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DO PRICE AND VOLATILITY JUMP TOGETHER?

BY JEAN JACOD AND VIKTOR TODOROV

UPMC (Université Paris-6) and Northwestern University

We consider a process Xt , which is observed on a finite time interval
[0, T ], at discrete times 0,�n,2�n, . . . . This process is an Itô semimartin-
gale with stochastic volatility σ 2

t . Assuming that X has jumps on [0, T ], we
derive tests to decide whether the volatility process has jumps occurring si-
multaneously with the jumps of Xt . There are two different families of tests
for the two possible null hypotheses (common jumps or disjoint jumps). They
have a prescribed asymptotic level as the mesh �n goes to 0. We show on
some simulations that these tests perform reasonably well even in the finite
sample case, and we also put them in use on S&P 500 index data.

1. Introduction. Financial asset prices have two well-documented salient
features: their volatility changes over time and their trajectories can exhibit large
discontinuities. Both features have nontrivial implications for risk modeling and
management as the underlying asset itself is no longer sufficient to span all the
available risks in it and derivatives (written on it) are typically needed. Of central
importance then becomes the relationship between the price jumps and volatility.
For example, if the volatility is driven by a single (Markov) diffusion process, then
one can separate the management of volatility and jump risks by using first at-the-
money options for the former and then out-of-the-money options for the latter. But
such a simple separate management of these two risks will obviously not work
if the price jumps are associated with simultaneous discontinuous changes in the
level of volatility. Empirical evidence in [9] based on the behavior of close-to-
maturity options written on the stock market index suggest that this indeed might
be the case. And this is exactly what we try to investigate in this paper: are price
jumps accompanied by jumps in volatility?

The link between price and volatility jumps is intrinsically associated with the
observed path, and therefore we develop tests that are, as much as possible, inde-
pendent from the underlying model. More specifically, we suppose that we have
discrete observations from an arbitrary Itô semimartingale (typically the log-price)
at times i�n for i = 0,1, . . . , [T/�n] where the time span T will stay fixed and the
length of the high-frequency intervals �n → 0. Under such a sampling scheme, we
propose tests that determine the common arrival, or not, of the price and volatility
jumps on the discretely-observed path over [0, T ].
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The test statistics that we construct can be intuitively described as follows. First,
we identify the high-frequency price increments containing jumps as those being
higher in absolute value than a truncation level which goes to zero at a certain
(known) rate. Then, for the set of identified jump times we construct left and right
local volatility estimators from the neighboring high-frequency price increments.
Our statistics are simple sums of certain functions of the identified jumps and the
associated left and right volatility estimators. Then the tests we develop are based
on the different limit behavior of these statistics on the sets of common and disjoint
arrival of the price and volatility jumps.

While the results in the paper are derived for general functions measuring the
distance between the left and right volatility, there is one specific choice which is
particularly attractive for our testing purposes, and we use it in our applications.
This function corresponds to the log-likelihood ratio test for deciding whether two
independent samples of i.i.d. zero-mean normal variables have the same variance.
The link with our analysis comes from the fact that the leading terms in the asymp-
totic expansions of the left and right local volatility estimators are (close to) sample
averages of squared increments of a Brownian motion multiplied by the volatility
level straight before and after the price jump time. The “local Gaussianity” of the
high-frequency increments has been also used in [7] in a different context, that is,
for constructing various integrated measures of volatility in a continuous setting.
Unlike [7], however, our analysis is for processes with jumps.

Finally, our results can be related to [6] in which we propose tests for decid-
ing the common arrival of jumps for two discretely observed processes. The major
difference with that paper is that here one of the processes, namely the volatility,
is not directly observed, and it has to be estimated from the price increments first.
This has nontrivial consequences, as it is essentially the error associated with mea-
suring the volatility that determines the asymptotic behavior of our statistics, and
it can significantly slow down their rate of converge. The intrinsic nonsymmetric
nature of the price and volatility is reflected in our construction of the tests here,
and this makes the statistical problem very different from the one analyzed in [6].

The paper is organized as follows. Section 2 introduces our setup and states the
assumptions to be used in the rest of the paper. In Section 3 we propose statistics
constructed from the high-frequency data to measure the simultaneous arrival of
price and volatility jumps. In this section we also derive central limit theorems
associated with the statistics. Section 4 constructs our tests using the statistics of
Section 3. Section 5 contains Monte Carlo evidence for the performance of the
tests, while Section 6 applies our tests to real financial data. Proofs are in Sec-
tion 8.

2. Setting and assumptions. We suppose throughout that our underlying
process X is an Itô semimartingale on a filtered space (�, F , (Ft )t≥0,P). This
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means that it can be written as

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs

+
∫ t

0

∫
E

(
δ(s, z)1{|δ(t,z)|≤1}

)
(μ − ν)(ds, dz)(2.1)

+
∫ t

0

∫
E

(
δ(s, z)1{|δ(t,z)|>1}

)
μ(ds, dz),

where W is a standard Brownian motion, and μ is a Poisson random mea-
sure on [0,∞) × E, with (E, E ) an auxiliary measurable space, on the space
(�, F , (Ft )t≥0,P) and the predictable compensator (or intensity measure) of μ

is ν(ds, dz) = ds ⊗ λ(dz) for some given σ -finite measure λ on (E, E ). We write
ct = (σt )

2 for the volatility process. The processes bt and σt should be progres-
sively measurable and δ(ω, t, z) should be a predictable function on � × R+ × E.
We refer to [4] for all unexplained, but classical, notation.

We need some assumptions on X, and below r ∈ [0,2).

ASSUMPTION (H-r ). (a) The process bt is locally bounded.
(b) The process σt is càdlàg, and neither σt nor σt− vanish.
(c) We have |δ(ω, t, x)| ≤ 	t(ω)γ (x), for a locally bounded process 	t and a

(nonrandom) function γ ≥ 0 satisfying
∫
E(γ (x)r ∧ 1)λ(dx) < ∞.

When r = 2 this is little more than X being an Itô semimartingale, except for the
fact that σt and σt− do not vanish. When r < 2 it requires further that the jumps
are r-summable, and the bigger r is, the weaker is the assumption. When (H-0)
holds, then the jumps of X have finite activity.

Next, we make an assumption on the local behavior of σt . We want to accom-
modate two extreme cases: one is when σt is itself an Itô semimartingale (a quite
usual assumption for stochastic volatility models), and one is when it is the sum of
finitely many jumps plus a continuous process having pathwise some Hölder conti-
nuity property such as a fractional Brownian motion. So we present an assumption
which may look complicated but is satisfied by all models used so far and implies
that σt is càdlàg. In this assumption, v is in (0,1], and the bigger it is, the stronger
is the assumption.

ASSUMPTION (K-v). We have σt = �(Zt ,Zt ), where � is a C1 function
on R

2, and Zt and Zt are two adapted processes with the following properties:
(a) The process Z is an Itô semimartingale satisfying (H-2) when v ≤ 1/2

whereas when v > 1/2 it satisfies (H-1/v), and its continuous martingale part van-
ishes.

(b) The process Zt satisfies, for some locally bounded process 	′,
0 < s ≤ 1 ⇒ |Zt+s(ω) − Zt(ω)| ≤ 	′

t+s(ω)sv.(2.2)
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3. Limit theorems for functionals of jumps and volatility. Our aim is to
decide whether we have jumps of X and c occurring at the same times, and for this
we make use of the following processes where �Yt = Yt − Yt− is the jump size at
time t of any càdlàg process Y :

U(F)t =∑
s≤t

F (�Xs, cs−, cs)1{�Xs �=0}.(3.1)

Here, F is a function on R × R
∗+ × R

∗+ where R
∗+ = (0,∞). The derivatives of F ,

when they exist, are denoted by F ′
j and F ′′

jk , for j, k = 1,2,3. The general idea will
be to choose a function F which, for example, is nonnegative and F(x, y, z) = 0
if and only if y = z; then U(F)T > 0 on the set where the two processes X and c

have common jumps within the time interval [0, T ], and U(F)T = 0 elsewhere.
The process U(F) is not directly observable because we only observe Xi�n

for i ∈ N. Consequently, we “approximate” it by an observable process which we
presently describe. We need some notation. For any process Y we set

�n
i Y = Yi�n − Y(i−1)�n.(3.2)

We choose two sequences un > 0 and kn ∈ N
∗ which serve as cutoff level and

window size at stage n: we must have un → 0 but more slowly than
√

�n, and
kn → ∞ but more slowly than 1/�n. To this end it is convenient to choose two
exponents � and ρ such that, for some constant K ,

1

K
≤ un

��
n

≤ K,
1

K
≤ kn�

ρ
n ≤ K with 0 < � <

1

2
,0 < ρ < 1.(3.3)

The next variables serve as “local estimators” of the volatility:

ĉ(kn)i = 1

kn�n

kn∑
j=1

|�n
i+jX|21{|�n

i+jX|≤un}.(3.4)

Note that (b) of Assumption (H-r) implies that �n
i X �= 0 a.s. for all i, n, so

ĉ(kn)i > 0 a.s. and we can set

U(F, kn)t =
[t/�n]−kn∑
i=kn+1

F(�n
i X, ĉ(kn)i−kn−1, ĉ(kn)i)1{|�n

i X|>un}.(3.5)

The aim of this section is to describe the asymptotic behavior of those observable
processes U(F, kn).

3.1. The law of large numbers. Here we describe under which conditions on
F we have U(F, kn) → U(F). Basically, this requires that F be continuous, plus
some additional conditions. However, we want to apply the result when, for exam-
ple, F has the form F(x, y, z) = 1{|x|>a}g(y, z), where a > 0, and such an F is of
course not continuous: so the desired convergence does not take place, unless with
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probability 1 there is no jump of X with size a or −a. This is why we introduce
the following family R of subsets R:

R ∈ R ⇔ • R is open, with a finite complement;
• D = {x : P(∃s > 0 with �Xs = x) > 0} ⊂ R.

(3.6)

THEOREM 3.1. Assume Assumption (H-r) for some r < 2 and Assumption
(K-v) and (3.3), and let F be a Borel function on R × R

∗2+ which is continuous
at each point of R × R

∗2+ for some R ∈ R. The processes U(F, kn) converge in
probability, for the Skorokhod topology, to U(F), as soon as one of the following
three sets of hypotheses is satisfied:

(a) F(x, y, z) = 0 for |x| ≤ ε for some ε > 0;
(b) we have r = 0;
(c) we have |F(x, y, z)| ≤ K|x|r (1 + y + z) if |x| ≤ ε for some ε,K > 0.

3.2. The central limit theorems. The above consistency result is not enough
for us, and we need a central limit theorem (CLT) associated with it. Moreover, in
view of the statistical applications given later, we need a joint CLT for the process
U(F, kn) and for the similar process U(F,wkn) obtained by substituting kn with
wkn for some integer w ≥ 2.

The test function F should satisfy some smoothness conditions in connection
with the index r in Assumption (H-r) and involves another index p ≥ 1 as well.
Namely, we suppose that there exist R ∈ R and ε ≥ 0 such that:

• F is C1 on R × R
∗2+ ;

• 1

|x|p−1 F ′
1(x, y, z) is locally bounded on R × R

∗2+ ;(3.7)

• 1

|x|r F ′
2(x, y, z),

1

|x|r F ′
3(x, y, z) are bounded on [−ε, ε] × R

∗2+

(recall that any R ∈ R contains [−ε, ε] for some ε > 0). When ε = 0 the last
condition is empty. When p = 1 the second condition is empty.

We need some additional notation. Let (�′, F ′,P
′) be an auxiliary space en-

dowed with four sequences (V −
p ), (V +

p ), (V ′−
p ) and (V ′+

p ) of independent N (0,1)

variables. We introduce the following extension (�̃, F̃ , P̃) of (�, F ,P):

�̃ = � × �′, F̃ = F ⊗ F ′, P̃ = P ⊗ P
′.

Any variable or process defined on � or �′ will be extended to �̃ in the usual way,
without change of notation. We consider an arbitrary sequence (Tp)p≥1 of positive
stopping times on (�, F , (Ft )t≥0,P) which exhausts the jumps of X: this means
that Tp �= Tq if Tp < ∞ and q �= p, and that for each ω the set {t :�Xt �= 0} is
contained in {Tp :p ≥ 1}.
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Below we assume Assumption (H-r), and F satisfies (3.7). Then the formulas⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut =∑
p≥1

(
F ′

2(�XTp, cTp−, cTp)cTp−
√

2V −
p

+ F ′
3(�XTp, cTp−, cTp)cTp

√
2V +

p

)
1{Tp≤t},

U ′
t =∑

p≥1

(
F ′

2(�XTp, cTp−, cTp)cTp−
√

2V ′−
p

+ F ′
3(�XTp, cTp−, cTp)cTp

√
2V ′+

p

)
1{Tp≤t},

(3.8)

define two càdlàg adapted processes U and U ′ on the extended filtered space
(�̃, F̃ , (F̃t )t≥0, P̃) where (F̃t ) is the smallest filtration which contains (Ft ) and
such that the variables V +

p ,V −
p ,V ′+

p ,V ′−
p are F̃Tp -measurable. Moreover, condi-

tionally on F , these two processes are independent, with the same (conditional)
laws, and are centered Gaussian martingales (hence with independent increments)
and with the conditional variances

Ẽ((Ut )
2 | F ) = Ẽ((U ′

t )
2 | F ) = B(F)t

(3.9)
where B(F)t = 2

∑
s≤t

(
c2
s−F ′

2(�Xs, cs−, cs)
2 + c2

s F
′
3(�Xs, cs−, cs)

2).
Moreover, if we modify the exhausting sequence (Tp) we accordingly modify Ut

and U ′
t , but we do not change their F -conditional laws which is the only relevant

property of (U , U ′) for the stable convergence in law below (all these facts are
proved, in a slightly different form, in [5]; we refer to [4] for the stable convergence
in law).

