Statistical Science
2004, Vol. 19, No. 4, 624-635

DOI 10.1214/088342304000000567
© Institute of Mathematical Statistics, 2004

Spatial
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1. INTRODUCTION

Spatial statistics arises when the data are points in
some Euclidean space, usudRy or R3, or some sur-
face, usually the unit circle or the unit sphere (which
we denote by, and 23, resp.). For example, we
might have a satellite image of an Arctic ice floe and a
data point consists of the locatiofi of a marker pre-
viously placed on the floe. Since the ice floe is on the
surface of the Earth, in principk € Q3. More conven-
tionally, one notes that the ice floe is unlikely to travel (1.1)
away from the Arctic. Using a “flat Earth” approxima-

tion to map the Arctic into the plane, we can think of | etting £(x; 8) denote the density oK, it can be

X € R2,
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that the distribution oK depends only on its distance fig, introduce sym-
metries to spatial models which, if properly used, greatly simplify statistical
calculations. These symmetries can be expressed in a more general setting by
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Euclidean parameter spaéesuch as the sphere, techniques of elementary
differential geometry can be used to minimize the distortions caused by using
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Key words and phrases:Nonparametric statistics, directional statistics,
spherical regression, image registration.

and Embleton, 1987).

We might wish to assume that

the distribution ofX depends only
on its distance fromp.

shown that this condition implies

This example illustrates one important class of ap-
plications of spatial statistics: the data consist of the (1.2) f(Cx; Chp) = f(X; 6p)
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measured locations of points. Especially in the earth
sciences, the points are on the surface of the Earth
and, hence, spherical statistics are important. However,
spherical and, more generally, spatial statistics have
arisen in a plethora of contexts (see, e.qg., Fisher, Lewis

Suppose the “true” location ok € R? is 6p € R?.
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Equation (1.2) is also true if sin(zB,/180) sin(ra/180)]7. We refer to such @ as
1 0 acoordinate system
C=R= [0 _1} Unfortunately, it is the bane of map makers that there

is no map® such that the distances @y correspond
or, more generally, any matri& of the formR(p)R. to distances of2. Thus if condition (1.1) holds of3,

A second way to understand the condition (1.2) is it will be destroyed by the mag. Our calculations will
to think of C as a change of basis matrix. Matrices pe complicated by a plethora of terms whose sole math-
of the formR(p) [resp.R(p)R] are exactly those for  ematical purpose is to undo the distortions introduced
which the rows form an orthonormal basis [with the by the artifical mapb.
same (resp. opposite) orientation as the original basis]. \athematicians long ago introduced constructions
In this interpretation the condition (1.2) is equivalentto jp, elementary differential geometry to solve this prob-

the distribution ofX does not depend on lem. As we later see, if these constructions are used,

much beautiful and simple structure in the distribution
theory for the estimators in spatial statistics becomes
manifest. The focus of this paper is not to summarize
Thus spatial statistics is often very different from results in spatial statistics that can be found elsewhere

conventional multivariate statistics. For example, if the (and are cited below), but rather to give a heuristic un-
components oK were to be the height (in inches) and derstanding of the use of the mathematical tools from
weight (in pounds) of an individual, condition (1.3) differential geometry and group theory. Traditionally
would be very unnatural. In particular, it would change the tools of differential geometry are explained at a
meaning if centimeters and kilograms were used in- substantially higher level of detail and abstraction, but
stead. we take the attitude that, at the level we need them,
The matrices of the fornR(p) form a group, de-  they are simple generalizations of the constructions of
noted bySQ(2), in the sense of abstract algebra. Sim- multivariable calculus. The goal of this paper is that
ilarly, the matrices of the fornR(p)R%, 8 =0, 1, form the reader will find the citations more natural and less
a group, conventionally written a8(2). When condi-  mysterious.
tion (1.2) holds, we are said to havestatistical group In this paper, Euclidearp-dimensional space is
model Spatial statistical models are often statistical written as R” and the unit sphere irR?” written
group models and when this occurs, we see that theas 2,. Thus Q is the circle andQ3 is the sphere,
usual asymptotic calculations are usually greatly sim- which can be used to represent the Earth on which
plified. we live. Elements ofR?” and 2, are represented as
Suppose now thaX anddy lie in the sphere2z and p-dimensional vectors. In the mathematical literature
that condition (1.1) holds. An example of such a distri- €2, is usually written ass? 1.

(2.3)  which orthonormal basis is used to write it
as a two-dimensional vector.

bution is theFisher—-von Mises—Langevidistribution In general dimensions, @ x p matrix C satis-
on Q3 whose density is fies (1.2) exactly whe@’C =1, wherel , isap x p
(1.4) F(X: 00) = c () expXT8p), identity matrix. Such matrices form a group denoted

by O(p). If we add the condition dé€) = 1, we
wherex is aconcentration parametendc(x) is a nor- get the groupSQ(p). GroupsSQ2) and SQ3) rep-
malizing constant. The mode of (1.4)4s For largex, resent the rotations iR? or R3, respectively, whereas
X is concentrated close # and its distribution ap-  0(2) and O(3) represent the rotations and reflections.
proaches a (singular) multivariate normal distribution  The S-Plus code used in this paper is posted on the
with covariance matrix (I3 — GOQOT ). websitewww.stat.virginia.edu

