
The Annals of Applied Probability
2009, Vol. 19, No. 5, 2008–2037
DOI: 10.1214/09-AAP597
© Institute of Mathematical Statistics, 2009

ON DECIDING STABILITY OF MULTICLASS QUEUEING
NETWORKS UNDER BUFFER PRIORITY SCHEDULING POLICIES

BY DAVID GAMARNIK1 AND DMITRIY KATZ

Massachusetts Institute of Technology

One of the basic properties of a queueing network is stability. Roughly
speaking, it is the property that the total number of jobs in the network re-
mains bounded as a function of time. One of the key questions related to the
stability issue is how to determine the exact conditions under which a given
queueing network operating under a given scheduling policy remains stable.
While there was much initial progress in addressing this question, most of the
results obtained were partial at best and so the complete characterization of
stable queueing networks is still lacking.

In this paper, we resolve this open problem, albeit in a somewhat unex-
pected way. We show that characterizing stable queueing networks is an algo-
rithmically undecidable problem for the case of nonpreemptive static buffer
priority scheduling policies and deterministic interarrival and service times.
Thus, no constructive characterization of stable queueing networks operating
under this class of policies is possible. The result is established for queueing
networks with finite and infinite buffer sizes and possibly zero service times,
although we conjecture that it also holds in the case of models with only
infinite buffers and nonzero service times. Our approach extends an earlier
related work [Math. Oper. Res. 27 (2002) 272–293] and uses the so-called
counter machine device as a reduction tool.

1. Introduction. Queueing networks are ubiquitous tools for modeling a large
variety of real-life processes, such as communication and data networks, manufac-
turing processes, call centers, service networks and many other real-life systems. It
is an important task to design and operate queueing networks so that their perfor-
mance is acceptable. One of the key qualitative performance measures is stability.
Roughly speaking, a queueing network is stable if the total expected number of
jobs in the network is bounded as a function of time. In a probabilistic framework,
which is typically used to formalize the stability question, it means that the un-
derlying queue length process is positive (Harris) recurrent; see [18, 19, 41]. We
do not provide a formal definition of this notion here as, throughout the paper, we
consider exclusively deterministic queueing networks, for which stability simply
means that the total number of jobs in the network remains bounded as a function
of time. The details of the model description and formal definitions of stability are
delayed until the next section.

Received August 2007; revised January 2009.
1Supported by NSF Grant CMMI-0726733.
AMS 2000 subject classifications. 60K25, 90B22.
Key words and phrases. Queueing networks, positive recurrence, computability.

2008

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/09-AAP597
http://www.imstat.org
http://www.ams.org/msc/


DECIDING STABILITY 2009

The research on stability questions started with the works of Kumar and Seid-
man [36], Lu and Kumar [37] and Rybko and Stolyar [45], who, for the first time,
identified queueing networks and work-conserving scheduling policies leading to
instability, even though every processing unit was nominally underloaded. Namely,
the condition ρS < 1 was satisfied by every server S. Here, ρS is the average uti-
lization in server S which is measured roughly as a ratio of the total arrival rate
into this server to the service rate of this server (see the next section). This initiated
the search for tight stability conditions. Important advances were obtained in this
direction, most notably the development of the fluid model methodology, which
significantly simplifies the stability issue by reducing the underlying stochastic
problem to a simpler, deterministic continuous-time continuous-state problem; see
[19, 48]. It was established that the stability of the fluid model implies stability
of the underlying stochastic network [19, 48] and, partially, the converse result
holds as well [20, 30, 40, 43], although not always; see [14, 21]. Yet, even char-
acterizing stability of fluid models turned out to be nontrivial [7, 23–25] and no
full characterization is available either. Meanwhile, it was discovered that certain
classes of networks and scheduling policies are universally stable. For example,
networks with feedforward (acyclic) structure were proven to be stable under an
arbitrary work-conserving scheduling policy; see [18, 19, 22]. First Buffer First
Serve, Last Buffer First Serve static buffer priority type scheduling policies were
shown to stabilize an arbitrary queueing network satisfying a certain topological
restriction (a so-called re-entrant line); see [25, 35]. A certain simple scheduling
policy based on due dates was shown to stabilize an arbitrary network [15]. The
First-In, First-Out (FIFO) policy was proven to be stable in networks where ser-
vice rates within each server are identical—the so-called Kelly-type networks [13].
At the same time, some simple static buffer priority policies are not necessarily
stable, as was shown in the original works on instability; see [36, 37, 45]. Also,
FIFO policy can lead to instability; see [12, 46].

While most of the aforementioned research activity was conducted in the op-
erations research, electrical engineering and mathematics communities, in parallel
and independently, the stability problem was investigated by the theoretical com-
puter science community using the Adversarial Queueing Network (AQN) model.
The motivation there comes from data networks and the models are somewhat
different: no probabilistic assumptions are made on either the arrival or service
processes. Instead, an adversary is assumed to inject jobs (communication pack-
ets) into the network, which is represented as a graph. The links of the graph serve
the roles of processing units and the processing times are typically assumed to be
equal to one unit of time deterministically. In this setting, the model is defined to be
stable if, for every pattern of packet injections, subject to certain load conditions,
the total number of packets remains bounded as a function of time. The AQN was
introduced by Borodin et al. [9] and further researched by many authors; see [1–4,
26, 28, 31, 38, 44, 49]. Many results similar to the stochastic networks counterpart
were established. It was shown that while AQN corresponding to an acyclic graph



2010 D. GAMARNIK AND D. KATZ

is always stable [9], there are AQN and scheduling policies (usually called proto-
cols) which are work-conserving (usually called greedy) and which lead to insta-
bility; see [1, 31]. It was also established that FIFO can lead to instability [1], even
with arbitrary small injection rates [6]. The relevance of fluid models to AQN was
established in [26]: stability of the fluid model implies stability of AQN. A partial
converse result holds, as was also shown in [26]. Yet, despite impressive progress
in the area and interesting parallel development to the stochastic counterpart, tight
characterization of stable AQN has still not been achieved.

In this paper, we frame the problem of characterizing stable queueing networks
as an algorithmic decision problem: given a queueing network and an appropri-
ately defined scheduling policy, determine whether the network is stable. In order
to introduce the problem formally, we consider the simplest possible setting: the in-
terarrival times and service times are assumed to take deterministic rational values.
Throughout the paper, we focus exclusively on a simple class of scheduling poli-
cies, namely the class of nonpreemptive static buffer priority scheduling policies.
We assume that buffers have finite or infinite capacity. Jobs which, upon arrival,
see a full (finite) buffer are dropped from the network. Also, we assume that some
of the service times can take zero value. The assumptions of finite buffers and zero
service times are the only important departures from models studied in the stability
literature prior to our work. They are adopted for proof tractability, although we
conjecture that our main results remain true in the case of infinite buffer/nonzero
service times case as well. The details of the model are given in the following
section.

Our main result is that stability of a queueing network operating under a static
nonpreemptive buffer priority policy is an undecidable property. Thus, no con-
structive means of characterizing stable queueing networks for this class of poli-
cies is possible. This resolves the open problem of providing tight characterization
of stable queueing networks for the class of static nonpreemptive buffer priority
policies. Our work extends an earlier work [27] by the first author, were the un-
decidability result was established for the class of so-called generalized priority
scheduling policies. Later, this work was extended to the problems of computing
stationary distributions and large deviations rates [29]. There are important differ-
ences between the current work and [27]. The class of generalized priority policies
was not considered in the literature prior to [27]. Additionally, generalized priority
policies allow idling, whereas most of the work on stability analysis focuses on
work-conserving scheduling policies. Also, [27] considered the single-server set-
ting, whereas, here, we consider the network setting. We note that for the class of
buffer priority policies (as well as any other work-conserving scheduling policies),
the question of stability of a single server model is trivially decidable: one needs
to compute the load factor ρ. The system is then stable if and only if ρ < 1 (ρ ≤ 1
if all of the interarrival and service times are deterministic).

The concept of undecidability was introduced in the classical works of Alan
Turing in the 1930s and it is one of the principal tools for establishing limitations



DECIDING STABILITY 2011

of certain computational problems. The first problems which were established to
be undecidable included the Turing halting problem, the post correspondence prob-
lem and several related problems [47]. Typically, one establishes undecidability of
a given problem by taking a problem which is already known to be undecidable
and establishing a reduction from this problem to the given problem of interest.
This method is well known in the computer science literature as the reduction
method. Lately, several problems were proven to be undecidable in the area of
control theory; see [5, 16, 17]. In particular, the work of Blondel et al. [5] used
a device known as a counter machine or counter automata as a reduction tool. In
the present paper, as in [5], as well as [27], our proof technique is also based on
a reduction from a counter machine model, although the construction details are
substantially different from those of [27]. We use a well-known Rybko–Stolyar
network [45] as a gadget and construct an elaborate queueing network which is
able to emulate the dynamics of an arbitrary counter machine. The undecidability
result is then a simple consequence of the undecidability of the halting problem
for a counter machine, which is a classical result; see [33].

The remainder of the paper is organized as follows. The model description and
the main result are provided in the following section. Background material on
a counter machine and undecidability is given in Section 3. Section 4 is devoted to
constructing a reduction from a counter machine to a queueing network. Section 5
is devoted to the proof of the main result. It begins with a sketch of the proof,
followed by the proof details. In the last subsection of this section, we show that
while the condition ρS < 1 is not satisfied by every server in the network we con-
struct, a simple modification achieves this condition. Some concluding thoughts
and questions for further research are given in Section 6.

