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Comment on article by Sansé et al.

Jonathan Rougier®

1 Introduction

This paper represents a very welcome combination of Statistics and Climate Science. I
am sure that no-one who has studied the paper is in any doubt about how demanding
this type of collaboration is: it is splendid that statisticians and climate scientists are
working together to understand better uncertainty in future climate.

As a statistician developing methods for computer experiments, I like climate science
precisely because it is so challenging. In particular, the models are still quite poor on
the scales for which we would like to use them (transient and regional behaviour). That
is to say they have large structural errors: errors that cannot be removed simply by
tuning the model parameters. They are also some of the most expensive models in
the world to evaluate. Typical performance is about three model-years of output per
day at the main research centres. Tony O’Hagan (2006) has termed the consequence
of this paucity of evaluations ‘code uncertainty’. In some applications we also have to
contend with the scale of the model outputs: the state vector can easily have millions
of components.

The MIT2DCM of Sansé et al. is of relatively low resolution, and in this case-study
the focus is on just three uncertain model-inputs, so code uncertainty is not going to
be a problem. As a consequence of the low resolution, though, and the small number
of uncertain inputs, structural error is going to be crucial. For the last forty years, the
trend in climate science has been towards higher and higher resolution models, and this
will continue because so much of the important physics is missing even at current high
resolutions (where a grid-cell in the solver is typically about 250 km a side). There are
important questions concerning how much we can learn from low resolution models, and
one of the projects I am working on addresses exactly that, by trying to understand the
structural links between models along a spectrum of modelling refinements.

Sanso et al. are interested in calibrating MIT2DCM, i.e. using observations on cli-
mate to learn about the correct setting of this model’s parameters. Probabilistic learn-
ing requires a statistical model that links (i) evaluations of MIT2DCM, (ii) the model’s
parameters, and (iii) observations on climate. A crucial component of this statistical
model is the treatment of structural error. One thing I particularly like about this
paper is that Sansé et al. have explicitly included a term for MIT2DCM’s structural
error (which they term ). Actually, in their treatment this term combines structural
error, representation error (incommensurability of the grid-averaged model outputs with
the point observations) and observation error, but the first of these is likely to dom-
inate. Currently the predominant practice in climate science is to invoke the caveat
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“conditional on the climate model being correct”, which is very unsatisfactory for both
statisticians and policy-makers, and, one hopes, for climate scientists too. Therefore
this paper represents a major advance in technique, and also in utility.

This statistical model will be the focus of my discussion, because everything quan-
titative follows from it. Section 3 examines the structure of the statistical model, and
section 4 the statistical diagnostics. Section 5 looks at the issue of calibration more
broadly, and section 6 is a brief summary. I'd like to start, though, with a section on
‘cutting feedback’.

2 Cutting feedback

‘Cutting feedback’ (a term suggested by Nicky Best) involves informally restructur-
ing the statistical model, technically a violation of coherence. In our response to the
discussants in Goldstein and Rougier (2007), Michael Goldstein writes of a personal
communication from de Finetti, approving of the quote

Traditional Bayesian models can be better understood by explicitly recog-
nizing and distinguishing between two fundamentally different meanings for
probability statements. The former is the use of probability (or prevision)
as the quantitative expression of the knowledge of an individual. The latter
is the use of probability as a purely technical intermediary quantity helpful

in translating generalized knowledge into precise statements of the former
kind. (Goldstein 1981)

When making probabilistic statements about complex physical systems like climate, it
is the end-product that we sign-off on: the probability that global mean temperature
in 2100 is two degrees higher than today, for example. How we get there and how we
document our journey, in the papers we write and the seminars we give, is an important
part of establishing the authority of our assessment. But it is mistaken to think that
this authority stands or falls on a simple audit of formal correctness. I'm sure we are
all aware of the limitations of probability as a model for reasoning, and to insist on
coherence in the development of our inference is rather like treating our climate models
as perfect: something we might do as an expedient and temporary place-holder, while
we develop a more nuanced approach. In this light, perhaps I over-emphasised coherence
in Rougier (2007b), which outlined the basis for probabilistic reasoning about climate
using evaluations of an imperfect climate model. But maybe not: unwitting incoherence
is definitely to be avoided!