Since XTX =616y = 1, X and 6y have only two
independent components. For the purpose of doing 2. RANK SCORE STATISTICS ON EUCLIDEAN
the usual asymptotic calculations, we are tempted to SPACES AND SPHERES
rewrite them as two-dimensional vectors. Thus we
are finding a mapb : R? — Q3 and doing our calcu-
lus in R2. For example, if we calculate in latitude
and longitudeg, we are implicitly using the map (2.1) W(9)=ZR(IX1' —0)S(X; —6),
®(a, B) = [cOmwa/180) coqnB/180) cogma/180) - ;

For X1, ..., X, € R, the Wilcoxon rank scoresta-
tistic is defined by
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whereR(|X; —6|) isthe rank off X; — 6| among| X1 — ProoOFE Clearly E[S] = 0 and CoyS] is a multi-
6l,...,]1X, — 6| and S(X — 0) is the sign ofX — 4. ple of1,,. Now TrCo[S] = TrE[SST ] = E[TrSST | =
If the X; are i.i.d. with a densityf (x) which depends E[SIS]=1. O

only on|x — 6p| for somedg € R1, then: -
Additional results onwW (6p) as well as other rank

S(X1—00),...,S(X, —bp) are i.i.d. with score statistics are given in Neeman (1995), Neeman

(2.2)  PrS(X; —60) =1) and Chang (2091) and Hossjer and Crpux (1995).
Mottonen and Oja (1995) developed a Wilcoxon sta-

=Pr(S(X; —6p) =—1) =05. tistic for Euclidean space models which satisfy (1.2)

for the group{+l}.

All permutations of . )
For spherical data, we use the following lemma,

(2.3) R(1X1—60)), ..., R(IX, — 6ol) a formal proof of which can be found, for example, in
are equally likely Watson (1983).
R(X1—00]. ... R(X, — 6o]) .LEMMA 23 . Suppose, 6g € 52,7 and the distrib-
_ ution of X satisfieq1.1).Letr = X" 6p and
(2.4) are independent of N
— 1o
S(X1—60), ..., S(X, — 06o). (2.7) S(X; 60) = Neprch

Properties (2.2)—(2.4) are sufficient to derive the distri-
bution of W (6g); see, for example, Hettmansperger and is uniformly distributed onszp,l(eoL) — (VeRP|
McKean (1998). Ty — 1 vT g0 — 0
To see how to generalize the Wilcoxon (or more viv="1v"0o=0}.
generally rank score statistics) to arbitrary Euclidean Notice thateoL = {x | xT6p = 0} defines a(p — 1)-
spaces, note tha®; = {x € R | x| = 1} = {£1}. dimensional hyperplane d”, ,_1(6y) is the unit
ForX, 6 € R? define sphere in that hyperplane aXd- 16y is the projection
I

(25) SX—6)=(X—6)/IX 6] €2, of Xontof . |

Some insight into the geometric reasonableness of
where X — 0] = V(X —6)T (X —6). Under the as- Lemma 2.3 can be obtained by considering the Earth,
sumption thaiXy, ..., X, are i.i.d. with a distribution  represented a®3. First of all, the spherical distance

Then: and S(X, 6g) are independent and(X, 6p)

which satisfies (1.1), (2.2) becomes betweenX andég is p = arccosr). If we are located
S(X1—60), ..., S(X, — o) at 8o we can specify a poink € Q3 by giving its dis-
(2.6) N ) o tance and direction froréy. By custom, directions are
are i.i.d. uniformly distributed of2,. given in terms of North and East, but this description
Under the same assumptions, if we Rt X; — 8]|) does not work whe#y is the North Pole (and all direc-
be the rank of [X; — #|| among |X1 — 8],..., tions point South) or whe#y is the South Pole (and all

X, — 6|, then (2.3) and (2.4) hold with only the most directions point North). If we were to stand @t and
minor change of notation. Under this reinterpretation, Point in the direction ofX, we would be specifying a
the Wilcoxon statistic (2.1)V (6g) € R?, and the prop-  unit length vectow which is perpendicular t6o, that
erties of its null distribution can be easily derived. For is, a vecton € Q,_1(63"), andS(X; 6p) is exactly the
example, we have the following theorem whose proof unit length vector in the direction of from 6. Indeed

follows readily from Lemma 2.2:
y X = V1 —12S(X; 60) + 1o
THEOREM 2.1. SupposeXi,...,X, € R? are (2.8)

i.i.d. with a distribution which satisfied.1). Then = sin(p)S(X; 6p) 4+ cogp)bo.
E[W(6o)] = O, By assumption (1.1), the distribution &f depends
n(n+1)(2n + 1)| only on p and all directions are equally likely. This is

» what Lemma 2.3 says.

6p The correct definition for the spherical Wilcoxon is
LEMMA 2.2. SupposeS is uniformly distributed  now reasonably clear. GiveXy, ..., X, € ,, we use

on,. ThenE[S] =0andCoJS] = p~ 1 - S(X;; 6p) as the “sign” ofX; from 6. It is tempting to

CovfW (bo)] =
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TABLE 1
Sample spherical Wilcoxon calculations

X; S(X;;60) T; R;

0.3993 08968 —-0.1908 03614 03891 08474 09434 13
0.2506 08197 -—-0.5150 —0.9356 01420 -0.3231 09988 1
0.1906 07646 -—-0.6157 —0.6209 -0.2337 —0.7482 09865 6
0.1869 08792 -0.4384 —-0.7536 05208 04012 09900 3
0.0646 05260 —0.8480 —0.3941 -0.3727 -0.8401 08712 15
—0.3406 05451 -0.7660 —0.8076 —-0.0661 —0.5860 Q7257 16
0.8794 04101 -0.2419 09551 -0.2460 01655 07151 17
0.6012 05413 -0.5878 08090 -0.4920 -0.3215 09125 14
0.5091 06287 —-0.5878 07729 -0.5118 -0.3751 09563 11