2. Model description and the main result.

2.1. Deterministic multiclass queueing networks and a static buffer priority
scheduling policy. A multiclass queueing network is described as a collection
of J service nodes, S1, . . . , SJ , and N job classes, 1,2, . . . ,N . Each node is as-
sumed to be single-server type and can process at most one job at a time. Each
class i is associated with a unique buffer, also denoted by i, for convenience. The
capacity Bi of the buffer i is finite or infinite and denotes the number of jobs which
can be stored in the queue of the class i, not including the job in service, if any.
The queue length corresponding to class i is the number of jobs in buffer Bi plus
possibly (at most one) job currently in service and is denoted by Qi(t). The to-
tal queue length

∑
i∈Sj

Qi(t) corresponding to the server Sj at time t is denoted
by QSj

(t).
Each class i is associated with an external arrival process Ai(0, t) which de-

notes the total number of jobs which arrived externally to the buffer Bi during the
time interval [0, t]. The arrival processes typically considered in the literature are
either random renewal processes (in the stochastic queueing networks literature)



2012 D. GAMARNIK AND D. KATZ

or adversarial processes (in the computer science literature). Throughout this pa-
per, we adopt the following simple assumption: the intervals between the arrivals
of jobs is a deterministic class-dependent rational quantity ai and the initial delay
is some rational bi . Thus, the external arrivals corresponding to the class i occur
exactly at times nai + b,n = 0,1, . . . , and Ai(0, t) = �(t − b)/ai� + 1. The ex-
ternal arrival rate is then λi � 1/ai . Let λ = (λi, 1 ≤ i ≤ N). Some classes may
not have an associated external arrival process, in which case ai = ∞ (λi = 0) and
Ai(0, t) = 0 for all t ≥ 0. We will also write Ai(t) = 1 if there is an arrival at time t

(i.e., t = ain + bi for some n ∈ Z+) and Ai(t) = 0 otherwise. Each class i is as-
sociated with a deterministic service time 0 ≤ mi < ∞ which takes a nonnegative
rational value. The service rate is μi � 1/mi . We allow service times to take zero
value, namely μi = ∞. This assumption is a departure from models considered in
prior literature and is adopted for proof tractability. We say that at a given time t ,
server S is busy only if, at time t , the server is working on a job which requires
a nonzero remaining service time. For every collection of classes V , the associ-
ated workload WV (t) at time t is the total time required to serve jobs which are
presently in the network and which will eventually arrive into classes in V , in the
absence of new arrivals.

The routing of jobs in the network after the service completions is controlled
as follows. A zero–one N × N sub-stochastic matrix R is fixed. Namely, the row
sums of this matrix add up to at most unity and the spectral radius of this matrix
is strictly less than unity. For every pair of classes i, l such that Ri,l = 1, every
job which completes service in class i at some time t is immediately routed to
buffer Bl after the service completion. If the buffer is not full, that is, Ql(t) < Bl ,
then the job is added to the end of the queue in the buffer. If the buffer is full,
that is, Ql(t) = Bl , then the job is dropped from the network. The special case
Bl = 0 is interpreted as follows: a job routed to class l is accepted if and only if the
server is idle and can begin processing this job immediately. In fact, the network
we will build in Section 4 will only have Bl = 0 or Bl = ∞. If class i is such that
Ri,l = 0 for all l, then the jobs in class i after the service completion depart from
the network. Since the routing matrix R has spectral radius less than unity, then
Rm = 0 for some m. Namely, every job leaves the network after some finite number
of re-routings. The equation λ̄ = λ + RTλ̄, also known as the traffic equation, then
admits a unique solution, explicitly given as λ̄ = [I − P T]−1λ. Here, RT denotes
the transpose of R. For every server S, the quantity ρS � ∑

i∈S λ̄i/μi is defined to
be the traffic intensity or load factor in server S.

The selection of jobs for processing is controlled using some scheduling pol-
icy. In the present paper, we exclusively consider the class of static nonpreemptive
buffer priority scheduling policies. Any such policy π is described as follows. For
each server Sj , a permutation θj of the elements of classes belonging to Sj is fixed.
At time t = 0 and at every time instance t corresponding to a service completion
in Sj , the server Sj finds the index i ∈ Sj with the smallest value θj (i) such that
Qi(t) > 0, selects the job in the head of this queue and begins working on it. If



DECIDING STABILITY 2013

∑
i∈Sj

Qi(s) = 0, then the server idles until the first time that a job appears in one
of the classes and starts working on this job. The vector θ = (θj ),1 ≤ j ≤ J , then
completely specifies the scheduling policy π . In particular, the scheduling policy
is nonpreemptive and nonidling: no service is every interrupted and no server idles
whenever at least one of the corresponding queues is nonempty. Static buffer pri-
ority policies have been studied extensively in the literature; see [8, 10, 11, 23, 25,
34, 37, 42, 45].

A queueing network, described by servers Sj ,1 ≤ j ≤ J , classes i = 1,2, . . . ,

N , the routing matrix R, interarrival times ai , delays bi and service times mi will
be denoted by Q for brevity. The queueing network Q, together with the schedul-
ing policy π and the vector of initial queue lengths (Qi(0),1 ≤ i ≤ N), completely
determines the queue length dynamics of the network, namely the vector process
Q(s) = (Qi(s), s ≥ 0).

DEFINITION 1. A triplet (Q, π,Q(0)) is defined to be stable if

sup
s≥0

∑

1≤i≤N

Qi(s) < ∞.(1)

A queueing network Q together with the scheduling policy π is defined to be stable
if (Q, π,Q(0)) is stable for every Q(0).

When all buffers in the network are infinite, the so-called load condition ρS ≤ 1
for all servers S is necessary for stability. The presence of finite buffers may change
the situation, as, for example, the model is trivially stable when all of the buffers
are finite. Nevertheless, we will see that the load condition is satisfied by all servers
in the specific queueing models we construct in this paper, after appropriate mod-
ifications described in Section 5.2.

In models with probabilistic settings, (Q(s), s ≥ 0) is typically a stochastic
process, in which case the queueing network is defined to be stable if the process
is so-called positive Harris recurrent; see [18, 19, 41]. Under minor additional as-
sumptions, this implies the property sups≥0

∑
1≤i≤N E[Qi(s)] < ∞. In our deter-

ministic setting, however, this reduces to the simple condition (1). The main goal
of the stability research is developing methods for determining stability of a given
triplet (Q, π,Q(0)) or pair (Q, π). In many interesting special cases, stability of
(Q, π) is implied by stability of (Q, π,Q(0)) for a given initial state Q(0). For
example, in the stochastic setting, this would be the case provided that the under-
lying Markov chain is irreducible. Due to the deterministic nature of our model,
though, this implication does not necessarily hold and it is important to make the
distinction.

2.2. The main result. The main result of this paper is establishing the undecid-
ability (noncomputability) of the stability property for the class of buffer priority
policies θ . Precisely stated, it is as follows.



2014 D. GAMARNIK AND D. KATZ

THEOREM 1. The property “(Q, θ,Q(0)) is stable” is undecidable. Namely,
no algorithm can exist which, on every input (Q, θ,Q(0)), outputs YES if the triplet
(Q, θ,Q(0)) is stable and outputs NO otherwise, where Q is an arbitrary mul-
ticlass queueing network, θ is an arbitrary nonpreemptive static buffer priority
scheduling policy and Q(0) is an arbitrary vector of initial queue lengths.

To prove Theorem 1, we introduce, in Section 3, a device called a counter ma-
chine and its stability. Stability of a counter machine is a property closely related
to the so-called halting property, which is a classical undecidable property.

3. Counter machine, the halting problem and undecidability. A counter
machine (see [5, 33]) is a deterministic computing machine which is a simplified
version of a Turing Machine—a formal description of an algorithm performing
a certain computational task or solving a certain decision problem. In his classical
work on the halting problem, Turing showed that certain decision problems sim-
ply cannot have a corresponding solving algorithm and are thus undecidable. For
a definition of a Turing Machine and the Turing halting problem, see [47]. Since
then, many quite natural problems in mathematics and computer science have been
found to be undecidable, Hilbert’s tenth problem [39] being one of the most no-
table examples. The famous Church–Turing thesis states that every computable
property can be computed by a Turing Machine. Thus, undecidable problems, that
is, problems for which a Turing Machine cannot be built, are truly problems not
allowing constructive solutions.

More recently, several undecidability results were obtained in the area of control
theory, some of them using a counter machine; see Blondel et al. [5]. For a survey
of decidability results in the area of control theory, see Blondel and Tsitsiklis [17].
We also use the counter machine device as our reduction tool and, thus, in the
next subsection, we provide a detailed description of a counter machine and state
relevant undecidability results.

3.1. Counter machine and the halting problem. A counter machine is de-
scribed by two counters R1,R2 and a finite collection of states S. Each counter Ri

contains some nonnegative integer zi in its register. Depending on the current state
s ∈ S and on whether the content of the registers is positive or zero, the counter
machine is updated as follows: the current state s is updated to a new state s′ ∈ S

and one of the counters has its number in the register incremented by one, decre-
mented by one or no change in the counters occurs.

Formally, a counter machine is a pair (S,�). S = {s1, s2, . . . , sm} is a fi-
nite set of states and � is configuration update function � :S × {0,1}2 →
S × {(−1,0), (0,−1), (0,0), (1,0), (0,1)}. A configuration of a counter machine
is an arbitrary triplet (s, z1, z2) ∈ S × Z

2+. A configuration (s, z1, z2) is up-
dated to a configuration (s′, z′

1, z
′
2) as follows. Let 1{·} be the indicator func-

tion. Specifically, for every integer z, 1{z} = 1 if z > 0 and 1{z} = 0 oth-
erwise. Given the current configuration (s, z1, z2), suppose, for example, that



DECIDING STABILITY 2015

�(s,1{z1},1{z2}) = (s′,1,0). The current state is then changed from s to s ′, the
content of the first counter is incremented by one and the second counter does not
change: z′

1 = z1 + 1, z′
2 = z2. We will also write � : (s, z1, z2) → (s ′, z1 + 1, z2)

and � : s → s′,� : z1 → z1 + 1,� : z2 → z2. Suppose, on the other hand, that
�(s,1{z1},1{z2}) = (s′, (−1,0)). The current state then becomes s ′, z′

1 = z1 − 1,
z′

2 = z2. Similarly, if �(s, b) = (s′, (0,1)) or �(s, b) = (s ′, (0,−1)), then the
new configuration becomes (s ′, z1, z2 + 1) or (s′, z1, z2 − 1), respectively. If
�(s, b) = (s′, (0,0)), then the state is updated to s′, but the contents of the counters
do not change. It is assumed that the configuration update function � is consistent,
in the sense that it never attempts to decrement a counter which is equal to zero.
The present definition of a counter machine can be extended to the one which in-
corporates more than two counters, but such an extension is not necessary for our
purposes.

Given an initial configuration (s0, z0
1, z

0
2) ∈ S × Z

2+, the counter machine
uniquely determines the subsequent configurations (s1, z1

1, z
1
2), (s

2, z2
1, z

2
2), . . . ,

(st , zt
1, z

t
2), . . . . We fix a certain configuration (s∗, z∗

1, z
∗
2) and call it the halting

configuration. If this configuration is reached, then the process halts and no addi-
tional updates are executed. The following theorem establishes the undecidability
(also called noncomputability) of the halting property.