Cutting feedback can be illustrated in the standard ‘best input’ approach to model-
based inference for complex systems (see, e.g., Goldstein and Rougier 2004, 2007). In
the ‘best input’ approach, we assert the existence of a model-input 8* such that the
model evaluation 7(6*) is sufficient for the system observations, z. The Directed Acyclic
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Graph (DAG) for this approach is

Tlpar
y ) —— = W)
9*

(neglecting a minor edge from Y to n(#*)). The dashed edge is just to highlight the
structure of the statistical model, particularly with reference to the Sansé et al. DAG
below (eq. 4). Here Y is the ensemble of model evaluations, and 7par denotes the
statistical parameters of the ‘emulator’, the statistical model for the physical model
(O’Hagan 2006). We need an emulator for 1 because we cannot afford to evaluate
MIT2DCM at every candidate value for * (and even if we could, this might not be a
sensible use of computing resources).

When we cut feedback, we collapse the edge 7par — Y into the vertex npa, | Y:

Tpar | Y
N

9*

It is easy to show that this would follow if Y 1L z, which (1) indicates is not the case
(see, e.g., Pearl 2000, sec. 1.2.3). So this is technically incoherent.

In his recent Wald Lecture, Jim Berger talked about cutting feedback in terms of
isolating the parts of the statistical model that we are confident about from those that
we are not. In the ‘best input’ approach we are typically least confident about the
representation of model structural error, the edge n(6*) — 2. So cutting feedback in
this case is about making sure that 7., gets its information from the high-quality data
in Y, and not in questionable form from z. Of course if we judge that Var (z|n(6*))
is large, then PrY |z =~ PrY, and cutting feedback in this way seems quite natural.
We cannot push this argument too far, though, because the intention is to learn about
0* from z: this would be futile if the information from z was obscured by the model’s
structural error. So if we cut feedback in this way we are always going to be somewhat
incoherent.

I tend to see cutting feedback more as a diagnostic tool. Once we cut feedback we
can do the update 7par | Y off-line, and the emulator that we construct and use in our
inference can be pre-tested. The tests I find most revealing are leave-one-out (building
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the emulator with all but the ith evaluation and then predicting the ith, fori =1,...,p)
and one-step-ahead (ordering the evaluations and predicting the ith using the previous
i —1). Rougier et al. (2007) provides an illustration of these diagnostics, and show how
the two tests can complement each other. One-step-ahead is strongly related to Phil
Dawid’s Prequential approach (Dawid 1984; Cowell et al. 1999), and provides a simple
scalar assessment of 7pa, | Y. This can be used for mild tuning of hyperparameters,
although when committing this particular misdemeanor I prefer to use the full set of
diagnostics.

This discussion of cutting feedback is not a digression, although it may seem like
one. Building the emulator off-line is standard practice, which is why the theory and
practice of emulation has become an important separate strand in computer experi-
ments. Sansé et al. use the ‘best input’ approach, as shown in their eq. (1), where the
unstated “assumption” (I would prefer to say “choice”), is that £ 1L {77, 9*}; they write
0 rather than 6*. But they choose not to cut feedback in 1., — Y, and so we are
denied diagnostic information specific to the performance of their emulator (although
I will suggest below that their diagnostics are in fact dominated by Y). Cutting feed-
back would seem to be a natural choice here, given that Y is so informative about npar
(426 evaluations varying only three inputs, arranged as an irregular grid). Interestingly,
though, Sansé et al. do cut feedback in a different way, as I now show.

