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Covariate Balance in Simple, Stratified and
Clustered Comparative Studies
Ben B. Hansen and Jake Bowers

Abstract. In randomized experiments, treatment and control groups should
be roughly the same—balanced—in their distributions of pretreatment vari-
ables. But how nearly so? Can descriptive comparisons meaningfully be
paired with significance tests? If so, should there be several such tests, one for
each pretreatment variable, or should there be a single, omnibus test? Could
such a test be engineered to give easily computed p-values that are reliable in
samples of moderate size, or would simulation be needed for reliable calibra-
tion? What new concerns are introduced by random assignment of clusters?
Which tests of balance would be optimal?

To address these questions, Fisher’s randomization inference is applied to
the question of balance. Its application suggests the reversal of published
conclusions about two studies, one clinical and the other a field experiment
in political participation.

Key words and phrases: Cluster, contiguity, community intervention, group
randomization, randomization inference, subclassification.

1. INTRODUCTION

In a controlled, randomized experiment, treatment
and control groups should be roughly the same—
balanced—in their distributions of pretreatment vari-
ables. But how nearly so? Reports of clinical trials are
urged to present tables of treatment and control group
means of x-variables (Campbell et al., 2004), and they
often do. These greatly assist qualitative assessments
of similarity and difference between the groups, but in
themselves they are silent as to whether, given the de-
sign, the discrepancies between the groups are large or
small. Can the descriptive comparisons meaningfully
be paired with significance tests? If so, must there be
several, one for each variable, or can there be a single
omnibus test? Would the omnibus test always require
a simulation experiment, as proposed at some places
in the literature on random assignment by group (Raab
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and Butcher, 2001)? Is there a large-sample test that is
reliable in samples of moderate size, notwithstanding
recent evidence to the contrary about one natural pro-
cedure (Gerber and Green, 2005)? At the level of foun-
dations, some authors note that to assume experimen-
tal subjects to have been sampled from a superpopu-
lation is antithetic to the nonparametric spirit common
to randomized trials, and increasingly even to nonran-
domized studies (Imai et al., 2008). Does testing for
balance require a superpopulation-sampling model, as
these authors also claim, or are there tests that more
narrowly probe data’s conformity to the experimental
ideal? Relatedly, tests based on differences of group
means require precise instructions for combining dif-
ferences across strata or blocks, with the optimal ap-
proach appearing to depend on within- and between-
stratum variation in x—within- and between-variation
in the population, not the sample (Kalton, 1968). Does
not the fine-tuning of these instructions require as-
sumptions about, or estimation of, variability in the su-
perpopulation, introducing sources of uncertainty that
are generally ignored when drawing inferences about
treatment effects (Yudkin and Moher, 2001)? Without
notional superpopulations of x-values, how are alterna-
tives to the null hypothesis to be conceived? What tests
are optimal against these alternatives?

219

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/08-STS254
http://www.imstat.org
mailto:ben.hansen@umich.edu
mailto:jwbowers@uiuc.edu


220 B. B. HANSEN AND J. BOWERS

TABLE 1
Sizes of a subset of the 21 clinics participating in the ASSIST trial of register and recall systems for heart disease patients, along with

baseline measurements of primary and secondary outcome variables

Numbers of coronary heart disease patients

Adequately
assessed

Treated with

Practice # In total aspirin hypotensives lipid-reducers

3 38 6 30 17 6
6 58 19 38 31 16
9 91 23 60 56 22

12 114 46 86 60 35
15 127 58 103 86 30
18 138 68 106 86 57
21 244 93 181 93 63

Despite the great variation in practice sizes, and in practice benchmarks targeted for improvement, a balanced allocation of practices to
treatment conditions was sought. Adapted from Yudkin and Moher (2001), Table II.

The most familiar randomized comparisons of hu-
man subjects, perhaps, are drug and vaccine studies.
Generally these are randomized at the level of indi-
viduals. But interventions upon neighborhoods, class-
rooms, clinics and families are increasingly the objects
of study, and are increasingly studied experimentally;
and even nonexperimental interventions at the group
level may be analyzed using a combination of post-
stratification and analogies with hypothetical experi-
ments. Might it be safe to ignore the group structure
[as outcome analyses of cluster-randomized data of-
ten do (MacLennan et al., 2003; Isaakidis and Ioan-
nidis, 2003), in some conflict with the recommenda-
tions of methodologists (Gail et al., 1996; Murray,
1998; Donner and Klar, 2000)] if interest focuses on
individual-level outcomes, if correlations within group
are low, or if the groups are small? Or, alternatively,
do methods appropriate to individual-level assignment
readily generalize to assignment by group?

1.1 Example: A Clinical Trial with Randomization
at The Clinic Level

In order to study the benefit of up-to-date, best
practices in monitoring and treatment of coronary
heart disease, the ASSIST trial randomized 14 of 21
participating clinics to receive new systems for the
regular review of heart disease patients (Yudkin and
Moher, 2001). A primary outcome was whether mon-
itoring assessments of heart patients met prescribed
standards. One expects random assignment to make
treatment and control clinics comparable in terms of
what fractions of their heart patients were adequately
assessed at baseline, and on baseline values of other

relevant outcome variables. As is evident from Table 1,
however, the clinics varied greatly in size and in pa-
tient characteristics; these differences limit the power
of coin-tossing to smooth over preexisting differences.
Seemingly sizable differences between treatment and
control groups’ proportions of adequately assessed pa-
tients may still compare favorably with differences that
would have obtained in alternate random assignments.
Viewed in isolation, such differences would appear,
misleadingly, to threaten comparability of intervention
groups. A principled means of distinguishing threaten-
ing and nonthreatening cases is needed.

A related need is for metrics with which to appraise
the likely benefit, in terms of balance, of randomizing
within blocks of relative uniformity on baseline mea-
sures.

1.2 Example: A Field Experiment on Political
Participation

A second case in point is A. Gerber and D. Green’s
Vote’98 campaign, a voter turnout intervention in
which get-out-the-vote (GOTV) appeals were ran-
domly assigned to households of 1 or 2 voters. This is
cluster-level randomization, because members of two-
voter households were necessarily assigned to the same
intervention; but with clusters containing no more than
two individuals, it is as close to randomization of sub-
jects as randomization of clusters can get. Accordingly,
Gerber and Green’s (2000) report gave outcome analy-
ses that ignored clustering, effectively assuming their
treatment assignments to have been independent of
subjects’, rather than clusters’, covariates, and find-
ing that in-person appeals effectively stimulated vot-
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ing whereas solicitations delivered over the telephone,
by professional calling firms, had little or no effect
(Gerber and Green, 2000). Criticizing this analysis,
Imai observes that the data Gerber and Green made
available alongside their publication did not support
the hypothesis of independence of subject-level covari-
ates and treatment assignments (Imai, 2005). So poorly
balanced are the groups, writes Imai, that the hypoth-
esis of independence can be rejected at the 10−4 level
(Imai, 2005, Table 6). Had experimental protocol bro-
ken down, effectively spoiling the random assignment?
Imai deduces that it must have, dismissing the origi-
nal analysis and instead mounting another upon very
different assumptions. Contrary to Gerber and Green,
Imai’s revision attaches significant benefits to paid
GOTV calls.

In a pointed response, Gerber and Green (2005) shift
doubt from the implementation of their experiment
to Imai’s methodology—particularly, the method by
which he checks for balance. Their counterattack has
three fronts. First, they point out that Imai’s analysis as-
sumed independent assignment of individuals, whereas
assignment really occurred at the household level. Sec-
ond, they present results from a replication of the
telephone GOTV experiment on a much larger scale,
now randomizing individuals rather than households.
The replication results were consistent with those of
the original study. Third, they present simulation evi-
dence that would cast doubt on Imai’s recommended
balance tests even had randomization been as he as-
sumed. Those tests carried an asymptotic justification,
for which the Vote’98 sample appears to have been
too small—even though it comprised some 31,000 sub-
jects, in more than 23,000 households!

The manifold nature of this argument makes method-
ological lessons difficult to draw. If the conclusion that
the Vote’98 treatment assignment lacked balance is
mistaken, then did the mistake lie in the conflation of
household- and individual-level randomization, in the
use of an inappropriate statistical test, or both?

1.3 Structure of the Paper

This and Section 2 introduce the paper. Section 3 de-
velops randomization’s consequences for the adjusted
and unadjusted differences of group on baseline vari-
ables. Section 4 adapts these measures to testing for
balance on several variables simultaneously. Section 5
develops theoretical arguments for the optimality of a
specific approach recommended in Sections 3 and 4,
and for the setting of a tuning constant, while Sec-
tion 6 illustrates uses of the methodology for design
and analysis. Section 7 concludes.