THEOREM 2. Given a counter machine (S,�), initial configuration (s0, z0
1,

z0
2) and the halting configuration (s∗, z∗

1, z
∗
2), the problem of determining whether

the halting configuration is reached in finite time (the halting problem) is undecid-
able. It remains undecidable even if the initial and the halting configurations are
the same, with both counters equal to zero: s0 = s∗, z0

1 = z0
2 = z∗

1 = z∗
2 = 0.

The first part of this theorem is a classical result and can be found in [32]. The
restricted case of s0 = s∗, z0

i = z∗
i , i = 1,2, can be similarly proven by extending

the set of states and the set of transition rules. It is the restricted case of the theorem
which will be used in the current paper.

3.2. Simplified counter machine (SCM), stability and decidability. We say that
a counter machine is stable if the value of counters is bounded as time goes to in-
finity. Namely, supt z

t
1 < ∞ and supt z

t
2 < ∞. It is shown in [26] that determining

whether a counter machine which started in a given configuration (s1,0,0) is sta-
ble is an undecidable problem, by a simple reduction to the halting problem.

DEFINITION 2. A simplified counter machine (SCM) is a counter machine
satisfying the following condition: there exist two functions α :S × {0,1}2 →
S,β :S → {−1,0,1}2 such that �(s, z1, z2) = (α(s,1{z1 > 0},1{z2 > 0}),
β(α(s,1{z1 > 0},1{z2 > 0}))). In other words, while the new state s ′ depends
on the entire current configuration (s, z1, z2), the incrementing or decrementing of
counters at the next step depends only on the new state s′.



2016 D. GAMARNIK AND D. KATZ

It turns out that this restrictive version of a counter machine is still sufficiently
general for our purposes.

PROPOSITION 1. Given a counter machine, an SCM can be constructed such
that the SCM is stable if and only if the given counter machine is stable.

PROOF. We modify the state space {sj },1 ≤ j ≤ m, to {sodd
j }1≤j≤m ∪

{(seven
j , b1, b2)}1≤j≤m,b1,b2∈{−1,0,1}. The transition rules are defined as follows:

α(sodd
j , b1, b2) = (seven

l ,	1,	2) if and only if �(sj , b1, b2) = (sl,	1,	2), and

β(seven
l ,	1,	2)) = (	1,	2). Also, α(seven

l ,	1,	2) = sodd
l and β(sodd

l ) = (0,0).
It is then not hard to observe that each transition (sj , z1, z2) → (sl, z

′
1, z

′
2)

with b1 = z′
1 − z1, b2 = z′

2 − z2 is emulated by two transitions in the SCM:
(sodd

j , z1, z2) → ((seven
l , b1, b2), z

′
1, z

′
2) → (sodd

l , z′
1, z

′
2). �

COROLLARY 1. Determining the stability of SCMs with a given initial config-
uration s∗, z∗

1 = 0, z∗
2 = 0 is an undecidable problem.

4. Description of the queueing network corresponding to an SCM. Given
an SCM with states {s1, s2, . . . , sm} and counter update rules α,β , we construct
a certain multiclass queueing network, a static buffer priority policy and the vector
of queue lengths at time zero. This network, policy and initial state combination
will have the property that it is stable if and only if the underlying SCM is stable,
thus the reduction goal will be achieved.

We now proceed to the details of the construction. The queueing network consist
of three subnetworks denoted, respectively, SN1, SN2 and MN , which stand for
subnetwork 1, subnetwork 2 and the main network; see Figures 1 and 2. The sub-
network SNi, i = 1,2, will be in charge of the updates of the counter readings zi .
The network MN will be in charge of updating the state si of the SCM. We will
describe the network structure in detail, as well as the buffer priority scheduling
policy implemented in this queueing network. The policy is henceforth denoted
by θ . All of the buffer capacities in the network are either zero or infinite.

The subnetworks SNi, i = 1,2, are identical in their topological description.
They will only differ in their buffer contents. Hence, we only need to describe
one of these subnetworks. In Figures 1 and 2, the buffers with infinite capacity are
marked by a vertical bar and the remaining buffers have finite capacity.

4.1. The description of the subnetwork SNi, i = 1,2. The subnetwork SNi

consists of five servers, Sij , j = 1, . . . ,5; see Figure 1. The classes (buffers) cor-
responding to server Sij are denoted by triplets ijk. Table 1 lists servers, classes
(buffers), the next classes (if any), the corresponding (deterministic) service times,
priorities and the buffer capacities. Service times are shown in column 4 and only
nonzero service times are shown. If, after service completion, the jobs from a given



DECIDING STABILITY 2017

FIG. 1. Subnetwork SNi .

class exit the system, then the corresponding entry in the next class column is ab-
sent. Thus, the unlisted service time entries correspond to zero service time. For
each class, we also provide the next class to where the jobs are routed after service
completion. If the corresponding entry is empty, it means that the job leaves the
network after the service completion. The fifth column corresponds to the priority
of this class within the server. For example, the order of priority of classes in server
Si1 is i12, i11, i13, i14, meaning that i12 has the highest priority, i11 has the next
highest priority, etc. The collection of classes i11, i12, i21, i22 is defined to be
a “Rybko–Stolyar sub-network,” or RSSNi . It indeed describes the well-known
Rybko–Stolyar network; see [18, 45]. The choice of service times in the subnet-
work SNi , as well as in the network MN described in the following section, is
somewhat arbitrary, except for service times for classes i12, i21 being equal to 0.5.
The numbers are arranged so that the proof goes through and is easy to follow. Yet
the choice of service times in i12, i21 is explained by making the corresponding
Rybko–Stolyar network critical, in some appropriate sense. For more details, refer
to the beginning of Section 5.

There are seven external arrival processes into subnetwork SNi , denoted by
Ai

j (0, s), j = 1, . . . ,7. The corresponding information is summarized in Table 2.
For each arrival process, we describe exact arrival times, as well as the class to
which the arriving job is routed. For example, the entry i42 corresponding to the
arrival process Ai

2 indicates that jobs arrive precisely at times 0.02,1.02,2.02, . . .



2018 D. GAMARNIK AND D. KATZ

FIG. 2. Main network MN .

TABLE 1
Servers and classes in SNi

Server Classes Next class Service time Priority Capacity

Si1 i11 i21 2 ∞
i12 0.5 1 ∞
i13 i31 3 0
i14 i31 4 0

Si2 i21 0.5 1 ∞
i22 i12 2 ∞
i23 i31 3 0

Si3 i31 0.04 2 ∞
i32 1.1 1 ∞
i33 01i of the network MN 3 0

Si4 i41 0.2 1 ∞
i42 i11 2 0

Si5 i51 i11 0.02 1 ∞



DECIDING STABILITY 2019

TABLE 2
Arrival processes into SNi

Arrival process Classes Arrival times

Ai
1 i22 n

Ai
2 i42 n + 0.02

Ai
3 i13 3n + 1.6

Ai
4 i23 3n + 2.1

Ai
5 i14 3n + 2.6

Ai
6 i32 3n + 1.5

Ai
7 i33 3n + 2.7

and are routed to the class i42. The arrival times are represented in the form an+b

for some explicit constants a, b. Here, a is the interarrival time and b is the initial
delay. This means that for every nonnegative integer n, an arrival occurs at time
an + b.

4.2. The description of the main network MN . The main network consists of
2m + 2 servers, where m is the number of states in the SCM. The servers are S01,
S02, S3j , S4j , j = 1,2, . . . ,m. The table describing servers, classes, next classes,
service times, priorities and buffer capacities is given below as Table 3. The in-
terpretation is the same as for the table for subnetworks SNi . Specific attention
is paid to classes 4j3, 1 ≤ j ≤ m, and the next classes described generically as
“i41, i51 or exit.” The jobs departing from class 4j3 are routed to:

1. class 141 if β(j) = (−1,0);
2. class 151 if β(j) = (1,0);
3. class 241 if β(j) = (0,−1);
4. class 251 if β(j) = (0,1);
5. exit the network if β(j) = (0,0).

In Table 3, some classes within the same server are assigned the same priority
level. This means that the tie is broken arbitrarily. We prefer to assign the same
priority level for simplicity. In reality, as we will see, the server will never have to
prioritize between these classes as at most one of the corresponding buffers will
be nonempty. In order to avoid overcomplicating the figure, the servers 3j are de-
scribed separately for classes 3k1,3k2,3k3,3k4 and classes 3j5, although these
belong to the same group of servers 3j, j = 1, . . . ,m. Arrivals into the main net-
work are summarized in Table 4. There are 3m external arrival processes into sub-
network MN , denoted by Ai

j (0, s), i = 3,4,5, j = 1,2, . . . ,m. We have started

the index i from 3 to avoid confusion with arrival processes A1
j ,A

2
j in networks

SNi, i = 1,2. The corresponding information is summarized in Table 4. The ar-
rival times are again represented in the form an+b for some explicit constants a, b.



2020 D. GAMARNIK AND D. KATZ

TABLE 3
Servers and classes in MN

Server Classes Next classes Service time Priority Capacity

S01 011 0.09 1 ∞
012 0.18 2 ∞

all 03j 3j1 3 ∞
S02 all 02j 03j 2.71 1 ∞
S3j 3k1, for all k such that α(sk,1,1) = sj 3k2 0.09 1 ∞

3k2, for all k such that α(sk,0,1) = sj 3k3 0.09 1 ∞
3k3, for all k such that α(sk,1,0) = sj 3k4 0.09 1 ∞
3k4, for all k such that α(sk,0,0) = sj 0.09 1 ∞

3j5 4j1 0.02 2 0

S4j 4j1 0.02 1 ∞
4j2 02j 2 0
4j3 i41, i51 or exit 3 0

We now describe the initial state of our queueing network at time s = 0, namely
Q(0). At this time, there is one job in class 02j in the main network, where j is
such that sj = s∗ is the initial state of the SCM. The service is initiated at time
s = 0, so the processing of this job will be over at time 2.71. All other buffers in
the entire queueing network are empty.

5. Proof of Theorem 1. Our main result, Theorem 1, follows immediately
from Corollary 1 and the following theorem.

THEOREM 3. The queueing network constructed in the previous section with
the prescribed initial state Q(0) is stable if and only if the SCM is stable.

Before we provide details of the proof of Theorem 3, let us present the overall
idea of the proof in the proof sketch below.