05624 07199 -0.4067 09500 -0.1971 02420 09558 12
0.4636 06873 —0.5592 08049 -0.4944 -0.3280 09762 9
0.3971 07164 -0.5736 06629 —-0.5520 -0.5058 09875 5
0.4238 08318 -0.3584 06981 01729 06949 09817 8
0.4147 08140 -0.4067 08105 00627 05823 09886 4
0.3676 Q07538 —-0.5446 07071 —-0.5388 —-0.4580 09947 2
0.1355 08554 —-0.5000 —0.9468 03190 -0.0416 09862 7
0.1144 07223 -0.6820 —-0.6314 -0.2260 -0.7418 09627 10

rank the spherical distances arcooﬁeo). However, if Table 1 also gives the values of the si§(X;; 6p),
o =m in (2.8),X = —0g for any choice ofS(X; o). It T, = Xl.Teo and the corresponding rankg;. No-
follows that if X; is close to—6p and we assign a high  tice we rank arcca$7;|), not 7;. Summing,Wgs =
rank to such arX;, the corresponding Wilcoxon will > i RiS(X;;60) = (342676 —27.0342 —23.7008.
be unstable with small changesXa. For this reason, Using Theorem 2.43819 W12 = 2.764 should be

: 12
Neeman (1995) and Neeman and Chang (2001) define¢ompared to &2 distribution, and we fail to reject the
the spherical Wilcoxon fof € 2, as null hypothesis ai = 0.05.

The set ofg which are not rejected can be used to
produce a 95% confidence region. The resulting region,
together with the data, is shown in Figure 1.
and we note thatVs(6) € 6. In essence they ranked W refer the reader to Neeman (1995) and Neeman
a pointX; by its distance to the closer 6§ and—6o.  and Chang (2001) for further discussion of rank score
We now have the following theorem: statistics for spherical data. The example is discussed

THEOREM 2.4. SupposeXi,...,X, € QP are more exhaustively in Neeman and Chang (2001).

i.i.d. with a distribution which satisfied.1). Then

(2.9) Ws(®) =) R(arccos|X]0]))S(X;; )

E[Ws(60)] =0,

nn+1@n+1
CoMWs(60)] = 2 ;(p)(_ 1)+ 11, — 0061

For example, Fisher, Lewis and Embleton (1987)
gave 17 measurements of magnetic remanence fron
specimens collected from the Tumblagooda Sandstone
in Western Australia. The data, converted into Euclid-
ean coordinates, are given in Table 1. We tegyit
(0.2962 0.8138 —0.5000, which is the Euclidean co-
ordinates for a declination of 70and an inclination

of —30° (6p has been arbitrarily chosen for illustrative
purposes only). Fic. 1. The95%confidence region for modal direction
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3. M ESTIMATION IN STATISTICAL MANIFOLDS matrices are defined by

From the viewpoint of a directional data analyst, A6o)i; = Covy [i
when spheres have been conquered it is natural to look Y ML
at other surfaces (ananifold§ in R?. Downs (1972), (3.2)

Rancourt, Rivest and Asselin (2000) and Jupp and
Mardia (1989) gave some examples of this type of data.

The precise mathematical definition of a manifold is
somewhat abstruse. Somewhat looselyg-dimensio-
nal manifold.M is a subset oR”, for somep, which (3.3)
can be written as a union of open s&fs such that .i_
eachU; has a 1-1 bicontinuous maf) : U; — R4 a6/
(i.e., ¢ andq&i‘1 are continuous). For example, we can whered = (91, ..., 07). [There are several forms f&
map any portion of the Earth bicontinuously o8 \yhich are all equivalent wheBg, o (X; 6) has a critical
and this implies tha@s is a two-dimensional manifold  point aty = 6. Equation (3.3) is a slight generalization
in Rz. Notice, however, that any map of the entire Earth of the third form given by Hettmansperger and McK-

must cut the Earth somewhere (such as at the Northean (1998), equation (6.1.2). Under the same condition,
and South Poles and the International Date Line for the B is symmetric.]

p(X;0)
0=>0p

p(x;9>],

. W 6=6g

0
B(6o);; = Eeo[@

p(X; 0)
6=06g

log(f (X; 9))},

6=6p

most common projection), and hence at least Wy Our reformulationA and B for manifolds is simi-
are needed. lar to previous reformulations of Fisher information.

Lemma 2.3 is the basis for the definition of the spher- These reformulations require the notion ofamgent
ical Wilcoxon and other rank score statistics Qp. vectorto the manifold.

For reasons given in Chang and Tsai (2003), | believe Equation (2.8) can be used to understand how tan-
(but have not proven) that Lemma 2.3 cannot be gen-gent vectors can be defined for general manifolds (at
eralized to more than a very small collection of man- least those embedded in some Euclidean space). Sup-
ifolds, principally Euclidean spaces and spheres. Forpose we fixv = S(X; 6p) and lets = p vary in (2.8).
other manifolds, fully nonparametric inference may We geta curve
not be possible ands estimation offers a useful al- (3.4)
ternative.

S0 SUppose, ..., X, in the sample space; are ~ Which satisfiesy (s) € @, € RS for all s, y(0) = 6o
i.i.d. with a density f(x; 8) for someé in the man-  andy’(0) =v. Here,y’(0) is the derivative ofy as a

y (s) = sin(s)v + cogs)0o

ifold ©. Given an objective functiopo(x; 6), the M mapRl_—> R3. So for a manifoldd and a point € ©,
estimated minimizes the objective function we define theangent spacéo © at g to be{y’(0)},

wherey (s) is a curve in® C R” [so thaty (s) € © for
(3.1) p(0) = po(Xi; 6). all s] with y (0) = 6.