THEOREM 3.2. Assume Assumption (H-r) for some r < 2 and Assump-
tion (K-v) and (3.3) with

ρ <
(
2�(2 − r)

)∧ 2v

1 + 2v
.(3.10)

Let F satisfy (3.7) with ε ≥ 0 when r = 0 and ε > 0 otherwise, and let w ≥ 2 be
an integer.

(i) If either r = 0, or F(x, y, z) = 0 for |x| ≤ ε for some ε > 0, the two-
dimensional processes(√

kn

(
U(F, kn)t − U(F)t

)
,
√

kn

(
U(F,wkn)t − U(F)t

))
(3.11)

converge stably in law to the process (U , 1
w

(U + √
w − 1U ′)) in the Skorokhod

sense.
(ii) Assume that r > 0, that F(0, y, z) = 0 and that p > 1 + r/2 in (3.7). As-

sume also that ρ and � satisfy

� <
1

2r
, ρ <

(
2�(p ∧ 2 − r)

)∧ 2p − 2 − r

r
∧ 2v

1 + 2v
(3.12)

[which is stronger than (3.10)]. Then for any fixed t > 0 the variables (3.11) con-
verge stably in law to the variables (Ut ,

1
w

(Ut + √
w − 1U ′

t )).
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In (ii) above we do not state the “functional convergence” (stably in law), al-
though it is probably true. For the tests we are after in the paper, we need only the
finite-dimensional convergence of the above theorem.

Our second CLT is about the case when the limiting process in the first CLT
vanishes. Another normalization is then needed, and also stronger smoothness as-
sumptions on F . Namely, we assume (3.7) and

• F(x, y, z) is C1 in x and C2 in (y, z) on R × R
∗2+ ,

(3.13)

• 1

|x|r F ′′
ij (x, y, z) for i, j = 2,3 is bounded on [−ε, ε] × R

∗2+ .

Of course, the limit in Theorem 3.2 may vanish under various circumstances, but
for us it is enough to consider the rather simple situation where there is a Borel set
A ⊂ R and some η > 0 such that

• either [−η,η] ⊂ A or [−η,η] ∩ A = ∅,

• x ∈ A,y ∈ R
∗+ ⇒ F(x, y, y) = F ′

2(x, y, y) = F ′
3(x, y, y) = 0,(3.14)

• x /∈ A,y, z ∈ R
∗+ ⇒ F(x, y, z) = 0.

Then obviously U(F)t = Ut = U ′
t = 0 on the set �A

t on which, for all s ≤ t , we
have �σs = 0 whenever �Xs ∈ A \ {0}. When A = R the set �A

t is the set where
X and σ have no common jumps on [0, t].

When F satisfies (3.13), and with a given integer w ≥ 2, the formulas⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U t =∑
p≥1

c2
Tp

(
F ′′

22(�XTp, cTp, cTp)(V −
p )2

+ 2F ′′
23(�XTp, cTp, cTp)V −

p V +
p

)
+ F ′′

33(�XTp, cTp, cTp)(V +
p )21{Tp≤t},

U ′
t = 1

w2

∑
p≥1

c2
Tp

(
F ′′

22(�XTp, cTp, cTp)
(
V −

p + √
w − 1V ′−

p

)2
+ 2F ′′

23(�XTp, cTp, cTp)

× (V −
p + √

w − 1V ′−
p

)(
V +

p + √
w − 1V ′+

p

))
+ F ′′

33(�XTp, cTp, cTp)
(
V +

p + √
w − 1V ′+

p

)21{Tp≤t}

(3.15)

define two càdlàg adapted processes U and U ′ on the extended filtered space
(�̃, F̃ , (F̃t )t≥0, P̃). Moreover, conditionally on F , the pair (U , U ′) is a process
with independent increments and finite variation on compact intervals, and with
the conditional means,

Ẽ(U t | F ) = B ′(F )t , Ẽ(U ′
t | F ) = 1

w
B ′(F )t

(3.16)
where B ′(F )t =∑

s≤t

c2
s

(
F ′′

22(�Xs, cs, cs) + F ′′
33(�Xs, cs, cs)

)
.
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Here again, if we modify the exhausting sequence (Tp) we accordingly modify U t

and U ′
t , but we do not change their F -conditional laws.

THEOREM 3.3. Assume Assumption (H-r) for some r < 2 and Assumption
(K-v) and (3.3) with

ρ <
(
2�(2 − r)

)∧ 2v

1 + 2v
∧ 1

2
.(3.17)

Let F satisfy (3.14) for some A ⊂ R, and (3.13) for ε = 0 when r = 0 and some
ε > 0 otherwise.

(i) If either r = 0, or F(x, y, z) = 0 for |x| ≤ ε for some ε > 0, the two-
dimensional variables (knU(F, kn)t , knU(F,wkn)t ) converge stably in law, in re-
striction to the set �A

t , to the variable (U t , U ′
t ).

(ii) The same holds when r > 0, provided ρ and � satisfy

ρ <
(
�(4 − r) − 1

)∧ (2v) ∧ 1

1 + (2v) ∧ 1
∧ 1

2
.(3.18)

4. Construction of the tests.

4.1. Preliminaries. Now we are ready to construct our tests using the limit
results of the previous section. The overall interval on which the process X is
observed, at times i�n, is [0, T ]. In our tests the processes X and σ will not play
a symmetrical role, mainly because X is observed, whereas σ is not.

Although our main concern is to test for common jumps, irrespective of their
sizes, it might be useful to test also whether there are jumps of X with size in a
subset A of R, occurring at the same time as jumps of σ : for example, A = (a,∞)

or A = (−∞,−a) (positive or negative jumps of X of size bigger than a only), or
A = (−∞,−a) ∪ (a,∞) (jumps of X of size bigger than a).

We thus pick a subset A ⊂ R satisfying the first part of (3.14), and we are inter-
ested in the following two disjoint sets:

�
A,j
T = {ω :∃s ∈ (0, T ] with �Xs(ω) ∈ A \ {0} and �σs(ω) �= 0

}
,

�
A,d
T = {ω :∀s ∈ (0, T ],�Xs(ω) ∈ A \ {0} ⇒ �σs(ω) = 0,(4.1)

and ∃s ∈ (0, T ] with �Xs(ω) ∈ A \ {0}}.
The subscripts “j” and “d” stand for “joint” jumps and “disjoint” jumps. One
could also specify a subset A′ in which the jumps of σ lie, but it requires more
sophisticated CLTs than Theorems 3.1 and 3.2, and we will not consider this case
here. Note that �

A,d
T is contained in the set �A

T of Theorem 3.3.
Next, we recall that testing a null hypothesis “we are in a subset �0” of �,

against the alternative “we are in a subset �1,” with of course �0 ∩ �1 = ∅,
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amounts to finding a critical (rejection) region Cn ⊂ � at stage n. The asymp-
totic size and asymptotic power for this sequence (Cn) of critical regions are the
following numbers:

α = sup
(
lim sup

n
P(Cn | H) :H ∈ F ,H ⊂ �0,P(H) > 0

)
,

(4.2)
β = inf

(
lim inf

n
P(Cn | H) :H ∈ F ,H ⊂ �1,P(H) > 0

)
.

In all forthcoming tests, we fix a priori two sequences un and kn satisfying
(3.3): typically un = a��

n and kn = [a′/�ρ
n] where a, a′ > 0 are constants. Some

restrictions on � and ρ will also be made, depending on the test at hand.
Finally, similar to the tests for deciding whether price and volatility jump to-

gether or not which we develop here, one can use the limit results of Section 3
to derive various other tests about the relationship between jumps in X and its
volatility. Examples include: (1) testing whether all jumps in X are associated
with volatility jumps and (2) testing whether jumps in X of given sign always lead
to positive (negative) volatility jumps.

4.2. Testing the null hypothesis “no common jump.” Here we take the null
hypothesis to be “X and σ have no common jump” with jump size of X in A, that
is, �

(A,d)
T , for A like in (3.14).

4.2.1. General family of tests. The idea is to use the variable U(F)T of (3.1)
and its approximations U(F, kn)T for a suitable function F , namely

F(x, y, z) = f (x)g(y, z)

with

⎧⎪⎪⎨⎪⎪⎩
f is C1, on R,

x ∈ [−ε, ε] ⇒ |f ′(x)| ≤ C|x|p−1,

x ∈ A \ {0} ⇒ f (x) > 0,

x /∈ A \ {0} ⇒ f (x) = 0,

(4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g is C2, with bounded first
and second derivatives,

z �= y ⇒ g(y, z) > 0,

z = y ⇒ g(y, z) = 0,

g′
1(y, y) = g′

2(y, y) = 0,

g′′
11(y, y) + g′′

22(y, y) > 0,

and where p ≥ 1 ∨ r . These ensure that F satisfies (3.7), (3.13) and (3.14). It also
implicitly implies conditions on the set A, since A \ {0} = f −1((0,∞)) and f is
C1 on R, whose complement is finite.

By Theorem 3.1, we have the following convergence:

U(F, kn)T
P−→ U(F)T

{= 0, on the set �
(A,d)
T ,

> 0, on the set �
(A,j)
T .

(4.4)
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So in order to test the null hypothesis �
(A,d)
T , it is natural at stage n to take a

critical region of the form Cn = {U(F, kn)T > Zn} for some (possibly random)
Zn > 0. In order to determine Zn in such a way that the asymptotic level of the
test be some α, we make use of Theorem 3.3, which says that, in restriction to the
set �

(A,d)
T , the variables knU(F, kn)T converge stably in law to U T , as defined by

(3.15). Conditionally on F , this variable is a weighted chi-square variable, with
mean B ′(F )T given by (3.16).

One simple, not very efficient, way to derive test with a prescribed level α makes
use of Bienaymé–Chebyshev inequality, plus the fact that by Theorem 3.1 again
we can approximate the variable B ′(F ) by U(G,kn)T where

G(x,y, z) = y2f (x)
(
g′′

11(y, z) + g′′
22(y, z)

)
(4.5)

satisfies all the requirements of that theorem. At this point, the critical region is
taken to be

Cn =
{
U(F, kn)T >

U(G,kn)T

αkn

}
(4.6)

and the following is straightforward:

THEOREM 4.1. Assume Assumptions (H-r) and (K-v), and F as in (4.3) with
p ≥ r , and choose un and kn such that (3.3) and (3.18) hold. Then the critical
region (4.6) has asymptotic level less than α for testing the null hypothesis �

(A,d)
T ,

and asymptotic power 1 for the alternative �
(A,j)
T .

The actual asymptotic size of this test is usually much lower than α, because
Bienaymé–Chebyshev is a crude approximation. However we can use a Monte
Carlo simulation to better fit the size, in the spirit of [6]: we take a sequence
Nn → ∞, and we simulate independent N (0,1) variables V −

i (j) and V +
i (j) of

independent N (0,1) variables, for j = 1, . . . ,Nn and i = 1, . . . , [T/�n]. Then,
with the observed values of �n

i X, hence of the variables ĉ(kn)i as well, we set

U (n, j) =
[T/�n]−kn∑

i=kn+1

f (�n
i X)1{|�n

i X|>un}(ĉ(kn)i)
2

× (g′′
11
(
ĉ(kn)i−kn−1, ĉ(kn)i

)
(V −

i (j))2

(4.7)
+ g′′

22
(
ĉ(kn)i−kn−1, ĉ(kn)i

)
(V +

i (j))2

+ 2g′′
12
(
ĉ(kn)i−kn−1, ĉ(kn)i

)
V −

i (j)V +
i (j)

)
.

Next, we consider the order statistics of these simulated variables, that is,
U (n)(1) ≥ U (n)(2) ≥ · · · ≥ U (n)(Nn) such that {U (n)j : 1 ≤ j ≤ Nn} = {U (n, j) :
1 ≤ j ≤ Nn}, and we take as our critical region the following:

Cn =
{
U(F, kn)T >

U (n)([Nnα])
kn

}
.(4.8)
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THEOREM 4.2. Assume Assumptions (H-r) and (K-v), and F as in (4.3) with
p ≥ r , and choose un and kn such that (3.3) and (3.18) hold. Then the critical re-
gion (4.8), constructed with any sequence Nn increasing to infinity, has asymptotic
level equal to α for testing the null hypothesis �

(A,d)
T , and asymptotic power 1 for

the alternative �
(A,j)
T .

4.2.2. A leading example. Here we specialize A to be either A = R or A =
[−a, a]c for some positive a, and in the first case we will need r = 0; that is,
our process X has finite activity jumps. In both cases, we end up using a finite
number of jumps of X (jumps of size higher than a fixed value are almost surely
of finite number); therefore we consider F(x, y, z) = f (x)g(y, z) with f (x) =
1{x∈A}. Since for this choice f (x) is discontinuous at x = ±a, we need ±a /∈ D

[recall (3.6)] in order for (3.13) to be satisfied. Of course, D is unknown, but in
the typical case when the Lévy measure of X has no atom, D = {0} and thus any
a > 0 works. Otherwise, we can replace 1{|x|>a} by a C1 function which is very
close to this. Practically this should make no significant difference, and therefore
we stick to the indicator function, with a /∈ D. When A = R we set a = 0.

A natural choice for the function g is the following:

g(y, z) = 2 log
y + z

2
− logy − log z.(4.9)

This choice corresponds to the log-likelihood ratio test for testing that two indepen-
dent samples of i.i.d. zero-mean normal variables have the same variance. The link
with our testing comes from the fact that around a jump time the high-frequency
increments of X are “approximately” i.i.d. normal.

