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DISCUSSION OF: BROWNIAN DISTANCE COVARIANCE

BY BRUNO RÉMILLARD

HEC Montréal

In Székely, Rizzo and Bakirov (2007), the notions of distance covariance and
distance correlation between two random vectors were introduced. It was shown
that the distance covariance is zero if and only if the two vectors were independent.
An empirical version was also defined and its limiting distribution was investi-
gated, under the null hypothesis of independence; furthermore, the underlying test
based on the empirical version of the distance covariance is consistent in the sense
that under the hypothesis of dependence, its power tends to one as the sample size
tends to infinity.

In the present paper the authors continue the study of the properties of the dis-
tance covariance and they show that it can be defined in terms of covariances of
multivariate Brownian processes. They also generalized that idea to other stochas-
tic processes, namely, multivariate fractional Brownian motions. Defining depen-
dence measures through other stochastic processes is quite interesting, but except
for the few cases stated in the paper, it is still to be proven useful. I encourage
the authors to continue to explore that interesting idea. Here are some questions I
would like to be answered: (i) Can other dependence measures be written in that
form, for example, Kendall’s tau? (ii) What are the conditions on the underlying
processes so that the value of the covariance is zero if and only if the two random
vectors are independent? (iii) Can you prove a central limit theorem for the empir-
ical version and what are the conditions on the underlying stochastic processes for
the existence of the limiting distribution?

In what follows I will suggest some other extensions and applications of the no-
tion of covariance distance and distance correlation. More precisely, I will describe
extensions using rank-based methods and suggest two applications in a multivari-
ate context, that is, when more than two random vectors are involved.

1. Rank-based methods. In my opinion, there are two weaknesses of the dis-
tance covariance: The moment assumption on the random vectors and the fact that
the dependence measure depends on the marginal distributions. That problem can
be dealt with easily when the margins are continuous by using the associated uni-
form variables defined through the well-known mapping

X(j) �→ U(j) = FX(j)

(
X(j)), j = 1, . . . , p,

Y (k) �→ V (k) = FY(k)

(
Y (k)), k = 1, . . . , q.
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Then, the distance covariance between U = (U(1), . . . ,U(p)) and V = (V (1), . . . ,

V (q)) only depends on the underlying copula of (U,V ) and X and Y are inde-
pendent if and only if U and V are independent. Its empirical counterpart is sim-
ply computed by replacing the observations by their normalized ranks, that is,
replacing (Xi, Yi) by (RX,i/n,RY,i/n), where RX,ij is the rank of Xij among
X1j , . . . ,Xnj , j = 1, . . . , p. It is relatively easy to prove that the limiting distrib-
ution of nV 2

n(U,V ) will converge to ‖ξ‖2, where the covariance of ξ is RU,V , as
has been defined in Theorem 5.

On the subject of rank-based methods, I disagree with the authors when they
say that these methods are effective only for testing linear or monotone types of
dependence. Because independence can also be characterized by copulas, and the
latter can be efficiently estimated with ranks, their statement is totally inadequate.
See, for example, Genest and Rémillard (2004) for tests of nonserial and serial de-
pendance based on ranks. Furthermore, in their Example 2, the authors suggest that
the test based on the distance covariance is more powerful that its rank-based ana-
log. Looking at Figure 2, this is the case only when the sample size n is quite small
(n ≤ 15). I would be more convinced by a simulation with different dependence
models and sample sizes of the order 50 or 100, at the very least.

2. Measuring dependence between several random vectors. As a competi-
tor to the distance covariance for tests of independence, it is worth mentioning the
Cramér–von Mises statistic nBn, where

Bn =
∫

Rp+q
{Fn

X,Y (x, y) − Fn
X(x)Fn

Y (y)}2 dFn
X,Y (x, y)

is the empirical counterpart of

B =
∫

Rp+q
{FX,Y (x, y) − FX(x)FY (y)}2 dFX,Y (x, y).

The latter dependence measure also characterizes independence in the sense that
B = 0 only when X and Y are independent.