2. TWO WAYS NOT TO CHECK FOR BALANCE

This section examines appealing but ad hoc adapta-
tions of two standard techniques, the method of stan-
dardized differences and goodness-of-fit testing with
logistic regression, to the problem of testing for bal-
ance after random assignment of groups. To illustrate,
we use the rich and publicly available Vote’98 dataset
(Gerber and Green, 2005). It describes some 31,000
voters, falling in about 23,000 households; to com-
plement this unusually large randomized experiment
with a smaller one, we consider a simple random sub-
sample of 100 households, comprising 133 voters. We
study the association of the treatment assignment, z,
with available covariates, x, including age, ward of
residence, registration status at the time of the previ-
ous election, whether a subject had voted in that elec-
tion, and whether he had declared himself a member
of a major political party. Telephone reminders to vote
were attempted to roughly a fifth of the subjects, and
it is around the putative randomness of this treatment
assignment that Gerber, Green and Imai’s debate cen-
ters.

2.1 Blurring the Difference Between Units of
Assignment and Units of Measurement

Let us contrast measurement units, subjects or ele-
ments, here voters, with clusters or assignment units,
here households containing one or two voters. The
standardized difference of measurement units on x is
a scaled difference of the average of x-values among
measurement units in the treatment group and the
corresponding average for controls. To facilitate in-
terpretation, the difference is scaled by the recipro-
cal of one s.d. of measurement x’s, so that 100 ×
(standardized difference) can be read as a percent frac-
tion of an s.d.’s difference. The purpose of this scaling,
which is common in the matching literature (Cochran
and Rubin, 1973, page 420), is to standardize across
x-variables; it differs from direct standardization of
means or rates of disparate populations (cf., e.g., Fleiss,
1973; Breslow and Day, 1987), in which subpopula-
tions’ means or rates are combined using a standard set
of reference weights.

Setting the scaling aside, one has differences x̄t − x̄c,
or, in vector notation, ztx/zt1 − (1 − z)tx/(1 − z)t1,
where z ∈ {0,1}n indicates assignment to the treatment
group. Considering this difference as a random vari-
able, Ztx/Zt1− (1−Z)tx/(1−Z)t1, and conditioning
on the numbers of measurement units in the treatment



222 B. B. HANSEN AND J. BOWERS

and control groups, mt = Zt1 and mc = (1 − Z)t1,
makes it a shifted random sum:

Ztx
mt

− (1 − Z)tx
mc

= Ztx/h − 1tx/mc,(1)

where h = (m−1
c + m−1

t )−1 is half of the harmonic
mean of mc and mt . Were treatment-group measure-
ment units a simple random subsample of the sample
as a whole, basic theory of simple random sampling
would imply that (1) has mean zero and variance equal
to (mtmc/m)s2(x), for s2(x) = (m−1)−1 ∑

i (xi − x̄)2

and m = mt + mc.
Consider instead the case in which a treatment group

is selected by drawing a simple random sample of clus-
ters of measurement units, but the analysis adopts the
simplifying pretense that the group assigned to treat-
ment constitutes a simple random sample of measure-
ment units themselves. With this “fudge,” differences
x̄t − x̄c are readily converted to z-scores. In the de-
bate described in Section 1.2 above, both Gerber and
Green (2000) and Imai (2005) took such an approach,
perhaps reasoning that with cluster sizes no larger than
two, differences between cluster- and individual-level
randomization should be inconsequential.

We mounted a simulation experiment to determine
whether this is so. The simulation mimicked the struc-
ture of the experiment’s actual design, forming simu-
lated treatment groups from random samples of 5275
of the 23,450 households, calculating differences d∗

x

in means of measurement unit x-values in the sim-
ulated treatment and control groups, and comparing

these differences to the analogous difference dx be-
tween subjects to whom the Vote’98 campaign did and
did not attempt a GOTV call. It reshuffled the treat-
ment group 106 times, making simulation p-values ac-
curate to within 0.001. These p-values are given in
the third and sixth columns of Table 2, which also
presents p-values corresponding to the z-scores dis-
cussed above—p-values which ignore clustering—as
well as large-sample p-values that account for clus-
tering (by the method of Section 3.1, which attends
to the difference of means of clusters’ aggregated x-
values rather than the difference of individuals’ mean
x-values). All p-values in Table 2 are two-sided.

The approximation ignoring the clustered nature of
the randomization is not particularly good, especially
for m = 133. Its p-values differ erratically from the
actual p-values, at some points incorrectly suggesting
departures from balance and elsewhere exaggerating
it. (We had expressed the nominal “Ward” variable as
29 indicator variables, one for each ward, and the age
measurement in terms of cubic B-splines with knots
at quintiles of the age distribution, to yield six new x-
variables; Table 2 displays the four of the 29 ward indi-
cators, and the four of the six spline basis variables, for
which the approximate p-values ignoring groups were
most and least discrepant from actual p-values in the
subsample and the full sample.) Increasing the sample
size from 133 to 31,000 appears to improve the approx-
imation somewhat, but not nearly as much as does ex-
plicitly accounting for clustering. It is noteworthy that
pretending assignment was at the individual level leads

TABLE 2
Effect of accounting for assignment by groups on approximations to p-values, in the full Vote’98 sample and in a subsample of 100

households

100 households (m = 133) All households (m = 31K)

Accounting for groups? Accounting for groups?

Baseline variable (x) No Yes Actual No Yes Actual

Number of voters in household 0.12 0.24 0.21 0.85 0.82 0.82
Voted in 1996 0.40 0.22 0.22 0.23 0.39 0.39
Major party member 0.45 0.14 0.16 0.24 0.18 0.18
Bspline2(Age) 0.68 0.59 0.60 0.06 0.31 0.31
Bspline4(Age) 0.82 0.39 0.40 0.68 0.68 0.68
Bspline5(Age) 0.72 0.24 0.24 0.39 0.22 0.22
Bspline6(Age) 0.19 0.62 0.62 0.56 0.89 0.89
Ward 2 1.00 1.00 0.50 0.81 0.87 0.87
Ward 5 0.89 0.98 0.89 0.44 0.47 0.48
Ward 10 0.58 0.54 0.65 0.95 0.97 0.97
Ward 11 0.75 0.92 0.87 0.27 0.42 0.42
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to such striking errors—even with only half the exper-
imental subjects assigned as part of a cluster, and even
with no clusters larger than two.

2.2 The p-Value from Logistic Regression of
Treatment Assignment on x’s

With or without treatment assignment by clusters,
and with or without analytic adjustments to account for
clusters, the method of standardized differences has the
limitation that it produces a long list of nonindependent
p-values, one for each x-variate studied. In many set-
tings just a few p-values, ideally one, would be more
convenient. This is true both when appraising the in-
tegrity of a randomization procedure, as in Imai (2005)
sought to do, and poststratifying an observational study
with goal of creating poststrata that resemble blocks of
a randomized study in terms of observed covariates:
for appraising such a poststratification, a list of possi-
bly correlated test statistics is less helpful than a single
omnibus test.

Logistic regression seems well suited to these tasks,
particularly when treatment has been assigned at the
measurement-unit level. For simple randomization,
regress treatment assignment, z, on covariates x and
a constant, then on the constant alone, and compare
the two fits using a standard asymptotic likelihood-
ratio test. This one test speaks to whether x-variables
influence Z, allowing each of the covariates to con-
tribute to its verdict. Should the asymptotics of this
deviance test apply, it will reject (at the 0.05 level)
no more than about 5% of treatment assignments, pre-
sumably the ones in which, by coincidence, covariate
balance failed to obtain. (For block randomization, the
analogous approach involves regressing z on x’s and
a separate constant for each block, then on those con-
stants alone.) There are problems with this procedure,
however. Sample-size requirements are more stringent
than one might think, are difficult to ascertain, and are
typically incompatible with checking for balance thor-
oughly.

Table 3 shows the small-sample performance of the
logistic regression deviance test, presenting the actual
sizes of asymptotic-level 0.001, 0.01, 0.05 and 0.10
tests as applied to assignments of 14 of Yudkin and
Maher’s 21 clinics to treatment. The test’s Type I error
rates are markedly too high. Perhaps poor performance
of asymptotic tests is to be expected, given the small
sample size; but it is noteworthy that another asymp-
totic test, Section 4’s method of combined baseline dif-
ferences, succeeds in maintaining sizes no greater than
advertised levels of significance.

TABLE 3
Small-sample (n = 21) Type I error rates of two types of test, one

based on logistic regression and another, to be described in
Section 4, based on adjusted differences of treatment and control

groups’ covariate means

Size of test

Asymptotic
Method 0.001 0.01 0.05 0.10

Actual
Logistic regression-based 0.0281 0.0620 0.16 0.24
Combined baseline differences 0.0000 0.0003 0.018 0.064

The actual size of the logistic regression tests well exceeds their
nominal levels, while the alternate test is somewhat conservative
but holds to advertised levels. Based on 106 simulated assignments
to treatment of 14 of the 21 ASSIST clinics.

Figure 1 illustrates the limited accuracy of the logis-
tic regression approach in samples of moderate size.
It compares asymptotic and actual null distributions of
p-values from the logistic regression deviance test, ef-
fecting the actual distribution by simulation. One thou-
sand simulation replicates are shown, both for the 100-
household Vote’98 subsample and for the full sample.
The covariates x(1), . . . , x(k) are those described in Sec-
tion 2.1, with x-values for two-person households de-
termined by summing x-values of individuals in each
household.