With this choice of F , our test for common jumps becomes essentially pivotal,
that is, the limiting distribution of the test statistics depends only on the number of
jumps and is thus straightforward to implement. To see this, note that in this case
(3.15) writes as

U T = 1

2

∑
p≥1

(V +
p − V −

p )21{|�XTp |>a}.(4.10)

Conditionally on F , this variable has the same law as a chi-square variable with
NT degrees of freedom where NT =∑p≥1 1{|�XTp |>a}. The variable NT is not
observable. However, we have

Nn
T =

[T/�n]∑
i=1

1{|�n
i X|>a∨un}

P−→ NT ,(4.11)

and since these are integer-valued variables we even have P(Nn
T = NT ) → 1.

Therefore, denoting by z(α,n) the α-quantile of a chi-square variable χ2
n with

n degrees of freedom, that is, the number such that P(χ2
n > z(α,n)) = α, we may
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take the following critical region at stage n:

Cn =
{
U(F, kn)T >

z(α,Nn
t )

kn

}
.(4.12)

THEOREM 4.3. Assume Assumptions (H-r) and (K-v), and F as above with
either a = 0 if r = 0 or a positive and ±a /∈ D if r ≥ 0. Choose un and kn such
that (3.3) and (3.17) hold. Then the critical region (4.11) has asymptotic level
equal to α for testing the null hypothesis �

(A,d)
T , and asymptotic power 1 for the

alternative �
(A,j)
T .

Note that for constructing the critical region in (4.12), we need only the critical
values of a chi-square variable χ2

n , and thus there is no need for simulation.

4.3. Testing the null hypothesis, “common jump.” Now we take the null hy-
pothesis to be “X and σ have common jumps” with sizes in A for X, that is, �(A,j)

T ,
for A like in (3.14). We take an integer w ≥ 2 and a function F satisfying (4.3),
and introduce the statistics

Sn = U(F,wkn)T

U(F, kn)T
.(4.13)

If we combine Theorems 3.1 and 3.3, we first obtain⎧⎪⎨⎪⎩
Sn

P−→ 1, on the set �
(A,j)
T ,

Sn
L−(s)−→ U ′

T

U T

�= 1 a.s., on the set �
(A,d)
T ,

(4.14)

where
L−(s)−→ stands for the stable convergence in law; for the second convergence

we must assume that kn satisfies (3.17), and U ′
T is implicitly depending on w; note

that the pair (U T , U ′
T ) has F -conditionally a density, implying U ′

T /U T �= 1 a.s.
To determine the asymptotic level of a test based upon Sn, we make use of

Theorem 3.2 which by way of the delta method shows that, in restriction to the set
�

(A,j)
T , the variables

√
kn(Sn − 1) converge stably in law to (

√
w − 1U ′

T − (w −
1)UT )/wU(F)T . The limit is F -conditionally centered Gaussian with variance
(w − 1)B(F )T /w(U(F )T )2 [recall (3.9)]. Hence, if

G(x,y, z) = 2f (x)2(y2g′
1(y, z)2 + z2g′

2(y, z)2),
(4.15)

Vn = (w − 1)U(G,kn)T

wkn(U(F, kn)T )2 ,

we deduce that, in restriction to the set �
(A,j)
T , the variables (Sn − 1)/

√
Vn con-

verge stably in law to a standard normal variable, under (3.12), of course.
Then we may take the following critical region at stage n, where zα denotes the

symmetric α-quantile of an N (0,1) variable V , that is, P(|V | > zα) = α.

Cn = {|Sn − 1| > zα

√
Vn

}
.(4.16)
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THEOREM 4.4. Assume Assumptions (H-r) and (K-v), and F as in (4.3) with
p > 1 + r/2. Choose un and kn such that (3.3) and (3.12) hold. Then the critical
region (4.16) has asymptotic level α for testing the null hypothesis �

(A,j)
T .

There is no statement about the asymptotic power for the alternative �
(A,d)
T

which is any case is not equal to 1. Indeed, on �
(A,d)
T , the variables (Sn − 1)/

√
Vn

converge stably in law to some limit V (easily constructed from U T , U ′
T and also

the variable U T associated with the function G) as soon as G satisfies the assump-
tion of Theorem 3.3. The variable V is a.s. nonvanishing, and the asymptotic power
of our test is

β = inf
(
P(|V| > zα | H) :H ∈ F ,H ⊂ �

(A,d)
T ,P(H) > 0

)
.

This quantity cannot be computed explicitly and may be close to 0, as simulations
show later on.

To avoid this power problem, we can “truncate” the estimated variance Vn: let
vn be a sequence of positive numbers (possibly random, but of course depending
only on the observations at stage n), such that vn → 0 and knvn → ∞, and set

V ′
n = Vn ∧ vn.

Since knVn converges to a positive finite limit on �
(A,j)
T , we have P(Vn = V ′

n) → 1
and this truncation has no effect on the behavior of our standardized statistics under
the null, and we take the following critical region:

C ′
n = {|Sn − 1| > zα

√
V ′

n

}
.(4.17)

THEOREM 4.5. Assume Assumptions (H-r) and (K-v), and F as in (4.3) with
p > 1 + r/2. Choose un and kn such that (3.3) and (3.17) hold. Then if vn → 0
and knvn → ∞, the critical region (4.17) has asymptotic level α for testing the
null hypothesis �

(A,j)
T , and asymptotic power 1 for the alternative �

(A,d)
T .

REMARK 4.6. Exactly as in the previous subsection, when r = 0 we may use
the function F(x, y, z) = g(y, z) given by (4.9), and A = R. When r > 0 we can
use F(x, y, z) = g(y, z)1{|x|>a}, with g as above and a > 0 and A = [−a, a]c,
provided ±a /∈ D. In these cases, ρ and � are subject to the weaker condition
(3.10) only.

4.4. Practical aspects. The construction of the tests involves several choices
to be made by the user. The first one is about the functions f and g in (4.3).
A good choice seems to be f (x) = 1{|x|>a} for some a ≥ 0 and g as given by (4.9).
However this works only when (H-0) holds (a serious restriction indeed), or when
a > 0, and in the latter case we only test for common jumps when the size of the
jumps of X is bigger than a. Then the user can perform the testing for various



1438 J. JACOD AND V. TODOROV

levels of a. In addition, if jumps of certain size in X are more important, 1{|x|>a}
can be replaced with an appropriate weighting function for the jumps of different
size. Finally, if the user wants to check cojumping, including the very “small”
jumps in X, then a good choice is to take f (x) = x2 and g(y, z) = h(y − z) where
h is a C2 function with bounded first and second derivatives, and h(0) = h′(0) = 0
and h′′(0) > 0 and h(x) > 0 when x �= 0.

The second choice in implementing the tests is about the sequences un and kn.
Here we face a natural tradeoff between efficiency and robustness. un and kn

should satisfy (3.10) or (3.17) when f (x) = 1{|x|>a}, and (3.12) or (3.18) other-
wise, depending on which test is performed. These conditions depend on the a
priori unknown numbers r and v in Assumptions (H-r) and (K-v). The higher the
r and the lower the v are, the stricter the conditions are, and the lower the rate
at which kn can grow, that is, the slower the rate at which U(F, kn)T converges.
Intuitively, high r makes it difficult to distinguish the many small jumps from the
Brownian increments, while low v means volatility is very “active” over short in-
tervals and that makes estimation from neighboring increments “noisier.”

Most stochastic volatility models imply that σt is an Itô semimartingale and
therefore v = 1

2 . If in addition we assume that r < 1, that is, jumps are of finite
variation, then we can choose � and ρ arbitrarily close to 1

2 , which is the optimal
choice. Alternatively, if we are willing to assume only that r ≤ r0 for some 1 <

r0 < 2, then we can write the conditions on � and ρ with respect to r0 and pick
un and kn so that they are fulfilled. One should emphasize that � and ρ only give
an order of magnitude, and the concrete choice of un and kn when one is faced
with a set of data and thus with n and �n given is always a difficult question: in
the Monte Carlo study we provide some guidance on that.

The last choice to be made, for the second test, is choosing the integer w. Under
the null �

(A,j)
T the normalized asymptotic F -conditional variance of Sn takes the

form w−1
w

� where � = B(F)Y /(U(F )T )2 does not depend on w. The minimum
of w−1

w
for w ≥ 2 is achieved at w = 2. At the same time the effect of changing

w under the alternative hypothesis is unclear and in general depends on the par-
ticular realization. For that reason we suggest to take w = 2 and we do so in our
numerical applications without further mention. Some Monte Carlo experiments
(not reported here) with w = 4 provide further support for this choice.

5. Monte Carlo study. In this section we check the performance of our tests
on simulated data. We work with the stochastic volatility model

dXt =
√

V 1
t + V 2

t dWt + α0

∫
R

xμ(dt, dx, dy),

dV 1
t = κ1(θ − V 1

t ) dt + σ

√
V 1

t dW ′
t ,(5.1)

dV 2
t = −κ2V

2
t dt + α1

∫
R

yμ(dt, dx, dy) + α2

∫
R

yμ′(dt, dy),
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TABLE 1
Parameter settings used in the Monte Carlo

Parameters

Case κ1 θ σ κ2 α0 α1 α2 λ l h d u

I-c 0.02 0.4 0.04 0.5 1 0 0 0.5 0.1 1.0420
II-c 0.02 0.4 0.04 0.5 1 0 0 1.0 0.1 0.7197
III-c 0.02 0.4 0.04 0.5 1 0 0 4.0 0.1 0.3275
I-d 0.02 0.4 0.04 0.5 1 0 1 0.5 0.1 1.0420 0.04 0.7600
II-d 0.02 0.4 0.04 0.5 1 0 1 1.0 0.1 0.7197 0.04 0.3600
III-d 0.02 0.4 0.04 0.5 1 0 1 4.0 0.1 0.3275 0.04 0.0600
I-j 0.02 0.4 0.04 0.5 1 1 0 0.5 0.1 1.0420 0.04 0.7600
II-j 0.02 0.4 0.04 0.5 1 1 0 1.0 0.1 0.7197 0.04 0.3600
III-j 0.02 0.4 0.04 0.5 1 1 0 4.0 0.1 0.3275 0.04 0.0600
I-m 0.00 0.0 0.00 0.5 1 1 1 0.5 0.1 1.0420 0.04 0.7600
II-m 0.00 0.0 0.00 0.5 1 1 1 1.0 0.1 0.7197 0.04 0.3600
III-m 0.00 0.0 0.00 0.5 1 1 1 4.0 0.1 0.3275 0.04 0.0600

where W and W ′ are two independent Brownian motions; the (finite activity)
Poisson measures μ and μ′ are independent with compensators ν(dt, dx, dy) =

λ
2(h−d)(u−d)

1(x∈[−h;−l]∪[l;h])1(y∈[d;u]) dt dx dy for 0 < l < h and 0 < d < u and

ν′(dt, dy) = λ
u−d

1(y∈[d;u]) dt dy. This two-factor volatility structure is found to fit
high-frequency financial data very well in [8] (see also references therein). The
above cited study finds the continuous volatility factor to be very persistent, while
the discontinuous one to be transient. This is reflected in our choice of the para-
meter values of κ1 and κ2 in the Monte Carlo settings, in an effort to make them
realistically plausible for financial applications. In Table 1 we report the parameter
values for all cases considered. In all of them the variance of the jumps in X is
fixed and its share in the total price variation is in the range 0.2 − 0.34, which is
similar to one estimated from real financial data (see, e.g., [3]). Scenarios with a
higher number of jumps imply that the jumps are of smaller size. The different pa-
rameter settings differ in the average number of jumps, their sizes, whether jumps
are present in the volatility and whether they arrive together with the jumps in X

or not. The cases labeled with c and d are draws from the set �
(A,d)
T , while the

cases labeled with j and m are draws from the set �
(A,j)
T . To ensure the latter,

we discard simulations from scenarios m on which there is no common price and
volatility jumps. The behavior of the tests on the discarded simulation draws is
exactly as on the simulations from scenarios d .

In the simulated model we have (H-0) and (K-1/2), so we use the tests based
on f (x) = 1 and g given by (4.9), and A = R. Throughout, time is measured in
days, and the observation length is five days, that is, T = 5, which constitutes one
business week. We simulate 5000 days, that is, 1000 Monte Carlo replications.
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On each day we consider sampling n = 1000, n = 5000 or n = 24,000 times, cor-
responding approximately to sampling every 0.5 minutes, 5 seconds or 1 second
for a trading day of 6.5 hours or equivalently to sampling every 1.5 minutes, 15
seconds or 4 seconds for a trading day of 24 hours. Finally, for the calculation of
the local volatility estimators we use a window kn = [5 × �−0.49

n ]. Our choice for
the truncation parameters a and � determining un = a��

n is a = 5 × √
BV and

� = 0.49, respectively, where BV denotes the bi-power variation over the day [1,
2]. This choice of the truncation level reflects the time-variation in the volatility.

Figure 1 shows kernel density estimates of U(F, kn)T /Nn
T , and Figure 2 shows

the size and power of the test for disjoint jumps. Overall the test behaves as pre-
scribed by our asymptotic results. Not surprisingly, the size of the jumps have the
strongest finite sample effect: the last row of Figure 2, corresponding to the sce-
narios with the smallest on average jumps, shows that for n = 1000 we have slight
overrejection when the null is true (cases c and d) and lower power when the al-

FIG. 1. Kernel density estimate of U(f,g, kn)T /Nn
t from the Monte Carlo. The dashed line cor-

responds to sampling frequency of n = 1000, the dotted line to sampling frequency of n = 5000 and
the solid line to sampling frequency of n = 24,000.
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FIG. 2. Size and power of the test for disjoint price and volatility jumps. The x-axis shows the
nominal level of the corresponding test, while the y-axis shows the percentage of rejection in the
Monte Carlo. The dashed line corresponds to sampling frequency of n = 1000, the dotted line to
sampling frequency of n = 5000 and the solid line to sampling frequency of n = 24,000.

ternative is true (cases j and m). The size distortion disappears and the power
converges to 1 as we increase the sampling frequency.