The limiting distribution of n1/2{Fn
X,Y (x, y) − Fn

X(x)Fn
Y (y)} used to construct

Bn was studied in Beran, Bilodeau and Lafaye de Micheaux (2007). In fact, the
authors proposed testing independence between d random vectors Z1, . . . ,Zd , us-
ing statistics based on Fn = n1/2{Hn(z1, . . . , zd) − Fn,1(z1) · · ·Fn,d(zd)}, where
Hn is the empirical joint distribution function of (Z1, . . . ,Zd), and Fn,j is
the empirical joint distribution of Zj , j ∈ {1, . . . , d}, calculated from a sample
(Z11, . . . ,Z1d), . . . , (Zn1, . . . ,Znd). Extending the results of Ghoudi, Kulperger
and Rémillard (2001) from random variables to random vectors, Beran, Bilodeau
and Lafaye de Micheaux (2007) considered tests of nonserial and serial depen-
dence based on Möbius decomposition of Fn, yielding asymptotically independent
empirical processes Fn,A (depending only on the indices in A), for any subset A

of {1, . . . , d} containing at least two elements. These 2d − d − 1 processes can be
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combined to define powerful tests of independence [Genest, Quessy and Rémillard
(2007)].

Because the limiting distribution under the null hypothesis depends on the un-
known distribution function F1, . . . ,Fd , Beran, Bilodeau and Lafaye de Micheaux
(2007) showed that bootstrap methods worked for estimating the P -value of un-
derlying test statistics.

Further, note that Bilodeau and Lafaye de Micheaux (2005) defined tests on in-
dependence between random vectors based on characteristic functions, when the
marginal distributions were assumed to be Gaussian. They considered both ser-
ial and nonserial cases. The Cramér–von Mises type statistics they used are quite
similar to the statistic nV 2

n , when restricted to two random vectors. Therefore, it
would be worth considering distance covariance measures for measuring indepen-
dence between several random vectors. In order to get nice covariance structures,
Möbius transformations of the empirical characteristic functions should be used.
More precisely, for any A ⊂ {1, . . . , d}, one could define distance covariance mea-
sures Vn,A = ‖ξn,A‖2, where

ξn,A(t1, . . . , td) = n−1/2
n∑

j=1

∏
k∈A

{
ei〈tk,Zjk〉 − f n

Xk
(tk)

}
.

3. Measuring dependence for multivariate time series. The distance co-
variance measures should also be defined in a time series context to measure serial
dependence. For example, if (Zi)i≥1 is a stationary multivariate time series, one
can easily define the “distance autocovariance” by

V 2(l) = V 2(Zj ,Zj+l), l ≥ 1.

It is easy to show that under the white noise hypothesis and the assumption that
|Z1|p has finite expectation,

nV 2
n(l)

D−→ ‖ξl‖2,

where ξ1, . . . , ξm are independent copies of ξ , as defined in Theorem 5. Again,
Möbius transformations should be used to test independence between (Z1, . . . ,

Zm). Therefore, there are still many interesting avenues to explore, especially for
time series applications. For example, rank-based methods could also be used. See,
for example, Genest and Rémillard (2004).

4. Using residuals and pseudo-observations. Finally, one could ask what
happens when observations are replaced by residuals (or pseudo-observations like
normalized ranks)? For example, one would like to test independence of the error
terms in several linear models, using the residuals. Based on the results in Ghoudi,
Kulperger and Rémillard (2001), the limiting distribution of nV 2

n should remain
the same, under weak assumptions. That should also be true for the multidimen-
sional extensions of the distance covariance. However, replacing the unobservable
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innovations by residuals in multivariate time series models leads to completely dif-
ferent limiting processes. For example, using residuals of a simple AR(1) model
of the form Zt = μ + φ(Zt−1 − μ) + εt , one can show that nV 2

n(l) converges in
law to ‖ξl − γl‖2, where

γl(t, s) = sf (s)f ′(t)�φl−1,

where f is the characteristic function of εt , and φn is an estimator of φ so that
n1/2(φn − φ) converges in law to �.

Fortunately, using an analog of the transform � defined in Genest, Ghoudi and
Rémillard [(2007), page 1373], it might be possible to obtain limiting distributions
not depending on the estimated parameters.
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