Here is a simple lemma which establishes that for
spheres?,, the new definition (in terms of derivatives
of curves) of a tangent vector @ € 2, coincides with
the old definition (a vectov such thawv” 6y = 0).

For example, supposk = ® = Q,,. Then we could

use the sum of the spherical (great circle) distances
po(x; ) = arccogx’ 6). The resulting§ is called the
spherical mediatand was introduced by Fisher (1985). LEMMA 3.1. Let y(s) be a curve inQ,. Then
Alternatively, we could use the sum of the linear y’(0)"y(0)=0. ConverselyifveG&,thenv:y/(O)
(through the Earth) distances(x;0) = ||x — 0| = for some curvey (s) in Q, with y (0) = 6.
/2 —2xT9, which yields the so-callechormalized
spatial medianAnother common choice is thie; es-
timator, which usego(x; ) = ||x — 6]|2. In this case,
6 = X/||X|| is thespherical mean

For M estimators whei® = R” and under regular-
ity conditions, Brown (1985) showed thaf (6 — 6o)
is asymptotically multivariate normal with me&@rand To reformulate Fisher information suppose, tem-
covariance matrixB(6p) 1A (60)B(6p) "1, where the porarily, ® = R”. The Fisher information matrik(6p)

PROOF  Sincey(s) € 2, foralls, L=y (s)Ty(s).
Therefore, 0= j—sy(s)Ty(s) =y')Ty) +ye)T -
Y'(s) = 2y'(s)T ¥ (s), where the last equality follows
since bothy (s) andy’(s) are column vectors. The con-
verse assertion is established by (3.4)]
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is the matrix whoséi, j)th entry is and
] d
0% = Eu| 07| 109/ (:0) oWy = Eio| 35 p(Xo72(6)
30" [9—g, ds |s=0
(3.5) (3.9) p
C— lo X;0))|. | X, .
357, 109 00| S| tog(rox.a0)|
Notice that ifyq, y» are curves ifR? with y,(0) = The advantages of using (3.7)—(3.9) instead of their
y2(0) = 6, then matrix formulations is that they allow us to compute
' onT I (60)(+A(0 them without choosing any part|cu_lar coo_rdlnate sys-
(y1(0)) (do)()/z( ) tem. We then apply these calculations using a conve-
O o X, y1(s nient coordinate system, one that generally depends
(3.6) eo[ds s=0 9f X, yas)) on 6p. This is our approach for avoiding the map

| maker’s dilemna discussed in the Introduction. We il-
0 og(/f (X, 7’2(0))}’ lustrate this using the sphegg, in the following theo-
rem.

dt

where the left-hand side of (3.6) is matrix multiplica-

tion. Equation (3.6) follows from (3.5) and the chain  THEOREM 3.2. SupposeXy,...,X, € Q, are

rule i.i.d. with a densityf (x; 6p), for 6g € 25, which satifies

Py log( £ (x; ) = g(x”'#). Supposd is the M estimator

gy =>y_ 307 lo—o g(@)v;, which minimizes an objective function of the fd8r1),
0 i=1 - wherepg(x; 0) = po(x 6). Letyr (1) = —pp(1). Then

1=

dt

=

whereg :R? — RY andy () is any curve inR? with
8 )/( ) Y E[g/(t)z(l _ tz)]vTW

y(0) =6p andy’(0) = (vy, ..., Up). (V, W) (g9 =
Notice that the right-hand side of (3.6) makes sense p—1
for any manifold. Thus we can define, for genegal E[Y ()21 -13)]
and 6p € ©, Fisher information aty to be an inner (V, W) A6p) = p—1 v
product, defined on the tangent spac®tat 6y by q
an
d E / 1_ 2
(V, W) 1 (gp) = Eeo[d— log(f (X, y1(s))) (V, W) B(gp) = — Wng@ad=1 r,,
§1s=0 p— 1
(3.7)
7 log(f (X, Vz(t)))} Let ®:05 — 2, be defined byd(sv) = sin(s)v +
t=0

f n © With 74(0) (©) — 60 and cos(s)fo, wherev € 65~ has unit lengthLeth € 65 be
or any curves, y2 in ® with y1(0) = y2(0) =g an - =~ A e - -
¥1(0) =V, y5(0) = w. The notation on the left-hand gﬁ{:;erﬁﬁgé?éte%;&:?ﬁ his asymptotically sin
side of (3.7) is designed to emphasize that we are think-
ing of Fisher information asRiemannian metrion ®, (p—DE[W @21 —1)]
that is, a family of inner products, one inner product on p( TE2[ (g () (1—12)]
each tangent space 6x.
This approach to Fisher information has long been PROOF Lety(s) be a curve ir2,, with y(0) = 6o
known. It was used, for example, by Reeds (1975) to andy’(0) =v. Then
explain the nonexistence of variance stabilizing trans- d
formations for multivariate parameters. —
Similarly we redefinéd and—B as Riemannian met- ds
rics (the conventional definition & makesB negative
definite on each tangent space) using T ds

(, —9090T)>.