PROOF SKETCH OF THEOREM 3. We begin with a brief description of the
Rybko–Stolyar network RSSNi , which is embedded in our subnetwork SNi, i =

TABLE 4
Arrival processes into MN

Arrival process Classes Arrival times

A3
j 3j5 3n − 0.01

A4
j 4j2 3n

A5
j 4j3 3n



DECIDING STABILITY 2021

1,2, in relation to servers Si1, Si2 and classes i11, i12, i21, i22. Instead of two ar-
rival processes feeding class i11 in SNi , suppose that we have one external arrival
process with arrival times t = 0,1, . . . . Namely, arrivals occur at the same times as
for arrivals into class i22. Suppose, as it is in our case, that class i12 has priority
over class i11, and class i21 has priority over i22. The service times in classes
i11, i12, i21, i22 are set to take the same values as in our network SNi . Suppose,
also, that at time 0+, we have m jobs in class i21 and no jobs elsewhere. It is a
simple exercise to check that at time m+, there will be m jobs in class i12 and no
jobs elsewhere; at time (2m)+, there will be m jobs in i21 and no jobs elsewhere;
at time (3m)+, there will be m jobs in i12 and no jobs elsewhere, etc. Further-
more, it is a simple exercise to see that the total number of jobs in the four classes
i11, i12, i21, i22 remains the same m at every integer time t+.

Now, let us go back to our construction. The two Rybko–Stolyar networks
RSSNi, i = 1,2, embedded into SNi, i = 1,2, will model the two counters in
the counter machine, in the sense that the value of the counter i = 1,2 will cor-
respond to roughly the number of jobs in the classes i11, i12, i21, i22 at times
3t + 1 (to be exact, it will correspond to the workload corresponding to these
classes; see below). We will arrange the dynamics so that if, during the transi-
tion t → t + 1, a counter i has to increment (resp., to decrement, to leave un-
changed) its value, then the number of jobs in the Rybko–Stolyar part of SNi

will increase by one (resp., decrease by one, stays the same) over the time period
[3t + 1,3t + 4]. Specifically, say counter i increments its value by one during the
transition t → t + 1. We will arrange for exactly one job to arrive from MN into
class i51 exactly at time 3t + 3. After an additional delay of 0.02 in server Si5, it
will arrive into class i11 at time 3t + 3.02. The extra delay of 0.02 is created in
order to synchronize with arrivals at time t + 0.02 (possibly) coming from class
i42. The net result is one extra job in the Rybko–Stolyar part of SNi added during
[3t + 1,3t + 4].

On the other hand, suppose that counter i decrements its value by one during
the transition t → t + 1. We will arrange for exactly one job to arrive from MN

into i41 at time 3t + 3. This job will occupy server Si4 during (3t + 3,3t + 3.2)

and, as a result, the job arriving into class i42 at time 3t + 3.02 will be blocked.
The net result (compared to the pure Rybko–Stolyar network described above) is
that one job is lost.

The case when the counter does not change simply corresponds to no jobs ar-
riving into i41 and i51 at time 3t + 3, implying no change in the total number of
jobs in the Rybko–Stolyar part of SNi .

Furthermore, the classes i13, i14, i23 and classes in the server Si3 are con-
structed so that when a job arrives into zero-buffer class i33 at time 3t + 2.7,
it will be processed immediately and sent to MN if the Rybko–Stolyar part of
SNi is empty at time 3t + 1 (namely, counter i is empty) and will be blocked and
dropped from the network at time 3t + 2.7 otherwise. Namely, these classes serve
as a testing mechanism for checking whether the counter i is empty or not at time t .



2022 D. GAMARNIK AND D. KATZ

Additionally, there is a correspondence between the states of the SCM and
the MN network. Specifically, we will arrange that if, at time t , the state of SCM
is q , then, at time 3t , the server S02 will start working on a job in class 02q . The dy-
namics is arranged so that if the state of SCM at time t +1 is r , then, at time 3t +3,
the server S02 will start working on a job in class 02r , thus building the required
correspondence between the network MN and the state of the SCM. Specifically,
this is arranged as follows. The job in class 02q will be processed after 2.71 time
units and possibly incur a delay in server S03. The delay is either zero, 0.09, 0.18
or 0.27, depending on whether there are jobs arriving into classes 011 and 012
from SN1, SN2. From the description above, there is a job arriving from SNi if
and only if counter i is empty at time t . Thus, the four possible delays uniquely
identify which of the counters i = 1,2 are empty and which are not. Next, the job
will visit four (possibly repeated) servers among S3j ,1 ≤ j ≤ m, indexed by four
states, α(q,0,0), α(q,1,0), α(q,0,1), α(q,1,1), which can follow state q in the
SCM. Depending on the incurred delay, it will be in exactly one of these possible
servers at time 3(t + 1) − 0.01 when an external job arrives into this server and is
thus blocked. We arrange that it is precisely server S3r . The blocked job in buffer
3r5 is prevented from arriving into class 4r1 at the same time 3(t + 1) − 0.01 and
allows jobs in classes 4r2 and 4r3 to be processed at time 3(t + 1). These will be
the only jobs in classes 4j2 and 4j3, j = 1,2, . . . ,m, which are served at time
3(t + 1). One of these jobs arrives into class 02r , thus completing the cycle and
indicating that the new state of the SCM is r , and the other job is sent to either i41
or i51, depending on which of the two counters needs to be updated (if any) and
whether the update is increment or decrement. �

For the remainder of the paper, we focus on establishing Theorem 3. We first
introduce the following definitions. Let Wi(s) be the combined workload of the
servers Si1, Si2 in the network SNi at time s. Namely, it is the amount of service re-
quired to serve all jobs in servers Si1, Si2 at time s when the scheduling policy θ is
implemented. Observe that Wi(s) = Wi12(s)+Wi21(s)+0.5Qi22(s)+0.5Qi11(s),
where Wi12(s) and Wi21(s) stand for the time required to process jobs currently
in buffers i12, i21 (if any), respectively. We will specifically focus on workloads
Wi(s

−), where s− indicates the time immediately preceding s. Thus, if there is an
arrival at time s, this arrival has not shown up at s−.

For every integer time instance t = 1,2, . . . , we define the status of the
main network MN to be the following quantity: for every k = 1,2, . . . ,m,
StatusMN(t) = k if, at time t − 1, server S02 of the network MN started work-
ing on a job in class 02k and there are no other jobs anywhere in the network MN

at time t. Otherwise, StatusMN(t) = −1.
For each i = 1,2, we also define the status of the subnetwork SNi at a given

time 3t + 1 for t ∈ Z+ as follows. StatusSNi
(3t + 1) = 2Wi((3t + 1)−) if

Qi12(3t + 1)Qi21(3t + 1) = 0 and there are no jobs anywhere else in the
subnetwork SNi , other than possibly in the four classes of RSSNi (namely,



DECIDING STABILITY 2023

classes i11, i12, i21, i22). Otherwise, StatusSNi
(3t + 1) = −1. We do not define

StatusSNi
(t) at other values of t . As we will see shortly, the status functions at time

3t +1 will represent the configuration of the SCM at time t . Provided that we have
initialized our queueing network properly, none of the status functions will ever
take value −1.

THEOREM 4. If the configuration of the SCM after t steps is (sq, z1, z2), then
StatusMN(3t + 1) = q and StatusSNi

(3t + 1) = zi, i = 1,2.

PROOF. The proof is by induction. For t = 0, the statement of Theorem 4
holds because the queueing network initialization makes it so. The remainder of
the paper is devoted to proving the induction step. It is given in Section 5.1. �

We now show how this result implies Theorem 3.

PROOF OF THEOREM 3. The idea of the proof is to show that a bound on
the value of counters of the SCM implies a bound on the number of jobs in the
queueing network at any one time, and vice versa.

Suppose that the SCM is stable. That means that there is a bound M on the
maximum value of counters so that z1 and z2 never exceed M . Let (sj , z1, z2)

be the configuration of the SCM at time t . Then, by Theorem 4, at time (3t +
1)−, there are z1 ≤ M jobs in SN1, z2 ≤ M jobs in SN2 and one job in the main
network. So, at time (3t + 1)−, there can be no more than 2M + 1 jobs in the
queueing network. Since there is only a constant number of arrival processes in
the network and the arrival process is deterministic, for every time period [3t + 1,

3(t + 1) + 1), the total number of jobs in the network is bounded by 2M + C for
some constant C which depends only on the network parameters. Thus, if the SCM
is stable, so is the queueing network.

Conversely, suppose that the network is stable and that, at any time t , the total
number of jobs in the network does not exceed M for some finite value M . Then,
M is also an upper bound on StatusSNi

(3t + 1) for every t . By Theorem 4, this
implies that the values z1, z2 of the counters of the SCM are bounded by M and
therefore the SCM is also stable. �

5.1. Proof of the induction step of Theorem 4. This subsection proves the in-
duction step of Theorem 4. Thus, we assume that its statement holds after t steps
and prove that it holds after t + 1 steps. Assume that the configuration of the SCM
at time t is (sq, z1, z2); StatusMN(3t + 1) = q , StatusSNi

(3t + 1) = zi, i = 1,2.
Assume that the configuration of SCM at time t + 1 is �(sq, z1, z2) = (sr , y1, y2).
We need to show that StatusMN(3t + 4) = r , StatusSNi

(3t + 4) = yi, i = 1,2.



2024 D. GAMARNIK AND D. KATZ

5.1.1. Dynamics in subnetwork SNi .

LEMMA 1. For every time s ≥ 0, either Qi12(s) = 0 or Qi21(s) = 0. More-
over, d

ds
Wi(s) = −1 whenever Wi(s) > 0 and s ∈ R+ is not an instance of arrivals

into servers Si1, Si2.

REMARK. The first part of the lemma is a well-known fact from the stability
literature, stating that the classes i12, i21 constitute a virtual server such that only
one of the two classes can be served at any given time; see [21, 24].

