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Abstract: We consider estimation of a step function f from noisy obser-
vations of a deconvolution φ ∗ f , where φ is some bounded L1-function.
We use a penalized least squares estimator to reconstruct the signal f from
the observations, with penalty equal to the number of jumps of the recon-
struction. Asymptotically, it is possible to correctly estimate the number
of jumps with probability one. Given that the number of jumps is correctly
estimated, we show that for a bounded kernel φ the corresponding esti-
mates of the jump locations and jump heights are n−1/2 consistent and
converge to a joint normal distribution with covariance structure depend-
ing on φ. As special case we obtain the asymptotic distribution of the least
squares estimator in multiphase regression and generalizations thereof. Fi-
nally, singular integral kernels are briefly discussed and it is shown that the
n−1/2-rate can be improved.
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1. Introduction

Assume we have observations from a regression model given by

Y =
(
(Φf)

(
xi

)
+ εi

)n

i=1
, (1)

where Φf = φ ∗ f denotes convolution of some L1-functions φ and f , ε1, ε2, . . .
are i.i.d. mean zero random variables with finite second moment, and xi =
xi,n, i = 1, . . . , n is a triangular scheme of design points in [0, 1], where we
suppress throughout the dependence on n and simply write xi. In the following
we denote model (1) as an inverse (deconvolution) regression model and we
assume throughout that φ is known. Suppose the objective function f : R → R

is locally constant, i.e. a piecewise constant function with at most k jumps given
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Fig 1. Noisy observations of a blurred step function. The dots represent the observations and
the black line the blurred function Φf , where Φ represents convolution with the gauss kernel.
The gray line shows the original step function f , which is to be estimated.

by

f(x) =

k+1∑

i=1

bi1[τi−1 ,τi)(x) , (2)

0 < τ1 < · · · < τk < 1 and k ∈ N possibly unknown (see Figure 1). Throughout
this paper we will set τ0 := 0 and τk+1 := 1. Hence, we will assume that all
jumps occur in [0, 1], though the functions are defined on the reals for technical
reasons. To keep the presentation simple, we further assume that f vanishes
outside of [0, 1]. We mention, however, that our results remain valid as long as
f ∈ L1∩L2, where f has a continuous extension at the boundaries of [0, 1]. From
Figure 1 the difficulty of estimating jumps in inverse regression is apparent: Due
to the smoothing by φ, jumps only appear as small smooth changes in Φf .
In this paper we show that the joint least squares estimator θ̂n of jumps and
heights

θ = (b1, τ1, b2, τ2, . . . , bk, τk, bk+1) (3)

is n−1/2 consistent and follows a multivariate normal limit law. Roughly speak-
ing, convolution leads asymptotically to an average of an infinite number of
r.v.’s around the jump location and hence a central limit theorem applies. This
means that for a bounded kernel φ (under proper identifiability conditions)
jump estimation for locally constant functions in inverse regression is a reg-
ular parametric estimation problem (see e.g. van der Vaart (1998) Theorems
5.21,31 for an elegant formulation of assumptions that do not require differ-
entiability of the score function, which indeed is not valid in our case). This
is in strong contrast to the case of direct regression, i.e. where Φ in (1) is the
identity (see e.g. Carlstein and Müller (1994); Korostelev and Tsybakov (1993);
van de Geer (1988); Müller (1992); Müller and Stadtmüller (1999); Yakir et al.
(1999); Birgé and Massart (2007)). In this case it is known that the LSE con-
verges at the (minimax) n−1 rate (see Korostelëv (1987)) and its distribution
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(after centering and scaling with n) is given as the minimizer of a certain ran-
dom walk process (Yao and Au (1989)). Moreover, in direct regression problems
the estimators of the jump heights and the locations of the jumps are mutually
asymptotically independent. In inverse regression the situation is completely
different. In general, all components of n1/2(θ̂n − θ) will be dependent asymp-
totically (depending on the kernel φ).

In fact, a main motivation to consider the space of locally constant func-
tions as in (2) stems from the observation that, in general, deconvolution is a
difficult problem, which is reflected by minimax rates of convergence that can
be arbitrarily slow, e.g. (logn)−β rates as for supersmooth (e.g. Gaussian) de-
convolution when f is a function of Hölder smoothness β > 0 (cf. Fan (1991);
Cavalier and Tsybakov (2002); Butucea and Tsybakov (2008a,b) among many
others). However, we stress that in many practical situations, Gaussian decon-
volution is still applied, leading to satisfactory results (see e.g. Bissantz et al.
(2007) for an example in astrophysics). At first glance this seems to be contradic-
tory. The reason is that often a minimax approach reflects a rather pessimistic
point of view, in particular in large function classes such as Sobolev or Besov
spaces. These spaces contain functions which are difficult to recover in decon-
volution, although in many practical situations they can be excluded apriori. In
fact, often more restrictive modeling is possible (and required) which may result
in reasonably good rates of convergence. In this paper we will show that the as-
sumption of locally constant functions will allow for an n−1/2-rate of convergence
under rather general conditions on the convolution kernel. These conditions are
borrowed from the theory of radial basis functions in native Hilbert spaces and
from total positivity. They cover super-smooth functions such as the Gauss-
kernel, polynomial kernels φ(x) = xp 1[0,1)(x) with p = 0, 1, . . . and continuous

symmetric functions φ which have a Fourier transform φ̂ not decaying faster
than a rational function, i.e. C(1 + |x|n0)−1 ≤ |φ̂(x)| for some n0 ∈ N, C > 0
and all x ∈ R.

So far, we have assumed that the number of jumps is known in advance. If the
number of jumps is unknown, we furthermore show that, under the additional
assumption of subgaussian tails of the error distribution, the number of jumps
can be asymptotically estimated correctly with probability one. This property
has been denoted by Fan and Li (2004) as the “oracle property” which guaran-
tees that the asymptotic distribution of the least squares estimator remains the
same as for an unknown number of jumps. We are aware, of course, of possible
pitfalls of the “oracle property” which transfer to our case as well. We refer to
Leeb and Pötscher (2006, 2008) for a careful discussion.

We mention that our results can also be extended to more general Fredholm
integral operators of the type Φf =

∫
K(x, y)f(y)dy with continuous kernel

K : [0, 1] × R → R (see Boysen, 2006). For reasons of simplicity and ease of
notation we do not treat this case here.

A classical model which fits into our framework was given by Quandt (1958).
He introduced a linear regression model which obeys two separate regimes and
where the change-point is not known. This model is called two-phase regression
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and inference in this setting was studied by Quandt (1960), Sprent (1961),
Hinkley (1969) and more recently by van de Geer (1988), Yakir et al. (1999)
and Koul et al. (2003), among others. If the objective function f is assumed to
be continuous, two-phase regression can be modeled by an inverse regression
model with a polynomial kernel with p = 0, i.e. φ(x) = 1[0,1)(x). In this setting

the n−1/2 rate and the asymptotic distribution were derived by Hinkley (1969)
and – for more general segmented regression models – by Feder (1975). From
the perspective of statistical inverse problems their results are quite natural to
understand: multiphase regression corresponds to estimation of a jump function
in a noisy Volterra equation where the location of jumps correspond to the kinks
of the multiphase regression function.

Our results generalize known results on the estimation of the intersection in
two phase regression to the case where the objective function has an arbitrary
number of phases and is piecewise polynomial of order p+ 1, with p continuous
derivatives and a (p+1)-th derivative, which is a step function. For piecewise lin-
ear regression (p = 1) in a deconvolution context this problem occurs in rheology
where the relaxation time spectrum has to be estimated from measurements of
the dynamic moduli of materials (cf. Roths et al., 2000). Other applications stem
from biophysics, where the ion-channel activity of lipid membranes are measured
by impedance spectroscopy and the jump locations indicate different opening
states (cf. Schmitt et al., 2006; Römer et al., 2004). We obtain the result that
the rate of estimating the change-point does not depend on p, whereas in general
nonparametric regression settings, the convergence rates for estimating a jump
in the p-th derivative become slower as p grows (see Goldenshluger et al., 2006)
and the references given there.

The first one to investigate the change-point problem in the framework of a
statistical inverse problem was Neumann (1997), who considered the estimation
of a change-point in a density deconvolution model Y = X+ξ with known error
density fξ. He treated the case that the density of X is bounded, has one jump at
τ and is Lipschitz continuous elsewhere. In this setting τ can be estimated at a
rate of min(n−1/(2β+1), n−1/(β+3/2)), provided the tails of the Fourier transform

f̂ξ(x) decrease at a rate of |x|−β. Moreover, he proved that these rates are opti-
mal in a minimax sense. This result was extended by Goldenshluger et al. (2006)
(in a white noise model) to classes of functions f which can be written as a sum
of a step function and a function with smoothm-th derivative. They showed that
in this case the minimax rates are of order min(n−1/(2β+1), n−(m+1)/(2β+2m+1)).
If the smooth part of the function of interest belongs to a Paley-Wiener class,
they show that a rate of min(n−1/2, n−1/(2β+1)) can be obtained up to a loga-
rithmic factor. Hence, the specific choice of locally constant jump functions in
(2) used in this work comes close to the super-smooth case for β ≥ 1/2, without
the additional logarithmic factor. This seems quite natural, because piecewise
constant functions are even more regular than piecewise super-smooth func-
tions. Moreover, we will indicate that similar rates hold in the case of β < 1/2
if the assumption on the boundedness of the kernel is dropped (see Remark 3).
Recently, Goldenshluger et al. (2008a,b) generalize the above mentioned results
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to a unifying framework of sequence space models covering delay and amplitude
estimation, estimation of change-points in derivatives and change point estima-
tion in a convolution white noise model. Finally, we stress another difference
to our approach: These and other optimal estimation methods for jump points
are performed in two steps, a localization step and an optimization step. For
our method the estimator is computed in one (nonlinear) optimization step. We
mention, however, that this may lead to difficult global numerical optimization
problems, because in general the underlying (penalized) least squares problem
need not be convex, similar as in nonlinear regression or more generally, for
M -estimators. This is in contrast to the direct case, where computation of the
location of jumps can be performed in O(n2) steps (Friedrich et al., 2008). A
careful discussion is beyond the scope of this paper and will be treated sepa-
rately.

This work is structured as follows. Section 2 gives some basic notation and
the main assumptions. The estimate and its asymptotic properties are given in
section 3 and the proof of the main result can be found in section 4. Finally, in
section 5 we derive the required results from the theory of radial basis functions
which yields sufficient conditions on φ for the asymptotic normality of the LSE.

2. Model assumptions and notation

2.1. Notation

Let γ0 = 0, γk+1 = 1 and define

Γk := {(γ0, γ1, . . . , γk+1) : 0 < γ1 < · · · < γk < 1}

as the set of possible jumps of f in (1). Further denote the corresponding func-
tion space of locally constant functions with at most k jumps by

Tk :=

{
k+1∑

i=1

bi1[τi−1,τi)(x) : τ ∈ Γk , bi ∈ R

}
, k ∈ N.