_ log(f(X; ¥ (5))

s=0

gXTy(s)
0

=g X"y 0)XTy'(0)
=g/ (V" (X — (XT60)b0),

d
(V, W) 4(8) = COVg, [E

p (X, y1(s))
(3.8) =0

N

Cdt

l:Op(X’ VZ(I))] where we have used above tivat 6. Therefore, us-
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ing Lemma 2.3 and then Lemma 2.2, X — nis N(0,02/n). Itis also consistent with the ap-
proach used in nonlinear regression.
(V. W1 60) Finally, although no distance preserving coordinate

- L ) — XT0p)6 system is possible everywhere €1),, the map® is,
=V E[(é’ (" 1—1 ))(ﬁ> to first order, nondistorting in the region of inter-
est, namely the close tofy. The precise required

_ <X — (XTQO)QO)T}W conditions on® are given by (3.10). The mag is

J1—12 essentially a “polar projection” centered &. This
| 0007 is our solution to the map maker’s dilemma: To map
= E[g (%A —*) T pioow Australia, a polar projection centered at the North Pole
-1 would be highly deceptive, whereas centering the pro-
Elg'()?(1—12)] jection at Ayer’s Rock would be excellent. The coor-
p—1 Vo w. dinate system to be used depends on the area to be
. o mapped.
The calculations oA andB follow similarly. Now The map® approximates2,, close tof by its tan-
d gent spac@OL. This is quite natural: Calculus teaches
(3.10)  @(0) =6, 75 OCP(Sv):V us to linearly approximate functions using tangent
= lines.
forallv e 6. Write § = ®(h) for h € 65, £®(x; h) = Kirkwood, Royer, Chang and Gordon (1999) gave an
f(x; ®(h)) and pg)(x, h) = po(x; ®(h)). Then for example (from paleomagnetism) in which it is shown,
V,We goi, by simulation, that the curvature effects inherent in
nonlinear regression are lower when the coordinate
(V, W) g (0 system® is used or23 instead of latitude and longi-
d d tude. Chang (1993) gave an example from plate tecton-
= COVg)[d— PP (X, SV)E p®(X, tW)] ics in which® = SQ(3), the group of rotations aR®
S1s=0 1=0 [note that the position of a rigid body moving &2y
— Covao[i (X, cp(sv))i (X, d)(tw))] relative to its past position at fixed time is given by an
ds |s— dtli=o0 element ofSQ(3)]. Itis shown there that if a coordinate
= (V, W) A(gp)» system¥ on SQ(3) which depends ofp (in a similar

way to dependence df) is used, vastly simpler formu-

where the last equality follows from (3.10). The re- |55 result than when a popular fixed coordinate system
mainder of the theorem follows by applying Brown's  for Su3) is used.

(1985) results tof ® gndpg’ as adensity and objective  The constant(p — 1)"E[y(1)2(1 — 12)], and
function on the Euclidean spagg. 0O henceA, can be estimated from a sample by —
-1 ~\201 _ 72 ~ 2 Noti
Several points about Theorem 3.2 should be made) X ¥ (7)*(1 —77?), where7; = XT6. Notice that
First h measures the deviation of the estimaie this estimate does not require choice of a particular
from 6. Letting v = h/[[| and recalling the dis- form for f. The following proposition from Chang

cussion of Equation (3.4), the curve(s) = ®(sv) (1986) allows for “nonparametric” estimation Bf
describes a great circle connectifg to y(||h||) = PROPOSITION3.3. We have

o (h) = 0 Thus||h|| is the spherical distance 6ffrom , )

6o andh/|[h|| represents the direction of the deviation E[Y(1)g () (1 —17)]

of 9' from 6. In Euclidean space, we represent the de- =(p - DE[V®)t] — E[¥' )1 —12)].
viation of 6 from 6p by the Euclidean vectat — 6p; for . _ o
manifolds, we need to use a tangent ve&catt@o. Recall that theisymptAotlc relative efficiendARE)

Second, instead of focusing on the distributiopf ~ Of two estimatorg; ando; is
we focus on the distribution of théeviation(as mea-  (3.11) ARE(@,6,) = lim Cov(@,)/ Cow(@r)
sured byh) of 6 from 6p. This is sufficient for statistical n—00
inference. In the first problem of elementary statistics, whenever the right-hand side of (3.11) makes sense.
it is analogous to constructing confidence intervals by For example, under the assumptions of Theorem 3.2,
using an estimat& and noting that the distribution of if A; andB; are theA andB matrices ofé;, then (in
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any coordinate system &t,) A1, Az, B; and 1B, are and
all multiples of each other. It follows that Cap) is a 4E[Y (s)g(s)s] 7
— 22 v,

multiple of Cow®1) and the following corollary holds. (V, W) Bo) = »

where we writelog( f (X, 6p)) = g(s), po(X,60) =
po(s) and ¥ (s) = py(s) with s = IX — 0o||2. There-
fore, /n(8 — #p) is asymptotically distributed
N,(0,kl ), where

COROLLARY 3.4. SupposeXy,...,X, € , are
i.i.d. and the assumptions of Theore3r2 hold. Let
61 andd, be M estimators with)r functionsy1 andr,
respectivelyThen
E2[y1(0g' (1) (L = 12)]

E[Y1(1)?(1—12)]
ElY(0*(A-17)]

E2[Ya(n)g' (1 —12)]

ARE(1, 02) = _ PE[Y(9)3s]
T AE[Y(s)g (5)s]

