ∈ [0,1]

for i ∈ SC satisfies (18), with γi = γ
(·)
i for i ∈ S \ SC . This completes the proof.

APPENDIX D: PROOF OF THEOREM 2

Similar to Peng and Huang (2008), we introduce monotone maps �1(b) =
E{Z�I (X ≤ Z�b)} and �2(b) = E{ZI (X ≥ Z�b)}. Write their empirical
counterparts as �̂1(b) = n−1 ∑n

i=1 Zi�iI (Xi ≤ Z�
i b) and �̂2(b) = n−1 ∑n

i=1 Zi ×
I (Xi ≥ Z�

i b). Under condition C3, �1(b) is a one-to-one map for b ∈ B(u) and
�−1

1 (·) exists. Write H(a) = �2{�−1
1 (a)} and note ∂H(a)/∂a� = −�{�−1

1 (a)}−
�, where �(·) is defined in condition C4 and � is the p × p identity matrix.

Identifiability. Write α(τ) = �1{β(τ)}, and integral equation (8) can be writ-
ten as

α(τ) =
∫ τ

0
H {α(ν)} dν

1 − ν
;
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note that terms involving ηZ(·) vanish under condition C2. Condition C4 im-
plies that H(a) is Lipschitz-continuous. The Picard–Lindelöf theorem then as-
serts the solution uniqueness, that is, α(·) = α0(·) ≡ �1{β0(τ )}. It follows that
β(τ) = β0(τ ) for all τ ∈ (0, u].

Consistency. It is known that {I (X ≤ Z�b) :b ∈ R
p} is Donsker [e.g.,

Kosorok (2008), Lemma 9.12]. Furthermore, Z is bounded under condition C1.
By permanence property of the Donsker class, {Z�I (X ≤ Z�b) :b ∈ R

p} is
Donsker. So is {ZI (X ≥ Z�b) :b ∈ R

p} by similar arguments. Since Donsker
implies Glivenko–Cantelli, almost surely

sup
b∈Rp

‖�̂j (b) − �j (b)‖ = o(1), j = 1,2.(25)

On the other hand, condition C2 implies that supb∈Rp

∑n
i=1 I (Xi = Z�

i b) ≤ p

almost surely. Then, coupled with condition C1, with any wi ∈ [0,1], almost surely

sup
b∈Rp

∥∥∥∥∥n−1
n∑

i=1

Zi�iI (Xi = Z�
i b)(wi − 1)

∥∥∥∥∥ = O(n−1),

sup
b∈Rp

∥∥∥∥∥n−1
n∑

i=1

ZiI (Xi = Z�
i b)wi

∥∥∥∥∥ = O(n−1).

Therefore, almost surely

sup
τ∈[0,u]

∥∥∥∥�̂1{β̂(τ )} −
∫ τ

0
�̂2{β̂(ν)} dν

1 − ν

∥∥∥∥ = O(n−1),(26)

since (13) can be written as

�̂1{β(τ)} + n−1
n∑

i=1

Zi�iI {Xi = Z�
i β(τ )}{wi(τ ) − 1}

=
∫ τ

0

[
�̂2{β(ν)} − n−1

n∑
i=1

ZiI {Xi = Z�
i β(ν)}wi(ν)

]
dν

1 − ν

and β̂(·) is a solution.
Following (25) and (26), almost surely

sup
τ∈[0,u]

∥∥∥∥α̂(τ ) −
∫ τ

0
H {α̂(ν)} dν

1 − ν

∥∥∥∥ = o(1),

where α̂(τ ) = �1{β̂(τ )}. Write L as the Lipschitz constant of H(·). Thus, for every
ε > 0 and with sufficiently large n, almost surely

‖α̂(τ ) − α0(τ )‖ ≤
∫ τ

0
‖H {α̂(ν)} − H {α0(ν)}‖ dν

1 − ν
+ ε

≤
∫ τ

0
L‖α̂(ν) − α0(ν)‖ dν

1 − ν
+ ε,
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which leads to

‖α̂(τ ) − α0(τ )‖ ≤ ε(1 − τ)−L, τ ∈ [0, u],(27)

by the Gronwall’s inequality. Therefore, α̂(τ ) is strongly consistent for α0(τ ) uni-
formly in τ ∈ [0, u].

It remains to show that, for any ε > 0, there exists δ > 0 such that
supτ∈[l,u]‖α(τ) − α0(τ )‖ < δ implies supτ∈[l,u]‖β(τ) − β0(τ )‖ < ε. Suppose
that the assertion is false. Thus, for each δ > 0, there exists (b, ν) such that
‖�1(b) − α0(ν)‖ < δ and ‖b − β0(ν)‖ > d for some constant d > 0. Then,
there is a subsequence of (b, ν) that converges to, say, (b0, ν0). This means that
�1(b0) = �1{β0(ν0)} but b0 �= β0(ν0). However, conditions C1 and C3 imply that
fZ{Z�β0(τ )} is bounded below away from 0 uniformly in τ ∈ [l, u] and Z. There-
fore, ∂�1(b)/∂b� = E{Z⊗2GZ(Z�b)fZ(Z�b)} at b = β0(ν0) is positive definite,
which along with the monotonicity of �1(·) gives rise to a contradiction.