Write T∞ :=
⋃∞

k=1 Tk for the set of all step functions on R with a finite but ar-
bitrary number of jumps, where we exclude an isolated jump at the end points
of the interval [0, 1]. Recall, that outside of [0, 1] these functions vanish. Let
Tk,R = {g ∈ Tk : ‖g‖∞ ≤ R} as well as T∞,R :=

⋃∞
k=1 Tk,R the corresponding

spaces of uniformly bounded functions for some R > 0. If not mentioned oth-
erwise, the restriction of these spaces to [0, 1] are considered to be subspaces of
L2([0, 1]).

As usual, ‖ · ‖2 will denote the L2(R) norm, 〈·, ·〉2 the corresponding inner
product and ‖ ·‖∞ the supremum norm. Additionally, define the empirical norm
‖ · ‖n and the empirical inner product 〈·, ·〉n by

‖f‖2
n :=

1

n

n∑

i=1

f2(xi) as well as 〈f, g〉n :=
1

n

n∑

i=1

f(xi)g(xi),
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where x1, . . . , xn are the design points. From the context it will be clear always
that the index n = 2 refers to the L2-norm. Similarly set

‖y‖2
n :=

1

n

n∑

i=1

y2
i as well as 〈y, z〉n :=

1

n

n∑

i=1

yizi

for y, z ∈ Rn. Write g(t+) := limxցt g(x) for the right limit of g in t and
g(t−) := limxրt g(x) for the corresponding left limit. For some proper function
g : R → R define the set of jump points of g as

J (g) := {t ∈ [0, 1] : g(t−) 6= g(t+)} (4)

and J#(f) := #J (f) + 1, where #J (f) denotes the number of jumps. Define
the distance of some point a ∈ R to the set B ⊂ R as

d(a, B) = inf
b∈B

|a− b|

and, slightly abusing notation, the Hausdorff distance of two sets A,B as

d(A,B) = max{sup
a∈A

d(a, B) , sup
b∈B

d(b, A)} .

Finally, for ease of notation for any a, b ∈ R, [a, b] and (a, b) always denote the
intervals [min(a, b),max(a, b)] and (min(a, b),max(a, b)), respectively.

2.2. Assumptions

Assumptions on the error If the number of jumps is known the following
basic assumption is sufficient to deduce the n−1/2 rates of convergence for the
least squares estimates.

Assumption A. The array (ε1, . . . , εn) consists of independent identically dis-
tributed random variables with mean zero for every n. Additionally, assume

E(ε21) = σ2 <∞ .

If the number of jumps of the objective function is unknown, we will addi-
tionally need that the error satisfies the following subgaussian condition.

(A1) There exists some α > 0 such that E(exp(ε21/α)) <∞.

Assumptions on the kernel We require the following independence assump-
tion.

Assumption B. Let

∆φ(x, a, b) :=






∫ b

a

φ(x− y)dy b 6= a ,

φ(x− a) b = a .

(5)
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Assume that φ ∈ L1(R)∩L∞(R) is piecewise Lipschitz continuous with finitely
many jumps. Additionally, the functions

∆φ(x, τ0, τ1) , . . . , ∆φ(x, τk, τk+1) , ∆φ(x, τ1, τ1) , . . . , ∆φ(x, τk, τk)

are linearly independent for every choice of k ∈ N and

0 = τ0 < τ1 < τ2 < · · · < τk < τk+1 = 1, (6)

Remark 1. We mention that Assumption B implies that the functions

(Φ1[τ0,τ1))(·), (Φ1[τ1,τ2))(·), . . . , (Φ1[τk,τk+1))(·) (7)

are linearly independent for any parameter vector (τ0, . . . , τk+1) as in (6).

The following Theorem 2.2 gives some general conditions, which are sufficient
for φ to satisfy Assumption B. To this end recall the definition of extended sign-
regularity as given in Karlin and Studden (1966). See also Karlin (1968) for
many examples.

Definition 2.1. Fix k ∈ N and let φ ∈ Ck−1(R), t1 ≤ · · · ≤ tk, ti ∈ R. Let for
j = 1, . . . , k

φj,t1,...,tk
(x) =

{
φ(x− tj) : tj−1 < tj

φ(r)(x− tj) : tj−r−1 < tj−r = · · · = tj ,

where t0 is set to −∞ and 1 ≤ r < k. Moreover, define

φ∗

(
s1, . . . , sk

t1, . . . , tk

)
= det

(
φj,t1,...,tk

(si)
)k
i,j=1

.

The function φ will be called extended sign regular of order k (ESRk) on R,
provided that for each r = 1, . . . , k there exists εr ∈ {−1, 1} such that

εrφ
∗

(
s1, . . . , sr

t1, . . . , tr

)
> 0 ,

for all choices of s1 < s2 < · · · < sr and t1 ≤ t2 ≤ · · · ≤ tr with si, ti ∈ R. It is
called ESR∞ if this holds for any k ∈ N.

Theorem 2.2. The function φ satisfies Assumption B if one of the following
conditions is satisfied.

(i) φ ∈ C(R)∩L1(R) is a symmetric real-valued function with Fourier trans-

form φ̂(x) ≥ 0, such that there exists n0 ∈ {0, 1, 2, . . .} and C > 0 with

C(1 + |x|n0)−1 ≤ |φ̂(x)| for all x ∈ R . (8)

(ii) φ is extended sign regular of order 2k + 2 on R, with 0 <
∫
φ(x)dx <∞.

(iii) The function φ is given by

φ(x) =

{
xp x ∈ [0, 1]

0 else
p ∈ {0, 1, 2, . . .} .
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Examples of kernels satisfying Assumption B The most prominent ex-
ample is the Gauss kernel φ(x) = (2πσ2)−1/2 exp(−(x/σ)2/2) for some fixed
σ > 0. In fact this kernel is well known to be ESR∞ (see Section 3, Example 5
in Karlin and Studden, 1966).

Examples of kernels which satisfy condition (i) of Theorem 2.2 are the Laplace
kernel φ(x) = exp(−|x|)/2, the kernel φ(x) = cos(x) exp(−|x|) and kernels of
the type φ(x) = (1−|x|)p

+ for p = 2, 3, . . . where x+ denotes the positive part of
x. Moreover, the convolution of any two kernels φ1, φ2 satisfying condition (i)
clearly also satisfies this condition.

As mentioned in the introduction it is possible to extend the identifiability
Assumption B to general integrable kernels k(x, y). For example, the Γ-kernels
restricted to the positive reals

k(x, y) =
1

Γ(α)yα
xα−1 exp{−xy}, α > 0

are easily seen to be ESR∞ because exp{xy} has this property. However, in
this paper we will restrict to convolution and we postpone the issue of general
integral kernels to a subsequent paper.

Assumptions on the design points We make the following assumption on
the design points.

Assumption C. There exists a function h : [0, 1] → [cl, cu] with 0 < cl < cu <

∞ and
∫ 1

0
h(x)dx = 1, such that

i

n
=

∫ x(i)

0

h(x)dx+ δi

for all i = 1, . . . , n, with maxi=1,...,n |δi| = OP (n−1/2). Here x(i) denotes the i-th
order statistic of x1, . . . , xn.

Moreover, the design points x1, . . . , xn are independent of the error terms
ε1, . . . , εn.

Dümbgen and Johns (2004) use a similar assumption on the design points.
Note that the above assumption covers random designs as well as fixed designs
generated by a regular density in the sense of Sacks and Ylvisaker (1970). It
is easy to see that Assumption C holds if x1, x2, . . . are i.i.d. random variables
with density g satisfying supp(g) = [0, 1] and 0 < cl < g(x) < cu < ∞ for all
x ∈ [0, 1] and some cl, cu ∈ R. If the design points x1, . . . , xn are nonrandom,
the OP (n−1/2) term above is to be understood as O(n−1/2). For h constant 1,
this includes the case of a uniform (deterministic) design x(i) = i/n. In fact, for
fixed design points all results can be obtained essentially in the same way. The
only argument which has to be slightly modified, is the one based on the law
of the iterated logarithm in the proof of Lemma 4.14. Note that the respective
inequalities remain valid because the random variables ǫi,n defining the error
terms in a triangular scheme can be replaced by a sequence of i.i.d. random
variables without changing the distribution.
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3. Estimate and asymptotic results

Estimate Define the restricted least squares estimate f̂n as approximate min-
imizer of the empirical L2 distance to the data in the space Tk,R. More precisely

f̂n ∈ Tk,R and

‖Φf̂n − Y ‖2
n ≤ min

g∈Tk,R

(
‖Φg − Y ‖2

n

)
+ op(n−1) . (9)

The minimizer of the functional on the right hand side always exists (compare
Lemma 4.7). Note that we do not assume that the minimum is attained, but
only that the functional above can be minimized up to some term of order
op(n−1). It does not need to be unique. This assumption allows for numerical
approximation of the minimizer and gives an intuition of the needed precision for
the asymptotic results to be valid. The restriction to functions with ‖f‖∞ ≤ R
is a technical assumption, i.e. that some upper bound of the objective function
is known beforehand.

Note that any estimator f̂n has a representation as

f̂n(x) =

k+1∑

i=1

b̂i1[τ̂i−1,τ̂i)(x) , (10)

with vectors b̂ = (b̂1, . . . , b̂k+1)
t and τ̂ = (τ̂0, . . . , τ̂k+1)

t, where we formally set
τ̂0 := 0, τ̂k+1 := 1. This is the approximate least squares estimates (in the sense
of (9)) of the true parameter vectors b and τ given by equation (2). Set

θ̂n = (b̂1, τ̂1, b̂2, τ̂2, . . . , b̂k, τ̂k, b̂k+1) (11)

as the least squares estimator of the combined parameter vector θ given in (3).
If the number of jumps is unknown, a different estimate is needed. In this

case, assume that the penalized least squares estimate f̂λn
satisfies f̂λn

∈ T∞,R

and is defined as any solution of

‖Φf̂λn
− Y ‖2

n + λnJ#(f̂λn
) ≤ min

g∈T∞,R

(
‖Φg − Y ‖2

n + λnJ#(g)
)

+ op(n−1) , (12)

where λn > 0 is some smoothing parameter, s.t. λn → 0 as n → ∞.

Asymptotic results Before we state the main result, we first define the map
ν : [0, 1] 7→ R2k+1 by

ν(x) =





∆φ(x, τ0, τ1)
(b1 − b2)∆φ(x, τ1, τ1)

∆φ(x, τ1, τ2)
...

(bk − bk+1)∆φ(x, τk, τk)
∆φ(x, τk, τk+1))





, (13)



L. Boysen et al./Jump estimation in inverse regression 1331

and the (2k + 1) × (2k + 1) matrix V by its entries

(V )ij =

∫ 1

0

(ν(x)ν(x)t)ij h(x)dx . (14)

Here h is the design density satisfying Assumption C. Now we are able to for-
mulate the asymptotic result for the least squares estimator.

Theorem 3.1. Suppose the Assumptions A, B and C are met. Let f̂n and V be
given by (10) and (14), respectively. Set θ as the parameter vector of f given in

(3), and θ̂n as the corresponding vector of estimates defined by (11). Given (9)
and model (1), then

(i) V is positive definite.

(ii)
√
n(θ̂n − θ)

L−→ N(0, σ2V −1).

Moreover,

(iii) ‖Φf − Φf̂n‖2 = OP (n−1/2).

(iv) d(J (f),J (f̂n)) = OP (n−1/2).