Turning to the test for common jumps, Figure 3 shows kernel density estimates
of log(Sn). The statistics are centered around 0 on the samples in �

(A,j)
T (cases j

and m), as predicted from our theoretical results. The distribution of log(Sn) on
these samples becomes more concentrated around the true value of 0 as we in-
crease the frequency. On the other hand, on the samples in �

(A,d)
T (cases c and d),

the statistics are centered around log(0.5), and its distribution remains nearly un-
changed across the different sampling frequencies (because for those samples Sn

converge to a random variable and not a constant).
Figure 4 shows the size and power of the test for common jumps when we

standardize |Sn − 1| by Vn. The test has overall good size with the only exception
being the cases with high intensity of arrival of small size jumps (last row of the
figure), for which even for n = 24,000 we have somewhat significant overrejection.
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FIG. 3. Kernel density estimate of log(Sn) from the Monte Carlo. The dashed line corresponds to
sampling frequency of n = 1000, the dotted line to sampling frequency of n = 5000 and the solid line
to sampling frequency of n = 24,000.

On the other hand, from the first two columns of Figure 4 we can see that, when
using Vn, the test has essentially no power against the considered alternatives. The
lack of power is explained after Theorem 4.4.

We next performed the test with rejection region C′
n of (4.17), corresponding to

the truncated variance V ′
n = Vn ∧ vn, and we have taken vn = k−0.125

n × 1
z(0.5,Nn

t )

where Nn
T is given by (4.11). The choice of vn reflects the fact that on �

(A,d)
T , Vn

is distributed approximately as 1/χ2
Nn

T
. The results of the test with the truncated

asymptotic variance are reported on Figure 5. The power against all alternatives
improves in all cases, as seen from the first two columns of the figure. The cost of
this is finite sample overrejection in the scenarios of frequent small jumps, that is,
the last row on Figure 5. The overrejection for cases III-j and III-m is quite big.

Overall, we conclude that the test for disjoint jumps performs well in finite sam-
ples and has relatively good power. The test for common jumps should be always
performed using the truncated variance V ′

n, and it can significantly overreject the
null in the case of jumps of small size. Finally, as confirmed by the Monte Carlo,
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FIG. 4. Size and power of the test for common price and volatility jumps with Vn used in the
construction of the critical region. The x-axis shows the nominal level of the corresponding test,
while the y-axis shows the percentage of rejection in the Monte Carlo. The dashed line corresponds
to sampling frequency of n = 1000, the dotted line to sampling frequency of n = 5000 and the solid
line to sampling frequency of n = 24,000.

using coarser sampling frequencies in performing the tests leads to larger errors in
estimating the left and right volatility. Therefore, our ability to distinguish small
price and volatility jumps worsens in such cases. As a result, on coarser frequencies
the tests will perform worse (i.e., weaker power against alternatives and possible
size distortions) when jumps are small, for example, case III in our Monte Carlo,
and there will be little effect when jumps are bigger, for example, cases I and II
considered here.

6. Empirical application. Before going to the empirical application, let us
mention a crucial point. Our construction of the tests assumes that the stochastic
process is observed without error, and the Monte Carlo in the previous section is
conducted in this way. In financial applications at very high frequencies, for exam-
ple, seconds, the presence of microstructure noise in the prices is nonnegligible.
If, for example, we have an i.i.d. noise, say with a continuous bounded density
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FIG. 5. Size and power of the test for common price and volatility jumps with V ′
n used in the

construction of the critical region. The x-axis shows the nominal level of the corresponding test,
while the y-axis shows the percentage of rejection in the Monte Carlo. The dashed line corresponds
to sampling frequency of n = 1000, the dotted line to sampling frequency of n = 5000 and the solid
line to sampling frequency of n = 24,000.

φ, then �n

u3
n
ĉ(kn)i converges in probability to 2

3

∫
φ(x)φ(−x)dx for all i: so ob-

viously our test statistics behave in a very different way than in our theorems for
their limiting behavior in probability, not to mention the CLTs. Intuitively, the mi-
crostructure noise will tend to bias downwards the estimated difference between
left and right volatility, that is, a bias in favor of no common price and volatility
jumps hypothesis.

There seem to be two ways to get around the problem of microstructure noise.
One is to use a coarser frequency at which the microstructure noise is considered
as being negligible. Given our conclusions from the Monte Carlo, this way will
inevitably sacrifice somewhat the performance of the tests when very small jumps
are involved. An alternative is to develop tests which are robust against the noise,
like using a pre-averaging preliminary procedure for our local volatility estimators,
but this will inevitably lead to a further decrease in the rates of convergence. Fur-
thermore such an extension of our tests, while building on the theoretical results
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TABLE 2
Testing for disjoint and common price and volatility jumps for S&P 500 index data

Rejection rate

# of weeks
with jumps

Null = �
(A,d)
T Null = �

(A,j)
T

Jump size α = 5% α = 10% α = 5% α = 10%

any size 238 60.50% 64.71% 42.02% 51.26%
>0.2% 163 61.96% 65.64% 40.49% 50.31%
>0.3% 96 69.79% 70.83% 38.54% 48.96%
>0.4% 56 73.21% 73.21% 42.86% 50.00%

Note: the test for common jumps is based on C′
n in (4.17).

here, asks for a significantly more involved mathematical approach which goes
beyond the scope of the current paper and is thus left for future work.

In our empirical application we use one minute S&P 500 index futures data. The
S&P 500 index futures contract is one of the most liquid financial instruments,
and thus the microstructure noise should be of little concern at the selected one
minute frequency. The sample period is from January 1997 till June 2007 and has
2593 trading days. We aggregate the data into business weeks (a total of 552)
and perform the tests over these periods. Our choice for F is g(y, z)1{|x|>a} with
g(y, z) given by (4.9), and we report results for various truncation sizes a. The
choice of un, kn and vn is done exactly as in the Monte Carlo study above.

Table 2 reports the rejection rates of the two tests (for the conventional 5% and
10% significance levels) for various levels of the truncation size a, while Figure 6
plots the kernel density estimate of the test statistics together with rejection curves
of the two tests for the case of a = 0. The results suggest very strongly that the
jumps in the level of the S&P 500 index are accompanied by jumps in its volatility.
This is further confirmed from Table 3 in which we report the percentage of weeks
in which both tests suggest the observed path is in �

(A,j)
T , �

(A,d)
T , or disagree.

Based on the results in Table 3 for the weeks in which the S&P 500 index jumps:
(1) in approximately 40% of them there is strong evidence for common price and
volatility jumps, (2) in around 20% of them there is evidence for disjoint jumps
and (3) for the rest of the weeks the tests are inconclusive. Given our Monte Carlo
study, this last part of the sample can be explained with a lot of small jumps for
which detecting common or disjoint arrival needs even higher frequencies.

7. Conclusion. In this paper we derive tests for deciding whether jumps in a
stochastic process are accompanied by simultaneous jumps in its volatility using
only high-frequency data of the process. Our application of the tests to S&P 500
index data indicates that most stock market jumps are associated with volatility
jumps as well.
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FIG. 6. Test results for S&P 500 index data for truncation level a = 0. The top and bottom left
panels show kernel density estimates of U(f,g, kn)T /Nn

t and log(Sn), respectively. The top and
bottom right panels plot empirical rejection rates against nominal size of the tests for disjoint and
common jumps, respectively. The latter one is based on C′

n in (4.17).

8. Proofs.

8.1. Preliminaries. Under Assumptions (H-r) and (K-v), both X and Z are
Itô semimartingales, with (2.1) for X, and Z has a similar representation, in which
(up to “augmenting” the Poisson measure μ) it is no restriction to assume that the

TABLE 3
Decision matrix based on the two tests for S&P 500 index data

Accept �
(j)
T Reject �

(j)
T

Accept �
(d)
T 19.33% 20.17%

Reject �
(d)
T 38.66% 21.85%

Note: numbers based on the two tests with 5% significance level and trun-
cation level a = 0. The test for common jumps is based on C′

n in (4.17).
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Poisson measure is the same. That is, we can write

Zt = Z0 +
∫ t

0
b̂s ds +

∫ t

0
σ̂s dWs +

∫ t

0
σ̂ ′

s dW ′
s

+
∫ t

0

∫
E

(̂
δ(s, z)1{|̂δ(t,z)|≤1}

)
(μ − ν)(ds, dz)(8.1)

+
∫ t

0

∫
E

(̂
δ(s, z)1{|̂δ(t,z)|>1}

)
μ(ds, dz),

where W ′ is another standard Brownian motion, independent of W . Moreover we
have |̂δ(ω, t, z)| ≤ 	t(ω)γ̂ (z), where we can always take the same process 	t than
in Assumption (H-r) for X, as we may do for the process 	 showing in (2.2). Note
also that

v ≤ 1

2
⇒

∫ (
γ̂ (z)2 ∧ 1

)
λ(dz) < ∞,

(8.2)

v >
1

2
⇒

∫ (
γ̂ (z)1/v ∧ 1

)
λ(dz) < ∞, σ̂ = σ̂ ′ = 0.

By a well-known localization procedure (see, e.g., [5]) it is enough to prove all
theorems of Section 3, hence also of Section 4, when in addition to the relevant
Assumptions (H-r) and (K-v) we have

|bt | + |σt | + 1

|σt | + |b̂t | + |σ̂t | + |σ̂ ′
t | + 	t + |Xt |

(8.3)
+ |Zt | + |Zt | + γ (z) + γ̂ (z) ≤ C

for some constant C. This additional assumption will be supposed throughout. In
the sequel, K is a constant which varies from line to line and may depend on C

above and also on r, v,� and on the function γ in (H-v), and is written Kq if it
depends on an additional parameter q .

Under (8.3), we can write X as X = X′ + X′′, where

X′′
t =

⎧⎪⎪⎨⎪⎪⎩
∫ t

0

∫
E

δ(s, z)(μ − ν)(ds, dz), if r > 1,∫ t

0

∫
E

δ(s, z)μ(ds, dz), if r ≤ 1,

X′
t = X0 +

∫ t

0
b′
s ds +

∫ t

0
σs dWs

where b′
t =

⎧⎪⎪⎨⎪⎪⎩
bt +

∫
{|δ(t,z)|>1}

δ(t, z)λ(dz), if r > 1,

bt −
∫
{|δ(t,z)|≤1}

δ(t, z)λ(dz), if r ≤ 1.

We also need a long series of additional notation. For each integer m ≥ 1 we
denote by (S(m,q) :q ≥ 1) the successive jump times of the counting (Poisson)
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process μ([0, t] × {z : 1
m

< γ (z) ≤ 1
m−1}). We relabel the two-parameter sequence

(S(m,q) :m,q ≥ 1) as a single sequence (Tp :p ≥ 1), which clearly exhausts the
jumps of X.

When m ≥ 1 we denote by Tm the set of all p’s such that Tp = S(m′, q) for
some q ≥ 1 and m′ ∈ {1, . . . ,m}. We set I (n, i) = ((i − 1)�n, i�n] and

i(n,p) = the unique integer such that Tp ∈ I (n, i(n,p)),

J (n,m) = {i(n,p) :p ∈ Tm}, J ′(n,m) = N
∗ \ J (n,m),

�n,t,m = ⋂
p �=q,p,q∈Tm

{Tp > t , or Tp > 3kn�n and |Tp − Tq | > 6kn�n}.

We have

lim
n→∞P(�n,t,m) = 1.(8.4)

When m ∈ N we also set

Am = {z :γ (z) ≤ 1/m}, γm =
∫
Am

γ (z)rλ(dz),

b′(m)t =
⎧⎨⎩b′

t −
∫
(Am)c

δ(t, z)λ(dz), if r > 1,

b′
t , if r ≤ 1,

X′(m)t = X0 +
∫ t

0
b′(m)s ds +

∫ t

0
σs dWs,

(8.5)

Y(m)t =
∫ t

0

∫
(Am)c

δ(s, z)μ(ds, dz),

X′′(m)t =

⎧⎪⎪⎨⎪⎪⎩
∫ t

0

∫
Am

δ(s, z)(μ − ν)(ds, dz), if r > 1,∫ t

0

∫
Am

δ(s, z)μ(ds, dz), if r ≤ 1,

Y (m) = X′(m) + X′′(m) = X − Y(m).

Note that A0 = E, b′(0) = b′, Y(0) = 0, X′(0) = X′ and X′′(0) = X′′. When r ≤ 1,
we can also define those quantities when m = ∞, in which case A∞ = {z :γ (z) =
0}, b′(∞) = b′, Y(∞) = X′′, X′(∞) = X′ and X′′(∞) = 0.

Next, similar to (3.4), we put

η(kn)i = 1

kn�n

kn∑
j=1

|�n
i+jW |2.(8.6)

This notation, as well as (3.4), is extended for convenience to the case where i ≤ 0,
with the convention that �n

i Y = 0 when i ≤ 0 for any process Y . Finally, we
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set

ĉ(kn,p−) = ĉ(kn)i(n,p)−kn−1, ĉ(kn,p+) = ĉ(kn)i(n,p),

η(kn,p−) = η(kn)i(n,p)−kn−1, η(kn,p+) = η(kn)i(n,p),

κ(kn,p−) =√kn

(
ĉ(kn,p−) − cTp−

)
, κ(kn,p+) =√kn

(
ĉ(kn,p+) − cTp

)
,

κ ′(kn,p−) =√kn

(
η(kn,p−) − 1

)
, κ ′(kn,p+) =√kn

(
η(kn,p+) − 1

)
.