While p-values based on the asymptotic approxima-
tion appear accurate for the full sample, with its 23
thousand-someodd households, those for the subsam-
ple are quite exaggerated. In it, the nominal 0.05-level
test has an actual size of about 0.37. Would an alert
applied statistician have identified the 100-household
subsample as too small for the likelihood ratio test?
Perhaps; it has only 21

2 times as many observations
as x-variables, once the Age and Ward variables have
been expanded as in Table 2. But how large a ra-
tio of observations to covariates would be sufficient?
Intuition may be a poor guide. To explore the dif-
ference in information carried by binary and contin-
uous outcomes, Brazzale, Davison and Reid (2006,
Section 4.2; see also Davison, 2003, ex. 10.17) con-
struct artificial data sets from a real one with a bi-
nary independent variable, some retaining the binary
outcome structure but increasing the apparent informa-
tion in the dataset by replicating observations, and oth-
ers imputing continuous outcomes according to a lo-
gistic distribution. Their results are striking; one ob-
servation with continuous response carries about as
much information as eight observations with binary
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FIG. 1. Theoretical and actual p-values of two omnibus tests of covariate balance, both accounting for clustering. With 100 assignment
units and 38 degrees of freedom (dark trace), logistic regression’s p-values are markedly too small, whereas p-values from the method of
combined baseline differences (Section 4) err toward conservatism, and to a lesser degree. The dashed lines at left indicate that the logistic
regression-based test yielded p-values less than 0.05 in just under 40% of simulated random assignments, whereas the dashed lines at right
indicate that the combined baseline difference-test with nominal level α = 0.05 had actual size of about 0.01. However, with the full 23,000
assignment units (and the same 38 degrees of freedom), both methods perform as their asymptotics would predict, as indicated by the close
agreement in both panels of the lighter traces and the 45◦ lines.

response, and deviance tests are found to be unreli-
able even with 11 times as many observations as x-
variables. Harrell (2001, Section 4.5), Peduzzi et al.
(1996) and Whitehead (1993) offer somewhat less
pessimistic guidelines, but even these would require
well more than 10 times as many observations as
x-variables—an odd condition to place on a compar-
ative study, one which many otherwise strong studies
would violate.

For contrast, the right panel of Figure 1 offers an
analogous comparison between asymptotically approx-
imate and actual p-values of a test statistic to be intro-
duced in Section 4. Even with relatively few observa-
tions as compared to x-variables, its size never exceeds
its nominal level (if it errs somewhat toward conser-
vatism).

3. RANDOMIZATION TESTS OF BALANCE, WITH
AND WITHOUT CLUSTERS

A common form of frequentism, sometimes traced
to Neyman (1923), posits that subjects arrive in a
study through random sampling from a broader pop-
ulation, and takes as its goal to articulate charac-
teristics of that population. An impediment to ap-
plying this conceptualization to comparative studies
is that their samples need not represent background
populations. Comparing within a sample and extrap-
olating from it are separate goals, neither of which
needs to depend on the other. In contrast, in Fisher’s

model of a comparative study no background popu-
lation is supposed, but randomization is supposed to
govern division of the sample into comparison groups.
Inference asks what differences between groups can
be explained by chance, rather than what differences
between sample and population can be explained by
chance. Fisher’s approach is better suited to appraising
balance.

3.1 Experiments with Simple Randomization of
Clusters

To illustrate, consider the question of whether in the
Vote’98 experiment subjects assigned to receive a tele-
phone reminder had voted in the prior election in simi-
lar proportion to those not so assigned. Since past vot-
ing is predictive of future voting, sizable differences to
the advantage of either group may cause estimates of
treatment effects to err, reflecting the baseline differ-
ence more than effects of GOTV interventions.

Let the index i = 1, . . . , n run over assignment units,
so that zi indicates the treatment assignment of the ith
cluster of observation units. Interpret xi as the total of
x-values for observation units in cluster i, in this case
the number of subjects in the household who voted in
the previous election, and let mi be the size of that clus-
ter, here 1 or 2, in observation units. z, x and m are n-
vectors recording these data for each assignment unit.
The observed difference of the proportions of treat-
ment and control group subjects who had cast votes
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in 1996 can be written as a function dp(z,x) of the
treatment-group indicator vector z and indicators x of
voting in the previous election. In symbols, dp(z,x) =
ztx/ztm − (1 − z)tx/(1 − z)tm; for general measure-
ment variables v, dp(z,v) is the difference of treatment
and control group means. Let A be the set of treat-
ment assignments from which the actual assignment z
was randomly selected; for each member z∗ of A, it
is straightforward to compute the amount dp(z∗,x) by
which treatments and controls would have differed had
assignment z∗ been selected. A (two-sided) random-
ization p-value attaching to the hypothesis of nonse-
lection on x is

#{z∗ ∈ A : |dp(z∗,x)| > |dp(z,x)|}
#A

+ (1/2)#{z∗ ∈ A : |dp(z∗,x)| = |dp(z,x)|}
#A

(2)
= P(|dp(Z,x)| > |dp(z,x)|)

+ 1

2
P(|dp(Z,x)| = |dp(z,x)|),

where Z is a random vector that is uniformly distrib-
uted on possible treatment assignments A. (Weight-
ing by one-half those z∗ ∈ A for which |dp(z∗,x)| =
|dp(z,x)| makes this a mid-p value, the null distrib-
ution of which will be more nearly uniform on [0,1]
than would a p-value without this weighting. Agresti
and Gottard (2005) discuss merits of the mid-p value.)
This appraisal of balance on x does involve probabil-
ity, but only treatment assignment, not the covariate, is
modeled as stochastic.

In principle, these p-values can be determined ex-
actly, perhaps by enumeration; in practice, it is accu-
rate enough, and often much easier, to evaluate them
by simulation [as does, e.g., Lee, 2006]. Under favor-
able designs, fast and accurate Normal approximations
are also available. Consider first the case in which

(A) the assignment scheme allocates a fixed and pre-
determined number nt of the n clusters to treat-
ment, and

(B) each cluster contains the same number m0 of mea-
surement units.

Then the ratios Ztx/Ztm and (1 − Z)tx/(1 − Z)tm of
which dp(Z,x) is a difference have constants, respec-
tively, k0 = m0nt and k1 = m0nc, as denominators, so
that, as in (1), dp(Z,x) has an equivalent of the form
Ztx/k0 − 1tx/k1. Then it is necessary only to approx-
imate the distribution of Ztx, an easier task than ap-
proximating the distribution of its ratio with another

random variable. Indeed, if {i ∈ {1, . . . , n} : Zi = 1}
is a simple random sample of size nt , then Ztx is
simply the sample sum of a simple random sample
of nt from n cluster totals x1, . . . , xn. Common re-
sults for simple random sampling give that E(Ztx) =
nt x̄ = nt

n

∑
xi ; that Var(Ztx) = nt (1 − nt

n
)s2(x), where

s2(x) = (
∑n

1(xi − x̄)2)/(n − 1); and that if x has few
or no outliers and is not particularly skewed, then if
n is sufficiently large and nt/n is neither near 0 nor
1, the law of Ztx will be roughly Normal. [Formally,
if nt grows to infinity while nt/n approaches a con-
stant in (0,1), and mean squares and cubes of |x| re-
main bounded, then the limiting distribution of Ztx is
Normal (Hájek, 1960; Erdős and Rényi, 1959).] Over
and above this finite population central limit theorem,
Höglund’s Berry–Esseen principle for simple random
sampling (Höglund, 1978) limits the error of the Nor-
mal approximation in finite samples, suggesting that
it should govern Ztv similarly well for well behaved
covariates v other than x, and that it should be quite
good even in samples of moderate size. Note that co-
variates x which are ill-behaved, in the sense of be-
ing skewed or having extreme outliers, are also ill-
suited to be summarized in terms of their means in any
event—thus transformations to more regular covari-
ates x̃ = f (x) are advisable in order to ease descrip-
tion, regardless of differences between d(Zt ,x)’s and
d(Zt , x̃)’s sampling properties; and insofar as ¯̃x appro-
priately measures the central tendency of (x̃i : i ≤ n), x̃

will be well-behaved in the sense needed for d(Zt , x̃) ∼
N (nt

¯̃x,nt (1 − nt

n
)s2(x̃)).

Cases in which (A) or (B) fails might appear to frus-
trate this argument. For instance, suppose treatment
were assigned, in violation of (A), by n independent
Bernoulli(p) trials. Then there would be some ran-
dom fluctuation in treatment and control group sizes
Ztm and (1 − Z)tm, and the denominators of the ra-
tios of which dp(Z,x) is a difference would no longer
be constants, so that the argument by which Höglund’s
Berry–Esseen principle bounded the error of the Nor-
mal approximation would no longer be available. How-
ever, this particular frustration is circumvented by re-
ferring observed differences dp(z,x) to conditional,
rather than marginal, distributions of dp(Z,x). For
conditional on Zt1 = zt1 = nt , condition (A) is re-
stored, and provided (B) also holds the distribution of
dp(Z,x) is close to Normal, with mean and variance as
previously indicated.