(v) ‖f − f̂n‖2 = OP (n−1/4).

Note that parts (iv),(v) of the last theorem highlight the ’degree of ill posed-
ness of 1/2’ induced by the convolution compared to ordinary jump regression.
Both rates become slower by an exponent 1/2 whereas for the ’forward problem’
(in the terminology of inverse problems) in part (iii) the rates remain the same.

The following theorem implies that the penalized estimator f̂λn
and the re-

stricted least squares estimator f̂n asymptotically coincide, i.e. the number of
jumps in T∞ is asymptotically correctly estimated with probability one. Hence,
conditionally on the correct number of jumps, Theorem 3.1 remains valid. We
mention, however, that the finite sample behavior of the LSE may be affected
significantly by this ’model selection step’. For a discussion of this issue in the
context of regression see Leeb and Pötscher (2006, 2008).

Theorem 3.2. Suppose condition (A1), (12) and the assumptions of Theo-
rem 3.1 are satisfied. If λn → 0 and λnn

1/(1+ǫ) → ∞ for some ǫ > 0 as n→ ∞,
then

lim
n→∞

P
(
#J (f̂λn

) = #J (f)
)

= 1 .

The proofs of Theorem 3.1 and 3.2 can be outlined as follows. For a known
number of jumps an entropy argument yields consistency of the least squares
estimator. It is possible to represent the estimator as the minimizer of a stochas-
tic process, which allows for a local stochastic expansion. This can be used to
derive asymptotic normality. If the number of jumps is unknown, techniques
from empirical process theory can be used to reduce this asymptotically to the
case when the number is known.

The details of proof are given in several steps in section 4.
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Remarks and Extensions

Remark 2. (Noisy Fredholm equations). All results of this chapter can also
be shown for more general integral operators of the type Φf =

∫
K(x, y)f(y)dy

with continuous kernel K : [0, 1]×R → R satisfying supx∈[0,1] ‖K(x, ·)‖L1 <∞.
In this case in definition (5) φ(x − y) has to be replaced by K(x, y). Assump-
tion B can be formulated in the same way. Details will be postponed to a separate
paper.

Remark 3. (Singular kernels). If the integral kernel is unbounded, faster rates
than OP (n−1/2) for estimating the jump location can be achieved. Indeed if φ
is an Abel type kernel φα(x) = x−α1(0,∞)(x) for α ∈ (0, 1) then a jump can be

recovered at a rate of OP (n−1/min(2,3−2α)). For details we refer to a separate
publication. Interestingly, the n−1 sampling rate is achieved as α → 1, which is
well known to be the best possible rate in direct regression for the estimation
of a jump. Further, for singular kernels with a spike stronger than |x|−1 jumps
can be estimated with the same rate as for the direct case, which is achieved as
α → ∞.

Note that the “elbow” in the rates of convergence occurs at α = 1/2, and
that the n−1/2 rate holds for the case where φα is square integrable on bounded
intervals.

This corresponds to findings of Neumann (1997) and Goldenshluger et al.
(2006), who also observe an elbow in the rate of convergence of recovering
a change point in an inverse problem at β = 1/2, if the Fourier transform

of φ̂(x) decreases at rate of |x|−β. Goldenshluger et al. (2006) give a rate of
OP (n−1/min(2,2β+1)) up to a logarithmic term if the smooth part of the func-
tion of interest is in a Paley-Wiener class. From

∣∣φ̂α(x)
∣∣ = |x|−1+αΓ(1 − α)

it follows that the “elbow” for β = 1/2 can be identified with the elbow for
α = 1/2.

Remark 4. (Misspecification of the model). We will briefly discuss the behavior

of the estimator f̂n, when the true function f from model (1) is not an element of

Tk,R. In fact, under certain conditions f̂n converges to a step function t ∈ Tk,R,
s.t. Φt is a best approximation of Φf .

Lemma 3.3. Assume f ∈ L2([0, 1]) with ‖f‖∞ ≤ R and there exists a unique
t ∈ Tk,R, such that

‖Φf − Φt‖2 = min
g∈Tk,R

‖Φf − Φg‖2. (15)

Furthermore, Assumption C holds with h ≡ 1, i.e. x(i) = i/n + δi. For f̂n, the
least squares estimator from (9), it holds

‖Φt− Φf̂n‖2 = oP (1)
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and
‖t− f̂n‖2 = oP (1). (16)

Condition (15) is well known in nonlinear approximation theory (e.g. see
Braess (1986)). Note that, due to injectivity of the operator Φ, the assumption
of a unique minimizer t is equivalent to the assumption of existence of a unique
Φt ∈ Φ(Tk,R), which minimizes the L2-distance from Φf . It would be of great
interest, to relax the assumption of an approximate equidistant design in Lemma
3.3, as well as improving (16), e.g. to an asymptotic distributional law for f̂n.
This is postponed to separate work.

4. Proof of Theorem 3.1 and 3.2

We start with some technical results and then give some entropy bounds on
the spaces of interest. This requires tools of empirical process theory to prove
consistency of the estimates. Afterwards we give a local stochastic expansion of
the minimized process and use this to derive asymptotic normality. Finally we
again use techniques from empirical process theory to show that the penalized
estimate asymptotically coincides with the restricted least squares estimate.
Note that Assumption B is needed to assure identifiability for any number k of
jumps as well as positive definiteness of the asymptotic covariance matrix V .

4.1. Some technical lemmata

In the following we derive some properties of the mapping Φ restricted to the
space of step functions.

Definition 4.1. A family of (possibly random) functions hn, n ∈ N on a domain
D ⊂ R is said to be equi-Lipschitz continuous with constant C, if for any δ > 0,

sup
n∈N

sup
x∈D

|hn(x+ δ) − hn(x)| ≤ C δ (a.e.).

Lemma 4.2. Let φ be a bounded integral kernel, then the following holds true.

(i) For all ǫ > 0 there exists 0 < C0 <∞ such that for all f ∈ T∞

‖Φf‖2
n ≤ C0‖f‖2

L2([0,1]) .

(ii) For all ǫ > 0 the map Φ : ( Tk, ‖ · ‖L2([0,1]) ) → L2([0, 1]) is continuous.
(iii) Given Assumption B, Φ : Tk → L2([0, 1]) is one-to-one.
(iv) The function (Φf) is Lipschitz continuous on R for all f ∈ T∞.
(v) For functions fn ∈ Tk,R, n ∈ N the family hn = Φfn, n ∈ N is equi-

Lipschitz continuous with Lipschitz-constant Cφ = 2kR||φ||L∞
.
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Proof. By Assumption B we have that ‖φ‖L∞
= C < ∞. Recall that f is 0 on

(−∞, 0) and [1,∞). This gives

‖Φf‖2
n ≤ 1

n

n∑

i=1

∫ 1

0

f2(y)φ2(xi − y)dy

≤ C2

∫ 1

0

f2(y)dy,

which proves (i). Similarly we can show ‖Φf‖2 ≤ C‖f‖2
L2([0,1]) for f ∈ Tk which

gives continuity and hence (ii). As argued in the part on the assumptions on the
kernel in section 2.2, (iii) follows from the independence of ∆φ(·, τi, τi+1).

To prove (iv), note that

|(Φ1[a,b))(x) − (Φ1[a,b))(x + δ)| =
∣∣∣
∫ x−a

x−b

φ(y)dy −
∫ x+δ−a

x+δ−b

φ(y)dy
∣∣∣

≤ 2|δ|‖φ‖L∞
,

for any x, δ ∈ R and a, b ∈ R ∪ {−∞,∞}. For f ∈ T∞ with #J (f) < ∞, this
gives

|(Φf)(x) − (Φf)(x + δ)| ≤ δ 2 #J (f) ‖f‖∞‖φ‖L∞
. (17)

The assertion (v) follows directly from (17).

The following lemma provides a link of the empirical and the L2 norm.

Lemma 4.3. (i) Suppose h, cl, cu and δi, for i = 1, . . . , n satisfy Assump-
tion C and f is piecewise Lipschitz continuous on [0, 1], i.e. there exist a

partition I1, . . . , Ik, k <∞, with
⋃k

i=1 Ik = [0, 1] and Ij ∩ Ir = ∅ for j 6= r
such that f |Ij

is Lipschitz for all j = 1, . . . , k. Then

∫ 1

0

f(x)h(x)dx =
1

n

n∑

i=1

f(xi) +OP (n−1/2)

(ii) Let Fk,R the set of piecewise equi-Lipschitz continuous functions, with at
most k jumps, uniformly bounded by R > 0. For any sequence fn in Fk,R,
it holds

OP (n−1/2) + cl‖fn‖2
2 ≤ ‖fn‖2

n ≤ cu‖fn‖2
2 +OP (n−1/2), (18)

with cu, cl depending on the density h only.

Proof. Let H(x) =
∫ x

0
h(x)dx, where h is as in Assumption C. Note that H is

strictly monotone and the inverse H−1 is well defined on [0, 1]. For 0 ≤ a ≤ b ≤ 1
we have that

b− a = H(H−1(b)) −H(H−1(a)) =

∫ H−1(b)

H−1(a)

h(x)dx ≥ cl(H
−1(b) −H−1(a)) .
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Hence H−1 is Lipschitz and so is (f◦H−1)|H(Ij) for all j = 1, . . . , k. By Assump-

tion C we have H−1(i/n − δi) = x(i) with νn := maxi=1,...,n |δi| = OP (n−1/2).
Assume

H−1
([ i− 1

n
,
i

n

])
⊂ Ij and H−1

(
[i/n , i/n− δi]

)
⊂ Ir (19)

for some j, r ∈ {1, . . . , k}. Here [i/n , i/n − δi] is the interval spanned by
i/n, i/n− δi as defined in Section 2. Consequently,

n

∫ i/n

(i−1)/n

f(H−1(x))dx

= f(x(i)) + n

∫ i/n

(i−1)/n

f(H−1(x)) − f(H−1(i/n))dx

+n

∫ i/n

(i−1)/n

f(H−1(i/n)) − f(H−1(i/n− δi))dx

and by Lipschitz continuity of f◦H−1 on [(i− 1)/n, i/n] and [i/n , i/n− δi] we
obtain
∣∣∣∣∣n
∫ i/n

(i−1)/n

f(H−1(x))dx− f(x(i))

∣∣∣∣∣ ≤ cf/cl(1/n+ νn) = OP (n−1/2).

Here cf is the maximum of all k Lipschitz constants for the intervals Ij . For
general i, we get

n

∫ i/n

(i−1)/n

f(H−1(x))dx = f(x(i)) + n

∫ i/n

(i−1)/n

f(H−1(x)) − f(H−1(i/n+ δi))dx

≥ f(x(i)) − 2‖f‖∞ .

Since f is piecewise Lipschitz continuous, f is bounded in supremum norm on
[0, 1]. Denote the points of discontinuity of f by J (f) = {ϑ1, . . . , ϑk}. The
number of i, which do not satisfy (19) is bounded from above by

k + #{i : ϑj ∈ H−1([i/n− νn, i/n+ νn]) for some j = 1, . . . , k}
= k + #{i : H−1(i/n − νn) ≤ ϑj ≤ H−1(i/n+ νn) for some j = 1, . . . , k}
= k + #{i : H(ϑj) − νn ≤ i/n ≤ H(ϑj) + νn for some j = 1, . . . , k}
= k + O(nνn) .