8.2. Estimates. We proceed here by recalling or proving a number of use-
ful estimates. As said before, we always assume Assumptions (H-r) and (K-v)
and (8.3). Mostly, these estimates are conditional with respect to a possibly larger
filtration than (Ft ). So we fix m ∈ N, and denote by μ(m) and μ′(m) the restrictions
of the measure μ to the sets R+ × Am and R+ × (Am)c, respectively. These are
two independent Poisson measures, independent of W and W ′ as well. We denote
by Gm the σ -field generated by the measure μ′(m), and by (F (m)

t ) the smallest
filtration containing (Ft ) and such that F (m)

0 contains Gm.
We set Dm = {(ω, s) :μ′(m)(ω, {s} × E) = 1} which is also the union of the

graphs of the stopping times Tp for p ∈ Tm. Then we define the process

Z(m)t = Zt −∑
s≤t

�Zs1Dm(s).

Due to the independence of W , W ′, μ(m) and μ′(m), the processes W and W ′
and the measure μ(m) are still Wiener processes and a Poisson random measure,
relative to the filtration (F (m)

t ). Hence X′(m) and X′′(m) are Itô semimartin-
gales, with the same form as in (8.5) (we can replace μ and ν by μ(m) and
its deterministic compensator because of the presence of 1Am) and relative to
the filtration (F (m)

t ). In the same way Z(m) is still of the form (8.1), driven by
W , W ′ and μ(m) (instead of μ), relative to (F (m)

t ) [and up to replacing b̂t by
b̂(m)t = b̂t − ∫(Am)c δ̂(t, z)1{|̂δ(t,z)|≤1}λ(dz), which is still bounded].

1. Estimates on σ . The latter property, together with (8.3) and classical esti-
mates and the fact that σ̂t = σ̂ ′

t = 0 identically when v > 1/2 imply that for any
p ≥ 1,

E

(
sup
s≤t

|Z(m)R+s − Z(m)R|p | F (m)
R

)
≤
{

Kpt(p/2)∧1, if v ≤ 1/2,
Kpt(pv)∧1, if v > 1/2,

(8.7)

for any finite (F (m)
t )-stopping time R. Since Z and Z stay in a compact set, we

have

|σt+s − σt | ≤ K(|Zt+s − Zt | + |Zt+s − Zt |).



1450 J. JACOD AND V. TODOROV

Moreover, Zt − Zs = Z(m)t − Z(m)s if s < t and (s, t] ∩ Dm = ∅. If R is a finite
(F (m)

t )-stopping, the set {(R,R+ t]∩Dm = ∅} belongs to F (m)
0 , so (2.2) and (8.7)

yield

E

(
sup
s≤t

|σR+s − σR|p | F (m)
R

)
≤ Kt(pv)∧1 on {(R,R + t] ∩ Dm = ∅}.(8.8)

2. Estimates on X. The following classical estimates use (8.3) and |b′(m)t | ≤
Km(r−1)+ . Below, q > 0 and p ≥ r and i is an integer, possibly random but F (m)

0 -
measurable, and we have

E
(|�n

i W |q | F (m)
(i−1)�n

)
≤ Kq�

q/2
n ,

E
(|�n

i X
′(m)|q | F (m)

(i−1)�n

)
≤ Kq�

q/2
n

(
1 + �q/2

n mq(r−1)+),
E
(|�n

i X
′′(m)|p | F (m)

(i−1)�n

)
(8.9)

≤

⎧⎪⎪⎨⎪⎪⎩
Kp�nγm

mp−r

(
1 + (�nm

r)(p−1)+), if r ≤ 1,

Kp�nγm

mp−r

(
1 + (�nm

r)(p−2)+/2), if r > 1,

E
(∣∣�n

i X
′(m) − σ(i−1)�n�

n
i W
∣∣q | F (m)

(i−1)�n

)
≤ K

(
�q/2+(qv)∧1

n + �q
nmq(r−1)+)

on the set {I (n, i) ∩ Dm = ∅}.
Next, we also have for p ≥ r ,

E
(|�n

i X
′′(m)|p ∧ up

n | F (m)
(i−1)�n

)≤ Kup−r
n �nγm.(8.10)

These estimates hold when m = 0 as well [in which case F (0)
t = Ft and i is not

random, and Y(0) = 0]. In particular, in this case we deduce

E
(|�n

i X|2 | F(i−1)�n

)≤ K�n.(8.11)

Next, with any measurable subset A of E we consider the increasing process
G(A)t = ∫ t

0
∫
A γ (z)μ(ds, dz). This process is infinite for all t > 0 if

∫
A γ (z) ×

λ(dz) = ∞, and otherwise is a Lévy process, and known estimates on Lévy
processes yield for all q > 0,

E((G(A)t )
q) ≤ Kq

(
t

∫
A

γ (z)qλ(dz) +
(
t

∫
A

γ (z)λ(dz)

)q∨1)
.(8.12)
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[Since γ is bounded, when q ≤ 1 the right-hand side above is smaller than
Kqt

∫
A γ (z)qλ(dz).] Since |�n

i Y (m)| ≤ �n
i G(Ac

m), we deduce (for i ≥ 1 not ran-
dom)

q ≥ r ⇒ E
(|�n

i Y (m)ni |q | F(i−1)�n

)≤ Kq

(
�n + (�nm

(r−1)+)q∨1)
.(8.13)

3. Estimates on ĉ(kn)i . Below, i ≥ 1 is a nonrandom integer. First (8.11) yields

E(ĉ(kn)i | Fi�n) ≤ K.(8.14)

We need also estimates on the difference ĉ(kn)i − ct for suitable times t . If S

is a F (m)
0 -measurable positive finite time and i ≥ 1 an F (m)

0 -measurable random
integer, the sets

�(m,n,S, i)+ = {(i − 1)�n < S ≤ i�n,
(
S,S + (kn + 1)�n

]∩ Dm = ∅
}
,

�(m,n,S, i)− = {(i − 1)�n < S ≤ i�n,
(
S − (kn + 2)�n,S

)∩ Dm = ∅
}

are F (m)
0 -measurable, and we have

LEMMA 8.1. Assume Assumptions (H-r) and (K-v) and (8.3). Let q = 1 or
q = 2, and assume (3.3) with also

q = 1 ⇒ ρ <
2v

1 + 2v
∧ (2�(2 − r)

)
,

(8.15)

q = 2 ⇒ ρ <
(2v) ∧ 1

1 + (2v) ∧ 1
∧ (�(4 − r) − 1

)
.

Then there is a sequence αn(q) → 0 such that, for m ≥ 0 and any F (m)
0 -measurable

variables S and i as above, we have

E
(|̂c(kn)i − cSη(kn)i |q | F (m)

S

)
≤ Kmαn(q)

k
q/2
n

on �(m,n,S, i)+,

(8.16)
E
(|̂c(kn)i−kn−1 − cS−η(kn)i−kn−1|q | F (m)

(i−kn−1)�n

)
≤ Kmαn(q)

k
q/2
n

on �(m,n,S, i)−

and also

E
(|̂c(kn)i − cS |q | F (m)

S

)≤ Km

k
q/2
n

on �(m,n,S, i)+,

(8.17)

E
(|̂c(kn)i−kn−1 − cS−|q | F (m)

(i−kn−1)�n

)≤ Km

k
q/2
n

on �(m,n,S, i)−.
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Moreover, as soon as r < 2, and under (3.3) only, we have

ĉ(kn)i
P−→ cS on �(m,n,S, i)+,

(8.18)
ĉ(kn)i−kn−1

P−→ cS− on �(m,n,S, i)−.

PROOF. We will prove, for example, the second claims of (8.16), (8.13) and
(8.18) (the first ones are slightly easier). On the set �(m,n,S, i)− the variable
ĉ(kn)i−kn−1 is equal to the variable ĉ′(kn)i−kn−1 associated in the same way with
the process Y (m).

The following estimate, for all x, y, z ∈ R, u > 0, w > 0, is straightforward:∣∣|x + y + z|21{|x+y+z|≤u} − x2∣∣q
≤ Kq

(
(y ∧ u)2q + z2q + |x|q(|y| ∧ u)q + |x|q |z|q + |x|(2+w)q

uwq

)
.

This will be applied with x = σ(j−1)�n�
n
jW and y = �n

jX
′′(m) and z =

�n
jX

′(m) − σ(j−1)�n�
n
jW [so �n

jY (m) = x + y + z], and u = un and w such
that w(1 − 2�) ≥ 2, and when j = i − kn − 1, i − kn, . . . , i − 1: using Hölder’s
inequality, we deduce from (8.9) and (8.10) and the boundedness of σt , and after
some calculation, that in this case

E
(∣∣(�n

jY (m))21{|�n
j Y (m)|≤un} − c(j−1)�n(�

n
jW)2∣∣q | F (m)

(i−kn−1)�n

)
≤ Km,θ

(
�1+(2q−r)�

n + �q+(qv)∧θ
n

)
for any θ ∈ (0,1), on the set �(m,n,S, i)−, because I (n, j) ∩ Dm = ∅.

Next, we write |c(j−1)�n − cS−| ≤ |c(j−1)�n − cj�n | + |cj�n − cS−|, and we
apply (8.8) and (8.9) and either Hölder’s inequality plus the boundedness of σt , or
successive conditioning, to get, for j and θ as above,

E
(∣∣c(j−1)�n − cS−

∣∣q(�n
jW)2q | F (m)

(i−kn−1)�n

)
≤ Kθ

(
�q

n(kn�n)
(qv)∧1 + �q+(qv)∧θ

n

)
.

These estimates, together with the definition of ĉ′(kn)i−kn−1 and η(kn)i−kn−1,
yield

E
(|̂c′(kn)i−kn−1 − cS−η(kn)i−kn−1|q | F (m)

(i−kn−1)�n

)≤ Km,θa(q)n

on the set �(m,n,S, i)−, where a(q)n = �
1+(2q−r)�−q
n + �

((qv)∧1)(1−ρ)
n +

�
(qv)∧θ
n . Then (3.3) and a proper choice of θ show that a(q)nk

q/2
n → 0 for q = 1,2,

under (8.12), and a(1)n → 0 as soon as r < 2. This in particular gives the second
part of (8.16).
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Finally (8.17) and (8.18) follow from the above, from the boundedness of the
process ct , and from the following property: if R is any (F (m)

t )-stopping time and
i�n ≥ R, then

E
((

η(kn)i − 1
)2 | F (m)

R

)= 2/kn.

This readily follows from the fact that η(kn)i is independent of F (m)
R and given by

(8.6). �

8.3. The stable convergence of ĉ(kn)i . From now on, the integer w ≥ 2 is
fixed. The aim of this subsection is to prove the following stable convergence:

PROPOSITION 8.2. As soon as Assumptions (H-r), (K-v), (8.3) and (8.15) for
q = 1 hold, the sequence of variables

(κ(kn,p−), κ(kn,p+), κ(wkn,p−), κ(wkn,p+))p≥1(8.19)

converges stably in law as n → ∞ (for the product topology on R
N

∗
) to(

cTp−
√

2V −
p , cTp

√
2V +

p , cTp−

√
2

w

(
V −

p + √
w − 1V ′−

p

)
,

(8.20)

cTp

√
2

w

(
V +

p + √
w − 1V ′+

p

))
p≥1

,

where the variables V −
p ,V +

p ,V ′−
p ,V ′+

p are defined on an extension of the original
space (�, F ,P) and are all independent and N (0,1)-distributed, and independent
of F .

PROOF. Step 1. It is enough to prove the convergence of any finite sub-family
of indices p. In other words, instead of considering the infinite sequence indexed
by p ≥ 1 in (8.19) and (8.20), we can fix an arbitrarily large integer P and consider
the families indexed by p ∈ {1, . . . ,P }. All p smaller than P are in some Tm,
and we consider the set �n on which for any p ≤ P and any q ∈ T we have
Tp > 3kn�n and |Tp − Tq | > 6kn. Obviously, P(�n) → 1 as n → ∞.

Now we will apply Lemma 8.1 with S = Tp for p ≤ P , and i = i(n,p):

then S and i are F (m)
0 -measurable, and the set �n is included into both

�(m,n,Tp, i(n,p))+ and �(m,n,Tp, i(n,p))−. Since P(�n) → 1, we deduce
from this lemma that√

kn

(
ĉ(kn,p−) − cTp−η(kn,p−)

) P−→ 0,
(8.21) √

kn

(
ĉ(kn,p+) − cTpη(kn,p+)

) P−→ 0.
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Step 2. Now we set

χn = (κ ′(kn,p−), κ ′(kn,p+), κ ′(wkn,p−), κ ′(wkn,p+))1≤p≤P ,

χ =
(√

2V −
p ,

√
2V +

p ,

√
2

w

(
V −

p + √
w − 1V ′−

p

)
,(8.22)

√
2

w

(
V +

p + √
w − 1V ′+

p

))
1≤p≤P

.

By (8.21), we are left to prove that the variables χn stably converge in law to χ .
Taking into account that χ is independent of F , this amounts to proving

E(Uf (χn)) → E(U)E(f (χ)),(8.23)

where U is any bounded F -measurable variable, and f is continuous bounded.
In fact, if (G(m)

t ) denotes the smallest filtration to which W is adapted and such
that Gm ⊂ G(m)

0 , each χn is G(m)∞ -measurable. So, up to substituting U with E(U |
G∞) above, it is clearly enough to prove (8.23) when U is G(m)∞ -measurable.