PROOF OF LEMMA 1. Suppose that the statement of the lemma does not hold.
Then, let u = inf(s :Qi12(s) > 0 and Qi21(s) > 0). That means that both buffers
i12 and i21 are nonempty at time u+, but at least one of the two is empty at
time u−. Suppose that this holds for buffer i12. This implies that there was an
(instantaneous) service completion in buffer i22 at time u. Class i21 has higher
priority than class i22 (consult Table 1). This implies that the server S2 was not
working on the job in class i21 at time u−. Since, however, class i21 is nonempty
at time u+, we conclude that there was an arrival into buffer i21 at exactly time u.
We conclude that there was a simultaneous arrival into buffers i12 and i21 at time u

and buffers i12 and i21 were empty at time u−.
We now show that such a thing is impossible. Since jobs arrive to i12 from i22

and into i22 from outside at integer times n, we see that u must take integer values.
We now obtain a contradiction. The jobs arrive into i11 only from classes i42 and
i51. Jobs arriving into i42 arrive from outside at noninteger times n+ 0.02. Buffer
i42 has no capacity and the processing time for this class is zero. Therefore, these
jobs can ultimately arrive into i21 only at times n + 0.02 and not at integer times.
Jobs arriving into i51 have a nonzero processing time 0.02. These jobs arrive from
the main network MN from classes 4j3 which correspond to zero capacity buffers
and zero processing times. Jobs arrive into 4j3 from outside at integer times 3n.
Thus, these jobs can ultimately arrive into class i21 only at times 3n + 0.02 and
not at integer times. We conclude that jobs cannot ever arrive into i21 at integer
times.

Similarly, we consider the case where Qi21(u
−) = 0. Since Qi21(u

+) > 0, there
was a service completion in buffer i11 at time u. We already showed above that this
can only occur at times of the form n + 0.02. Also, this means that Q12(u

−) = 0
since class i12 has higher priority than class i11. Thus, there was an arrival into
i12 at time u, namely there was a service completion in i22 at time u. Since
Q21(u

−) = 0 and the service time in i22 is zero, there was an arrival into i22 at u.
But these arrivals only occur at integer times n. Again, we obtain a contradiction.

To establish the last part regarding d
ds

Wi(s), observe that only jobs in buffers
i12, i21 have nonzero processing times. Since only one of these buffers can con-
tain a job, the case Wi(s) > 0 corresponds to the case of exactly one of these
buffers having jobs as, otherwise, if both i12, i21 are empty, then the remaining



DECIDING STABILITY 2025

jobs in servers Si1, Si2 are processed immediately since they have zero service time
requirement. The assertion then follows. �

LEMMA 2. There are no arrivals into buffers i41, i51 during the time interval
[3t + 1,3t + 3).

PROOF. Arrivals into classes i41 and i51 can happen as a result of a depar-
ture from one of the classes 4j3 of the network MN . The buffers 4j3 have zero
capacity and zero processing time. Therefore, service completions happen there
simultaneously with arrivals from arrival processes A5

j . However, those arrivals
occur only at times 3t . Thus, the first arrival after 3t can occur only at time 3t + 3.
The assertion then follows. �

LEMMA 3. During the time interval [3t +1,3t +3), exactly one of the servers
Si1 and Si2 is busy and Wi((3t + 2)−) ≥ Wi((3t + 1)−). In addition, during this
time period, jobs in classes i12 and i21 finish service only at times which are
multiples of 0.5.

PROOF. By Lemma 1, at most one of servers Si1, Si2 does work at any given
time. Thus, we need to show that at least one server works during this time period.

By Lemma 2, there are no arrivals into buffers i41, i51 during [3t + 1,3t + 3).
By the inductive assumption, StatusSNi

(3t + 1) = zi ≥ 0, implying, in particular,
that there are no jobs in buffer i41 at time 3t + 1. Thus, buffer i41 is empty during
[3t + 1,3t + 3). This means that the jobs arriving into class i42 at times 3t + 1.02
and 3t +2.02 will arrive instantly into buffer i11. Also, one job will arrive into i22
at time 3t + 1,3t + 2. By Lemma 1, only one of the jobs in buffers i12, i21 can
be served at a time. Thus, the dynamics of the number of jobs in the subnetwork
RSSNi can be viewed as dynamics of a single server queue with service time 0.5
and arrivals at times 3t + 1,3t + 1.02,3t + 2,3t + 2.02. It is then easy then to
explicitly construct Wi(s) during the time period s ∈ [3t + 1,3t + 3), given the
initial value Wi((3t + 1)−), and the graph of Wi(s) is depicted in Figures 3–5. The
part [3t + 1,3t + 3) is identical in all three figures. The differing parts of the graph
corresponding to the interval [3t + 3,3t + 4) will be used later in Section 5.1.2. In
particular, we see that if Wi((3t + 1)−) > 0, then Wi(s) is always positive during
the time interval [3t + 1,3t + 3) and if Wi((3t + 1)−) = 0, then Wi(s) is equal to
zero only at time s = 3t + 2. In particular, at least one (and therefore exactly one)
of the servers Si1, Si2 was busy during the time interval [3t + 1,3t + 3). We also
see, by inspection, that Wi((3t + 2)−) ≥ Wi((3t + 1)−). Finally, by the inductive
assumption, StatusSNi

(3t +1) = zi = 2Wi((3t +1)−); in particular, it is an integer.
This means that there is no service in progress in buffers i12, i21 at time 3t + 1.
Thus, whether or not there are prior jobs in buffers i12, i21 at time 3t + 1, there
will be service completions exactly at times 3t + 1.5,3t + 2,3t + 2.5 and 3t + 3,



2026 D. GAMARNIK AND D. KATZ

FIG. 3. Workload Wi(s): case 1.

as seen by again inspecting Figures 3–5. This proves the second assertion of the
lemma. �

LEMMA 4. Suppose that StatusSNi
(3t + 1) ≥ 1. Then, the job J arriving at

time 3t +2.7 from outside according the arrival process Ai
7 will be routed to buffer

01i of the network MN at time 3t + 2.7.

PROOF. At time 3t + 1.5, a job arrives into class i32 which requires 1.1 units
of processing time. Since i32 is the highest priority class in server Si3, this server

FIG. 4. Workload Wi(s): case 2.



DECIDING STABILITY 2027

FIG. 5. Workload Wi(s): case 3.

will be busy until time 3t + 2.6. Also, this class having the highest priority implies
that there is only one job of this class at a time. Thus, at time 3t + 2.6, buffer
i32 is empty. Buffer i31 has the second highest priority and buffer i33, to where
the job J arrives, has the lowest priority. Thus, whether J will be blocked from
service at arrival time 3t + 2.7 depends on the number of jobs in buffer i31 at
time 3t + 2.7. The processing time for these jobs is 0.04. Therefore, J will not be
blocked if and only if there are at most two jobs in i31 since, then, these jobs will
be processed not later than 3t + 2.6 + 0.04 + 0.04 < 3t + 2.7 and, otherwise, they
will be processed at time 3t + 2.6 + 0.04 + 0.04 + 0.04 > 3t + 2.7. We conclude
that J will be blocked if and only if there are at most two jobs in buffer i31. We
now show that this is indeed the case provided StatusSNi

(3t + 1) ≥ 1.
Jobs arriving into buffer i31 depart from classes i13, i14 and i23. These buffers

have zero capacity and zero service time. Therefore, they can arrive into i31 only
at a time of arrival into these three buffers, namely at times 3t + 1.6,3t + 2.1 and
3t + 2.6. In particular, there will be up to three jobs in buffer i31 at time 3t + 2.6.
Thus, we need to show that it is impossible for all of these three jobs to arrive into
i31. We will show that at least one of these jobs is blocked. By Lemma 3, either
server Si1 or Si2 is busy during [3t + 1,3t + 3). Suppose that the job arriving into
i13 at time 3t + 1.6 is not blocked. This means that Si2 is busy at time 3t + 1.6.
By Lemma 3, it will remain busy until 3t + 2. If it remains busy after this time,
then it will remain busy until 3t + 2.5, the job arriving into i23 at time 3t + 2.1
is blocked and the assertion is established. Thus, the only remaining possibility is
that Si2 finishes service at time 3t + 2 and remains idle after this. We will show
that a job arriving into i14 at time 3t + 2.6 will then be blocked and the proof is
then complete. By Lemma 3, Wi((3t +2)−) ≥ Wi((3t +1)−) ≥ 1. Thus, there is at
least one job in either Si1 or i21 at time (3t + 2)− which still requires 0.5 units of



2028 D. GAMARNIK AND D. KATZ

processing time. We claim that at time (3t + 2)+, it is in i12. Indeed, it cannot be
in i12 since the server is idle at this time. For the same reason, it cannot be in i22
since service time in this buffer is zero. Also, it cannot be in i11 since Si1 was idle
at (3t + 2)− and the arrivals into i11 do not occur at integer times. We conclude
that there is at least one job in i12 at time (3t + 2)+ and no jobs in i11, i21, i22
at this time. At time 3t + 2, there is an arrival into i22 which then immediately
proceeds to i12. Thus, we have at least two jobs in i12 at time (3t + 2)+. The
server will work on them during [3t + 2,3t + 3) and will block a job arriving into
i14 at time 3t + 2.6. This completes the proof. �

LEMMA 5. Suppose that StatusSNi
(3t + 1) = 0. A job J arriving at time 3t +

2.7 from outside will then, according to the arrival process Ai
7, exit the system

immediately.

PROOF. The proof is very similar to the proof of the previous lemma. We
need to show that all three jobs arriving into classes i13, i23 and i14 at times
3t + 1.6,3t + 2.1 and 3t + 2.6, respectively, will not be blocked and will be in
buffer i31 at time 3t + 2.6. Suppose that StatusSNi

(3t + 1) = 0, that is, Wi((3t +
1)−) = 0. The job arriving at time 3t + 1 into buffer i22 according to Ai

1 will then
immediately proceed to buffer i12 and occupy server Si1 during the time interval
(3t + 1,3t + 1.5). By Lemma 2, the job arriving into buffer i24 at time 3t + 1.02
according to Ai

2 will be processed immediately in buffer i42 and proceed to buffer
i11. It will be delayed in buffer i11 until 3t + 1.5 and, at this time, will depart
to buffer i21 and occupy server Si2 during the time interval (3t + 1.5,3t + 2).
Then, again, a job arriving at 3t + 2 into i22 will proceed into i12 and occupy the
server Si1 during the time interval (3t + 2,3t + 2.5). Finally, the job arriving into
i42 at time 3t + 2.02 will be delayed in i11 until 3t + 2.5 and will then occupy
Si2 during (3t + 2.5,3t + 3). It is clear from this dynamics that all of the three
jobs arriving at times 3t + 1.6,3t + 2.1 and 3t + 2.6 into buffers i13, i23 and
i14 will be processed immediately and arrive into buffer i31 at the same times,
3t + 1.6,3t + 2.1 and 3t + 2.6. �

Combining the results of Lemmas 4 and 5, we obtain the following conclusion.