By application of the transformation formula and cf/cl, k, ‖f‖∞ <∞ we get

∣∣∣∣∣
1

n

n∑

i=1

f(xi) −
∫ 1

0

f(x)h(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
1

n

n∑

i=1

f(xi) −
∫ 1

0

f(H−1(x))dx

∣∣∣∣∣

≤ cf/cl(n
−1 + νn) + (k + nνn)n−1‖f‖∞

≤ (cf/cl + ‖f‖∞)((k + 1)n−1 + νn),
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which proves i). Furthermore, the right hand side of the last equation is uni-
formly bounded for all f ∈ Fk,R, which implies

sup
f∈Fk

∣∣∣∣∣
1

n

n∑

i=1

f(xi) −
∫ 1

0

f(x)h(x)dx

∣∣∣∣∣ = O(n−1 + νn) = OP (n−1/2).

Note, that the functions f2 , s.t. f ∈ Fk,R, are bounded and equi-Lipschitz, too.
Finally cl ≤ h(x) ≤ cu for all x ∈ [0, 1] (Assumption C), this yields ii).

4.2. Entropy results

To show consistency of the estimates, we wish to apply results from empirical
process theory. To this end, let us first introduce some additional notation (cf.
van de Geer, 2000).

Given a measure Q, a set of Q-measurable functions G and a real number
δ > 0, define the δ-covering number N(δ, G, Q) as the smallest value of N for
which there exist functions g1, . . . , gN such that for every g ∈ G there is a
j ∈ 1, . . .N with ( ∫

(g − gj)
2dQ

)1/2

≤ δ .

Moreover, define the δ-entropy H of G as

H(δ, G, Q) = logN(δ, G, Q) .

If Q is the Lebesgue measure we will write H(δ, G) and N(δ, G) instead of
H(δ, G, Q) and N(δ, G, Q). Given design points x1, . . . , xn ∈ R, the empirical
measure will be denoted by Qn = n−1

∑n
i=1 δxi

. Note that ‖ · ‖n is the norm
corresponding to the space L2(R, Qn).

Finally, define the entropy integral

J(δ, G, Q) := max
(
δ ,

∫ δ

0

H1/2(u, G, Q)du
)
.

Note that for our purposes, the relevant quantity is the entropy of the space
Gk,R = {Φf : f ∈ Tk,R}. However, it is convenient to first calculate the entropy
of (Tk,R, ‖ · ‖L2([a,b])) and then use Lemma 4.2 to infer on the space Gk,R.

Lemma 4.4. For −∞ < a < b <∞ there exists a constant C > 0 independent
of δ,k and n, such that

H(δ, (Tk,R, ‖ · ‖L2([a,b]))) ≤ C(k + 1)
(
1 + log

(R(k + 1)

δ

))
.

Proof. Define the sets

∆φ(δ) =
{
− R+mc2δ : m = 0, . . . , ⌈2R(c2δ)

−1⌉
}
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and
Γ(δ) =

{
a+mc1δ

2 : m = 1, . . . , ⌊(b− a)(c1δ
2)−1⌋

}
,

where c1, c2 will be defined later. Define the function class H(δ) as

H(δ) =

{
g : g(x) =

k+1∑

i=1

bi1[γi−1,γi)(x) : bi ∈ ∆φ(δ), i = 1, . . . , k + 1,

γ0 = a, γk+1 = b, γi ∈ Γ(δ), γi < γi+1, i = 1, . . . , k

}
.

Now for g0 ∈ Tk,R we can choose g ∈ H(δ) such that d(J (g),J (g0)) ≤ c1δ
2/2,

and that for any x ∈ [a, b] with d(x,J (g)) > c1δ
2/2 we have (g0(x) − g(x))2 ≤

c22δ
2/4. Since g0 has k jumps between a and b we get

‖g0 − g‖2
L2([a,b]) ≤ (b− a)c22

δ2

4
+ k(2R)2c1

δ2

2
.

Choosing c1 = (4kR2)−1 and c2 = (b − a)−1/2 gives ‖g0 − g‖2 ≤ δ. Hence H(δ)
is an δ-covering of (Tk,R, ‖ · ‖L2([a,b])). Since

#H(δ) =

⌈
2R

√
b− a

δ

⌉k+1⌈
(b− a)4kR2

δ2

⌉k

= O

((R(k + 1)

δ

)3k+1
)

the claim is proved.

Lemma 4.4 directly gives that (Tk,R, ‖·‖L2([a,b])) is totally bounded for −∞ <
a < b <∞. Note that (Tk,R, ‖ · ‖L2([a,b])) also contains functions with less than
k jumps and hence is closed. Consequently, it is compact.

Corollary 4.5. The space (Tk,R, ‖ · ‖L2([a,b])) is compact for all a, b satisfying
−∞ < a < b <∞.

We will now use the assumptions on the operator Φ or, to be more precise,
Lemma 4.2, to deduce bounds on the entropy of the space

Gk,R(Φ) := {Φg : g ∈ Tk,R} .

Corollary 4.6. Assume Φ satisfies Assumption B. There exists a constant C2

independent of n,k and R such that

H(δ, Gk,R(Φ), Qn) ≤ C2(k + 1)

(
1 + log

(R(k + 1)

δ

))
.

Proof. By Lemma 4.2, (i) there exist −∞ < a < b < ∞ and 0 < C0 < ∞ such
that

‖Φf − Φg‖n ≤ C0‖f − g‖L2([a,b])

for f, g ∈ Tk. Assume H(δ) is a δ-covering of (Tk,R, ‖ · ‖L2([a,b])) for every δ > 0.
Then H(δ/C0) is a δ-covering of GK(R). Consequently, the claim follows from
Lemma 4.4.
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Again, this implies that the space Gk,R(Φ) equipped with the empirical norm
‖ · ‖n is compact. Consequently the functional ‖ · −Y ‖n has a minimizer in
Gk,R(Φ) for every k. As λnJ#(·) is strictly increasing in the number of jumps
for every λn > 0 this implies the following lemma.

Lemma 4.7. For each λn > 0 the functional ‖·−Y ‖n+λnJ#(·) has a minimizer
in G∞,R(Φ).

4.3. Consistency

To deduce consistency of the jump estimates from the L2 consistency of the
function estimator, a result on the dependency of d(J (f),J (g)) on the L2

distance of f and g is needed. This is given by the following lemma.

Lemma 4.8. Assume f, g ∈ T∞. Then

d(J (f),J (g)) ≤ 4‖f − g‖2
2

(min{|f(t+) − f(t−)| : t ∈ J (f)})2 .

Proof. Let τ ∈ J (f) and γ ∈ J (g), such that |τ − γ| = d(J (f),J (g)). Then

‖f − g‖2
2 ≥ |τ − γ|

(min{|f(t+) − f(t−)| : t ∈ J (f)}
2

)2

,

which proves the assertion.

In order to show consistency of f̂n, we first prove the consistency of Φf̂n. To
this end we require the following result which follows directly from the proof of
Theorem 4.8, page 56 in van de Geer (2000).

Lemma 4.9. Assume ε1, . . . , εn are i.i.d. with mean zero and E(ε21) = σ2 <∞.
Set Gn(R) = {g ∈ G : ‖g‖n ≤ R} and suppose that

1

n
H(δ, Gn(R), Qn) → 0 for all δ > 0, R > 0.

Then

sup
g∈Gn(R)

∣∣〈ε, g〉n
∣∣ = sup

g∈Gn(R)

∣∣∣∣∣
1

n

n∑

i=1

εig(xi)

∣∣∣∣∣ = oP (1)

for every R > 0.

Now we are able to prove consistency of f̂n.

Lemma 4.10. Suppose the Assumptions A, B and C are met. Then Φ−1 is
continuous as mapping from {Φf : f ∈ Tk,R} ⊂ L2([0, 1]) to the space (Tk,R, ‖ ·
‖L2([0,1])) for any k ∈ N, R > 0. Moreover ‖Φf − Φf̂n‖2 = oP (1) and conse-
quently

‖f − f̂n‖2 = oP (1) . (20)
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Proof. Use (9) and Y = Φf + ε to obtain

‖Φf̂n − Φf‖n ≤ 2〈Φ(f̂n − f), εn〉n + o(n−1)

≤ 2 sup
g∈G2k,2R(Φ)

∣∣〈g, εn〉n
∣∣+ o(n−1) ,

since f − f̂n ∈ T2k,2R. By Corollary 4.6

n−1H(δ, G2k,2R(Φ), Qn) → 0 for all δ > 0 .

Hence Lemma 4.9 gives

sup
g∈G2k,2R(Φ)

|〈g, εn〉n| = oP (1) .

This proves ‖Φf − Φf̂n‖n = oP (1). Lemma 4.2 (v), together with Lemma 4.3,
yields

‖Φf − Φf̂n‖2 = oP (1) . (21)

By Corollary 4.5 the space (T2k,2R, ‖ · ‖L2([0,1])) is compact. Lemma 4.2, (iii)
and (ii) yield that the map

Φ : ( T2k,2R, ‖ · ‖L2([0,1]) ) → L2([0, 1])

is continuous and one-to-one. The inverse of a continuous injective mapping f
restricted to the image f(Ω) is continuous if Ω is compact. This gives continuity
of Φ−1 as mapping from {Φf : f ∈ T2k,2R} ⊂ L2([0, 1]) to (T2k,2R, ‖ · ‖L2([0,1])).
Hence, ‖Φf‖2 → 0 implies ‖f‖2 = ‖f‖L2([0,1]) = ‖Φ−1Φf‖L2([0,1]) → 0 for
f ∈ T2k,2R. Consequently (21) implies

‖f − f̂‖2 = oP (1).

This allows us to infer the consistency of the parameter estimates. The fol-
lowing corollary is a direct consequence of Lemma 4.8 and 4.10.

Corollary 4.11. Suppose the prerequisites of Lemma 4.10 are met. In this case

d(J (f),J (f̂n)) = oP (1) ,

as well as #J (f) = #J (f̂n). Moreover, if f is given by (2) and f̂n by (10), we

have for the estimates b̂i of the levels bi that

max
i=1,...,k+1

|b̂i − bi| = op(1) .

Similar to Lemma 4.10 we show Lemma 3.3.

Proof of Lemma 3.3. By definition of f̂n we obtain

‖Φf + ε− Φf̂n‖2
n ≤ ‖Φf + ε− Φt‖2

n + oP (n−1)



L. Boysen et al./Jump estimation in inverse regression 1340

which yields

‖Φf − Φf̂n‖2
n ≤ ‖Φf − Φt‖2

n + 2〈Φf̂n − Φt, ε〉n + oP (n−1).