Step 3. We introduce some further notation: first the set Fn =⋃1≤p≤P ((Tp −
(wkn + 1)�n)

+, Tp + (wkn + 1)�n], which is a random G(m)
0 -measurable set, and

second the processes

Wn
t =
∫ t

0
1Fn(s) dWs, W ′n = W − Wn

[those are well defined because W is a (G(m)
t )-Brownian motion]. The σ -fields

Hn generated by G(m)
0 and all variables W ′n

t increase with n, and
∨

n Hn = G(m)∞ .
Therefore it is enough to prove (8.23) when U is Hq -measurable for some q: to see

this, let U be G(m)∞ -measurable; set Uq = E(U | Hq); if (8.23) holds for each Uq ,
it also holds for U because Uq → U in L

1(P).
The set �n of Step 1 is Gm-measurable, hence Hq -measurable for all q . Since

P(�n) → 1 it is enough to prove that for any bounded Hq -measurable variable U ,

E(U1�nf (χn)) → E(U)E(f (χ)).(8.24)

Step 4. We introduce a double sequence (N(p, i) :p, i ≥ 1) of i.i.d. N (0,1)

variables on some auxiliary probability space. Then, define the variables

ζ(kn,p−) = 1√
kn

kn∑
i=1

(
N(p, i)2 − 1

)
,

ζ(kn,p+) = 1√
kn

(w+1)kn∑
i=wkn+1

(
N(p, i)2 − 1

)
,
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ζ(wkn,p−) = 1√
wkn

wkn∑
i=1

(
N(p, i)2 − 1

)
,

ζ(wkn,p+) = 1√
wkn

2wkn∑
i=wkn+1

(
N(p, i)2 − 1

)
.

Observe that in restriction to the set �n the variable χn involves increments of W

which are different for different values of p, and are increments of the process Wn

above, which is independent of W ′n. Therefore if q is fixed, for any n ≥ q and
in restriction to the Hq -measurable set �n, the Hq -conditional distribution of the
variable χn of (8.22) is exactly the law of

ζn = (ζ(kn,p−), ζ(kn,p+), ζ(wkn,p−), ζ(wkn,p+))1≤p≤P .

This means that the left-hand side of (8.24) for n ≥ q is equal to E(U1�n) ×
E(f (ζn)).

At this stage, we see that (8.24) amounts to proving that ζn converges in law to
the variable χ given in the second half of (8.22). This is an obvious consequence
of the 4P -dimensional ordinary central limit theorem. �

8.4. Proof of Theorem 3.1. 1. As stated before, we assume Assumptions (H-
r) and (K-v) and (8.3). If m ≥ 1 and J (n,m, t) = J ′(n,m) ∩ {kn + 1, kn +
2, . . . , [t/�n] − kn} and Tm(n, t) = {p ∈ Tm :Tp ≤ �n[t/�n]}, we have

t ≤ T ⇒ U(F, kn)t = Ũn(m)t + Un(m)t

on the set �n,T ,m, where

(8.25) Ũn(m)t = ∑
p∈Tm(n,t)

F
(
�n

i(n,p)X, ĉ(kn,p−), ĉ(kn,p+)
)
1{�n

i(n,p)X|>un}

Un(m)t = ∑
i∈J (n,m,t)

F (�n
i Y (m), ĉ(kn)i−kn−1, ĉ(kn)i)1{|�n

i Y (m)|>un}.

The sum defining Ũn(m)t has a bounded number of summands, as n varies. We
also have for p ∈ Tm,

�n
i(n,p)X → �XTp, P

(∣∣�n
i(n,p)Y (m)

∣∣> un/2
)→ 0,

(8.26)
�n

i(n,p)X = �XTp + �n
i(n,p)Y (m) on �n,t,m

[use (8.9) and
√

�n/un → 0 for the second property]. We have P(�XTp ∈ R) = 1

by (3.6) and F is continuous on R × R
∗2+ . Since ĉ(kn,p−)

P−→ cTp− and

ĉ(kn,p+)
P−→ cTp on �n,t,m ∩ {Tp ≤ t} [use (8.18) with S = Tp], the pth sum-

mand in Ũn(m)t converges to F(�XTp, cTp−, cTp)1{�XTp �=0}1{Tp≤t} in probabil-
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ity. Therefore we have the following convergence in probability for the Skorokhod
topology:

Ũn(m)t
P−→ Ũ (m)t = ∑

p∈Tm

F (�XTp, cTp−, cTp)1{Tp≤t}.(8.27)

2. Next, we show the result in case (a). Pick m > 2/ε. Since |�Y(m)s | ≤ 1/m,
for any t > 0 we have |�n

i Y (m)| ≤ 2/m for all i ≤ [t/�n], on a set �n
t whose

probability goes to 1. On �n
t we have Un(m)s = 0 for all s ≤ t , because of the

property of F , which also implies Ũ (m) = U(F) identically. Then the result read-
ily follows from (8.27).

3. Next, we show the result in case (b). The notation (8.5) is also valid for m =
∞, and (8.27) holds for m = ∞ (the right-hand side is a finite sum) and Ũ (∞) =
U(F). Since Y (∞) = X′(∞), it follows from the second part of (8.9) (which also
holds with m = ∞ when r = 0) that P(�n

i Y (∞)| > un) ≤ Kq�
q/2
n u

−q
n , which is

smaller than K�2
n if q = 4

1−2�
. So Borel–Cantelli lemma yields that, for each t ,

we have |�n
i Y (∞)| ≤ un for all i ≤ [t/�n], hence Un(∞)s = 0 for s ≤ t , when n

is large enough. We then conclude as above.
4. It remains to consider the case (c). First, |F(�Xs, cs−, cs)| ≤ K|�Xs |r as

soon as |�Xs | ≤ ε (recall that cs is bounded). Since
∑

s≤t |�Xs |r < ∞ a.s. for
all t , whereas |�Xs | ≤ 1/m when s differs from all Tp for p ∈ Tm, we deduce from
the dominated convergence theorem that Ũ (m) → U(F) a.s., locally uniformly in
time as m → ∞. Therefore by (8.27) it remains to prove that for all t > 0,

η > 0 ⇒ lim
m→∞ lim sup

n→∞
P

(
sup
s≤t

|Un(m)s | > η
)

= 0.(8.28)

On the one hand, as in the previous step we deduce from (8.9) and from
|�X′′(m)s | ≤ 1/m that, if m > 4/ε, we have |�n

i X
′(m)| ≤ un/2 and |�n

i X
′′(m)| ≤

ε/2 for all i ≤ [t/�n], when n is large enough. On the other hand, our assumption
on F yields that if |x| ≤ un/2 and |x′| ≤ ε/2, then |F(x + x′, y, z)|1{|x+x′|>un} ≤
K|x′|r (1 + y + z) as soon as un ≤ ε. Hence for any given t , and outside a set
�′

n,t,m satisfying P(�′
n,t,m) → 1 as n → ∞, we have |Un(m)s | ≤ Hn(m)t for all

s ≤ t , where

Hn(m)t = K

[t/�n]−kn∑
i=kn+1

|�n
i X

′′(m)|r(1 + ĉ(kn)i−kn−1 + ĉ(kn)i
)
.

Therefore we are left to show that for all t ,

lim
m→∞ sup

n
E(Hn(m)t ) = 0.(8.29)

The estimates (8.13) and (8.14) and successive conditioning yield that

E
(|�n

i X
′′(m)|r(1 + ĉ(kn)i−kn−1 + ĉ(kn)i

))≤ K�nγm.

Since γm → 0 as m → ∞, we deduce (8.29) and Theorem 3.1 is proved.
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8.5. Proof of Theorem 3.2. We need many steps, and as before we assume
Assumptions (H-r) and (K-v), and also (8.3).

Step 1. We use the notation (8.25) of the previous proof when we deal with kn

and write instead Ũ ′n(m) and U ′n(m) when we deal with wkn. We also use Ũ (m)t ,
as defined in (8.27), and

Ûn(m)t = Un(m)t − ∑
p≥1,p/∈Tm

F (�XTp, cTp−, cTp)1{Tp≤t}

and Û ′(m) is the same with U ′n(m) instead of Un(m). We have

Ũn(m)t − Ũ (m)t = ∑
p∈Tm

ζ n
p , Ũ ′n(m)t − Ũ (m)t = ∑

p∈Tm

ζ ′n
p ,

where

ζ n
p = F

(
�n

i(n,p)X, ĉ(kn,p−), ĉ(kn,p+)
)
1{�n

i(n,p)X|>un}1{Tp≤�n[t/�n]}
− F(�XTp, cTp−, cTp)1{�XTp �=0}1{Tp≤t},

ζ ′n
p = F

(
�n

i(n,p)X, ĉ(wkn,p−), ĉ(wkn,p+)
)
1{�n

i(n,p)X|>un}1{Tp≤�n[t/�n]}
− F(�XTp, cTp−, cTp)1{�XTp �=0}1{Tp≤t}.

We also set

ζ n
p = (F ′

2(�XTp, cTp−, cTp)κ(kn,p−)

+ F ′
3(�XTp, cTp−, cTp)κ(kn,p+)

)
1{�XTp �=0},

(8.30)
ζ ′n

p = (F ′
2(�XTp, cTp−, cTp)κ(wkn,p−)

+ F ′
3(�XTp, cTp−, cTp)κ(wkn,p+)

)
1{�XTp �=0}.

Step 2. In this step we prove that(√
kn

(
Ũn(m) − Ũ (m)

)
,
√

kn

(
Ũ ′n(m) − Ũ (m)

))
(8.31)

L−s�⇒
(

U (m),
1

w

(
U (m) + √

w − 1U ′(m)
))

(stable functional convergence in law) where U (m) and U ′(m) are as described in
(3.8), except that the sum is taken over the p ∈ Tm only. By Proposition 8.2, we
have∑

p∈Tm

(ζ n
p, ζ ′n

p )1{Tp≤t} L−s�⇒
(

U (m)t ,
1√
w

(
U (m)t + √

w − 1U ′(m)t
));

note the normalization in κ(wkn,p±) is by
√

wkn. Hence proving (8.31) shows
that for each p ∈ Tm we have√

knζ
n
p − ζ n

p

P−→ 0,
√

wknζ
′n
p − ζ ′n

p

P−→ 0,(8.32)
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in restriction to each set {Tp ≤ t}. We will prove, for example, the first property.
We have P(�n[t/�n] < Tp ≤ t) → 0 and (8.4) and (8.26), implying that the set
{|�n

i(n,p)X| > un} converges in probability to the set {�XTp �= 0}. Therefore it is
enough to show that√

kn

(
F
(
�n

i(n,p)X, ĉ(kn,p−), ĉ(kn,p+)
)− F(�XTp, cTp−, cTp)

)
− (F ′

2(�XTp, cTp−, cTp)κ(kn,p−)

+ F ′
3(�XTp, cTp−, cTp)κ(kn,p+)

) P−→ 0.

The sequences κ(kn,p±)n are bounded in probability and �XTp ∈ R a.s., so
(3.7) and Taylor’s formula yield√

kn

(
F(�XTp, ĉ(kn,p−), ĉ(kn,p+)) − F(�XTp, cTp−, cTp)

)
− F ′

2(�XTp, cTp−, cTp)κ(kn,p−) − F ′
3(�XTp, cTp−, cTp)κ(kn,p+)

P−→ 0.

So in fact it is enough to prove that√
kn

(
F
(
�n

i(n,p)X, ĉ(kn,p−), ĉ(kn,p+)
)

(8.33)
− F(�XTp, ĉ(kn,p−), ĉ(kn,p+))

) P−→ 0.

Since �XTp ∈ R a.s. and the two sequences ĉ(kn,p−) and ĉ(kn,p+) are tight
in (0,∞), the first part of (3.7) yields that (8.33) will hold if

√
kn|�n

i(n,p)X −
�XTp | P−→ 0. Therefore (8.33) follows from the facts that kn�n → 0 and that the

sequence 1√
�n

|�n
i(n,p)X − �XTp | is bounded in probability, the latter coming, for

example, from Lemma 8.5 of [5]. This ends the proof of (8.33), hence of (8.31).
Step 3. Here we prove (i). Suppose first that F(x, y, z) = 0 for |x| ≤ ε for some

ε > 0, and take m > 2/ε. As in the previous theorem we then have U(F) = Ũ (m)

and U = U (m) and U ′ = U ′(m), whereas U(F, kn)s = Ũ (m)s for all s ≤ t on a set
�n

t having P(�n
t ) → 1. The result follows from (8.31).