What of departures from (B), that is, clusters that
vary in size? Here the representation of dp(Z,x) as a
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linear transformation of Ztx need not apply, even af-
ter conditioning on the number of clusters selected for
treatment, since then the number of treatment-group
subjects Ztm may vary between possible assignments.
A modification to dp(·, ·) circumvents the problem.
Now writing mt for the expected, rather than observed,
number of measurement units in the treatment group,
set

d(z,x) := ztx
mt

− (1 − z)tx
m − mt

[mt := E(Ztm), m = 1tm]
= m̄−1[ztx/h − 1tx/(n − nt )]

[h := [nt(1 − nt/n)]−1].
Kerry and Bland (1998) recommend an analogous sta-
tistic for outcome analysis in cluster randomized tri-
als.

In designs with size variation among assignment
units, d(z,x) and dp(z,x) = ztx/ztm− (1−z)tx/(m−
ztm) may differ. The differences will tend to be small,
particularly if m, now regarded as a covariate, is
well balanced; and of course this balance is expedi-
ently measured using d(z,m) and its associated p-
value.

These considerations recommend d(z,x) as a basic
measure of balance on a covariate x.

3.2 Simple Randomization of Clusters within
Blocks, Strata or Matched Sets

The approach extends to the case of block-random-
ized designs, and to designs that result from poststrat-
ification or matching. Let there be strata b = 1, . . . ,B ,
within which simple random samples of nt1, . . . , ntB

clusters are selected into the treatment group from
n1, . . . , nB clusters overall, for each b = 1, . . . ,B . Let
Z = (Zt

1, . . . ,Zt
b, . . . ,Zt

B)t , Zt
b = (Zb1, . . . ,Zbnb

) for
each stratum b, be a vector random variable of which
the experimental assignment was a realization, and let
m = (mt

1, . . . ,mt
b)

t record sizes of clusters in terms
of observation units. For each b = 1, . . . ,B , let mtb =
E(Zt

bmb) = m̄bntb be the expected number of observa-
tion units in the treatment group. Let x = (xt

1, . . . ,xt
B)t

and v = (vt
1, . . . ,vt

B)t be single covariates—perhaps
cluster sums of individual measurements.

Because both treatment “propensities” [i.e., P(Zb1 =
1), b = 1, . . . ,B] and covariate distributions may vary
across blocks, comparisons of simple means of treat-
ment and control units, even assignment units rather
than measurement units, may fall prey to Simpson’s
paradox, despite random assignment (Blyth, 1972).

Rather, when averaging across blocks the two means
must be standardized by a common set of block-
specific weights; or, equivalently, treatment and con-
trol averages can be taken and compared within blocks
before taking the weighted average of the differ-
ences. Within a block b, the (modified) difference of
treatment and control group means on x is simply
zt
bxb/mtb − (1 − zb)

txb/(m − mtb). Weights may be
proportional to the number of subjects in each block,
proportional to the number of treatment-group subjects
in each block, or selected so as to be optimal under
some model; this latter approach is developed in Sec-
tion 5. For now, fix positive weights w1, . . . ,wB such
that

∑
i wi = 1.

Considered as a random variable, the adjusted differ-
ence of treatment and control group means is

d(Z,x) =
B∑

b=1

wb[Zt
bxb/mtb

(3)

− (1 − Zb)
txb/(m − mtb)]

=
B∑

b=1

wbh
−1
b m̄−1

b Zt
bxb

(4)

−
B∑

b=1

wbm̄
−1
b (nb − ntb)

−11txb,

where hb = [n−1
tb + (nb − ntb)

−1]−1 = [ntb(1 − ntb/

nb)] is half the harmonic mean of ntb and (nb − ntb).
Within block b, Zt

bxb is the sample total of a sim-
ple random sample of size ntb from (xb1, . . . , xbn). It
follows that it has mean (ntb/nb)1txb = ntbx̄b; that
its variance is hbs

2(xb); and that its covariance with
Zt

bvb is hbs(xb;vb), for s(xb;vb) = (xb − x̄b1)t (vb −
v̄b1)/(nb − 1) and s2(xb) = s(xb;xb). By virtue of
the design, for blocks b′ �= b the treatment-group to-
tals Zt

bxb and Zt
bvb are independent of Zt

b′xb′ and
Zt

b′vb′ . Together, these facts entail the following de-
scription of the first and second moments of d(Z,x)

and d(Z,v).

PROPOSITION 3.1. Suppose that within blocks
b = 1, . . . ,B , simple random samples of ntb from nb

clusters are selected for treatment, with the rest as-
signed to control. Let Z indicate sample membership
and let x and v denote covariates. For d(·, ·) as in (3),
one has

E(d(Z,x)) = E(d(Z,v)) = 0,
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Var(d(Z,x)) =
B∑

b=1

w2
b

hbm̄b

s2(xb)

m̄b

,

Cov(d(Z,x), d(Z,v)) =
B∑

b=1

w2
b

hbm̄b

s(xb;vb)

m̄b

,

where hb = [n−1
tb + (nb − ntb)

−1]−1.

When d(Z,x) can be assumed Normal, Proposi-
tion 3.1 permits analysis of its distribution. In fact,
relevant central limit theorems do entail its conver-
gence to the Normal distribution as the size of the
sample increases, and they suggest that the conver-
gence should be fast and uniform across covariates
x, v, . . . . There are two cases. In the first case, the
size of each stratum falls under a fixed limit. Since
the sample size is increasing, this means the number
of strata tends to infinity. As each of them makes an
independent contribution to the sum that is d(Z,x),
ordinary central limit theorems entail that its distri-
bution tends to Normal. Indeed, the ordinary Berry–
Esseen lemma limits the difference between the dis-
tribution function of d(Z,x) and an appropriate Nor-
mal distribution in terms of its variance and its third
central moment (Feller 1971, Chapter 16) both of
which are calculable precisely from the design and
from the configuration of x. In the second case, at
least one stratum size tends to infinity. Assume that in
each growing stratum the proportions of clusters as-
signed to treatment and to control tend to nonzero con-
stants. Then the contribution (hbm̄b)

−1Zt
bxb from any

growing stratum b is a rescaled sum of a simple ran-
dom sample from (xb1, xb2, . . . , xbnb

) and is governed
by the central limit theorem and Berry–Esseen prin-
ciple for simple random sampling (see Section 3.1).
Contributions from small strata that do not grow are
either asymptotically Normal, by the first argument,
or, assuming a nonpathological weighting scheme, as-
ymptotically negligible, or both; it follows that the
overall sum of stratum contributions tends to Nor-
mal.

Although any weighting of blocks is possible, some
are more likely to reveal imbalances than others. Sec-
tion 5 shows weighting in proportion to the product of
block-mean cluster size and the harmonic mean of ntb

and nb −ntb, w∗
b ∝ hbm̄b, to be optimal in an important

sense. It also so happens that with this weighting, ex-
pressions for the first and second moments of d(Z,x)

simplify.

COROLLARY 3.1. Suppose that within blocks b =
1, . . . ,B , simple random samples of ntb from nb clus-
ters are selected for treatment, with the rest assigned

to control. Let Z indicate sample membership and
let x and v denote covariates. For d(·, ·) as in (3),
with wb ≡ w∗

b ∝ hbm̄b = m̄bntb(1 − ntb/nb), one
has

d(z,x) =
(∑

hbm̄b

)−1

·
[

B∑
b=1

Zt
bxb(5)

−
B∑

b=1

ntb(1txb/nb)

]
,

E(d(Z,x)) = E(d(Z,v)) = 0,

Var(d(Z,x)) =
(∑

hbm̄b

)−2

(6)

·
B∑

b=1

hbm̄b

s2(xb)

m̄b

,

Cov(d(Z,x), d(Z,v)) =
(∑

hbm̄b

)−2

·
B∑

b=1

hbm̄b

s(xb;vb)

m̄b

.

3.3 Accommodating Independent Assignment by
Conditioning

Proposition 3.1 assumes simple random sampling
of treatment groups within blocks. Were assignments
within block b made by independent Bernoulli(pb) tri-
als, the induced first and second moments of d(Z,x)—
understood as a wb-weighted sum of terms

Zt
bxb

m̄bZt
b1

− (1 − Zb)
txb

m̄b(nb − Zt
b1)

,

since ntb would no longer be a fixture of the design—
would be formally and numerically similar to those
of the proposition, as a simple argument shows. Zt

b1
is Bin(nb,pb), independently of Zt

b′1 ∼ Bin(nb′,pb′),
b′ �= b, and conditionally on Zt

b1 = nbt the distribu-
tion of Zt

bxb is that of a sample sum of a simple ran-
dom sample of size nt from {xb1, . . . , xbnb

}. In gen-
eral, conditioning on Zt

11, . . . ,Zt
B1 gives d(Z,x) and

d(Z,v) distributions of the type described in Proposi-
tion 3.1.