Since f̂n − t ∈ T2k,2R, application of Lemma 4.9 gives an upper bound for the

empirical process |〈Φf̂n − Φt, ε〉n| ≤ | supg∈T2k,2R
〈Φg − Φt, ε〉n| = oP (1). So we

have
‖Φf − Φf̂n‖2

n ≤ ‖Φf − Φt‖2
n + op(1). (22)

For all x, y ∈ [0, 1] it holds that |Φf(y)−Φf(x)| ≤ ‖f‖∞|Φ1[0,1](y)−Φ1[0,1](x)| ≤
‖f‖∞Cφ|x− y|, where Cφ is chosen as in Lemma 4.2 part (v). Hence the set of
functions Φf − Φg, s.t. g ∈ Tk,R is equi-Lipschitz and bounded by 2R and we
can apply Lemma 4.3 part (ii) (with cl = cu = 1). This together with (22) leads
to

‖Φf − Φt‖2
2 ≤ ‖Φf − Φf̂n‖2

2 ≤ ‖Φf − Φt‖2
2 + oP (1),

where the first inequality follows from the minimization property of t. Conse-
quently we find ∣∣∣‖Φf − Φt‖2

2 − ‖Φf − Φf̂n‖2
2

∣∣∣ = oP (1). (23)

Now assume Φf̂n does not converge to Φt in probability. Then we can choose a
subsequence (Φf̂kn

)n∈N and c, δ1 > 0, such that P (‖Φt−Φf̂kn
‖2 ≥ δ1) > c for all

n ∈ N. Since t is the unique minimum, we have P (‖Φf−Φf̂kn
‖2−‖Φf−Φt‖2 >

δ2) > c for some δ2 > 0. This is a contradiction to (23), which proves the first
claim, i.e.

‖Φt− Φf̂n‖2 = oP (1).

According to the proof of Lemma 4.10, Φ : T2k,2R −→ Φ(T2k,2R) is a homeo-
morphism. Therefore, it has a continuous inverse, which yields convergence of
f̂n to t in probability. This proves the second claim.

4.4. Asymptotic normality

To show asymptotic normality for M-estimators, it is common to assume ex-
istence of the derivative of the function which is minimized. However, as φ is
allowed to have discontinuities, a less restrictive result is needed.

As discussed in Chapter 5.3 of van der Vaart (1998) it is sufficient to assume
existence of a second order Taylor-type expansion. Following this idea, the next
theorem gives the asymptotic normality of the minimizer of a process Zn(θ),
provided it allows for a certain expansion. It is similar to Theorem 5.23 of
van der Vaart (1998), but also covers the case of non i.i.d. random variables,
which is required for the fixed design.

Theorem 4.12. Assume Θ ⊂ Rd is open and θ0 ∈ Θ. Let (Zn(θ))θ∈Θ be a
stochastic process. Assume there exists a sequence of random variables (Wn)n∈N ⊂
Rd and a positive definite matrix V ∈ Rd×d such that

Zn(θ0 + ∆) = Zn(θ0) − 2n−1/2W t
n∆ + ∆tV∆ + Rn(∆) (24)
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with

sup
‖∆‖≤δ

Rn(∆)

‖∆‖2 + n−1

p−→ 0 as n→ ∞ , δ→ 0 , (25)

as well as
Wn

L−→ N(0,Γ) .

If θ̂n is a consistent estimator of θ0 and θ̂n is an approximate minimizer of Zn,
i.e.

‖θ̂n − θ0‖ = oP (1) and Zn(θ̂n) ≤ inf
θ∈Θ

(Zn(θ)) + oP (n−1) ,

then √
n(θ̂n − θ0) = V −1Wn + oP (1) .

Proof. First, we show the
√
n consistency of θ̂n. Set ∆n = (θ̂n − θ0). Since θ̂n is

an approximate minimizer of Zn,

Zn(θ0) + oP (n−1) ≥ Zn(θ̂n) = Zn(θ0 + (θ̂n − θ0))

= Zn(θ0) − 2n−1/2W t
n∆n + ∆t

nV∆n + Rn(∆n) .

Denote by λV the smallest eigenvalue of V . The expansion above implies

oP (n−1) ≥ −‖∆n‖√
n

2W t
n∆n

‖∆n‖
+ λV ‖∆n‖2 + Rn(∆n) .

Observe that the asymptotic normality of Wn implies ‖∆n‖−1W t
n∆n = OP (1).

Now divide by ‖∆n‖2 + n−1 and use condition (25) and the consistency of θ̂n.
This gives

oP

(
(n‖∆n‖2 + 1)−1

)
≥ OP (1)√

n‖∆n‖ + (
√
n‖∆n‖)−1

+
λV

1 + (
√
n‖∆n‖)−2

+ oP (1) .

Now assume
√
n‖∆n‖ p−→ ∞. This leads to

oP (1) ≥ oP (1) + λV ,

which is a contradiction since λV > 0. This shows
√
n‖∆n‖ = OP (1) .

Now we derive the convergence of
√
n∆n to V −1Wn. Observe that V −1Wn =

OP (1). By (25)

nRn(n−1/2V −1Wn) = oP (1) as well as nRn(∆n) = oP (1) .

Together with (24) and the minimizing property of θ̂n this leads to

oP (1) ≥ n
(
Zn(θ0 + ∆n) − Zn(θ0 + n−1/2V −1Wn)

)

= 2(V −1Wn −√
n∆n)tWn + (

√
n∆n)tV (

√
n∆n)

− (V −1Wn)tV (V −1Wn) + oP (1)

= −2(
√
n∆n)tV (V −1Wn) + (

√
n∆n)tV (

√
n∆n)

+ (V −1Wn)tV (V −1Wn) + oP (1)

= (
√
n∆n − V −1Wn)tV (

√
n∆n − V −1Wn) + oP (1) .
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Since V is positive definite, it follows that

‖√n∆n − V −1Wn‖2 = oP (1) ,

which proves the claim.

A second order expansion for the minimized process To derive an
expansion of type (24) for the problem in (9), let us first introduce some notation.
For b, b̃ ∈ Rk+1 and τ, τ̃ ∈ Γk set

g(x, b, τ) =

k+1∑

j=1

bjΦ1[τj−1 ,τj)(x) .

and

Zn(b̃, τ̃) =
1

n

n∑

i=1

(
g(xi, b, τ ) + εi − g(xi, b̃, τ̃)

)2

. (26)

Assume that f and the estimate f̂n in (9) are defined through

Φf(x) =

k+1∑

i=1

biΦ1[τi−1,τi)(x) and Φf̂n(x) =

k+1∑

i=1

b̂iΦ1[τ̂i−1,τ̂i)(x) ,

respectively. By definition of Zn(b̃, τ̃) it is clear that

Zn(b̂, τ̂) ≤ min
(b̃,τ̃)∈[−R,R]k+1×Γk

Zn(b̃, τ̃) + o(n−1) . (27)

To obtain an expansion for Zn(b̃, τ̃), first examine the difference g(x, b, τ) −
g(x, b̃, τ̃).

Lemma 4.13. Suppose Assumption B is satisfied and ν(x) is given by (13).
Define ∆ by

∆ =
(
b̃1 − b1, τ̃1 − τ1, b̃2 − b2, τ̃2 − τ2, . . . , τ̃k − τk, b̃k+1 − bk+1

)t
. (28)

Then

g(x, b, τ)− g(x, b̃, τ̃)

=
k+1∑

j=1

bjΦ1[τj−1 ,τj](x) − b̃jΦ1[τ̃j−1,τ̃j ](x)

= −∆tν(x) + O(‖∆‖2) +

k∑

i=1

O(‖τ − τ̃‖)1[x−τi,x−τ̃i]∩J (φ) 6=∅ .

Note that [x− τi, x− τ̃i] ∩ J (φ) 6= ∅ means that φ has a discontinuity in the
interval with endpoints x− τi and x− τ̃i.
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Proof of Lemma 4.13. Remember #J (φ) <∞ and ‖φ‖∞ <∞.
First assume that τ̃j ≥ τj and φ is Lipschitz continuous on [x − τ̃j, x − τj],

i.e. J (φ) ∩ [x− τ̃j , x− τj] = ∅. Then for all y ∈ [x− τ̃j , x− τj] we have φ(x−
y) − φ(x− τj) = O(|y− τj|). This leads to

Φ1[τj−1 ,τj)(x) − Φ1[τj−1 ,τ̃j)(x) = −
∫ τ̃j

τj

φ(x− y)dy

= −(τ̃j − τj)φ(x− τj) −
∫ τ̃j

τj

(φ(x− y) − φ(x− τj))dy

= (τj − τ̃j)φ(x− τj) −O(1)

∫ τ̃j

τj

|y − τj |dy

= (τj − τ̃j)φ(x− τj) +O((τj − τ̃j)
2) .

If φ has a discontinuity in [x− τ̃j , x− τj ], then

Φ1[τj−1 ,τj)(x) − Φ1[τj−1 ,τ̃j)(x) = (τj − τ̃j)φ(x− τj) +

∫ τ̃j

τj

O(‖φ‖∞)dy

= (τj − τ̃j)φ(x− τj) +O(|τj − τ̃j |) .

The same holds for τ̃j < τj . Note that 1[x−τj ,x−τ̃j ]∩J (φ) 6=∅ is one if and only if
φ has a discontinuity in [x− τ̃j , x− τj]. Consequently,

Φ1[τj−1,τj)(x) − Φ1[τj−1,τ̃j)(x) = (τj − τ̃j)φ(x− τj) +O((τj − τ̃j)
2)

+O(|τj − τ̃j |)1[x−τj,x−τ̃j]∩J (φ) 6=∅ .

Similarly,

Φ1[τj−1 ,τj)(x) − Φ1[τ̃j−1,τj)(x) = (τ̃j−1 − τj−1)φ(x− τj−1)

+O((τj−1 − τ̃j−1)
2) + O(|τj−1 − τ̃j−1|)1[x−τj−1,x−τ̃j−1 ]∩J (φ) 6=∅ .

Remember τ0 = τ̃0 and τk+1 = τ̃k+1, combine the preceding results to obtain

k+1∑

j=1

(
bjΦ1[τj−1 ,τj](x) − b̃jΦ1[τ̃j−1 ,τ̃j](x)

)

=
k+1∑

j=1

(
(bj − b̃j)Φ1[τj−1 ,τj](x) + b̃j

(
Φ1[τj−1,τj ](x) − Φ1[τj−1 ,τ̃j](x)

)

+ b̃j
(
Φ1[τj−1,τ̃j ](x) − Φ1[τ̃j−1 ,τ̃j](x)

))

=

k+1∑

j=1

(
(bj − b̃j)Φ1[τj−1 ,τj](x) + b̃j(τj − τ̃j)φ(x− τj) + O((τj − τ̃j)

2)

+O(|τj − τ̃j |)1[x−τj,x−τ̃j ]∩J (φ) 6=∅ + b̃j(τ̃j−1 − τj−1)φ(x− τj−1)

+O((τj−1 − τ̃j−1)
2) + O(|τj−1 − τ̃j−1|)1[x−τj−1,x−τ̃j−1 ]∩J (φ) 6=∅

)
.
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By b̃j(τj − τ̃j) = bj(τj − τ̃j) + O(‖b− b̃‖ ‖τ − τ̃‖), this gives

g(x, b, τ)− g(x, b̃, τ̃ )

=

k+1∑

j=1

(bj − b̃j)Φ1[τj−1 ,τj](x) +

k∑

j=1

(τj − τ̃j)(bj − bj+1)φ(x− τj)

+O(‖τ − τ̃‖2) + O(‖b− b̃‖ ‖τ − τ̃‖) +
k∑

j=1

O(‖∆‖)1[x−τi,x−τ̃i]∩J (φ) 6=∅ .