Next we assume r = 0. Again as in the previous proof, we argue with m = ∞:
we have U(F) = Ũ (∞) and U = U (∞) and U ′ = U ′(∞), whereas U(F, kn)s =
Ũ (∞)s for all s ≤ t on a set �′n

t having P(�′n
t ) → 1. Then the result follows as

before.
Step 4. Now we assume r > 0. By (3.9) and the boundedness of ct , we have

Ẽ
(|Ut − U (m)t |2 | F

)≤ K
∑
s≤t

|�Xs |2r1{|�Xs |≤1/m}

as soon as m ≥ 1/ε. This goes to 0 a.s. as m → ∞ because of Assumption (H-r),

and it follows that U (m)
u.c.p.−→ U (convergence in probability, locally uniformly in
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time). In the same way, we have U ′(m)
u.c.p.−→ U ′. Therefore, it remains to prove that

for all t, η > 0,

lim
m→∞ lim sup

n→∞
P
(√

kn|Ûn(m)t | > η
)= 0(8.34)

and the same for Û ′n(m). We will prove (8.34) only. Observe that, with the simpli-
fying notation cn

i = ci�n and c′n
i = c(i−1)�n , we have Ûn(m) =∑2

j=1 V (m, j)n +∑3
j=1 V (m, j)n, where V (m, j)nt =∑i∈J (n,m,t) ζ(m, j)ni and, with J ′(n,m, t) =

{i : 1 ≤ i ≤ [t/�n]} ∩ J (n,m, t)c,

V (m,1)nt = − ∑
i∈J ′(n,m,t)

∑
s∈I (n,i)

F (�Y(m)s, cs−, cs),

V (m,2)nt = − ∑
0<s≤kn�n

F (�Xs, cs−, cs)

− ∑
[t/�n]−kn)�n<s≤t

F (�Xs, cs−, cs),

ζ(m,1)ni = (F(�n
i Y (m), ĉ(kn)i−kn−1, ĉ(kn)i)

− F(�n
i Y (m), c′n

i , cn
i )
)
1{�n

i Y (m)|>un},

ζ(m,2)ni = F(�n
i Y (m), c′n

i , cn
i )1{�n

i Y (m)|>un}

− ∑
s∈I (n,i)

F (�Y(m)s, c
′n
i , cn

i ),

ζ(m,3)ni = ∑
s∈I (n,i)

(
F(�Y(m)s, c

′n
i , cn

i ) − F(�Y(m)s, cs−, cs)
)
.

In view of (8.4) we are thus left to prove the existence of sets �(n,m, t, j) and
�(n,m, t, j) satisfying for all m ≥ 2/ε,

lim
n→∞P(�(n,m, t, j)) = 1, lim

n→∞ P(�(n,m, t, j)) = 1,(8.35)

such that, for j = 1,2 and j = 1,2,3, respectively,

lim
m→∞ lim sup

n→∞
√

knE
(
1�(n,m,t,j)|V (m, j)nt |

)= 0,(8.36)

lim
m→∞ lim sup

n→∞
√

knE

(
1�(n,m,t,j)

[t/�n]∑
i=1

|ζ(m, j)ni |
)

= 0.(8.37)

Step 5. In this step we prove (8.36). In view of the second part of (3.7) and of
F(0, y, z) = 0 and (8.3) we have when m > 1/ε,∑

s∈I (n,i)

|F(�Y(m)s, cs−, cs)| ≤ a(n, i) = K
∑

s∈I (n,i)

|�Y(m)s |p.
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Moreover, we have the following estimate, for all i possibly random but F (m)
0 -

measurable:

E
(
a(n, i) | F (m)

0

)≤ K�n

∫
Am

γ (z)pλ(dz) ≤ K�nγm.(8.38)

Since kn�n → 0 the set �(n,m, t,2) = {Dm ∩ [0, kn�n] = ∅,Dm ∩ [t − (kn +
1)�n, t] = ∅} satisfies (8.35), and on this set we have |V (m,2)nt | ≤

∑kn

i=1 a(n, i)+∑[t/�n]+1
i=[t/�n]−kn

a(n, i). Then (8.36) for j = 2 readily follows from (8.38) and the

property k
3/2
n �n ≤ K [see (3.12)].

Now we consider the case j = 1. We have |V (m,1)nt | ≤∑kn

i∈J ′(n,m,t) a(n, i).

The successive integers in J ′(n,m, t) are F (m)
0 -measurable, and the number of

them is a Poisson variable independent of the a(n, i)’s and with some parameter
α(m, t) (exploding with m). Then E(|V (m,1)nt |) ≤ Kα(m, t)�n, and (8.36) for
j = 1 holds with �(n,m, t,1) = �.

Step 6. In this step we prove (8.37) for j = 1. The sets

�(n,m, t,1) = ⋂
i≤[t/�n]

{|�n
i Y (m)| ≤ 2/m, |�n

i X
′(m)| ≤ un/2},(8.39)

satisfy the first part of (8.35) because |�Y(m)s | ≤ 1/m and P(|�n
i X

′(m)| >

un/2) ≤ Km�2
n [use (8.9) for this]. When m ≥ 2/ε, (3.7) yields that |ζ(m,1)ni | ≤

ζ(m,4)ni on the set �(n,m, t,1) and for all i ≤ [t/�n] where

ζ(m,4)ni = K|�n
i X

′′(m)|r(|̂c(kn)i−kn−1 − c′n
i | + |̂c(kn)i − cn

i |).
Then it remains to prove that (8.37) holds for j = 4 and �(n,m, t,4) = �.

Apply (8.17) with m = 0 and S = (i −1)�n or S = i�n [so �(0, n, S, i)± = �]
to get

E
(|̂c(kn)i−kn−1 − c′n

i |)≤ K√
kn

, E
(|̂c(kn)i − cn

i | | Fi�n

)≤ K√
kn

.(8.40)

Moreover (8.9) gives E(|�n
i X

′′(m)|r | F(i−1)�n) ≤ K�nγm. Then by successive
conditioning we obtain E(ζ(m,4)ni ) ≤ K�nγm/

√
kn. Since γm → 0 as m → ∞

we deduce (8.37).
Step 7. Now we prove (8.37) for j = 3 with �(n,m, t,3) = �. We suppose

that m ≥ 1/ε, so |�Y(m)s | ≤ ε and (3.7) yields that |ζ(m,3)ni | ≤ K(ζ(m,5)ni +
ζ(m,6)ni ) where

ζ(m,5)ni = ∑
s∈I (n,i)

|�Y(m)s |r |cs− − c′n
i |,

ζ(m,6)ni = ∑
s∈I (n,i)

|�Y(m)s |r |cn
i − cs |.
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So it is enough to prove (8.37) for j = 5,6. The case j = 5 is simple: the process
|cs− − c′n

i |1s>(i−1)�n is predictable; hence

E(ζ(m,5)ni ) = E

(∫
I (n,i)

∫
Am

|cs− − c′n
i ||δ(s, z)|rμ(ds, dz)

)

= E

(∫
I (n,i)

ds

∫
Am

|cs− − c′n
i ||δ(s, z)|rλ(dz)

)
≤ γm

∫
I (n,i)

E(|cs− − c′n
i |) ds ≤ K�1+v

n γm,

where the last inequality comes from (8.8) with m = 0 and R = (i − 1)�n. Then
(8.37) for j = 5 follows because �v

n

√
kn → 0 by (3.12).

For j = 6 we use again (8.8) with m = 0 and R = Tp below to get

E(ζ(m,6)ni ) = ∑
p≥1

E
(|�Y(m)Tp |r |cn

i − cTp |1I (n,i)(Tp)
)

≤ K�v
n

∑
p≥1

E
(|�Y(m)Tp |r1I (n,i)(Tp)

)
≤ K�v

nE

( ∑
s∈I (n,i)

|�Y(m)s |r
)

≤ K�1+v
n γm

and we conclude as above.
Step 8. Now we start proving (8.37) for j = 2. Set

ζ(m,7)ni = F(�n
i Y (m), c′n

i , cn
i )1{�n

i Y (m)|>un}

− ∑
s∈I (n,i)

F (�Y(m)s, c
′n
i , cn

i )1{�Y(m)s |>un}.

If m ≥ 1/ε, we deduce from (3.7) and the boundedness of ct that

|ζ(m,2)ni − ζ(m,7)ni | ≤ K
∑

s∈I (n,i)

|�Y(m)s |p1{|�Y(m)s |≤un}.

Therefore

E
(|ζ(m,2)ni − ζ(m,7)ni |

)≤ K�n

∫
{z : γ (z)≤un}

γ (z)pλ(dz) ≤ K�1+�(p−r)
n γm.

Taking (3.12) into consideration, we deduce that

lim
n→∞

√
knE

([t/�n]∑
i=1

|ζ(m,2)ni − ζ(m,7)ni |
)

= 0

and thus we are left to prove (8.37) for j = 7.
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Step 9. In this auxiliary step we fix m > 2/ε, and also some l ∈ (1,1/2r�) [this
is possible by (3.12)]. We write qn = [(un)

−l] and we suppose that n is big enough
for having 1/qn < un < 1/m. We complement notation (8.5) with

A′
n = Am ∩ (Aqn)

c, Y n
t =

∫ t

0

∫
A′

n

δ(s, z)μ(ds, dz),

bn
t =

⎧⎨⎩−
∫
A′

n

δ(t, z)λ(dz), if r > 1,

0, if r ≤ 1,
Bn

t =
∫ t

0
bn
s ds,

Y n = Y(m) − Yn = X′(qn) + X′′(qn) + Bn,(8.41)

Nn
t = μ([0, t] × A′

n), H(n, i) =
{
|�n

i Y
n| ≤ un

2

}
∩ {�n

i N
n ≤ 1}.

First, Nn is a Poisson process with parameter λ(A′
n) ≤ Kγmqr

n; hence

P
(
�n

i N
n ≥ 2 | F (m)

(i−1)�n

)≤ K�2−2rl�
n γm.(8.42)

Second, upon observing that �nq
r
n ≤ K (because rl� ≤ 1) and |bn

t | ≤ qr−1
n γm

when r > 1 and bn
t = 0 if r ≤ 1, that

ι ≥ r ⇒ E
(|�n

i Y
n|ι | F (qn)

(i−1)�n

)≤ Kι

(
�ι/2

n + �1+l�(ι−r)
n γm

)
.(8.43)

This applied with ι = 4
1−2�

∨ 1+lr�
�(l−1)

and Markov’s inequality yield

P(|�n
i Y

n| > un/2) ≤ K�2
n.(8.44)

Next, on the set H(n, i), we have |�n
i Y

n| ≤ un/2 and |�n
i Y

n| ≤ 1/m, and also
|�Y(m)s | ≤ un for all s ∈ I (n, i), except when �n

i N
n = 1 for a single value of

s for which �Y(m)s = �n
i Y

n (whose absolute value may be smaller or greater
than un). In other words, on H(n, i) we have

ζ(m,7)ni = (F(�n
i Y

n + �n
i Y

n, c′n
i , cn

i )1{|�n
i Y n+�n

i Y n|>un}
− F(�n

i Y
n, c′n

i , cn
i )1{|�n

i Y n|>un}
)

× 1{|�n
i Y n|≤1/m,|�n

i Y n|≤un/2}.

The following estimate, when u ∈ (0,1/m) and y, z ∈ (0,M] for some M (this
will be the bound of the process ct ) and x, x′ ∈ R with |x| ≤ 1/m and |x′| ≤ u/2,
is easy to prove, upon using (3.7):∣∣F(x + x′, y, z)1{|x+x′|>u} − F(x, y, z)1{|x|>u}

∣∣≤ K
(|x|p−1|x′| + (|x| ∧ u)p

)
.

Therefore, on the set H(n, i) again we have

|ζ(m,7)ni | ≤ K
(|�n

i Y
n|p−1|�n

i Y
n| + (|�n

i Y
n| ∧ un)

p).(8.45)
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The process Yn satisfies the same estimate as X′′(m) in (8.10), hence since
p ≥ r ,

E
(
(|�n

i Y
n| ∧ un)

p | F (m)
(i−1)�n

)≤ K�nu
p−r
n γm ≤ K�1+(p−r)�

n γm.(8.46)

On the other hand, we can apply (8.43) with ι = 2 and the Cauchy–Schwarz
inequality to obtain E(|�n

i Y
n| | F (qn)

(i−1)�n
) ≤ K

√
�n. We also have |�n

i Y
n| ≤

�n
i G(A′

n) [see before (8.12) for this notation], and �n
i G(A′

n) is F (qn)
0 -measurable.

Therefore, in view of (8.12) applied with the power (p − 1) ∨ r and Hölder’s in-
equality, and upon applying (r ∨ 1)(1 − (r − 1)+l�) ≥ 1, and with the notation
q = 1 ∧ p−1

r
, we see that

E(|�n
i Y

n|p−1|�n
i Y

n|) = E
(|�n

i Y
n|p−1

E
(|�n

i Y
n| | F (qn)

(i−1)�n

))
≤ K

√
�nE(|�n

i Y
n|p−1) ≤ K�1/2+q

n γ q
m.

Hence by (8.45) and (8.46), we deduce

E
(|ζ(m,7)ni |1H(n,i)

)≤ Kγ q
m

(
�1+(p−r)�

n + �1/2+q
n

)
.(8.47)

Step 10. Now we are ready to prove the result for j = 7. We take �(n,m, t,7) =⋂
1≤i≤[t/�n] H(n, i), which by (8.42) and (8.44) satisfies

P(�(n,m, t,7)c) ≤
[t/�n]∑
i=1

P(H(n, i)c) ≤ Kt�1−2rl�
n ,

hence (8.35) because 2rl� < 1. Finally,

E

(
1�(n,m,t,7)

[t/�n]∑
i=1

|ζ(m,7)ni |
)

≤
[t/�n]∑
i=1

E
(|ζ(m,7)ni |1H(n,i)

)
,

so (8.47) shows that (8.35) holds, provided the sequences �
(p−r)�
n

√
kn and

�
q−1/2
n

√
kn are bounded. These amount to having 2(p − r) ≥ ρ and 2q − 1 ≥ ρ,

which are implied by (3.12).