COROLLARY 2. If StatusSNi
(3t + 1) ≥ 1, then exactly one job arrives into the

class 01i of network MN at time 3t + 2.7. If StatusSNi
(3t + 1) = 0, then no job

arrives into 01i at time 3t + 2.7.

5.1.2. Dynamics in MN . We now switch to the analysis of the dynamics in
network MN . Recall that, by the inductive assumption StatusMN(3t + 1) = q , we
have one job in class 02q at time 3t + 1, which started service at time 3t , and
there are no other jobs in MN at time 3t + 1. We call this unique job K. Recall
that the configuration (q, x1, x2) of the SCM at time t is assumed to be updated



DECIDING STABILITY 2029

to the configuration (r, y1, y2) at time t + 1. Introduce m1 = α(sq,1,1), m2 =
α(sq,0,1), m3 = α(sq,1,0) and m4 = α(sq,0,0). Namely, m1,m2,m3,m4 are
the four possible values of the state r .

LEMMA 6. During the time interval (3t +2.98,3t +3.07), the job K will be in
server 3r , buffer 3m4 (resp., buffer 3m3 or 3m2 or 3m1) if and only if x1 = x2 = 0
(resp., if and only if x1 = 1, x2 = 0 or x1 = 0, x2 = 1 or x1 = x2 = 0). This job will
leave the network before time 3t + 0.34.

PROOF. By the inductive assumption, the job K will finish service in buffer
02q at time 3t + 2.71 and will arrive into buffer 03q . It will possibly experience
a delay in the corresponding server S01 which depends on the presence/absence of
jobs in buffers 011,012. We now consider four possible cases:

1. Case x1 = x2 = 0. By the inductive assumption, this means that StatusSN1(3t +
1) = StatusSN2(3t +1) = 0. By Corollary 2, this means that at time 3t +2.7, no
jobs arrive into buffers 011,012. Since only jobs arriving from buffer i33, that
is, ultimately from Ai

7, can possibly get into buffers 011,012, these buffers are
empty until at least 3(t + 1) + 2.7. In particular, the job K arriving into 03q at
time 3t + 2.71 will find an idle server and will proceed immediately to buffers
3m1, 3m2, 3m3 and 3m4. In each of these buffers, it has the highest priority.
Since the service time in each of these buffers is 0.09, it will arrive into these
four buffers at exactly the times 3t +2.71, 3t +2.8, 3t +2.89 and 3t +2.98. In
particular, it will be in buffer 3m4 during the time interval (3t +2.98,3t +3.07)

and the assertion is established.
2. Case x1 = 1, x2 = 0. By the inductive assumption, this means that

StatusSN1(3t +1) > 0, StatusSN2(3t +1) = 0. By Corollary 2, this means that at
time 3t + 2.7, no job arrives into buffer 012 and one job arrives into buffer 011.
This job has the highest priority and requires 0.09 units of processing time. The
only difference with the previous case, then, is that the job K now experiences a
delay of 0.09 in server S01. Thus, it will arrive into buffers m1, m2, m3 and m4
at exactly the times 3t + 2.8, 3t + 2.89, 3t + 2.98 and 3t + 3.07. In particular,
it will be in the buffer 3m3 during the time interval (3t + 2.98,3t + 3.07) and
the assertion is thus established.

3. Case x1 = 0, x2 = 1. The analysis is similar. We observe that we will have one
job in buffer 012 and no jobs in buffer 011 at time 3t + 2.7. This buffer 012
has the second highest priority; the job K will experience a delay of 0.18, the
processing time of a job in buffer 012.

4. Case x1 = x2 = 1. The analysis is similar. In this case, we have one job in buffer
011 and one job in buffer 012. The job K is delayed by 0.18+0.09 = 0.27 time
units.

Finally, we again see, by considering the four cases, that the job K will depart from
the network at time 3t + 3.34, at the latest. This completes the proof of the lemma.

�



2030 D. GAMARNIK AND D. KATZ

LEMMA 7. At time (3t +3)−, the server S4r is idle and the servers S4j , j �= r ,
are busy processing jobs in buffers 4j1.

PROOF. At time (3t + 3)−, the servers S4j can be busy only serving jobs in
buffer 4j1. These jobs arrive from zero capacity buffer 3j5. These jobs have the
highest priority in server S4j and the second highest in S3j . Also, these jobs arrive
at time 3(t + 1) − 0.01 into 3j5. The only way for these jobs to be dropped from
zero capacity buffer 3j5 is by a higher priority buffer in these servers (i.e., one
possibly serving job K) being occupied. By Lemma 6, this is the case for exactly
one server, namely server 3r . �

LEMMA 8. StatusMN(3t + 4) = r .

PROOF. We need to show that at time 3t + 4, in network MN , there is one
job in class 02r which initiated service at time 3t + 3 and no jobs elsewhere. By
Lemma 6, the job K will leave the network before time 3t + 3.34 < 3t + 4. The
jobs arriving into zero capacity buffers 4j2,4j3, j �= r , at time 3t + 3 will find,
by Lemma 7, a busy server 4j and will be dropped from the network. The job
arriving into buffer 4r3 at time 3t + 3 will find, by Lemma 7, an idle buffer and
will immediately proceed to one of the subnetworks SNi . The jobs arriving into
buffers 3j5 at time 3t + 3 − 0.01 will either be dropped from the network or will
proceed to buffers 4j1 and, after an additional service time 0.02, will leave the
network. Thus, they will leave the network before time 3t + 3 + 0.01 < 3t + 4. We
conclude that only the job arriving into buffer 4r2 at time 3t + 3 can remain in the
network. By Lemma 7, it will find an idle server S4r and will proceed immediately
to buffer 02r and begin service there at time 3t + 3. This completes the proof. �

LEMMA 9. There are no arrivals into classes i41, i51 during the time period
[3t + 1,3t + 4], other than, possibly, at time 3t + 3. At time 3t + 3, at most one
job arrives into the four classes 141,151,241 and 251. Specifically:

1. A141(3t + 3) = 1 if β(sr) = (−1,0);
2. A151(3t + 3) = 1 if β(sr) = (1,0);
3. A241(3t + 3) = 1 if β(sr) = (0,−1);
4. A251(3t + 3) = 1 if β(sr) = (0,1);
5. no arrivals if β(sr) = (0,0).

PROOF. Arrivals into i42 and i52 can occur only from buffers 4j3. These
buffers have zero capacity and zero processing times. The arrivals into these
buffers occur at times 3n, n = 0,1, . . . . By Lemma 7, only server 4r will process
a job at time 3t + 3 in buffer 4r3. According to Table 3 and the corresponding de-
scription, it will be routed to one of the buffers i41, i51 or will leave the network
precisely as described by the lemma. �



DECIDING STABILITY 2031

LEMMA 10. The following hold for i = 1,2:

1. Statusi (3t + 4) = Statusi (3t + 1) if Ai41(3t + 3) = Ai51(3t + 3) = 0;
2. Statusi (3t + 4) = Statusi (3t + 1) − 1 if Ai41(3t + 3) = 1;
3. Statusi (3t + 4) = Statusi (3t + 1) + 1 if Ai51(3t + 3) = 1.

PROOF. By Lemma 1, we have Qi12(3t + 4)Qi21(3t + 4) = 0. Let us show
that at time 3t + 4, there are no jobs in SNi , other than, possibly, RSSNi . By the
inductive assumption, we have StatusSNi

(3t + 1) ≥ 0. In particular, at this time,
there are no jobs in SNi outside of RSSNi . We need to show that no jobs arriving
during (3t + 1,3t + 4] can be outside of RSSNi at time 3t + 4.

By Lemma 9, jobs can arrive into i41, i51 during (3t + 1,3t + 4] only at time
3t + 3 and only one such job can arrive. Upon arrival, they will experience service
time of either 0.2 in i41 or 0.02 in buffer i51 and they will thus leave the network
by time 3t + 3.2, at the latest.

The jobs arriving into i42 at times 3t + 2, 3t + 3, 3t + 4 will either be dropped
or proceed to buffer i11, which is a part of RSSNi . Thus, at time 3t +4, these jobs
will either be in RSSNi or will leave the network (no jobs in RSSNi feed buffers
outside of RSSNi ).

We have already analyzed the dynamics of the jobs which arrived into buffers
i13, i14, i23, i32 and i33 at times 3t + 1.6, 3t + 2.1 and 3t + 2.6 as part of the
proofs of Lemmas 4 and 5. In particular, we saw that these jobs leave SNi before
time 3t +2.72. We have established that there are no jobs in SNi outside of RSSNi

at time 3t + 4.
It remains to analyze the value of Statusi at time 3t + 4. We consider the corre-

sponding three cases:

1. Ai41(3t + 3) = Ai51(3t + 3) = 0. By Lemma 9, there were no arrivals into
classes i41, i51 in time interval [3t + 1,3t + 4]. Consider the quantity Wi(s)

during this time interval. As long as Wi(s) > 0, by Lemma 1, d
ds

Wi(s) = −1 at
time instances s not corresponding to the arrival instances. However, we have
arrivals into i22 at times 3t + 1, 3t + 2 and 3t + 3, and into i42 at times
3t + 1 + 0.02, 3t + 2 + 0.02 and 3t + 3 + 0.02, ensuring that Wi(s) is not 0
for any period of positive length during [3t + 1,3t + 4); see Figure 3. In this
situation, Wi(s), over the time interval [3t + 1,3t + 4), increases by 3 units
due to 6 arrivals, and decreases by 3 units due to 6 service completions. Thus,
Wi((3t + 4)−) = Wi((3t + 1)−).

2. Ai51(3t + 3) = 1. The job arriving into i51 at time 3t + 3 after a delay of 0.02
will arrive into i11, thus increasing Wi(s) by 0.5 at time s = 3t + 3.02; see
Figure 4. Therefore, Wi((3t + 4)−) = Wi((3t + 1)−) + 0.5 and StatusSNi

(3t +
4) = StatusSNi

(3t + 1) + 1.
3. Ai41(3t + 3) = 1. The job arriving into i41 at time 3t + 3 will occupy server

Si4 for 0.2 time units. As a result, the job arriving into i42 at time 3t + 3.02
will find a busy server and will be dropped from the network. Comparing this



2032 D. GAMARNIK AND D. KATZ

situation with the case Ai41(3t + 3) = Ai51(3t + 3) = 0 and consulting Fig-
ure 5, we obtain the same situation, except that there are no arrivals into i11 at
time 3t + 3.02. The net result is that W((3t + 4)−) = W((3t + 1)−) − 0.5 and
StatusSNi

(3t + 4) = StatusSNi
(3t + 1) − 1.