ProPOSITION3.6. We have

For example, the maximum likelihood estimator E[y ()8 (s)s]=—E[Y (s)s + (p/DV (5)].
for the Fisher-von Mises—-Langevin distribution (1.4)  COROLLARY 3.7. SupposeXy, ..., X, € R? are
is the spherical meany{(r) = ¢]. Comparing it to  i.id. and the assumptions of Theoredtb hold. Let
the spherical mediany{(r) = 1/¥/1—1¢?] and us-  §; andd, be M estimators withy functionsy, and,
ing (2.2.2) from Watson (1983), we get respectivelyThen
ARE(spherical mediarspherical mean ~  EAYi(s)g'(s)s]  E[va(s)s]
ARE(61, 62) = .
_ EAVI-17 0002 = 1)) E2yato)g ©)s]
- E[1-1?] The spatial median introduced by Brown (1983),
1 2 minimizes)_; || X; — 0]|. He showed that if th&; are
(3.12) — [./_1 (1 — t2)(p—2)/2dt:| distributedN, (0, ol ,), then
1 , _ A%((p+1)/2)
. kteq _ +2y(p=1)/2 3.14) ARE(spatial medianX ) = —————,
([/_16 (1= dt] (544 P pr2(p/2)
1 -1 a result which also follows from Corollary 3.7.
[/ M (1—19)? 3)/2dt]> Notice that the right-hand sides of (3.13) and (3.14)

become identical ifp is replaced byp — 1 in (3.14).
This is hardly surprising since X € 2, has the distri-
bution (1.4), then a8 — oo, X becomes increasingly
close to6p and hence the curvature 6f, becomes

When p = 3, (3.12) is due to Fisher (1985) and, in
this case, (3.12) is a decreasing functioncadind ap-
proachesr/4 ask — oo. For generap,

KILmOOARE(spherical mediarspherical mean irrelevant. We have also noted that the distribution of
X approaches a singular normal distribution, (9o,
(3.13) _ 2F2(p/2) ‘ l(| _ 9090 ).
(p—DI2((p—-1)/2 Furthermore (3.14) increases with Thus, for ex-
These results on the asymptotic distributionbfesti- ~ ample, if p = 3, the use of the spatial median protects

mators on2, were derived by Ko and Chang (1993). against long tailed distributions at the modest cost (in
For Euclldean space data we have similar results (seestandard error terms) @87 /8)*/2 — 1= 8% when, in
Chang and Ko, 1995): fact, X would have been optimal.

THEOREM 3.5. SupposeXj,..., X, € R? are
i.i.d. with a density f(x; 6o) which satisfies condi-
tion (1.1). Let 6 be theM estimator which minimizes Suppose we have fixeq € R? and independent ran-
an objective function of the for3.1), wherepo(X, 60) domV; € R?, such that the distribution &f; depends

4. IMAGE REGISTRATION IN EUCLIDEAN SPACE

depends only ofix — 6g]|. Then only on ||V; — yoCou; — bg|l for someCq € SQ(p),
4E[g (5)2s] , bo € R? and positive real number. The numbenqg
(V,W)igp = ———V' W, is interpreted as a scale change. Although the results
p outlined below can be generalized to arbitrary dimen-
AE[Y (s)%s] T sions, for the sake of simplicity, we restrict attention to
(V. W) a0 = -, v the cases of greatest practical intergst 2, 3.
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This model arises in the problem whage registra- For p =2 letw:R! — SQ2) be defined by (h) is
tion. We have two images (usually at different times) the rotation ofs radians around the axis fori € R%.
of the same object. Tha; represent the position of Forp =3, ¥ :R3 — SQ3) is defined by (h) is right-
some landmarks on one image and¥heepresentthe  hand rule rotation ofh| radians around the axig/ | h||
position of the same landmarks on the second image for h € R3. For generap, W is defined using a matrix
We are interested in estimating the best rotatioand exponential map.
translationb to bring the images into alignment. Chang and Ko (1995) rewro@ € SQ(p) in the form
Alternatively, we might have a prototypical shape, C = CoW(h). Notice, in this waySQ(p) is parameter-
say of a kidney. We have an image of a kidney and we ized close ta€Co by a coordinate system which depends
want to find the rotation and translation to bring the im- on Cq. The following theorem was proved in Chang
aged kidney into closest alignment with the prototypi- and Ko (1995).
cal kidney shape. This might be a prelude to automatic
processing of a large number of kidney images.
Chang and Ko (1995) provided a data set that con-
sists of the dlgltl_zed locations of 12 pairs of landmarks for someyp > 0 € R, Co € SQ(p), bo € R”. Assume
on the left and right hands of one of the authors. These log( £ (x: 8)) = g(s) With s — X — 6 |. Write § = b +
data are replicated in Table 2. Because of the opposite g_ =&
orientation of the left and right hands, one of the hands
must first be reflected (in any plane) before finding the
rotation, translation and scale change to best bring the
two hands into alignment. This is essentially a three- ©
dimensional image registration.

Let X be the matrixz =Y, (V; — V)(V; —W)T. R R
The elgenvalues ok are 4.80, 3.31 and 0.56. The () ¥, C, andp are independent
eigenvector that corresponds to the smallest eigenvalue (i) /7 (B — Bo) is N, (0, ), kl ).
is the direction of the least variation in the measured (iii) (a) If p =2, write C = CoW(h) for i € R,
points of the right hand and is presumably perpendic- Thenynh is asymptoticallyV (0, k/ Tr(X)).
ular to the plane of the palm. We reflect tife around (i) (b) If p =3, write C = CO\IJ(h) for h € R3. Let
this plane. This turns the right hand into a left hand and X = Alslél + )»252%‘2 + Agégéf be the spectral de-
produces the new points; shown in Table 2. composition of£. Then/n his asymptotically trivari-

THEOREM4.1. Letuy,...,u, € R? be fixed Let
V1,...,Vnh € R? be independent random vectors such
that the density o¥; is of the formf (v; yoCou; + bo)