8.6. Proof of Theorem 3.3. Step 1. We assume Assumptions (H-r) and (K-v)
and (8.3). Recalling (2.1) and (8.2), we set δ(t, z) = δ(t, z)1{δ(t,z)/∈A}∪{̂δ(t,z)=0}, and
define X by (2.1) with δ instead of δ. This process satisfies Assumption (H-r) as
well, and coincides with X on the interval [0, t], in restriction to the set �A

t . Hence
the variables U(F, kn)t and U(F)t and U t and U ′

t are the same on �A
t , whether

computed using X or X. So it is enough to prove the result for the process X. Or,
in other words, we can assume throughout that

�Xs ∈ A \ {0} ⇒ �σs = 0 identically.(8.48)
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We use the same arguments as in the previous proof, and the same notation,
except that the variable ζ n

p of (8.30) should be replaced by

ζ n
p = 1

2

(
F ′′

22(�XTp, cTp−, cTp)κ(kn,p−)2

+ F ′′
33(�XTp, cTp−, cTp)κ(kn,p+)2

+ 2F ′′
23(�XTp, cTp−, cTp)κ(kn,p+)κ(kn,p−)

)
1{�XTp �=0}

and the same for ζ ′n
p with wkn instead of kn.

Step 2. In this step we prove that

(knŨ
n(m), knŨ

′n(m))
L−s�⇒ (U (m), U ′(m)),(8.49)

where U (m) and U ′(m) are as in (3.15), except that the sum is taken over the
p ∈ Tm only. By Proposition 8.2, we have( ∑

p∈Tm

ζ n
p1{Tp≤t},

∑
p∈Tm

ζ ′n
p 1{Tp≤t}

)
L−s�⇒ (U (m)t ,wU ′(m)t ),

so proving (8.31) shows that for each p ∈ Tm and on each set {Tp ≤ t} we have

knζ
n
p − ζ n

p

P−→ 0, wknζ
′n
p − ζ ′n

p

P−→ 0.(8.50)

We prove only the first property, which [like in Theorem 3.2; note that here
F(�XTp, cTp−, cTp) = 0 by (3.14) and (8.48)] amounts to the convergence of

knF
(
�n

i(n,p)X, ĉ(kn,p−), ĉ(kn,p+)
)

− 1
2

(
F ′′

22(�XTp, cTp−, cTp)κ(kn,p−)2

+ 2F ′′
23(�XTp, cTp−, cTp)κ(kn,p+)κ(kn,p−)

+ F ′′
33(�XTp, cTp−, cTp)κ(kn,p+)2)

to 0 in probability. Upon using again (3.14) and (8.48), we deduce from Taylor’s
formula and the tightness of the sequences κ(kn,p±) that, on the set {�XTp ∈ R}
which has probability 1, the variables

knF (�XTp, ĉ(kn,p−), ĉ(kn,p+))

− 1
2

(
F ′′

22(�XTp, cTp, cTp)κ(kn,p−)2

+ 2F ′′
23(�XTp, cTp, cTp)κ(kn,p−)κ(kn,p+)

+ F ′′
33(�XTp, cTp, cTp)κ(kn,p+)2)

go to 0 in probability. Hence the first part of (8.50) will follow if we show

kn

(
F
(
�n

i(n,p)X, ĉ(kn,p−), ĉ(kn,p+)
)−F(�XTp, ĉ(kn,p−), ĉ(kn,p+))

) P−→ 0.
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This is proved exactly as (8.33), except that here we use the property kn

√
�n → 0.

Step 3. The proof of (i) follows from (8.49) in exactly the same way as in Step 3
of the proof of Theorem 3.2.

Step 4. Now we start proving (ii), so r > 0. We can suppose that A contains a
neighborhood of 0; otherwise we are in the second situation of case (i). Hence we
may take ε > 0 in (3.13) such that also [−ε, ε] ⊂ A. Similar to (3.16), and by the
boundedness of ct and (3.13), we have if m ≥ 1/ε,

Ẽ
(|U t − U (m)t | | F

)≤ K
∑
s≤t

|�Xs |r1{|�Xs |≤1/m}.

This goes to 0 a.s. as m → ∞ because of Assumption (H-r), so U (m)
u.c.p.−→ U , and

also U ′(m)
u.c.p.−→ U ′. Then it remains to prove that for all t, η > 0,

lim
m→∞ lim sup

n→∞
P
(
kn|Ûn(m)t | > η

)= 0(8.51)

and the same for Û ′n(m). We will prove (8.51) only.
Because of our assumptions we have here Ûn(m) = Un(m). Then, in view

of definition (8.25), and since the sets �(n,m, t,1) of (8.39) satisfy (8.35), it is
enough to prove that

lim
m→∞ lim sup

n→∞
knE

(
1�(n,m,t,1)

[t/�n]∑
i=1

|ζ(m,1)ni |
)

= 0,(8.52)

where

ζ(m,1)ni = F(�n
i Y (m), ĉ(kn)i−kn−1, ĉ(kn)i)1{�n

i Y (m)|>un}.

On �(n,m, t,1), when m > 2/ε, for all i ≤ [t/�n] we have |�n
i Y (m)| ≤ ε and

also |�n
i Y (m)| ≤ 2|�n

i X
′′(m)| when further |�n

i Y (m)| > un. Then, using (3.13)
and a Taylor expansion around (�n

i Y (m), ci�n, ci�n), and since F(x, y, y) =
F ′

2(x, y, y) = F ′
3(x, y, y) = 0 for all x, y, we see that

|ζ(m,1)ni | ≤ K
(
ζ(m,2)ni + ζ(m,3)ni

)
on �(n,m, t,1) and for i ≤ [t/�n],

where

ζ(m,2)ni = |�n
i X

′′(m)|r(∣∣̂c(kn)i−kn−1 − c(i−1)�n

∣∣2 + |̂c(kn)i − ci�n |2
)
,

ζ(m,3)ni = |�n
i X

′′(m)|r |�n
i c|2.

Hence we are left to prove that, for j = 2,3, we have

lim
m→∞ lim sup

n
knE

([t/�n]∑
i=1

ζ(m, j)ni

)
= 0.(8.53)

Step 5. On the one hand, successive conditioning, plus the third estimate in (8.9)
with p = r , plus (8.17) with m = 0 and q = 2, yield E(ζ(m,2)ni ) ≤ K�nγm/kn.
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Then (8.53) for j = 2 follows. For j = 3 we will prove the stronger statement, for
m large enough,

lim
n

knE

([t/�n]∑
i=1

ζ(m, j)ni

)
= 0.(8.54)

Therefore, we fix m ≥ 2/ε below.
First, suppose that r ≤ 1. Then X′′(m)t =∑s≤t �X′′(m)s , and since |x +x′|r ≤

|x|r + |x′|r and cs = cs− when �X(m)′′s �= 0 [recall m ≥ 2/ε and (8.48)], we have
ζ(m,3)ni ≤ ζ(m,4)ni , where

ζ(m,4)ni = ∑
s∈I (n,i)

|�Y(m)s |r
∣∣cs− − c(i−1)�n

∣∣2 + ∑
s∈I (n,i)

|�Y(m)s |r |ci�n − cs |2.

Then exactly as in Step 7 of Theorem 3.2, and using (8.8) with p = 2 instead of
p = 1, we obtain E(ζ(m,3)ni ) ≤ K�

1+(2v)∧1
n . Then (8.54) holds for j = 4, hence

for j = 3, by (3.18).
It remains to consider the case r > 1. We take l = 1/r� , and we use the nota-

tion qn = [(un)
−l] and (8.41), which we complement as follows:

Z(5)n = Bn, Z(6)n = X′′(qn), Z(7)n = Yn,

so X′′(m) =∑7
j=5 Z(j)n, and we associate the variables

ζ(m, j)ni = |�n
i Z(j)|r |�n

i c|2.
It is thus enough to prove (8.54) when j = 5,6,7. First, we have |�n

i Z(5)n| ≤
K�

1−l�(r−1)
n γm, and thus by (8.8) we get E(ζ(m,5)ni ) ≤ K�

r−(r−1)rl�+(2v)∧1
n ,

which equals K�
1+(2v)∧1
n , and (8.54) for j = 5 holds by (3.18). Next, (8.9) ap-

plied with qn instead of m implies that for any p ≥ 2 we have E(|�n
i Z(6)|p) ≤

Kp�
p/r
n (use again rl� = 1). Then by (8.8) and Hölder’s inequality we see that

E(ζ(m,6)ni ) ≤ Kθ�
1+(2v)∧θ
n for any θ ∈ (1/2,1). Then again, upon taking θ close

to 1, we have (8.54) for j = 6.
Finally, we set Y(n, i)t =∑(i−1)�n<s≤t |�Yn

s | for t ∈ I (n, i). Observe that

|�n
i Z(7)n|r ≤ Y(n, i)r�n

= ∑
s∈I (n,i)

((
Y(n, i)s− + |�Yn

s |)r − Y(n, i)rs−
)

≤ K
∑

s∈I (n,i)

(|�Yn
s |r + Y(n, i)r−1

s− |�Yn
s |).

Since |�Yn| ≤ |�Y(m)|, it follows that ζ(m,7)ni ≤ K(ζ(m,4)ni + ζ(m,8)ni +
ζ(m,9)ni ), where ζ(m,4)ni is as in the case r ≤ 1 and

ζ(m,8)ni = ∑
s∈I (n,i)

Y (n, i)r−1
s− |�Yn

s |∣∣cs− − c(i−1)�n

∣∣2,
ζ(m,9)ni = ∑

s∈I (n,i)

Y (n, i)r−1
s− |�Yn

s ||ci�n − cs |2.
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We have seen that (8.54) is satisfied for j = 4 (this is irrespective of the value
of r). For proving it for j = 8 and j = 9 we use the same argument as in Step 7 of
Theorem 3.2 again, thus getting

E(ζ(m,8)ni ) ≤ γm

∫
I (n,i)

E
(
Y(n, i)r−1

s−
∣∣cs− − c(i−1)�n

∣∣2)ds,

E(ζ(m,9)ni ) ≤ K�(2v)∧1
n E

( ∑
s∈I (n,i)

Y (n, i)r−1
s− |�Yn

s |
)

≤ K�(2v)∧1
n E

(
sup

s≤i�n

(Y (n, i)s)
r
)
.

Note that Y(n, i) has the same structure as X′′(qn) does in case r ≤ 1, so al-
though r > 1 here we have, as in the first part of the third estimate in (8.9),

p ≥ r ⇒ E

(
sup

s≤i�n

(Y (n, i)s)
p
)

≤ Kp

(
�1+(p−r)l�

n + �p+r(p−1)l�
n

)
≤ Kp�p/r

n .

Applying (8.8) and Hölder’s inequality yields E(ζ(m,8)ni ) ≤ Kθ�
r+(2v)∧θ
n for any

θ ∈ (1/2,1), whereas obviously E(ζ(m,9)ni ) ≤ Kθ�
1+2v
n . Then (8.54) holds for

j = 8 and j = 9.

8.7. Proof of the results on the tests.

PROOF OF THEOREM 4.1. Theorems 3.1 and 3.3 yield that, in restriction to
�

(A,d)
T , the variables knU(F, kn)T /U(G,kn)T converge stably to a positive vari-

able V which, conditionally on F , has mean 1. Hence if H ⊂ �
(A,d)
T and with

Cn given by (4.6), we have lim supn P(Cn ∩ H) ≤ P̃(H ∩ {V ≥ 1/α}), which is
smaller than αP(H) because Ẽ(V | F ) = 1, and the result for the asymptotic level

follows. Since knU(F, kn)T /U(G,kn)T
P−→ ∞ on the set �

(A,j)
T by Theorem 3.1,

the asymptotic power is clearly 1. �

PROOF OF THEOREM 4.2. We will be very sketchy here. By localization we
may assume (8.3).

First, we can suppose that the simulated variables V ±
i (j) are defined on our

auxiliary space (�′, F ′,P
′), so that the U (n, j)’s are defined on the extension

(�̃, F̃ , P̃). Then we can reproduce the proof of Theorem 4.4 of [6] to obtain that,

if Zn
P−→ Z are F -measurable variables, we have

P̃
(

U (n,1) > Zn | F
) P−→ P̃(U T > Z | F ).(8.55)

The only slightly different point is that we need here E((ĉ(kn)i)
2 | F(i−1)�n) ≤ K .

This does not follow from (8.14), but it does from (8.17) applied with q = 2, be-
cause by hypothesis (8.15) holds.
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Then, using (8.55) and that knU(F, kn)T
L−(s)−→ U T on the set �

(A,d)
T , we can

reproduce the proof of Theorem 5.1, Part (c), of [6], and we obtain the claim
about the asymptotic level. In the course of this proof it is also shown that F -
conditionally the variables U (|Nnα]) converge in law to the unique variable Z(α)

such that P̃(U T > Z(α) | F ) = α, from which U (|Nnα])
P−→ Z(α) follows.

Finally knU(F, kn)T
P−→ ∞ on �

(A,j)
T . This and U (|Nnα])

P−→ Z(α), yields that

P̃(Cn ∩ �
(A,j)
T ) → P(�

(A,j)
T . Hence the asymptotic power equals 1. �

PROOF OF THEOREM 4.3. The proof is the same as for Theorem 4.1, with the
following changes: we now have P(Cn ∩H) → αP(H) because knU(F, kn)T con-
verges stably in law on �

(A,d)
T to a chi-square variable with NT degrees of freedom,

independent of F , and Nn
T = NT for n large enough. This gives that the asymptotic

level is α, and for the asymptotic power we use the fact that knU(F, kn)T
P−→ ∞

and NT < ∞ on the set �
(A,j)
T . �

PROOF OF THEOREM 4.4. The result readily follows from the stable conver-
gence in law of (Sn − 1)/

√
Vn to a standard normal. �

PROOF OF THEOREM 4.5. Since V ′
n = Vn for all n large enough, on the set

�
(A,j)
T , only the claim about the power needs a proof. Now, V ′

n → 0, and we have

the second part of (4.14) on �
(A,d)
T ; that the asymptotic power equals 1 is now

obvious. �
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