This completes the proof. �

As an immediate corollary of Lemmas 9 and 10, we obtain the following.

COROLLARY 3. Status1(3t + 4) = y1 and Status2(3t + 4) = y2.

Lemma 8 and Corollary 3 prove the induction step for Theorem 4, so its proof
is now complete.

5.2. Load factors. We will establish below that for some servers in the queue-
ing network constructed in Section 4, the corresponding load factors are greater
than unity. As we saw from the proof of our main result, since some of the buffers
in our network are finite, overloading some of the servers does not necessarily
lead to instability. Yet, this is a significant departure from the standard assumption
ρS < 1 in most of the literature on stability. The goal of this section is to show that
simple modifications of our network lead to the same, or a very similar, dynamics,
while ensuring the ρS < 1 condition. Thus, our undecidability result extends to
networks with the ρS < 1 condition satisfied by all servers.

We now compute the load factors ρS for each server S encountered in our
constructed queueing network and construct appropriate modifications. We begin
with the subnetwork SNi . Let us compute the load factors ρSij

, i = 1,2, j =
1,2, . . . ,5, of the five servers in SNi . The only class in server Si1 with nonzero
service time (equal to 0.5) is class i12. The arrival rate λ̄i12 into this class equals
the external arrival rate into class i22, namely λi22 = 1. Thus, ρSi1 = 0.5 < 1 and
no modification is needed.

Now, consider server Si2. The only class in this server with nonzero service
time, equal to 0.5, is class i21. The total arrival rate into this class is λ̄i21 = λi42 +∑

j λ4j3, where λ4j3 is the external arrival rate into class 4j3 in the main network
MN and the sum is over all j such that class 4j3 sends jobs into class i51. By
construction, λi42 = 1 and λ4j3 = 1/3. Thus, ρSi2 ≤ (1 + l1/3)(0.5), where l1 is
the total number of such classes. As a result, this server is possibly overloaded. We
now modify our network as follows. In front of the class i51, which is fed by jobs
from MN , we create a new server with l1 + 2 classes. The first l1 of the classes
correspond to arrivals from MN which were originally routed into i51. The service
rate of these jobs is zero, the buffer size is also zero and, upon service completion,
the jobs leave the network. The (m + 1)st class has external arrivals at exactly
the times 3t (which are arrival times for classes 4j3) and service time 0.03. This
class has zero buffer and, upon service completion, jobs leave the network. Finally,



DECIDING STABILITY 2033

the class m + 2 has arrivals at times 3t + 0.01, service times 0.01, zero buffer and,
upon service completion, jobs are routed into the buffer of the class i11. The first l1
classes have the higher priority than class l1 +1, which, in turn, has higher priority
than the class l1 + 2. The load factor of the new server is (1/3)(0.03 + 0.01) < 1.
Now, let us see how the new server changes the dynamics in the original network.
If there is at least one job arriving into classes 1, . . . , l1 in this new server (and
we know that only one can arrive at a time), then, since this can only happen at
times 3t , the job arriving into class l1 + 1 is blocked and is dropped from the
network. As a result, the job arriving into l1 + 2 at time 3t + 0.01 is not blocked
and is routed into i11 at time 3t + 0.02. On the other hand, if no jobs arrive in
classes 1, . . . , l1 at time 3t , then the job arriving into l1 + 1 at time 3t is worked
on during the time interval [3t,3t + 0.03] and blocks the job arriving into l1 + 2 at
time 3t + 0.01, the latter job being dropped from the network. The net effect is the
same as when compared with the earlier model: there is one job arriving into i11 at
time 3t + 0.02 if and only if there is one job arriving into this class in the original
network. But, now, the load factor ρSi2 of the server Si2 is (1 + 1/3)(0.5) < 1.

Now, consider server Si3. We check, in a straightforward way, that ρSi3 =
3(1/3)(0.04) + (1/3)(1.1) < 1.

Considering server Si4, we see that its load factor, ρSi4 = l2(1/3)(0.2), may be
bigger than unity, where l2 is the total number of classes 4j3 which may send jobs
from MN to class i41. Our modification of the network is very simple: replace
the service time 0.2 in i41 by 0.2/m, make arrivals of Ai

2 at times t , instead of
t + 0.02, and make service times at i42 equal to 0.02. This makes the load factor
of Si4 at most (1/3)m(0.2/m) + 0.02 < 1. The net effect is the same: if there is
an arrival from MN into i41, this arrival can occur only at times 3t and only one
job can arrive at a time. This job occupies the server during [3t,3t + 0.2/m] and
blocks any job arriving into i42 according to Ai

2 at time 3t . The latter job is then
dropped. If, however, no job arrives into i41 at time 3t , then the job arriving into
i42 at time 3t is processed and, at time 3t + 0.02, it reaches i11, as in the original
network.

For server Si5, our earlier modification, namely a new server in front of class
i51, implies that the new load factor is only ρSi5 = (1/3)(0.02) < 1.

We now turn to the main network MN . Let us compute the load fac-
tors ρS01, ρS02, ρS3j

, ρS4j
,1 ≤ j ≤ m, of the servers in MN . We have ρS01 =

(1/3)(0.09) + (1/3)(0.18) < 1 (the two arrival rates 1/3 are for jobs arriving
from subnetworks SN1, SN2, corresponding to classes 133,233). As for server
S02, we have ρS02 = m(1/3)(2.71) and this server is possibly overloaded as well.
We simply replace this server with m identical servers, each dedicated to serving
class 02j, j = 1, . . . ,m. Recall that the only function of the server S02 was to
introduce a fixed delay of 2.71. Each one of the new m servers has load factor
(1/3)(2.71) < 1.

Now, let us consider servers S3j . We have ρS3j
= l3(1/3)(0.09), where l3 is the

number of classes 03j in server S01 which can send jobs into server S3j . Note



2034 D. GAMARNIK AND D. KATZ

that this is also the number of states which can transition into the state j in the
SCM. Note that l3 can be as large as 4m. Thus, this server can be overloaded.
Our modification is as follows. Instead of each server S3j , we create 4m servers
S3js, s = 1, . . . ,4m. Jobs arriving into classes 3k1 in server S3j in the original
network instead go through servers S3j1, . . . , S3j (4m), in this order, with service
requirement 0.09/(4m) in each server. Jobs arriving according to A3

j into class 3j5
in the modified version have to go through all of the 4m servers S3j1, . . . , S3j (4m),
with zero service time requirement and zero buffer, and are ultimately routed into
class 4j1, as was the case in the original network. It is easy to see that we obtain
the same net effect: processing one job in class 3k1 for 0.09 time units is replaced
by 4m subsequent processing stages, each with processing time 0.09/(4m). The
load factor in each new server is at most (4m)(0.09)/(4m) < 1.

Finally, observe that ρS4j
= (1/3)(0.02) < 1.

This completes the description of the modified network in which the condition
ρS < 1 is satisfied by every server S.

6. Conclusion. We have established that there does not exist an algorithm for
determining stability of a multiclass queueing network operating under a static
nonpreemptive buffer priority scheduling policy. Namely, the underlying problem
is undecidable. There are, however, special cases for which the stability can be
determined. Characterization of those special cases is of interest. Also of inter-
est is whether our undecidability result holds for FIFO scheduling policy, another
frequently studied scheduling policy. Our model incorporated several simplifying
assumptions which depart from standard assumptions in the literature on stability
of queueing networks. Specifically, we considered networks with possibly finite
buffers and zero service times. We have little doubt that the stability property re-
mains undecidable, even for multiclass queueing networks, without these assump-
tions, but, at present, we do not have a proof of this.

REFERENCES

[1] ANDREWS, M., AWERBUCH, B., FERNÁNDEZ, A., KLEINBERG, J., LEIGHTON, T. and
LIU, Z. (1996). Universal stability results for greedy contention–resolution protocols.
In 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996)
380–389. IEEE Comput. Soc. Press, Los Alamitos, CA. MR1450636

[2] AIELLO, W., KUSHILEVITZ, E., OSTROVSKY, R. and ROSÉN, A. (1999). Adaptive packet
routing for bursty adversarial traffic. In STOC’98 (Dallas, TX) 359–368. ACM, New York.
MR1731588

[3] ANDREWS, M. (2004). Instability of FIFO in session-oriented networks. J. Algorithms 50 232–
245.

[4] ANDREWS, M. and ZHANG, L. (2000). The effects of temporary sessions on network per-
formance. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms (San Francisco, CA, 2000) 448–457. ACM, New York. MR1754882

[5] BLONDEL, V. D., BOURNEZ, O., KOIRAN, P., PAPADIMITRIOU, C. H. and TSITSIKLIS, J. N.
(2001). Deciding stability and mortality of piecewise affine dynamical systems. Theoret.
Comput. Sci. 255 687–696. MR1819103

http://www.ams.org/mathscinet-getitem?mr=1450636
http://www.ams.org/mathscinet-getitem?mr=1731588
http://www.ams.org/mathscinet-getitem?mr=1754882
http://www.ams.org/mathscinet-getitem?mr=1819103


DECIDING STABILITY 2035

[6] BHATTACHARJEE, R. and GOEL, A. (2005). Instability of FIFO at arbitrarily low rates in the
adversarial queueing model. SIAM J. Comput. 34 318–332.