Weak convergence.

LEMMA 2. Under the conditions in Theorem 2,

sup
τ∈[0,u]

‖�̂1{β̂(τ )} − �1{β̂(τ )} − �̂1{β0(τ )} + �1{β0(τ )}‖
(28)

= op(n−1/2),

sup
τ∈[0,u]

∥∥∥∥∫ τ

0
[�̂2{β̂(ν)} − �2{β̂(ν)} − �̂2{β0(ν)} + �2{β0(ν)}] dν

1 − ν

∥∥∥∥
(29)

= op(n−1/2).

PROOF OF LEMMA 2. Consider (28) first. Since {Z�I (X ≤ Z�b) :b ∈ R
p} is

Donsker, n1/2{�̂1(b) − �1(b)} converges weakly to a tight Gaussian process. The
tightness implies that, for every ε > 0 and m = 1, . . . , p,

lim
δ↓0

lim sup
n→∞

Pr
(

sup
b1,b2 : σ [n1/2{�̂(m)

1 (b1)−�̂
(m)
1 (b2)}]<δ

n1/2∣∣�̂(m)
1 (b1)

− �
(m)
1 (b1) − �̂

(m)
1 (b2)

+ �
(m)
1 (b2)

∣∣ > ε
)

= 0,

where σ(·) denotes standard deviation and superscript (m) the mth component of a
vector; see, for example, Kosorok (2008). Furthermore, note that

σ 2[
n1/2{

�̂
(m)
1 (b1) − �̂

(m)
1 (b2)

}]
= σ 2[

Z(m)�{I (X ≤ Z�b1) − I (X ≤ Z�b2)}]
≤ E

{
Z(m)2�|I (X ≤ Z�b1) − I (X ≤ Z�b2)|}.
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Write ϒ(β0, β̂, τ ) = E[�|I (X ≤ Z�b) − I {X ≤ Z�β0(τ )}|]|b=β̂(τ ). Given con-
dition C1, it then suffices to show

sup
τ∈[0,u]

ϒ(β0, β̂, τ ) = o(1)(30)

almost surely. Let cf be the upper bound of fZ(·). Apparently,

ϒ(β0, β̂, τ ) ≤ cf E[|Z�{b − β0(τ )}|]|b=β̂(τ )

≤ cf ‖β̂(τ ) − β0(τ )‖E‖Z‖.
Following the consistency of β̂(·), for every l > 0,

sup
τ∈[l,u]

ϒ(β0, β̂, τ ) = o(1)(31)

almost surely. On the other hand,

ϒ(β0, β̂, τ ) ≤ �
(1)
1 {β̂(τ )} + �

(1)
1 {β0(τ )}

≤ 2�
(1)
1 {β0(τ )} + ∣∣�(1)

1 {β̂(τ )} − �
(1)
1 {β0(τ )}∣∣.

Therefore, following the consistency of α̂(·), for every ε > 0, there exists τε > 0
such that

sup
τ∈[0,τε ]

ϒ(β0, β̂, τ ) < ε(32)

almost surely for sufficiently large n. Combining (31) and (32) gives (30).
Now consider (29). Arguments similar to the above establish that, for every

l > 0,

sup
τ∈[l,u]

‖�̂2{β̂(τ )} − �2{β̂(τ )} − �̂2{β0(τ )} + �2{β0(τ )}‖ = op(n−1/2).(33)

Since supb∈Rp ‖�̂2(b) − �2(b)‖ = Op(n−1/2), for every ε > 0, there exists τε > 0
such that

Pr
(

sup
τ∈[0,τε ]

∥∥∥∥∫ τ

0
n1/2[�̂2{β̂(ν)} − �2{β̂(ν)}

(34)

− �̂2{β0(ν)} + �2{β0(ν)}] dν

1 − ν

∥∥∥∥ > ε

)
→ 0.

Then, (29) follows from (33) and (34). �

Plugging (28) and (29) into (26) yields that, for τ ∈ [0, u],
α̂(τ ) − α0(τ ) −

∫ τ

0
[H {α̂(ν)} − H {α0(ν)}] dν

1 − ν
+ op(n−1/2)

= −�̂1{β0(τ )} +
∫ τ

0
�̂2{β0(ν)} dν

1 − ν
,
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where op(·) is uniform for τ ∈ [0, u]. Under conditions C2 and C4, H {α̂(τ )} −
H {α0(τ )} = −[�{β0(τ )} + � + o(1)][α̂(τ ) − α0(τ )] almost surely. Therefore,

α̂(τ ) − α0(τ ) +
∫ τ

0
[�{β0(ν)} + �][α̂(ν) − α0(ν)] dν

1 − ν

+ op

(
n−1/2 + ‖α̂(·) − α0(·)‖)

(35)

= −�̂1{β0(τ )} +
∫ τ

0
�̂2{β0(ν)} dν

1 − ν
.