Supposey C and B minimize an objective func-
tion of the form}_; po(V;; yC(u; — U) + B), where

00(X,0) = po(s) with s = ||x — 0]|2. Write ¥ (s) =
po(s). Finally, let X = n=1y(u; — t)(u; — ).
Then asymptotically

TABLE 2
Twelve digitized locations on the left and right hands

Left hand u; Right hand V; Flipped right hand V;

517 1130 1618 591 1116 1655 628 1272 1673
740 1236 1750 863 1062 1833 886 1160 1844
856 1259 1787 1009 1060 1864 1016 1090 1867
9.75 1362 1701 1089 1095 1790 1076 1040 1784
1146 1455 1296 1297 1013 1388 1319 1104 1398
710 1312 1256 879 1121 1317 900 1211 1327
885 1382 1260 1070 1110 1342 1075 1130 1344
6.77 1307 1032 847 1109 1135 886 1274 1154
6.26 1162 1334 728 1252 1404 703 1146 1392
683 1200 1383 805 1242 1456 773 1109 1441
7.94 1229 1384 907 1239 1486 864 1060 1466
8.68 1271 1367 1015 1217 1444 973 1040 1424

CFrXC-"IOTMOO >

NOTE. A, top of little finger; B, top of ring finger; C, top of middle finger; D, top

of forefinger; E, top of thumb; F, gap between thumb and forefinger; G, center of
palm; H, base of palm; I, little finger knuckle; J, ring finger knuckle; K, middle finger
knuckle; L, forefinger knuckle.
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ate normal with meaf and covariance matrik[ (A2 +
A3) sl + (ha+ a0 THEE] 4+ (A + 22) TEsED .
(iv) /n(¥ —y0)is N(O,k/Tr(X)), where

_ pE[Y(s)%s]
AE?[Y(5)g/(5)s]

_ PE[Y (s)%s]

T AE2[Y (s)s + (p/2Y ()]

(4.1)
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ymptotic confidence region f&€ has the form
[ewm|Foz+ o076

(4.2) + (3 + 2 (h £)°

+ G+ 320 50)7] < x|

Wherexéa is an appropriate critical point of a2 dis-
tribution with 3 degrees of freedom. Recall thath) is

Examining Theorem 4.1, we see that the asymptotic the rotation of|h|| radians around the axig || h||. Thus

covariance of(;?,ﬁ,ﬁ) is determined up to a con-
stantk by the geometry of the;; (as summarized by
the matrixX). Only the constant depends on the den-
sity or on the objective function, and this constarns
the same as in Theorem 3.5.

the region (4.2) expresses the possiBlén the form
of a small rotation¥ (h) followed by the best fit rota-
tion C.

The eigenvalues oE =n~1Y;(u; —U)(u; — )7
areiq = 5.004, 1, = 3.255 andi3 = 0.105. The vari-

Another consequence of Theorem 4.1 is that the as-2PI€Sé1 andé; are in the directions of the length and

ymptotic relative efficiencies of Corollary 3.7 also ap-
ply to the image registration problems. In particular,
to protect against outliers (perhaps misidentified land-
marks), we could use thie; estimator ofCq, bg andyo,
which minimizes_; |V; — yCu; — b||, instead of
the more conventiondl, estimator, which minimizes
> IIVi — yCu; — b||2. Whenp = 1, this results in a
penalty (in standard error) of/w/2 — 1 = 25% for
normal errors when thé, estimator is optimal. How-
ever, the penalty decreases wijtland is only 8% when
p=3.

Indeed, lets; ands; be the square residual lengths
for the L, and L, fits, respectively, and lét, andks be
the respective constantsn Theorem 4.1. Using (4.1)
with ¥ (§;) = 1/4/5; and ¢ (5;) = 1, we have for the
hands data; = 0.023 andk, = 0.086. Notice that if
the errors in the/; were normal, Corollary 3.7 would
imply thatk1/ ko> = 37 /8 = 1.18. For the hands data set
k1/ko = 0.26. A quick and dirty estimate (computed by
Taylor linearization) of the standard error in this ratio
is 0.23. It is likely that the data come from a distribu-
tion which is long tailed relative to the normal distrib-
ution.

The L1 and L, estimated values of are 31 =
1.0086 andy» = 0.9925, respectively. Using The-
orem 4.1(iv), we calculate that the standard errors

of these two estimates are 0.0150 and 0.0293, re-

spectively. Thus we cannot reject the null hypothesis
y = 1—that the two hands have the same size.

Notice that ifC = CoW(h), thenCo = CW¥(h)T =
CW(—h). Therefore, using Theorem 4.1(jii)(b), an as-

width of the left hand, ands is in the direction of the
normal to the plane of the left palm. From (4.2), we can
see that the covariance bfis largest in the direction
&1 and smallest in the directiap.

If a rotation of ¢ = ||h|| radians around the axis
& =h/|h| is applied to a poinp; = u; — U, thenp; is
moved a distance of approximatepy- (distance ofp;
to £). Let W; = 7-1CT(V; — B) be the back trans-
formedV; under the estimates, C, B. If we fix ¢ and
vary &, we see that fit of the; to theW; will be more
degraded if the distances of theto & are large than if
they are small. Alternatively, i is chosen so that the
distances of they; to & are small, then, for the same
degradation of the best fip, is less constrained than if
the distances of thp; to & are large. This is why the
covariance ofi is largest in the directiog; (the length
of the hand) and smallest in the directig(the normal
to the palm).