Since O(‖b− b̃‖ ‖τ − τ̃‖) = O(‖∆‖2) this proves the claim.

Lemma 4.14. Suppose the Assumptions A, B and C are met. Then the process
Zn(b̃, τ̃ ) allows an expansion of type (24), namely

Zn(b̃, τ̃) = Zn(b, τ ) + 2n−1/2W t
n∆ + ∆tV∆ + Rn(∆) ,

where Rn satisfies condition (25), ∆ is given by (28) and V is the (2k + 1) ×
(2k + 1) matrix defined by (14). Moreover

Wn
L−→ N(0,E(ε21)V ) .

Before we give the proof, we need the following result on the number of design
points contained in a sequence of intervals.

Lemma 4.15. If the design points x1, . . . , xn satisfy Assumption C, then for
any two sequences an, bn, n ∈ N with 0 ≤ an < bn ≤ 1 we have

n−1
(
#{i : xi ∈ [an, bn]}

)
= OP (|bn − an|+ n−1/2).

Proof. The proof is straightforward using that H(x) =
∫ x

0
h(y)dy is strictly

monotone, and that by Assumption C it holds H−1(i/n − δi) = x(i) with

maxi=1,...,n | δi| = OP (n−1/2).

Proof of Lemma 4.14. Expand (26) to obtain

Zn(b̃, τ̃ ) =
2

n

n∑

i=1

εi

(
g(xi, b, τ )− g(xi, b̃, τ̃ )

)

+
1

n

n∑

i=1

(
g(xi, b, τ )− g(xi, b̃, τ̃)

)2

+ ‖ε‖2
n .

(29)

Note that the last term equals Zn(b, τ ). We will first estimate the second term
of (29). Denote the points of discontinuity of φ by J (φ) = {ϑ1, . . . , ϑ#J (φ)}
with ϑ1 < ϑ2 < · · · < ϑ#J (φ). This means

[x− τi, x− τ̃i] ∩ J (φ) 6= ∅ ⇔ ∃s : x ∈ [ϑs + τi, ϑs + τ̃i] .
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By Lemma 4.15,

#{i : xi ∈ [ϑs + τj, ϑs + τ̃j ]} = OP (n|τj − τ̃j| + n1/2) .

This gives

1

n

n∑

i=1

k∑

j=1

#J (φ)∑

s=1

1[ϑs+τj ,ϑs+τ̃j ](xi) =
#J (φ)

n

k∑

j=1

OP (n|τj − τ̃j | + n1/2)

= OP (‖∆‖+ n−1/2) .

The functions νj(x) are piecewise equi-Lipschitz continuous by part (v) of
Lemma 4.2. With the help of Lemma 4.3 this gives

1

n

n∑

i=1

(∆tν(xi))
2 =

1

n

n∑

i=1

2k+1∑

j,r

∆j∆rνj(xi)νr(xj)

=

2k+1∑

j,r

∆j∆r

[∫ 1

0

νj(x)νr(x)h(x)dx+ oP (1)

]

= ∆tV∆ + oP (‖∆‖2) .

Use Lemma 4.13 and the results above to obtain

1

n

n∑

i=1

(g(xi, b, τ )− g(xi, b̃, τ̃ ))
2

=
1

n

n∑

i=1

(
∆tν(xi) + O(‖∆‖2) +O(‖∆‖)

k∑

j=1

#J (φ)∑

s=1

1[ϑs+τj ,ϑs+τ̃j ](xi)

)2

=
1

n

n∑

i=1

(
∆tν(xi) + O(‖∆‖2)

)2
+O(‖∆‖2)OP (‖∆‖ + n−1/2)

= ∆tV∆ +OP (‖∆‖3) + oP (‖∆‖2) ,

where V is given by (14). The remainder terms clearly satisfy condition (25).
Next, examine the first term of (29). Set

Wn = n−1/2
n∑

i=1

εiν(xi)

to derive

1

n

n∑

i=1

εi(g(xi, b, τ )− g(xi, b̃, τ̃))

= −
n∑

i=1

εi

n

(
∆tν(xi) + O(‖∆‖2) +O(‖∆‖)

k∑

j=1

#J (φ)∑

s=1

1[ϑs+τj ,ϑs+τ̃j ](xi)

)

= −∆tWn√
n

+
O(‖∆‖2)

n

n∑

i=1

εi +
O(‖∆‖)

n

n∑

i=1

k∑

j=1

#J (φ)∑

s=1

εi1[ϑs+τj ,ϑs+τ̃j ](xi) .
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The second term is clearly oP (‖∆‖2).
To obtain an upper bound for the third term suppose ϑs − τj < ϑs − τ̃j . Set

il(s, j) = min{i : x(i) ≥ θs − τj} and iu(s, j) = max{i : x(i) < θs − τ̃j} .

Consequently, ∣∣∣∣∣

n∑

i=1

εi1[ϑs+τj ,ϑs+τ̃j ](xi)

∣∣∣∣∣ =

∣∣∣∣∣

iu(s,j)∑

i=il(s,j)

εi

∣∣∣∣∣ .

By the law of the iterated logarithm for ε1, ε2, . . . i.i.d. with E(ε1) = 0 and
E(ε21) < ∞ we have for any sequence (kn)n∈N ⊂ N with lim supn→∞ kn = ∞
that

lim
n→∞

max
j∈{1,...,kn}

(E(ε21)kn log log kn)−1/2

∣∣∣∣∣

j∑

i=1

εi

∣∣∣∣∣ = 1

almost surely. This implies for δn = iu(s, j) − il(s, j) that

max
j=1,...,δn

∣∣∣∣∣

iu(s,j)∑

i=il(s,j)

εi

∣∣∣∣∣ = O((δn log log δn)1/2)

holds almost surely. By Lemma 4.15,

δn = #{i : ϑs − τj ≤ x(i) < ϑs − τ̃j} = OP (n|τj − τ̃j |+
√
n) = OP (n‖∆‖+

√
n) .

Consequently,

n∑

i=1

∣∣∣εi1[ϑs+τj ,ϑs+τ̃j ](xi)
∣∣∣ = OP

(√
(n‖∆‖ + n1/2) log log(n‖∆‖+ n1/2)

)
.

The same can be shown for ϑj − τj ≥ ϑj − τ̃j . Since J (φ) is a finite set and
k <∞, it follows that

O(‖∆‖)
n

n∑

i=1

k∑

j=1

#J (φ)∑

s=1

εi1[ϑs+τj ,ϑs+τ̃j ](xi)

= O(n−1‖∆‖)OP

(√
(n‖∆‖+ n1/2) log log(n‖∆‖+ n1/2)

)
. (30)

To verify condition (25) for this term, note that for ‖∆‖ < n−1/2,

(30) = OP

(
n−5/4

√
log log(n1/2)

)
= oP (n−1) ,

and for ‖∆‖ ≥ n−1/2,

(30) = OP

(
‖∆‖3/2n−1/2

√
log log(n)

)
= oP (‖∆‖2) .
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This gives

1

n

n∑

i=1

εi(g(xi, b, τ )− g(xi, b̃, τ̃)) = −n−1/2∆tWn + oP (‖∆‖2) + oP (n−1) .

Next, take a closer look at Wn. For any a ∈ R2k+1,

atWn =

n∑

i=1

εi

(
n−1/2

2k+1∑

j=1

ajνj(xi)

)

and by similar calculations as in (30)

n∑

i=1

(
n−1/2

2k+1∑

j=1

ajνj(xi)

)2

=
1

n

n∑

i=1

(atν(xi))
2 = atV a+ oP (1) .

By the central limit theorem and the Cramer-Wold device,

Wn
L−→ N(0, σ2V ) ,

where σ2 = E(ε21) and V is given by (14).

Lemma 4.16. Given the Assumptions C and B, the matrix V defined by (14)
is positive definite.

Proof. For any β ∈ R2k+1

βtV β =

∫ ( 2k+1∑

i=1

βiνi(x)

)2

h(x)dx ≥ cl

∫ 1

0

(
2k+1∑

i=1

βiνi(x)

)2

dx .

Observe that by Assumption B, the functions ν1, . . . , ν2k+1 are linearly inde-
pendent as functions in L2([0, 1]), since bi − bi+1 6= 0 for all i = 1, . . . , k. Con-
sequently, for β 6= 0 we have that

∫ 1

0

(
2k+1∑

i=1

βiνi(x)

)2

dx > 0

and thus βtV β > 0.

4.5. Proof of Theorem 3.1

The proof of the main theorem is now a direct consequence of the results given
above. Part (i) follows directly from the proof of Lemma 4.14.

Proof of part (ii) Corollary 4.11 implies ‖θ − θ̂n‖ = oP (1). By relation
(27) and Lemma 4.14 the assumptions of Theorem 4.12 are satisfied. The claim
follows by application of this theorem.



L. Boysen et al./Jump estimation in inverse regression 1348

Proof of part (iii) By Lemma 4.13

∫ 1

0

(
k+1∑

i=1

biΦ1[τi−1 ,τi)(x) − b̂iΦ1[τ̂i−1 ,τ̂i)(x)

)2

dx?

=

∫ 1

0

(
(θ − θ̂n)tν(x)

)2
dx+OP (‖θ − θ̂‖2) = OP (n−1) ,

since ν is bounded. This proves the claim.

Proof of part (v) and part (iv) Note that

‖f − f̂n‖2
2 =

k+1∑

i=1

(bi − b̂i)
2
(

min(τi, τ̂i) − max(τi−1, τ̂i−1)
)

+

k∑

i=1

(
1τi≥τ̂i

(bi − b̂i+1)
2 + 1τi<τ̂i

(bi+1 − b̂i)
2
)∣∣τi − τ̂i

∣∣

= OP (n−1)OP (1) + OP (1)OP (n−1/2) = OP (n−1/2) .

This proves part (v). Part (iv) follows by application of Lemma 4.8.

4.6. Proof of Theorem 3.2

In this section we analyze the case where the number of jumps is unknown.
In order to reconstruct the number of jumps correctly, it is helpful to use

a penalty function which is strictly increasing in the number of jumps. Any
penalty term, which depends on the number of jumps only, is not a pseudo-
norm on T∞,R, since #J (λf) = #J (f) for λ 6= 0. Hence, the standard results
from empirical process theory do not apply. However, it is possible to use similar
techniques in the proofs.

The fact that f̂λn
(approximately) minimizes the penalized L2 functional,

implies that for any f ∈ T∞,R, we get that

‖Φf̂λn
− Y ‖2

n + λnJ#(f̂λn
) ≤ ‖Φf − Y ‖2

n + λnJ#(f) + o(n−1) .