The remaining proof is sketched since it essentially follows that of Theorem 2 in
Peng and Huang (2008), where more details can be found. Note that the right-hand
side of (35) is a martingale and converges weakly to a Gaussian process by the mar-
tingale central limit theorem [e.g., Fleming and Harrington (1991)]. Furthermore,
(35) as a differential equation of α̂(·) − α0(·) can be solved by using product inte-
gration theory [Gill and Johansen (1990)], establishing that α̂(·)−α0(·) as a linear
map of the right-hand side converges weakly to a Gaussian process. The weak
convergence of β̂(·) then follows by the functional delta method.

APPENDIX E: PROOF OF THEOREM 3

Throughout, a quantity based on the perturbed sample is denoted by adding an
asterisk. For example, �̂∗

1(b) is the perturbed version of �̂1(b).
The same arguments of the consistency proof in Appendix D may be used to

show the strong consistency of α̂∗(·) for α0(·) on [0, u] and that of β̂∗(·) for
β0(·) on [l, u], upon establishment of the following two results. First, by Kosorok
[(2008), Theorem 10.13], almost surely

sup
b∈Rp

‖�̂∗
j (b) − �j (b)‖ = o(1), j = 1,2.

Second, the terms involving wi(·) in the perturbed version of (13) are negligible,
by the fact that the maximum of the n i.i.d. perturbing random variables is almost
surely o(n1/2) [Owen (1990), Lemma 3].

By an unconditional multiplier central limit theorem [Kosorok (2008), Theo-
rem 10.1 and Corollary 10.3], n1/2{�̂∗

j (·) − �j(·)}, j = 1,2, converge weakly to
tight processes. The arguments in the proof of Lemma 2 then can be used to estab-
lish

sup
τ∈[0,u]

‖�̂∗
1{β̂∗(τ )} − �1{β̂∗(τ )} − �̂∗

1{β0(τ )} + �1{β0(τ )}‖

= op(n−1/2),

sup
τ∈[0,u]

∥∥∥∥∫ τ

0
[�̂∗

2{β̂∗(ν)} − �2{β̂∗(ν)} − �̂∗
2{β0(ν)} + �2{β0(ν)}] dν

1 − ν

∥∥∥∥
= op(n−1/2).
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Thus, along the lines to establish (35), one obtains

α̂∗(τ ) − α0(τ ) +
∫ τ

0
[�{β0(ν)} + �][α̂∗(ν) − α0(ν)] dν

1 − ν

+ op

(
n−1/2 + ‖α̂∗(·) − α0(·)‖)

(36)

= −�̂∗
1{β0(τ )} +

∫ τ

0
�̂∗

2{β0(ν)} dν

1 − ν
,

given that a perturbing random variable is almost surely o(n1/2).
Following from (35) and (36),

α̂∗(τ ) − α̂(τ ) +
∫ τ

0
[�{β0(ν)} + �][α̂∗(ν) − α̂(ν)] dν

1 − ν

+ op

(
n−1/2 + ‖α̂∗(·) − α̂(·)‖)

(37)

= −�̂∗
1{β0(τ )} + �̂1{β0(τ )} +

∫ τ

0
[�̂∗

2{β0(ν)} − �̂2{β0(ν)}] dν

1 − ν
,

since ‖α̂(·) − α0(·)‖ = Op(n−1/2). Note that both �I {X ≤ Z�β0(τ )} and∫ τ
0 I {X ≥ Z�β0(ν)}(1 − ν)−1 dν are monotone in τ . Therefore, {�I {X ≤ Z� ×

β0(τ )} − ∫ τ
0 I {X ≥ Z�β0(ν)}(1 − ν)−1 dν : τ ∈ [0, u]} is Donsker and so is

{Z[�I {X ≤ Z�β0(τ )}− ∫ τ
0 I {X ≥ Z�β0(ν)}(1−ν)−1 dν] : τ ∈ [0, u]}. By a con-

ditional multiplier central limit theorem [Kosorok (2008), Theorem 10.4], the
right-hand side of (37) conditionally on the data converges weakly to the same
Gaussian process as the right-hand side of (35). Then, the assertion of Theorem 3
follows the arguments at the end of Appendix D.

Acknowledgments. The author extends his gratitude to Limin Peng for dis-
cussions over the course of this research and her review of an earlier version of this
paper. He also thanks the seminar participants at the University of North Carolina
at Charlotte and the reviewers for helpful comments.

REFERENCES

AALEN, O. O. (1980). A model for nonparametric regression analysis of counting processes.
In Mathematical Statistics and Probability Theory (Proc. Sixth Internat. Conf., Wisła, 1978).
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