Conditional assessments of d(Z,x) have the ad-
vantage of being immune from disruption by unusu-
ally small or large allocations Zt

i1 to treatment, i =
1, . . . ,B . The sizes of these allocations carry little rel-
evant information, as a conditionality argument shows.
Consider the broader model in which P(Zbi = 1)
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is not a constant for all i = 1, . . . , nb, but instead
logit(P(Zbi)) = ψb + ψx(xbi). The null hypothesis
holds that ψx ≡ 0; a test of balance aims to reject
it when ψx(·) is nonnull. The likelihood of the full
model, with independent sampling of Zbi’s and possi-
bly nonzero ψx , can be straightforwardly represented
as

∏
b

exp

{(
nb∑
i=1

Zbi

)
ψb

(7)

+
nb∑
i=1

Zbiψx(xbi) − kb(ψb,ψx)

}
,

kb = ∑nb

i=1 log[1 + exp(ψb + ψx(xbi))], but it can
also be parametrized in terms of the function ψx(·)
and moment parameters ηb = E(Zt

b1|ψb,ψx), b =
1, . . . ,B , with (η1, . . . , ηB) and ψx(·) being variation
independent (Barndorff-Nielsen and Cox, 1994, page
40 ff). The statistic (Zt

11, . . . ,Zt
B1) is ancillary for in-

ference about the function ψx ; in the main it reflects on
(ηb :b ≤ B), not ψx(·).
3.4 Example and Implementation

The Vote’98 experiment used a factorial design,
varying the probability of a household’s assignment to
telephone GOTV across levels of the other treatments
it assigned. (Specifically, households eligible for tele-
phone calls were also eligible for assignment to re-
ceive GOTV mailings, and for assignment to receive
a personal GOTV appeal; the probability of assign-
ment to the telephone group varied across cells of the
mail GOTV by personal GOTV cross-classification.)
This makes methods for block-randomized studies a
necessity. Consequently, Table 2 uses modified differ-
ences of Section 3.2, as aggregated using harmonic
block weights as in Corollary 3.1, to combine balance
measures across subclasses defined by treatments other
than telephone GOTV.

The first row of Table 2 gives results for the test as to
whether ztm, the size of the treatment group in mea-
surement units, differed substantially from E(Ztm),
in a subsample of 100 clusters and in the full sam-
ple of some 23,000. The z-scores d(z,m)/

√
V (d) (not

shown in the table) were 1.186 and 0.226 for the sub-
and full samples, respectively, which by Normal tables
give approximate p-values of 0.236 and 0.821. This
suggests ztm was relatively quite close to its null ex-
pectation, a suggestion that gains further support from
simulations, which find the mid-p values to be 0.211
and 0.821, respectively. Having confirmed balance on

cluster sizes, the next row of the table asks about vot-
ing in the previous election. It is not precisely the same
in treatment and control groups, either for the subsam-
ple or for the full sample, as indicated by normalized
differences of d(z,x)/

√
V (d) = 1.228 and −0.853, re-

spectively; but the p-values, 0.224 and 0.391, indicate
that voting in the previous election is as similar in the
two groups as could be expected from random assign-
ment, and the Normal approximation locates them with
some accuracy, 0.220 and 0.394.

To compute these adjusted baseline differences and
their large-sample reference distributions, the first step,
prior to calling any specialized function, is to aggregate
the data to the cluster level, recording cluster sizes mbi

and creating cluster totals xbi from individual measure-
ments xbi1, . . . , xbimbi

. R users can then adapt func-
tionality from either of at least two R packages, Bow-
ers and Hansen’s (2006) RITOOLS or Hothorn et al.’s
(2006) COIN, which perform randomization-based in-
ference without explicit attention to cluster-level as-
signment. We give details for RITOOLS, which uses
harmonic weights, wb ∝ hb, by default. Its function
xBalance calculates

dno clus(z,x)

=
(

B∑
b=1

hb

)−1

(8)

·
{

B∑
b=1

hb[zt
bxb/ntb

− (1 − zb)
txb/(nb − ntb)]

}

and its randomization variance, printing significance
stars based on the corresponding z-score, Var(dno clus
(Z,x))−1/2dno clus(z,x). [The z-score itself is not dis-
played; instead, as a descriptive measure xBalance
reports a standardized difference in the sense of Sec-
tion 2.1, namely s−1

p (x)dno clus(z,x) where sp(x) is the
pooled s.d. of x in the sense of the two-sample t-test
comparing treatment to control clusters.] Since (8) dif-
fers from (3) with wb ∝ hbm̄b only in that its denomi-
nator is

∑B
b=1 hb rather than

∑B
b=1 hbm̄b, this z-score is

the same as that which Corollary 3.1 would have given.
With other software, Var(d(Z,x)) may have to

be calculated explicitly from (6), but a shortcut is
available for determining d(z,x) when wb ∝ hbm̄b:
dno clus(z,x), or [(∑b hbm̄b)/(

∑
b hb)]d(z,x), coin-

cides with the ordinary least squares coefficient of
z in the regression of x on z and dummy variables
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for blocks. Unfortunately, Var(d(Z,x)) does not re-
late in any helpful way to this coefficient’s ordinary
least squares standard error. To recover d(z,x) from
the least squares coefficient,

∑
b hb and

∑
b hbm̄b will

have to be calculated. However, given that (6) has to
be figured, these calculations pose little additional bur-
den; and they are the same for each variable x on which
balance is to be checked.

4. SIMULTANEOUSLY TESTING BALANCE ON
MULTIPLE x’S

Ordinarily there will be several, perhaps many, x-
variables along which balance ought to be checked,
and a method of combining baseline differences will
be needed. To this end, write

d2(z;x1, . . . ,xk)

:= [d(z,x1), . . . , d(z,xk)](9)

·
⎧⎪⎨
⎪⎩Cov

⎛
⎜⎝
⎡
⎢⎣

d(Z,x1)
...

d(Z,xk)

⎤
⎥⎦
⎞
⎟⎠
⎫⎪⎬
⎪⎭

−⎡
⎢⎣

d(z,x1)
...

d(z,xk)

⎤
⎥⎦ ,

where Cov(d(Z,xi ), d(Z,xj )) is as in Proposition 3.1
and M− denotes a generalized inverse of M . This test
has the desirable properties that: (i) it culminates in a
single test statistic and p-value; (ii) its law is roughly
χ2, as a consequence of d(Z,x1), . . . , d(Z,xk) being
approximately Normal; and, (iii) it appraises balance
not only on x1, . . . ,xk , but also on all linear combina-
tions of them. Large imbalances on the linear predic-
tor of a response variable from x1, . . . ,xk , for example,
will make d2(z,x1, . . . ,xk) large relative to its null dis-
tribution. The test is a first cousin of Hotelling’s (1931)
T -test, which treats x1, . . . ,xk rather than z as random
and is F -distributed, rather than χ2-distributed, under
the null of equivalence between groups.

Linearity of d(z, ·) immediately establishes (iii). Ar-
guments of Sections 3.1 and 3.2 entail that d(Z, β1x1 +
· · · + βkxk), suitably scaled, must be asymptotically
N(0,1) provided the xi ’s are suitably regular, what-
ever β1, . . . , βk may be. It follows that the vector
[d(z,x1), . . . , d(z,xk)] has a multivariate Normal dis-
tribution in large samples, showing (ii). Then d2(Z;x1,

. . . ,xk) is scalar-valued with a large-sample χ2 distri-
bution on rank(Cov([d(z,x1), . . . , d(z,xk)])) degrees
of freedom.

To calculate d2(z;x1, . . . ,xk), one begins as if calcu-
lating each of (d(z;xi : i = 1, . . . , k) separately (Sec-
tion 3.4). With RITOOLS, the xBalance function can
calculate each of these simultaneously; in this case, it

optionally returns d2(z;x1, . . . ,xk) and its correspond-
ing degrees of freedom. Without this aid, the joint cal-
culation differs from a sequence of univariate balance
assessments only in requiring that covariance matri-
ces, rather than scalars, be scaled and summed across
blocks b, and requiring the rank and a generalized in-
verse of the resulting sum.

The χ2-approximation seems to work reasonably
well even in small samples. Its distribution in one small
simulation experiment is graphed in the right panel of
Figure 1, while Table 3 summarizes its distribution in
another; in both cases it tends somewhat toward con-
servatism. As a practical tool for the data analyst, it
has the important advantage that it stably handles sat-
uration with x-variables; one would not bring about
a spurious rejection of the hypothesis of balance by
adding to the list of x-variables to be tested. One cer-
tainly would decrease the test’s power to detect imbal-
ance along individual xi ’s included among covariates
tested, but that is to be expected. (An example is given
in Section 6.2.) This is in important contrast with meth-
ods based on regression of z on x’s; as the left panel of
Figure 1 shows, natural tendencies toward overfitting
inflate the Type I errors of such tests.

5. OPTIMIZING LOCAL POWER

This section develops and analyzes a statistical
model of the absence of balance that is appropriate to
randomization inference. Casting this model as an al-
ternative to the null hypothesis of balance, tests based
on d or d2 are seen to have greatest power when
weights w∗

b ∝ hbm̄b are used to combine differences
across blocks or matched sets. Readers not seeking jus-
tification of this may prefer to skip to Section 6.