This gives

‖Φf̂λn
− Φf‖2

n + 2〈Φf̂λn
− Φf,−ε〉n + ‖ε‖n + λnJ#(f̂λn

)

≤ ‖ε‖n + λnJ#(f) + o(n−1) ,

which yields the basic inequality

‖Φf̂λn
− Φf‖2

n + λnJ#(f̂λn
) ≤ 2〈Φf̂λn

− Φf, ε〉n + λnJ#(f) + o(n−1) . (31)

Hence, a bound for the term |〈Φf̂λn
− Φf, ε〉n|, would allow immediate conclu-

sions on ‖Φf̂λn
− Φf‖2

n as well as λnJ#(f̂λn
).
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Theorem 4.17. Suppose Assumption A is met and the error satisfies (A1).
Assume supg∈G ‖g‖n ≤ R. There exists a constant C depending only on As-
sumption (A1), such that for all δ > 0 satisfying

√
nδ ≥ C

(∫ R

0

H1/2(u, G, Qn)du ∨R
)

(32)

we have that

P

(
sup
g∈G

∣∣∣∣∣
1

n

n∑

i=1

εig(xi)

∣∣∣∣∣ ≥ δ

)
≤ C exp

(
− nδ2

C2R2

)
. (33)

Proof. See Lemma 3.2, page 29 in van de Geer (2000).

A bound of this type can be obtained from the following exponential inequal-
ity.

Lemma 4.18. Suppose Assumptions A and B are met and the error additionally
satisfies (A1).

There exist constants c1, c2 > 0, such that for all t ≥ c1n
−1/2 we have

P
(

sup
f∈T∞,R

|〈ε,Φf〉n|
‖Φf‖nJ

1/2
# (f)

(
1 + log(J#(f)/‖Φf‖n)+

) ≥ t
)
≤ c2 exp

(
− nt2

c22

)
.

Proof. Set Gk,R(Φ) = {Φg : g ∈ Tk,R}. By Corollary 4.6 there exists a constant
C > 0 independent of u,k,R and n such that

H
(
u, Gk−1,R(Φ), Qn

)
≤ Ck

(
1 + log

(Rk
u

))
.

Compute

∫ δ

0

H1/2
(
u, Gk−1,R(Φ), Qn

)
du

≤
√
Ck

∫ δ

0

√
log
(exp(1)Rk

u

)
du

= eRk
√
Ck

∫ δ
eRk

0

√
− log(u)du ≤ eRk

√
Ck

∫ δ
eRk

0

(− log(u))du

= eRk
√
Ck

(
δ

eRk

(
1 − log

( δ

eRk

)))
= δ

√
Ck(2 + log(R) + log(kδ−1))

≤ C1δ
√
k

(
1 + log

(k
δ
∨ 1
))

= C1δ
√
k

(
1 + log

(k
δ

)

+

)
,

where C1 is some finite constant independent of k and δ. By Theorem 4.17 there
exists some constant C2 only depending on α in the subgaussian error condition
(A1), such that

√
nρ ≥ C2

( ∫ δ

0

H1/2
(
u, Gk−1,R(Φ), Qn

)
du ∨ δ

)
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implies

P
(

sup
g∈G

(n)

k−1,R
(Φ,δ)

|〈g, ε〉n| ≥ ρ
)
≤ C2 exp

(
− nρ2

C2
2δ

2

)
,

where G(n)
k−1,R(Φ, δ) = {g ∈ Gk−1,R(Φ) : ‖g‖n ≤ δ}. Consequently, for all t ≥

C2C1n
−1/2 we have that

P

(
sup

g∈G
(n)

k−1,R
(Φ,δ)

|〈g, ε〉n| ≥ tδ
√
k
(
1 + log

(k
δ

)

+

))

≤ C2 exp
(
−
nt2k

(
1 + log

(
k
δ

)
+

)2

C2
2

)
.

We arrive at

P
(

sup
g∈Gk−1,R(Φ)

|〈ε, g〉n|
‖g‖n

√
k
(
1 + log(k/‖g‖n)+

) ≥ t
)

≤
∞∑

s=1

P

(
sup

g∈Gk−1,R(Φ,21−sR)

|〈ε, g〉n| ≥ t(2−sR)
√
k
(
1 +

(
log
( k

2−sR

))

+

))

≤
∞∑

s=1

C2 exp
(−t2nk(1 + (log(k/R) + s log(2))+)

C2
2

)

≤
∞∑

s=1

C2 exp
(−t2n(1 + (s log(2) − log(R))+)

C2
2

)
.

Splitting this sum at sR := ⌈(1 + log(R))/ log(2)⌉ gives

P
(

sup
g∈Gk−1,R(Φ)

|〈ε, g〉n|
‖g‖n

√
k
(
1 + log(k/‖g‖n)+

) ≥ t
)

≤ C2

⌈1 + log(R)

log(2)

⌉
exp

(−t2n
C2

2

)
+

∞∑

s=sR

C2 exp
(−t2nC3(1 + s log(2))

C2
2

)

≤ C5 exp
(−t2n
C2

2

)
+

∞∑

s=1

C2 exp
(−t2nC4(1 + s)

C2
2

)

≤ C5 exp
(−t2n
C2

2

)
+ exp

(−t2nC4

C2
2

) ∫ ∞

s=0

C2 exp
(−t2nC4s

C2
2

)

≤ C5 exp
(−t2n
C2

2

)
+

C3
2

C4t2n
exp

(−t2nC4

C2
2

)
≤ C6 exp

(
− t2n

C2
4

)
.

Here C3, C4, C5, C6 are constants depending on C1, C2 and R only. The last
inequality holds by t2n ≥ C2

1C
2
2 .

Since the constant C6 does not depend on k, the exponential inequality also
holds if we additionally take the supremum over all k. This proves the claim.
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The above lemma yields upper bounds for the rate of |〈Φf, ε〉n|, which are
stated in the subsequent corollary.

Corollary 4.19. Suppose the prerequisites of Lemma 4.18 are met. Then

sup
f∈T∞,R

|〈Φf, ε〉n|
‖Φf‖n

√
J#(f)

(
1 + log(J#(f)/‖Φf‖n)+

) = OP (n−1/2) .

Moreover, for each ǫ > 0 we have

sup
f∈T∞,R

|〈Φf, ε〉n|
‖Φf‖1−ǫ

n (J#(f))(1+2ǫ)/2
= OP (n−1/2) .

Proof. The first equation follows directly from Lemma 4.18. To show the second
equation, observe that J#(f) ≥ 1 and that

√
x(1 + log(x)) ≤ cx1/2+ǫ for x ≥ 1,

ǫ > 0 and c ≥ (ǫ−1 ∨ 1) Moreover, if c is large enough and x ≥ 0 then x(1 +
log(x−1)) ≤ cx1−ǫ. Combine these observations to derive the second equation
from the first.

Now we are in the position to prove that with probability one the penalized
estimator f̂λn

correctly estimates the number of jumps as n tends to infinity
(given a proper choice of the penalty term).

Proof of Theorem 3.2. Application of Corollary 4.19 to (31) gives

‖Φf̂λn
− Φf‖2

n ≤ ‖Φf̂λn
− Φf‖1−ǫ

n J#(f̂λn
− f)1/2+ǫOP (n−1/2)

+ λn(J#(f) − J#(f̂λn
)) + o(n−1) ,

(34)

where ǫ is given by the condition λnn
1/(1+ǫ) → ∞.

First, assume J#(f̂λn
) ≤ J#(f). Then J#(f̂λn

−f) is bounded and (34) implies
that either

‖Φf̂λn
− Φf‖2

n = O(λn) + o(n−1) or ‖Φf̂λn
− Φf‖1+ǫ

n = Op(n
−1/2) .

Thus, ‖Φf̂λn
− Φf‖n = oP (1). Recall, that J#(f̂λn

) ≤ J#(f), which allowes for

application of Lemma 4.3, to deduce ‖Φf̂λn
− Φf‖2 = oP (1). With the help of

Lemma 4.10 and Lemma 4.8, it follows d(J (f̂λn
),J (f)) = oP (1), which in turn

implies J#(f̂λn
) ≥ J#(f) eventually.

Now assume J#(f̂λn
) ≥ J#(f). Then (34) yields

‖Φf̂λn
− Φf‖2

n ≤ ‖Φf̂λn
− Φf‖1−ǫ

n J#(f̂λn
− f)1/2+ǫOP (n−1/2) + o(n−1) .

Assume nk is a subsequence such that ‖Φf̂λnk
− Φf‖1−ǫ

nk
≥ cn

−1/2
k for some

c > 0. Dividing the last equation by ‖Φf̂λnk
− Φf‖1−ǫ

nk
gives

‖Φf̂λnk
− Φf‖1+ǫ

nk
≤ J#(f̂λnk

− f)1/2+ǫOP (n
−1/2
k ) + o(n

−1/2
k )

= J#(f̂λnk
− f)1/2+ǫOP (n

−1/2
k ) .



L. Boysen et al./Jump estimation in inverse regression 1352

This yields

‖Φf̂λnk
− Φf‖1−ǫ

nk
≤ J#(f̂λnk

− f)(1+ǫ−2ǫ2)/(2+2ǫ)OP (n
−(1−ǫ)/(2+2ǫ)
k ) .

Moreover, by (34)

λnk
(J#(f̂λnk

) − J#(f))

≤ OP (n
−1/2
k )‖Φf̂λnk

− Φf‖1−ǫ
nk

J#(f̂λnk
− f)1/2+ǫ + o(n−1

k ) .

Combine the last two equations to obtain

λnk
(J#(f̂λnk

) − J#(f)) ≤ OP (n
−1/(1+ǫ)
k )J#(f̂λnk

− f)(1+ǫ−ǫ2)/(1+ǫ) . (35)

Now assume nk is a subsequence such that ‖Φf̂λnk
−Φf‖1−ǫ

nk
< cn

−1/2
k for some

c > 0. Application of Corollary 4.19 to (31) and the observation that J#(g) ≥ 1
for all g gives

λnk
(J#(f̂λnk

) − J#(f))

≤ OP (n
−1/2
k )‖Φf̂λnk

− Φf‖1−ǫ
nk

J#(f̂λnk
− f)1/2+ǫ + o(n−1

k )

≤ OP (n−1
k )J#(f̂λnk

− f)1/2+ǫ ≤ OP (n
−1/(1+ǫ)
k )J#(f̂λnk

− f)(1+ǫ−ǫ2)/(1+ǫ) .

As each sequence can be decomposed into a subsequence containing only ele-
ments smaller than cn−1/2 and a subsequence containing only elements greater
or equal to cn−1/2 for some c > 0, we have shown that J#(f̂λn

) ≥ J#(f) im-
plies (35).

Now we show that J#(f̂λnk
)− J#(f) → 0 in probability. To this end, assume

there exists some subsequence nk such that

J#(f̂λnk
) − J#(f) ≥ c > 0 . (36)

This implies J#(f) ≤ J#(f)c−1(J#(f̂λnk
) − J#(f)) and

J#(f̂λnk
− f) ≤ 2(J#(f̂λnk

) − J#(f)) + 2J#(f)

≤ (2 + 2J#(f)c−1)(J#(f̂λnk
) − J#(f))

= O(1)(J#(f̂λnk
) − J#(f)) .

Hence

OP (n
−1/(1+ǫ)
k )J#(f̂λnk

− f)(1+ǫ−ǫ2)/(1+ǫ)

= OP (n
−1/(1+ǫ)
k )

(
J#(f̂λnk

) − J#(f)
)(1+ǫ−ǫ2)/(1+ǫ)

.