This example was further explored by Chang and Ko
(1995). The emphasis there is to study the influence
of the data on the estimat@S E andy. Their tech-
niques could be used if, for example, the image reg-
istration were unsatisfactory in some aspect (rotation,
translation or scale change) and one wanted to deter-
mine which points should be reinspected.

5. STATISTICAL GROUP MODELS

Recall that if X, 6p € 22, satisfy condition (1.1),
then (1.2) will follow for all C in the groupSQ(p).
If X,600 € R? satisfy condition (1.1), thery(Cx +
b; Coo + b) = f(x; Ho) for all (C, b) with C € SQ(p)
andb € R”. Such(C, b) form the group ofEuclidean
motions
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Usually spatial statistical models exhibit a great deal 2. Spatial statistical models also often have a parame-
of symmetry and such symmetry is expressed using a ter space® which is ag-dimensional manifold in

statistical groupmodel. In a statistical group model, some Euclidean spa@®”. To do statistical compu-
we have a group, a sample spac& and a para- tations it is often necessary to reexprési g coor-
meter space®, together with mapg x X — X and dinates. To avoid distortions caused by the choice of
g x ® - O. The images ofg, X) and (g, 6) under coordinates, it is advisable to choose a coordi-
these maps are usually denotedgoyX andg - 6, and nate system which depends on the true parameter
we assume thgroup actionconditions(gigo) - X = 6o € O.

g1 (g2 - X) and 1- X = X, where g1g» represents
multiplication in g and 1 represents the identity én

A similar condition is placed og - 6. We also assume
Proolg - X € g- Al =PR[X € A] forany A C X. Our
objective function is also assumed to satisfy an invari-
ance conditionpp(g - X, g - 6) = po(X, 0).

Notice that the forms of, A and B in Theorems
3.2 and 3.5 are all of the formv’w for some con-
stantc. Only the constantg depend on the precise Figure 1 was produced by the Generic Mapping
form of the densityf or of the objective functiom. Tools software package written by Paul Wessel and

Chang and Rivest (2001) showed that often the sta-Walter H. F. Smith and available at the URImt.soest.
tistical group model condition places strong restrictions hawaii.edu
on the form ofl, A andB. Heuristically speaking in
terms of mgtrices (these are actually irreduciblg group REFERENCES
representations), A andB often have a block diago-
nal form. The form of the blocks is determined up to 3. Roy. Stafist. Soc. SerdB 2530,

a constant by the ac_tl,on gfon ©. Only the constants BROWN, B. M. (1985). Multi-parameter linearization theorems.
depend on the specific form gfandp. J. Roy. Statist. Soc. Ser48 323-331.

In our examples ofSQ(p) acting on 2, or the CHANG, T. (1986). Spherical regressiohnn. Statist14 907-924.
Euclidean motions acting oR”, there is only one CHANG, T. (1993). Spherical regression and the statistics of
“block.” Chang and Rivest (2001) also gave a nu- tectonic plate reconstructiondnternat. Statist. Rev.61
merical example, arising from cardiography, with two 299-316.

“blocks.” In thi le th tion det . CHANG, T. and Ko, D. (1995). M-estimates of rigid body mo-
0ocks.”In this exampie, the group action determines tion on the sphere and in Euclidean spa&an. Statist.23

the asymptotic distribution of up to four constants, 1823-1847.

two each forA andB. CHANG, T. and RVEST, L.-P. (2001).M-estimation for location
Another “coincidence” we have observed is that the  andregression parameters in group models: A case study using

asymptotic relative efficiencies of Corollary 3.7 also _ Stiefel manifoldsAnn. Statist29 784-814.

. . . P CHANG, T. and T5AI, M.-T. (2003). Asymptotic relative Pitman
apply to the image registration problem. This is also efficiency in group modelsl. Multivariate Anal.85 395-415.

a result of the group action: Chang and Tsai (2003) poyns, T. D. (1972). Orientation statisticsBiometrika 59
have shown that to any location statistical group model  gg5-676.

there is a corresponding regression group model, andrisHeR, N. I. (1985). Spherical medians.Roy. Statist. Soc. Ser. B
that theA andB Riemannian metrics of the regression 47 342-348.

group model can be derived from those of the location F'SHER N. I., LEwis, T. and BMBLETON, B. J. J. (1987)Statis-
group model tical Analysis of Spherical Dat&Cambridge Univ. Press.

HETTMANSPERGER T. P. and MCKEAN, J. W. (1998).Robust
Nonparametric Statistical Method#V/iley, New York.
6. SUMMARY HOssJER O. and QRoux, C. (1995). Generalizing univariate
PR ; ; signed rank statistics for testing and estimating a multivariate
T\;\.IOI ger:jerlal_ principles apply when working with location parameted. Nonparametr. Statis#t 293-308.
Spatial models: JupPp P. E. and MRDIA, K. V. (1989). A unified view of the the-

1. Spatial statistical models are often characterized by ory of directional statistics, 1975-198®ternat. Statist. Rev.

a great deal of symmetry. This symmetry is ex- >/ 20617294

d usi istical del and wh KIRKWOOD, B., ROYER, J.-Y., CHANG, T. and GRDON, R.
pressed using a statistical group moadel and when (1999). Statistical tools for estimating and combining finite

the group S_trUCture is properly U??d, many statisti- rotations and their uncertaintieeophysical J. International
cal calculations are greatly simplified. 137 408-428.

By properly applying these two principles, we are
able to reach statistical insights which are mathe-
matically natural and elegant, and which lead to a
deeper understanding than obtained from simple num-
ber crunching.
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