Say balance is to be assessed against a canonical
model (Section 3.2) with B blocks, perhaps after con-
ditioning as in Section 3.3. What choice of weights
w1, . . . ,wB maximizes the power of the test for bal-
ance? Common results give the answer for models
positing that x is sampled while z is held fixed. Kalton
(1968), for instance, assumes random sampling from
2B superpopulations with means μt1,μc1, . . . ,μtB,

μcB . He finds that in order to maximize power against
alternatives to the effect that μtb ≡ μcb + δ, δ �= 0,
blocks’ differences of means should be weighted in
proportion to the inverse of the variance of those dif-
ferences. With the simplifying assumption of a com-
mon variance in the 2B superpopulations, this leads to
harmonic mean weighting, wb ∝ hbm̄b. To avoid this
simplification, weights might be set in proportion to
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reciprocals of estimated variances. But such a proce-
dure would seem to add complexity, and to detract from
the credibility of assessments of statistical significance,
since the sample-to-sample fluctuation it imposes on
the weighting scheme is difficult to account for at the
stage of analysis (Yudkin and Moher, 2001, page 347).

The randomization perspective leads to the same re-
sult, but by a cleaner route, avoiding the need to esti-
mate or make assumptions about dispersion in super-
populations. In support of this claim, we analyze the
problem of distinguishing unbiased from biased sam-
pling of treatment assignment configurations, z’s, from
A, rather than differences in superpopulations from
which treatment and control x’s are supposed to be
drawn. This amounts to distinguishing constant from
nonconstant ψx(·) in model (7).

Our analysis is asymptotic, assuming increasing
sample size. Since any nontrivial test would have over-
whelming power given a limitless stock of similarly
informative observations, we mount an analysis of lo-
cal power, in which the observations become less in-
formative as sample size increases. This is modeled
with x’s that cluster increasingly around a single value
as their number increases, while bias in assignment to
treatment is dictated by the same ψx . The strata may
increase in number or in size, or in both, as the num-
ber of assignment units increases; it is assumed that
cluster size is bounded and that the fractions of blocks
allocated to treatment ntb/nb are bounded away from
0 and 1. Because the observations are neither indepen-
dent (due to conditioning on Zt

b1, b = 1, . . . ,B) nor
identically distributed, the asymptotic analysis pertains
not to a single sequence of observations but to a se-
quence of experimental populations ν = 1,2, . . . con-
taining increasing numbers of observations.

Conditions A1–A4, stated in the Appendix, entail
certain convergences of weights and variances, at least
along subsequences {νi} of populations. Specifically,
with {ν} narrowed to such a subsequence there are
positive constants K,s0x, swx and vwx such that as
ν → ∞,

n−1
ν

∑
b

m̄νbhνtb → K and

(10)

nν

∑
b

w∗
νb

s2(xνb)

m̄νb

→ s2
0x;

nν

∑
b

wνb

s2(xνb)

m̄νb

→ s2
wx and

(11)
n2

ν VarP (d(Zν,xν)) → v2
wx,

where d(Zν,xν) in (11) is understood in the sense
of (12).

PROPOSITION 5.1. Let

d(Zν,xν)
(12)

= ∑
b

wνb

[
Zt

νbxνb

m̄νbnνtb

− (1 − Zνb)
txνb

m̄νb(nνb − nνtb)

]
.

Assume conditions A1–A4, write P and Q for dis-
tributions of Zν under, respectively, the null of unbi-
ased assignment and the alternative of bias according
to (7) with nonconstant ψ , and let swx, vwx be as in
(11). Then

PQ

(
d(Zν,xν) > z∗ VarP (d(Zν,xν))

1/2)
(13)

→ 1 − 	

(
z∗ − β

s2
wx

vwx

)
,

where β is the derivative of ψ at c (as defined in con-
dition A3).

For a proof, see the Appendix.
Compare (13) to

PP

(
d(Zν,xν) > z∗ VarP (d(Zν,xν))

1/2) → 1 − 	(z∗),
a statement of the asymptotic normality of d(Zν,xν)

under the null hypothesis: in the limit, the amount
by which power exceeds size increases with the ratio
s2
wx/vwx . Specifically, if the acceptance region is lim-

ited from above at zu VarP (d(Zν,xν))
1/2, zu > 0, then

power against alternatives with β > 0 is optimized by
calibrating the stratum weights (wνb) so as to max-
imize VarP (d(Zν,x))−1/2(

∑
b wνbs

2(xνb)/m̄νb), the
limit of which is s2

wx/vwx . (If the acceptance region has
a finite lower limit, then a symmetric argument yields
that the same calibration maximizes power against
alternatives with β < 0.) To effect this calibration,
for the moment fix ν and write s2

b for s2(xνb)/m̄νb,
b = 1, . . . ,B . Recall that hb = [ntb(1 − ntb/nb)] (Sec-
tion 3.2). Then

(
∑

b wνbs
2(xνb)/m̄νb)

VarP (d(Zν,x))1/2

= (
∑

b wbs
2
b)

(
∑

b w2
b[hbm̄b]−1s2

b)1/2

(14)

= ((wb[hbm̄b]−1/2sb) :b ≤ B)t

‖((wb[hbm̄b]−1/2sb) :b ≤ B)‖2

· ([hbm̄b]1/2sb :b ≤ B),

where ‖ · ‖2 is the Euclidean norm, ‖x‖2 = (
∑

i x
2
i )1/2.

Selecting (wb :b = 1, . . . ,B) so as to maximize this
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TABLE 4
Standard deviations of d(Z,x) under various stratification schemes, expressed as fractions of an s.d. of x/m̄

Baseline variable

Adequate Treatment with

Stratification assessment aspirin hypotensives lipid-reducers

None 0.46 0.46 0.46 0.46
By rate of adequate assessment 0.31 0.42 0.43 0.36
By clinic size 0.33 0.24 0.24 0.31

Both stratification schemes offer distinctly better expected balance than no stratification at all, and stratification on clinic size seems preferable
to stratification on clinics’ baseline rates of adequate assessment.

expression amounts to maximizing the correlation be-
tween B-dimensional vectors (wb[hbm̄b]−1/2sb :b =
1, . . . ,B) and ([hbm̄b]1/2sb :b = 1, . . . ,B), which is
achieved by setting wb ∝ hbm̄b—that is, by wνb =
w∗

νb.

6. APPLICATIONS TO STUDY DESIGN AND
ANALYSIS

6.1 Whether to Stratify, and Which Stratification is
Best

Randomization within well-chosen blocks may lead
to imbalances on baseline measures of smaller ab-
solute magnitude than unrestricted randomization, and
smaller baseline imbalances are preferable for various
reasons. Raab and Butcher (2001) sought to avoid im-
balances large enough to create noticeable discrepan-
cies between treatment effects estimated with and with-
out covariance adjustment. Such differences might be
troubling to the policymakers who were a central audi-
ence for their study, even if they fell within estimated
standard errors. Yudkin and Moher (2001) worry that
designs in which sizable imbalances are possible may
sacrifice power.

To head off these problems, Yudkin and Moher’s AS-
SIST team elected to randomize clinics within three
blocks, consisting of 6, 9 and 6 clinics, rather than
to randomly assign treatment to 14 of 21 clinics out-
right. It remained to be decided which baseline vari-
able to block on. They report deciding against block-
ing on clinic size after finding only weak correlations
between clinics’ sizes and baseline rates of adequate
heart disease assessments; they feared that privileging
size in the formation of blocks could have “resulted
in imbalance in the main prognostic factor” (Yudkin
and Moher, 2001, page 345). While these correlations
are certainly reasonable to consider, it might have been
more direct to compare candidate blocking schemes on

the basis of the variance in d(Z, ·)’s they would entail,
preferring those schemes that offer lesser mean-square
imbalances on key prognostic variables.

Table 4 offers such a comparison. It emerges that,
despite the weak relationship between clinic size and
baseline rate of adequate assessment, blocking on size
balances the rate of adequate assessment quite well,
nearly as well as does blocking on the rate itself.
Meanwhile, to balance other baseline variables, rates
of treatment with various drugs that at follow-up would
be measured as secondary outcomes, it is much better
to block on size. [Lewsey (2004) discusses size block-
ing in some detail.] Perhaps the investigators were too
quick to reject this option. In any case, the compar-
ison of Var(d(Z,x)), from (6), for various blocking
schemes and covariates, x, would more directly have
informed their decision.