Together with (35), the assumption λnk
n

1/(1+ǫ)
k → ∞ and (36), this gives

0 < cǫ
2/(1+ǫ) ≤

(
J#(f̂λnk

) − J#(f)
)ǫ2/(1+ǫ)

= OP (λ−1
nk
n
−1/(1+ǫ)
k ) = oP (1) ,
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which is a contradiction and implies J#(f̂n) − J#(f) → 0 in probability. Since

J#(f) and J#(f̂n) are integers, this yields

P
(
J#(f̂n) = J#(f)

)
→ 1 ,

for n→ ∞. This proves the claim.

5. Proof of Theorem 2.2

Proof of part (i) To give the proof of Theorem 2.2, part (i) we will define
the native Hilbert space Nφ of a positive definite function φ and show that the
elements of its dual space δx(f) = f(x) and ρx,y(f) =

∫ y

x
f(t)dt are linearly

independent, if φ has certain properties. Then we will deduce that the functions
∆φ(·, τ0, τ1), . . . ,∆φ(x, τk, τk+1) are linearly independent.

The assumptions φ̂(x) ≥ 0 and (8) imply that the Fourier transform φ̂ is
strictly positive. This means that φ is positive definite. (For a definition and
characterization of real-valued positive definite functions, compare Chapter 6 in
Wendland (2005).)

For a positive definite function φ and Ω ⊂ R let Nφ(Ω) denote the unique
Hilbert space (H, 〈·, ·〉H) of functions f : Ω → R satisfying f(x) = 〈f, φ(x−·)〉H.
Nφ(Ω) is called native space for φ and given by the closure of the span of the
function set {φ(x − ·) : x ∈ Ω} under the inner product induced by 〈φ(x −
·), φ(y − ·)〉 = φ(x − y). A short introduction to native spaces along with some
basic results of the theory can be found in Schaback (1999).

Denote by

S(R) =
{
f ∈ C∞(R,C) : lim

|x|→∞
|xnf(m)(x)| = 0 for all n,m = 0, 1, 2, . . .

}

the Schwartz space, where C∞(R,C) is the set of smooth functions from R to C.
The first result is, that the native space Nφ(Ω) contains all Schwartz functions
which are compactly supported in Ω.

Lemma 5.1. Assume Ω ⊂ R and φ satisfies the conditions given by Theo-
rem 2.2, part (i). Then all real Schwartz functions with support contained in Ω
are elements of the native space Nφ(Ω), this means that

{
f ∈ S(R) : supp(f) ⊂ Ω

}
⊂ Nφ(Ω) .

Proof. We first proof the claim for Ω = R. Assume f ∈ S(R). Since Fourier

transformation is a bijection from S(R) to S(R) f̂ and f̂ 2 are also Schwartz
functions. Hence for any n0 ∈ N, we can find a constant c1 > 0 such that
|f̂(x)|2 ≤ c1(1 + |x|n0+2)−1. By (8) there exist c2 > 0 and n0 ∈ N such that

(φ̂(x))−1 ≤ c2(1 + |x|n0). We arrive at

∫

R

|f̂(x)|2
φ̂(x)

dx ≤ c1c2

∫

R

1 + |x|n0

1 + |x|n0+2
dx <∞ .
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By Theorem 10.12 of Wendland (2005) the function f is in Nφ(R) if and only if

∫

R

|f̂(x)|2/φ̂(x)dx <∞ .

This proves the claim for Ω = R.
Now assume Ω ⊂ R is arbitrary and f ∈ S(R) with supp f ⊂ Ω. We have

shown f ∈ Nφ(R). By Theorem 10.47 in Wendland (2005) for Ω ⊂ R, f ∈ Nφ(R)
implies f |Ω ∈ Nφ(Ω). This proves the claim.

Note that Lemma 5.1 implies that for any interval (a, b) ⊂ Ω there exists
some test function ψ ∈ Nφ(Ω) satisfying supp(ψ) = [a, b]. One example is

ψ(x) = 1(a,b)(x) exp((x− a)−1 + (b− x)−1) .

This observation can be used to show that point evaluation and integral mean
are linearly independent as elements of the dual space of Nφ(Ω).

Definition 5.2. For γ ∈ R and γ1, γ2 ∈ R ∪ {−∞,∞} with γ1 ≤ γ2 define the
point evaluation functional δγ(f) = f(γ) and the functional ργ1,γ2 : Nφ(Ω) → R

by

ργ1,γ2(f) :=






∫ γ2

γ1

f(x)dx γ1 6= γ2 ,

f(γ1) γ1 = γ2 .

Lemma 5.3. Suppose φ satisfies the conditions given by Theorem 2.2, part (i).
Assume τ0 < · · · < τk+1, γ1 < · · · < γr and there exist an ǫ > 0 such that
(τ1 − ǫ, τk + ǫ) ⊂ Ω as well as (γ1 − ǫ, γr + ǫ) ⊂ Ω. Then the functionals
ρτ0,τ1 , ρτ1,τ2 , . . . , ρτk ,τk+1 , δγ1 , . . . , δγr

are linearly independent as elements of the
dual space Nφ(Ω)′.

Proof. Assume
k+1∑

i=1

αiρτi−1 ,τi
(f) +

r∑

j=1

βjδγj
(f) = 0

for all f ∈ Nφ(Ω). For each i = 1, . . . , k + 1 we can find an interval Ji ⊂
[τi−1, τi] ∩ Ω such that Ji ∩ γj = ∅ for all j = 1, . . . , r. By Lemma 5.1 we can
find a test function fi ∈ Nφ(Ω) with supp(fi) ⊂ Ji and

∫
R
fi(x)dx = 1 for all

i = 1, . . . , k + 1. We then have that ρτl−1,τl
(fi) = 1i=l and δγj

(fi) = 0 for all
i = 1, . . . , k+ 1 and j = 1, . . . , r. This leads to

0 =

k+1∑

l=1

αlρτl−1,τl
(fi) +

r∑

j=1

βjδγj
(fi) = αi

for all i = 1, . . . , k + 1. Similarly we can find test functions fj ∈ Nφ(Ω) with
δγj

(fi) = 1i=j and deduce that βj = 0 for all j = 1, . . . , r. This proves the
claim.
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Finally, we can prove Theorem 2.2, part (i).

Proof of Theorem 2.2, part (i). Assume

∥∥∥
k+1∑

i=1

αi∆φ(·, τi−1, τi) +

k∑

j=1

βj∆φ(·, τj, τj)
∥∥∥

2
= 0 . (37)

By continuity of φ,
∑k+1

i=1 αi∆φ(x, τi−1, τi) is a continuous functions of x. Con-
sequently, (37) implies

0 =

k+1∑

i=1

αi∆φ(x, τi−1, τi) +

k∑

j=1

βj∆φ(x, τj, τj) ,

for all x ∈ [0, 1]. By definition of ∆φ (see (5)), that means

0 =

k+1∑

i=1

αiρτi−1,τi

(
φ(x− ·)

)
+

k∑

j=1

βjρτj ,τj

(
φ(x− ·)

)
,

for all x ∈ [0, 1]. Set Ω = [0, 1]. By Theorem 8 in Schaback (1999), the native
space Nφ(Ω) is the closure of the span of the set of functions {φ(x−·) : x ∈ Ω}.
It follows that

0 =

k+1∑

i=1

αiρτi−1 ,τi
(f) +

k∑

j=1

βjρτj ,τj
(f)

for all f ∈ Nφ(Ω). By Lemma 5.3 we know that ρτ0,τ1 , ρτ1,τ1 , . . . , ρτk,τk
, ρτk ,τk+1

are linearly independent as elements of the dual space Nφ(Ω)′. Consequently,
αi = 0 = βj for all i = 1, . . . , k + 1, j = 1, . . . , k, which proves the claim.

Proof of part (ii) Again we have to show linear independence of the functions

{
∆φ(x, τi, τi+1) : i = 0, . . . , k

}
∪
{

∆φ(x, τj, τj) : j = 1, . . . , k
}

in L2([0, 1]). Assume

∥∥∥
k∑

i=0

αi∆φ(·, τi, τi+1) +

k∑

j=1

βj∆φ(·, τj, τj)
∥∥∥

L2([0,1])
= 0 .

Denote by φ0(x) =
∫ x

−∞
φ(y)dy the primitive of φ. Since the functions ∆φ(·, τi,

τi+1) and ∆φ(·, τi, τi) are continuous we have for all x ∈ [0, 1] that

0 =

k∑

i=0

αi∆φ(x, τi, τi+1) +

k∑

j=1

βj∆φ(x, τj, τj)

=
k∑

i=0

αi

(
φ0(x− τi) − φ0(x− τi+1)

)
+

k∑

j=1

βjφ(x− τj)
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= α0φ0(x− τ0) +

k∑

i=1

(αi − αi−1)φ0(x− τi) − αkφ0(x− τk+1)

+

k∑

j=1

βjφ(x− τj) .

Consequently, this must also be true for the derivative, and the equation still
holds if we replace φ0 by φ and φ by φ′. Since the equality holds for all x ∈ [0, 1],
it holds for a choice of 2k + 2 distinct points x0, . . . , x2k+1 ∈ [0, 1]. By the
extended sign regularity of φ we know that the vectors




φ(x0 − τi)

...
φ(x2k+1 − τi)





i=0,...,k+1

and




φ′(x0 − τj)

...
φ′(x2k+1 − τj)





j=1,...,k

are linearly independent for τ0 = 0 < τi, . . . , τk < 1 = τk+1. Hence, we im-
mediately get that βj = 0 for all j = 1, . . . , k. Moreover, α0 = αk+1 = 0 and
(αi−1−αi) = 0 for all i = 1, . . . , k. This leads to αi = 0 for all i = 0, . . . , k+1.

Proof of part (iii) Assume

∥∥∥
k+1∑

i=1

αi∆φ(·, τi−1, τi) +

k∑

j=1

βj∆φ(·, τj, τj)
∥∥∥

L2([0,1])
= 0 . (38)

Compute that

(Φ1[a,b))(x) = (p+ 1)

∫ b

a

(x− y)p
+dy = (p + 1)

∫ x−a

x−b

yp
+dy

= (x− a)p+1
+ − (x− b)p+1

+ .

So
∑k+1

i=1 αi∆φ(·, τi−1, τi) is a polynomial of degree p+1, whereas
∑k

j=1 βj∆φ(·, τj,
τj) has degree p. Since polynomials of different degrees are linearly independent
(compare Achieser, 1992), this means Equation (38) holds if and only if

k+1∑

i=1

αi∆φ(·, τi−1, τi) = 0 =

k∑

j=1

βj∆φ(·, τj, τj).

We show that αi = 0, for all i = 0, . . . , k+ 1 by induction. Therefore consider

0 =

k+1∑

i=1

αi∆φ(x, τi−1, τi)
∣∣∣
[0,τ1]

= α1(x− 0)p+1
∣∣∣
[0,τ1]

.

This yields α1 = 0. Now assume αi = 0 for all i ≤ j. Then,

k+1∑

i=1

αi∆φ(x, τi−1, τi)
∣∣∣
[τj ,τj+1 ]

= αj+1(x− τj)
p+1 .

this gives αj+1 = 0.
In the same way it follows that βj = 0 for all j = 1, . . . , k.
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