[7] BERTSIMAS, D., GAMARNIK, D. and TSITSIKLIS, J. N. (1996). Stability conditions for multi-
class fluid queueing networks. IEEE Trans. Automat. Control 41 1618–1631. MR1419686

[8] BERTSIMAS, D., GAMARNIK, D. and TSITSIKLIS, J. N. (2001). Performance of multi-
class Markovian queueing networks via piecewise linear Lyapunov functions. Ann. Appl.
Probab. 11 1384–1428. MR1878302

[9] BORODIN, A., KLEINBERG, J., RAGHAVAN, P., SUDAN, M. and WILLIAMSON, D. P. (2001).
Adversarial queuing theory. J. ACM 48 13–38. MR1867274

[10] BERTSIMAS, D. and NIÑO-MORA, J. (1999). Optimization of multiclass queueing networks
with changeover times via the achievable region approach. I. The single-station case.
Math. Oper. Res. 24 306–330. MR1853878

[11] BERTSIMAS, D., PASCHALIDIS, I. C. and TSITSIKLIS, J. N. (1994). Optimization of multi-
class queueing networks: Polyhedral and nonlinear characterizations of achievable per-
formance. Ann. Appl. Probab. 4 43–75. MR1258173

[12] BRAMSON, M. (1994). Instability of FIFO queueing networks. Ann. Appl. Probab. 4 414–431.
MR1272733

[13] BRAMSON, M. (1996). Convergence to equilibria for fluid models of FIFO queueing networks.
Queueing Systems Theory Appl. 22 5–45. MR1393404

[14] BRAMSON, M. (1999). A stable queueing network with unstable fluid model. Ann. Appl.
Probab. 9 818–853. MR1722284

[15] BRAMSON, M. (2001). Stability of earliest-due-date, first-served queueing networks. Queueing
Syst. 39 79–102. MR1865459

[16] BLONDEL, V. D. and TSITSIKLIS, J. N. (2000). The boundedness of all products of a pair of
matrices is undecidable. Systems Control Lett. 41 135–140. MR1831027

[17] BLONDEL, V. D. and TSITSIKLIS, J. N. (2000). A survey of computational complexity results
in systems and control. Automatica J. IFAC 36 1249–1274. MR1834719

[18] CHEN, H. and YAO, D. D. (2001). Fundamentals of Queueing Networks: Performance, Asymp-
totics, and Optimization. Applications of Mathematics. Stochastic Modelling and Applied
Probability 46. Springer, New York. MR1835969

[19] DAI, J. G. (1995). On positive Harris recurrence of multiclass queueing networks: A unified
approach via fluid limit models. Ann. Appl. Probab. 5 49–77. MR1325041

[20] DAI, J. G. (1996). A fluid limit model criterion for instability of multiclass queueing networks.
Ann. Appl. Probab. 6 751–757. MR1410113

[21] DAI, J. G., HASENBEIN, J. J. and VANDE VATE, J. H. (1999). Stability of a three-station fluid
network. Queueing Systems Theory Appl. 33 293–325. MR1742573

[22] DOWN, D. and MEYN, S. P. (1995). Stability of acyclic multiclass queueing networks. IEEE
Trans. Automat. Control 40 916–919. MR1328091

[23] DOWN, D. and MEYN, S. P. (1997). Piecewise linear test functions for stability and instability
of queueing networks. Queueing Systems Theory Appl. 27 205–226 (1998). MR1625069

[24] DAI, J. G. and VANDE VATE, J. H. (2000). The stability of two-station multitype fluid net-
works. Oper. Res. 48 721–744. MR1792776

[25] DAI, J. G. and WEISS, G. (1996). Stability and instability of fluid models for reentrant lines.
Math. Oper. Res. 21 115–134. MR1385870

[26] GAMARNIK, D. (2000). Using fluid models to prove stability of adversarial queueing networks.
IEEE Trans. Automat. Control 45 741–746. MR1764845

[27] GAMARNIK, D. (2002). On deciding stability of constrained homogeneous random walks and
queueing systems. Math. Oper. Res. 27 272–293. MR1908527

[28] GAMARNIK, D. (2003). Stability of adaptive and non-adaptive packet routing policies in ad-
versarial queueing networks. SIAM J. Comput. 32 371–385. MR1969395

http://www.ams.org/mathscinet-getitem?mr=1419686
http://www.ams.org/mathscinet-getitem?mr=1878302
http://www.ams.org/mathscinet-getitem?mr=1867274
http://www.ams.org/mathscinet-getitem?mr=1853878
http://www.ams.org/mathscinet-getitem?mr=1258173
http://www.ams.org/mathscinet-getitem?mr=1272733
http://www.ams.org/mathscinet-getitem?mr=1393404
http://www.ams.org/mathscinet-getitem?mr=1722284
http://www.ams.org/mathscinet-getitem?mr=1865459
http://www.ams.org/mathscinet-getitem?mr=1831027
http://www.ams.org/mathscinet-getitem?mr=1834719
http://www.ams.org/mathscinet-getitem?mr=1835969
http://www.ams.org/mathscinet-getitem?mr=1325041
http://www.ams.org/mathscinet-getitem?mr=1410113
http://www.ams.org/mathscinet-getitem?mr=1742573
http://www.ams.org/mathscinet-getitem?mr=1328091
http://www.ams.org/mathscinet-getitem?mr=1625069
http://www.ams.org/mathscinet-getitem?mr=1792776
http://www.ams.org/mathscinet-getitem?mr=1385870
http://www.ams.org/mathscinet-getitem?mr=1764845
http://www.ams.org/mathscinet-getitem?mr=1908527
http://www.ams.org/mathscinet-getitem?mr=1969395


2036 D. GAMARNIK AND D. KATZ

[29] GAMARNIK, D. (2007). Computing stationary probability distribution and large deviations
rates for constrained homogeneous random walks. The undecidability result. Math. Oper.
Res. 27 272–293. MR2324425

[30] GAMARNIK, D. and HASENBEIN, J. J. (2005). Instability in stochastic and fluid queueing
networks. Ann. Appl. Probab. 15 1652–1690. MR2152240

[31] GOEL, A. (1999). Stability of networks and protocols in the adversarial queueing model for
packet routing. In Proc. 10th ACM–SIAM Symposium on Discrete Algorithms 911–912.
SIAM, Philadelphia, PA. MR1837200

[32] HOOPER, P. K. (1966). The undecidability of the Turing machine immortality problem. J. Sym-
bolic Logic 31 219–234. MR0199111

[33] HOPCROFT, J. E. and ULLMAN, J. D. (1969). Formal Languages and Their Relation to Au-
tomata. Addison-Wesley, Reading, MA. MR0237243

[34] KUMAR, S. and KUMAR, P. R. (1994). Performance bounds for queueing networks and
scheduling policies. IEEE Trans. Automat. Control 39 1600–1611. MR1287267

[35] KUMAR, S. and KUMAR, P. R. (2001). Queueing network models in the design and analysis
of semiconductor wafer fabs. IEEE Trans. Robot. Automat. 17 548–561.

[36] KUMAR, P. R. and SEIDMAN, T. I. (1990). Dynamic instabilities and stabilization methods in
distributed real-time scheduling of manufacturing systems. IEEE Trans. Automat. Control
35 289–298. MR1044023

[37] LU, S. H. and KUMAR, P. R. (1991). Distributed scheduling based on due dates and buffer
priorities. IEEE Trans. Automat. Control 36 1406–1416.

[38] LOTKER, Z., PATT-SHAMIR, B. and ROSÉN, A. (2004). New stability results for adversarial
queuing. SIAM J. Comput. 33 286–303 (electronic). MR2048442

[39] MATIYASEVICH, Y. (1993). Hilbert’s Tenth Problem. Nauka, Moscow.

[40] MEYN, S. P. (1995). Transience of multiclass queueing networks via fluid limit models. Ann.
Appl. Probab. 5 946–957. MR1384361

[41] MEYN, S. P. and TWEEDIE, R. L. (1993). Markov Chains and Stochastic Stability. Springer,
London. MR1287609

[42] MORRISON, J. R. and KUMAR, P. R. (1999). New linear program performance bounds for
queueing networks. J. Optim. Theory Appl. 100 575–597. MR1684537

[43] PUKHALSKI, A. A. and RYBKO, A. N. (2000). Nonergodicity of queueing networks when
their fluid models are unstable. Problemy Peredachi Informatsii 36 26–46. MR1746007

[44] ROSEN, A. (2002). A note on models for non-probabilistic analysis of packet switching net-
works. Inform. Process. Lett. 84 237–240. MR1931726

[45] RYBKO, A. N. and STOLYAR, A. L. (1992). On the ergodicity of random processes that de-
scribe the functioning of open queueing networks. Problemy Peredachi Informatsii 28
3–26. MR1189331

[46] SEIDMAN, T. I. (1994). “First come, first served” can be unstable! IEEE Trans. Automat. Con-
trol 39 2166–2171. MR1295752

[47] SIPSER, M. (1997). Introduction to the Theory of Computability. PWS Publishing Company,
Boston.

[48] STOLYAR, A. L. (1995). On the stability of multiclass queueing networks: A relaxed suffi-
cient condition via limiting fluid processes. Markov Process. Related Fields 1 491–512.
MR1403094

http://www.ams.org/mathscinet-getitem?mr=2324425
http://www.ams.org/mathscinet-getitem?mr=2152240
http://www.ams.org/mathscinet-getitem?mr=1837200
http://www.ams.org/mathscinet-getitem?mr=0199111
http://www.ams.org/mathscinet-getitem?mr=0237243
http://www.ams.org/mathscinet-getitem?mr=1287267
http://www.ams.org/mathscinet-getitem?mr=1044023
http://www.ams.org/mathscinet-getitem?mr=2048442
http://www.ams.org/mathscinet-getitem?mr=1384361
http://www.ams.org/mathscinet-getitem?mr=1287609
http://www.ams.org/mathscinet-getitem?mr=1684537
http://www.ams.org/mathscinet-getitem?mr=1746007
http://www.ams.org/mathscinet-getitem?mr=1931726
http://www.ams.org/mathscinet-getitem?mr=1189331
http://www.ams.org/mathscinet-getitem?mr=1295752
http://www.ams.org/mathscinet-getitem?mr=1403094


DECIDING STABILITY 2037

[49] TSAPARAS, P. (1997). Stability in adversarial queueing theory. M.Sc. thesis, Univ. Toronto.

OPERATIONS RESEARCH CENTER AND

SLOAN SCHOOL OF MANAGEMENT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139
USA
E-MAIL: gamarnik@mit.edu

IBM T.J. WATSON RESEARCH CENTER

PO BOX 218
YORKTOWN HEIGHTS, NEW YORK 10598
USA
E-MAIL: dimdim@mit.edu

mailto:gamarnik@mit.edu
mailto:dimdim@mit.edu

	Introduction
	Model description and the main result
	Deterministic multiclass queueing networks and a static buffer priority scheduling policy
	The main result

	Counter machine, the halting problem and undecidability
	Counter machine and the halting problem
	Simplified counter machine (SCM), stability and decidability

	Description of the queueing network corresponding to an SCM
	The description of the subnetwork SNi, i=1,2
	The description of the main network MN

	Proof of Theorem 1
	Proof of the induction step of Theorem 4
	Dynamics in subnetwork SNi
	Dynamics in MN

	Load factors

	Conclusion
	References
	Author's Addresses