6.2 Whether to Poststratify, and Whether a Given
Poststratification Suffices

Comparative studies typically present a small num-
ber of covariates that must be balanced in order for
the study to be convincing, along with a longer list
of variables on which balance would be advantageous.
In the ASSIST a trial, the short list consists of base-
line measures on variables to be used as outcomes; in
the Vote’98 experiment, it comprises a “baseline” mea-
sure of the outcome, voting in the previous election,
along with party membership and demographic data
that predict voting. Were treatment subjects apprecia-
bly older, and so perhaps more likely to vote (Highton
and Wolfinger, 2001) than controls, or were they more
likely to have voted in past elections, then one would
suspect appreciable positive error in unadjusted esti-
mates of the treatment effect—even in the presence of
randomization, which controls such errors most of the
time but not all of the time.
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Even if discovered only after treatments have been
applied, such imbalances can be remedied by poststrat-
ification: if treatments are on the whole older than con-
trols, for example, then compare older treatments only
to older controls, and also compare younger subjects
only among themselves. There is the possibility that
one could introduce imbalances on other variables by
subclassifying on age; to assess this, one might apply
d2(z;x1, . . . ,xk), where x1, . . . ,xk make up the short
list, to the poststratified design. Should subclassifying
only on age fail to sufficiently reduce d2(z;x1, . . . ,xk),
or should there be a more complex pattern of misalign-
ment to begin with, propensity-score methods are a re-
liable alternative (Rosenbaum and Rubin, 1984, and
Hillet at al., 2000). Indeed, with the option of propen-
sity score subclassification, there is little reason to re-
strict one’s attention entirely to the short list; one can
reasonably hope to relieve gross imbalances on any of a
longer list of covariates, as well as smaller imbalances
on the most important ones.

Perhaps with this in mind, Imai (2005) suggests
checking the Vote’98 data for imbalance twice, once
focusing on short-list variables and a second time con-
sidering also second-order interactions of them. As dis-
cussed by Arceneaux et al. (2004), and as the discus-
sion of Section 2 would predict, his logistic-regression
based check gives misleading results. Despite this tech-
nical impediment, however, the spirit of the suggestion
is sound; one might hope the check based on d2 would
perform more reliably. In fact it does: in 106 simu-
lated reassignments of telephone GOTV, the d2 statis-
tic combining imbalances on all first- and second-order
interactions of x-variables exceeded nominal 0.001,
0.01, 0.05 and 0.10 levels of the χ2(363) distribution
in 0.09%, 0.9%, 4.8%, and 9.7% of trials, respectively.
The treatment assignment actually used gives, for the
long list, d2 = 360.6, with theoretical and simulation
p-values 0.526 and 0.527, respectively, and for the
short list, d2 = 26.6 on 38 d.f.’s, with p-values 0.918
and 0.918, respectively; it is well balanced.

7. SUMMARY AND DISCUSSION

Clinical trials methodologists note, with some alarm,
how few cluster randomized trials explicitly make note
of cluster-level assignment and account for it in the
analysis (Divine et al., 1992; MacLennan et al., 2003;
Isaakidis and Ioannidis, 2003). We have seen the need
for such an accounting even when it seems least neces-
sary, with clusters that are small, uniform in size, and
numerous. We have also seen that one natural model-
based test for balance along covariates, the test based

on logistic regression, is prone to spuriously indicate
lack of balance when there are too many covariates rel-
ative to observations, and that this condition obtains for
surprisingly large ratios of observations to the number
of covariates.

Cluster-level randomization is said to confront in-
vestigators with “a bewildering array of possible ap-
proaches to the data analysis” (Donner and Klar, 1994).
Randomization inference presents a less cluttered field
of options, and has the additional advantages of adap-
tation specifically to comparative studies and of being
nonparametric. With appropriate attention to the form
of the test statistic, it is quite possible in the random-
ization framework to respect the study’s design while
training attention on differences among individuals.
This aim also suggests conditioning strategies appro-
priate to the problem of assessing covariate balance.
The result is a class of test statistics that one can expe-
diently appraise using Normal approximations which
are quite accurate in small and moderate samples. The
tests gauge balance on a single covariate or on a set
of covariates jointly; in the latter case, they also im-
plicitly assess imbalance on linear combinations of the
covariates, including projections of the response vari-
able into covariate space. Our analysis of a model of bi-
ased assignment suggests values for tuning parameters
that completely specify, indeed simplify, the form of
the resulting nonparametric tests, ending with a simple
prescription that is suitable for general use: assess bal-
ance along individual covariates x with the differences
d(z,x) between treatment and control groups’ adjusted
means, using weights wb ∝ m̄bhb to combine across
blocks as in (5); then mount an overall test by referring
the combined baseline difference d2(z;x1, . . . ,xk), as
in (9), to the appropriate χ2-distribution.

As an omnibus measure of balance, the combined
baseline difference statistic d2(z;x1, . . . ,xk) is sim-
ilar in form and spirit to a statistic suggested by
Raab and Butcher (2001), namely a weighted sum
of squares of differences of means of cluster means:
α1d(z,x1/m)2 + · · · + αkd(z,xk/m)2, where α1, . . . ,

αk ≥ 0 sum to 1. The ability of the statistician to de-
cide the relative weightings α of the variables might
in some contexts be an advantage, but in others it
may be burdensome. In all cases it lends some arbi-
trariness to the criterion. Also, the criterion directly
measures only imbalances in x1, . . . , xk . In contrast,
d2(z;x1, . . . ,xk) measures imbalances in linear com-
binations of x1, . . . ,xk as much as in these variables
themselves, lets the data drive the weighting scheme,
upweighting discrepancies along variables with less
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variation in general, and has the advantage of easy cal-
ibration against χ2 tables.

Altman (1985), Begg (1990) and Senn (1994) criti-
cize the use of balance tests to decide which covariates
to adjust for in the outcome analysis of a clinical trial,
arguing that these judgments should rather be made on
the basis of the prognostic value of the covariate. These
criticisms are sometimes taken to support the stronger
conclusion that balance tests are inappropriate for any
purpose. The criticisms do not, however, speak against
the use of balance tests to detect problems of imple-
mentation, nor do they preclude a possible role for as-
sessments of balance in the interpretation of study re-
sults (Begg, 1990). Indeed, the CONSORT statement on
reporting in clinical trials (Begg et al., 1996) recom-
mends that reports include assessments of balance on
variables of possible prognostic value.

Section 5 established optimality of tests based on d

and d2 within one class of balance criteria and under
certain conditions, but in some settings other statistics
may be better equipped to reveal biased assignment.
For instance, in some clinical trials that enroll patients
sequentially and at the discretion of their physicians it
is possible for the physician to guess or infer the treat-
ment to which a potential patient would be assigned;
the methods of Berger and Exner (1999) and Berger
(2005) model patterns of assignment that would occur
if physicians were using this foreknowledge to the ad-
vantage of one assignment arm or the other, and may
have greater power in such situations.

When subclassifying or matching on the propensity
score, systematic appraisals of balance are needed to
check and tune the propensity adjustment (Rosenbaum
and Rubin, 1984). An exact propensity stratification
would make an observational study as well-balanced as
if its treatment conditions had been assigned randomly
within the strata, but the inevitably more crude propen-
sity stratifications that are available in practice may
yield less balance. Balance tests based on d2 are par-
ticularly well-suited to adjudicate the success or fail-
ure of a given inexact propensity model and stratifica-
tion procedure. In contrast with the case of randomized
assignment, propensity adjustment inevitably leaves at
least some within-stratum variation in probabilities of
assignment to treatment, making it certain that the hy-
pothesis of unbiased allocation is false, at least in detail
(Hansen, 2008). One hopes, however, that the bias is
sufficiently small so as not to imbalance covariates dis-
cernibly more than random assignment would be ex-
pected to have done, and this is precisely the question
that d2 addresses. With its focus on the randomization

distribution, it avoids modeling treatment and control
observations as having been sampled from respective
superpopulations, an undesirable feature of many other
balance tests (Imai et al., 2008). Another advantage of
d and d2 for observational studies is that they apply
without modification to matched data, by treating the
matched sets as strata; likelihood ratio tests of logistic
regression models, by contrast, are not consistent when
used in this way (Agresti, 2002, Section 6.3.4).

APPENDIX: PROOF OF PROPOSITION 5.1

Let there be constants {xνbi}, {mνbi}, and ran-
dom indicator variables {Zνbi}, arranged in trian-
gular arrays the νth rows of which contain nν en-
tries, xt

ν = (xt
ν1, . . . ,xt

νBν
), mt

ν = (mt
ν1, . . . ,mt

νBν
)

and Zt
ν = (Zt

ν1, . . . ,Zt
νBν

), respectively, where xνb =
(xνb1, . . . , xνbnνb

)t , mνb = (mνb1, . . . ,mνbnνb
)t and

Zνb = (Zνb1, . . . ,Zνbnνb
)t , for some whole numbers

Bν and nν1, . . . , nνBν . Within a given row ν, xνb,mνb,

and Zνb describe cluster totals on a variable x, clus-
ter sizes (averaging to m̄νb) and treatment assignments
within block b, any b ≤ Bν . Suppose 1 ≤ nνtb < nνb

for all ν, b, and assume of the random variables Zνb

that with probability 1, Zt
νb1 = nνtb for each ν and

b ≤ Bν ; say vectors zν that lack this property are ex-
cluded. The null hypothesis asserts that for each ν and
block b ≤ Bν , P(Zνbi = 1) is the same for all indices i.
Alternately put, its probability density P(zν) vanishes
for excluded zν and otherwise is proportional to (7)
with ψx ≡ 0. For alternatives Q to this null, define (for
nonexcluded zν ) a likelihood proportional to (7), with
bias function ψx(·) the same for all ν. Assume of this
sequence of models that:

A1 {mνbi} is uniformly bounded, and {nνtb/nνb} is
uniformly bounded away from 0 and 1;

A2 weights wνb have the property that wνb/w
∗
νb is

uniformly bounded away from 0 and ∞, where
w∗

νb ∝ m̄νbnνtb(1 − nνtb/nνb) and
∑

b w∗
νb = 1;

A3 for some c, supb,i |xνbi − c| ↓ 0 and
∑

b≤Bν∑
i (xνbi − c)2 is O(1) as ν → ∞;

A4 ψx is differentiable at c, where c is the constant
referred to in A3.

Condition A1 has the side-effect of limiting the diver-
gence of w∗

νb and other common weighting schemes;
should weights wνb be proportional to the number of
subjects in a block, the number of treatment group
subjects in a block, or the total of controls by block,
then by condition A1, w∗

νb/wνb will be universally
bounded away from 0 and ∞. In other words, given
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A1, condition A2 is not restrictive. Condition A1
also ensures that

∑
b hνbm̄νb is O(nν). Condition

A3 ensures tightening dispersion of x’s around c. In
particular, combined with A1, condition A3 entails∑

b w∗
νbs

2
νb(xνb)/m̄νb is O(n−1

ν ), or that with weight-
ing by either w∗

ν or wν , the weighted average of
block mean differences d(Zν,xν) has variance of or-
der O(n−2

ν )—see Proposition 3.1 and Corollary 3.1.
We establish Proposition 5.1 using principles of con-

tiguity (Le Cam, 1960; Hájek and Šidák, 1967), which
describe the limiting Q-distribution of a test statistic
t (Z) in terms of the limiting joint distribution, under P ,
of (t (Z), log dQ

dP
(Z)). A technical lemma, Lemma A.1,

is needed, after which contiguity results are invoked to
establish Lemma A.2 (from which the proposition is
immediate).

LEMMA A.1. Under the hypotheses of Proposi-
tion 5.1,

log
dQ

dP
(Z)

P⇒ N

(
−1

2
β2Ks2

0x, β
2Ks2

0x

)

(where “ P⇒” denotes convergence in distribution under
P ).

LEMMA A.2. Under the hypotheses of Proposi-
tion 5.1,

d(Zν,xν)√
VarP (d(Zν,xν))

Q⇒ N

(
β

s2
wx

vwx

,1
)
.

A.1 Proof of Lemma A.1

Without loss of generality, the c named in condi-
tions A3 and A4 is 0. Then one has ψx(x) = ψ ′

x(0)x +
o(|x|) = βx + xe(x), where, because of condition A3,
maxb,i |e(xνbi)| ↓ 0 as ν ↑ ∞. Since Q is defined by
(7) and P is defined by (7) without the ψx term, one
can write

log
dQ

dP
(Zνb)

= β
∑
b

Zt
νb(xνb − x̄νb)

+∑
b

Zt
νb

(
xνbe(xνb) − xνbe(xνb)

)
(A.1)

+ κνP − κνQ

=: Xν + Yν − (κνQ − κνP ),

for appropriate constants κνP , κνQ.
By calculations similar to those justifying Propo-

sition 3.1, VarP (Xν) = β2 ∑
b hνbs

2(xνb). By condi-
tion A3 and (10), this variance approaches β2Ks2

0x .

By the discussion following (3), VarP (Yν) = ∑
b hνb ×

s2(xνbe(xνb)). By condition A3, this is O(e2
ν) as ν ↑

∞, where eν := supb,i |e(xνbi)|. By condition A3 and
A4, of course, eν ↓ 0 as ν ↑ ∞; thus VarP (Yν) ↓ 0 as
ν ↑ ∞. Since (as we have seen) VarP (Xν) is O(1), it
follows also that CovP (Xν,Yν) = O(eν), and overall
VarP (Xν + Yν) → β2Ks2

0x as ν ↑ ∞.
Clearly both Xν and Yν have expectation 0, under P.

Since the random term Xν + Yν is, as in Section 3.2,
a sum of totals of simple random samples, its limiting
law (under P ) must be N(0, β2Ks2

0x).
It remains to be shown that κνQ − κνP → 1

2β2Ks2
0x .

Since EP ((dQ/dP )(Z)) = 1, exp{κνQ − κνP } =
EP (eXν+Yν ). From what was just shown it follows im-

mediately that eXν+Yν
P⇒ eN(0,β2Ks2

0x), the expectation
of which equals the moment generating function of the
standard Normal distribution evaluated at βK2s2

0x , or
exp{1

2β2s2
0x}. So the conclusion follows if we can es-

tablish that EP (eXν+Yν ) converges to E(eN(0,β2Ks2
0x)).

This would follow from uniform integrability of the
random variables eXν+Yν , which would follow in turn
from supn EP (e(1+ε)(Xν+Yν)) < ∞, any ε > 0.

The rest of the argument verifies this by establishing
the technical condition that lim supν EP (exp{√2(Xν +
Yν)}) < ∞. We make use of a theorem of Hoeffding
(1963), to the effect that the expectation of a convex
continuous function of a sum of a simple random sam-
ple is bounded above by the expectation of the same
function of a similarly sized with-replacement sam-
ple from the same population, and of the fact from
calculus that if for a triangular array {cij } of nonneg-
ative numbers, maxj cij ↓ 0 while

∑
j cij → λ, then∏

j (1 + cij ) → eλ. Write mνb(t) for the moment gen-
erating function of Zt

νb(ψx(xνb) − ψx(x)νb), so that
EP (et(Xν+Yν)) = ∏

b mνb(t). Under P , Zt
νb(ψx(xνb) −

ψx(x)νb) is the sum of a simple random sample
of size nνtb, and by Hoeffding’s theorem mνb(t) ≤
(m̃νb(t))

nνtb , where m̃νb(t) is the moment generat-
ing function of a single draw, Dνb, from {ψx(xνbi) −
ψx(x)νbi : i ≤ nνb}. By Taylor approximation, for each
ν and b, m̃νb(

√
2) = 1 + Ep(D2

νb exp{t∗νbDνb}), some
t∗νb ∈ [0,

√
2]. We now need to show that maxb Ep(D2

νb

exp{t∗νbDνb}) ↓ 0 and
∑

b nνtbEp(D2
νb exp{t∗νbDνb})

is O(1). By condition A3, as ν increases D2
νb ×

exp{t∗νbDνb} is deterministically bounded by constants
tending to 0, entailing maxb Ep(D2

νb exp{t∗νbDνb}) ↓ 0.
exp{t∗νbDνb} also declines to 0 deterministically, so
that the sum of nνtbEp(D2

νb exp{t∗νbDνb}) is O(1)

if
∑

b nνtbEp(D2
νb) = ∑

b nνtbσ
2(ψx(xνb)) is. Now
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∑
b nνtbσ

2(ψx(xνb)) = ∑
b nνtbβ

2σ 2(xνb) +∑
b nνtbσ

2(ψx(xνb) − βxνb) + 2
∑

b nνtbβσ(xνb,

ψx(xνb) − βxνb). Invoking condition A3, the first of
these three sums may be seen to be O(1), and the latter
two O(e2

ν) and O(eν), respectively, as ν ↑ ∞. It fol-
lows that

∏
b(m̃νb(

√
2))nνtb , and hence

∏
b mνb(

√
2),

are O(1), confirming that {eXν+Yν : l = 1, . . .} is uni-
formly integrable.

A.2 Proof of Lemma A.2

Write Tν := VarP (d(Zν,xν))
−1/2d(Zν,xν). By ar-

guments of Section 3.2, Tν
P⇒ N(0,1). Combining this

with Lemma A.1, one has that(
Tν, log

dQ

dP
(Zν)

)
P⇒ N

[
(0,−σ 2/2),

(
1 r

r σ 2

)]
,

for some as yet to be determined r . This establishes the
premise of Le Cam’s Third Lemma (Le Cam, 1960;
Hájek and Šidák, 1967), the conclusion of which is
that the limit law under Q of the random variable Tν

is N(r,1). We now calculate r .
Using the notation of (A.1), Cov(Tν, log dQ

dP
(Zν)) =

Cov(Tν,Xν) + Cov(Tν, Yν). Now |Cov(Tν, Yν)| ≤
(Var(Tν)Var(Yν))

1/2 = Var(Yν)
1/2, which was shown

in the proof of Lemma A.1 to decline to 0 as ν in-
creases. Considering only nonexcluded treatment as-
signments Zν ,

CovP (Tn,Xν)

= V −1/2CovP

(
B∑

b=1

wνb

hνbm̄νb

Zt
νbxνb,

∑
b

βZt
νbxνb

)

= βV −1/2
∑
b

wb

hνbm̄νb

VarP (Zt
νbxνb)

= βV −1/2
∑
b

wbs
2(xνb)/m̄νb,

writing V for VarP (d(Zν,xν)), invoking independence
of Zb and Zb′ , b �= b′, and evaluating VarP (Zt

bxb) in
the same manner as led to Proposition 3.1. According

to (11), then, CovP (Tν,Xν) → β
s2
wx

vwx
. It follows that

r = β
s2
wx

vwx
.
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