3 The ubiquity of X

To draw Sansé et al.’s DAG, we first have to clarify their emulator, to find the param-
eters that are identified with npay in (1). The emulator is of the general form

n(z,0) = Z Bi hi(z,0) + u(z, 6), (3)

where h is a set of pre-specified regressors, 6 is the model parameter (or input, Sansé et al.
write t), and = the index variable of the model-output. Techniques for multivariate em-
ulators, i.e. emulators that treat the collection n(f) £ (77(1:1,9), . ,n(zn,G)) jointly,
are still developing. Rougier (2007a) contains a short review, and presents an approach
suitable when all of the outputs have the same type (so that it is reasonable for different
values of the index variable z to have the same regressors and variance multipliers)—
which is exactly the situation here. The statistical parameters of Sanso6 et al.’s emulator
are the regression coefficients, 3, plus the parameters in the variance function of u (the
emulator residual) namely the correlation lengths ¢, the variance scalar o2, and the
variance matrix 3. There is an additional parameter v in Sansé et al.’s exposition, but
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this is set to 1 in practice. The DAG is then

(again, neglecting a minor edge from Y to 7(6*), which represents the contribution of
the residual). Here W is an ensemble of control runs from a General Circulation Model
(GCM), and dashed lines have been used to link the structure of this DAG back to that
in (1). The two extra edges from ¥ and the extra edge from o2 are innovations, to be
discussed below.

This is not quite the DAG that Sansé et al. use, however. First, they cut feedback
on ¥, by collapsing the edge ¥ — W into the vertex ¥ | W; in other words they do an
off-line update of ¥ using the GCM ensemble. Following the same analysis as before,
this would be implied by W 1L {Y,z}. However, this is, to my mind, rather more
contentious than cutting feedback on 7par — Y in (1), because W in (4) is strongly
linked to both Y and z, via X.

Now we turn to the interpretation of ¥, and its scalar multiplier ¢2. ¥ plays three
roles: it is the natural variability of the GCM, it is the variance of the emulator residual,
and it is the variance of the model structural error. In line with the decision to cut
feedback on ¥ — W, I am going to treat it initially as the GCM natural variability.
So the questions become: (1) Is GCM natural variability a reasonable proxy (except
for a scalar multiplier) for the MIT2DCM emulator residual variance? and (2) Is GCM
natural variability a reasonable proxy (except for the same scalar multiplier) for the
variance of the MIT2DCM structural error?

Take the MIT2DCM residual first of all. We can think of v as comprising two parts:
first, the higher-order terms that were excluded from the regressors in h; second, the
natural variability of the MIT2DCM model. To clarify this second point, MIT2DCM
has a dynamic ocean module coupled to a dynamic atmosphere module, and the result is
that the model’s precise response is extremely sensitive to 6, so that there is a component
of variation in 7(0) that has a very short correlation length. Therefore we might write
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the residual as

’U,(l'79) = ul(:v,H) +’U,2(£L',9), (53)
higher terms nat. var.

with uq L us. It seems reasonable to choose to treat the natural variability of MIT2DCM
as some multiple o2 of the natural variability of the GCM, ¥. This would result in a
variance function such as

UQEU 6‘29/

: (5b)
0 otherwise,

Cov (uz (i, 0), uz(x;,6")) = {

with a nugget in € approximating a very short correlation length. For u; we need to
account for systematic effects in both the model parameter and the index variable. We
might choose a tractable separable structure such as

Cov (ul (x:,0), ui(x;, 9’)) =1r(0,0";¢)U;; (5¢)

where r is a correlation function with parameter ¢, and the main contribution to the
variance matrix ¥ might be assessed from the lowest-order terms in x that are ex-
cluded from h, typically squared terms and first-order interactions. In contrast to (5),
Sansé et al. have, for the whole of u,

Cov (u(zi,e),u(zj,e/)) = 0-2r(9’0/;¢) 2ij (6)

some strange blend of the contributions from the two parts, not consistent with either
one or the other dominating. So when we are updating our judgements about ¥ it is
hard to assert that we are learning about the natural variability, given that ¥ is forced
in this part of the statistical model to adopt some of the characteristics of ¥, and r to
adopt some of the characteristics of a nugget. If anything, we’d have to say that the
data Y are dragging ¥ away from being natural variability.

What about the other role for 3, where Sansé et al. have
Var (2 | 1(6%),0%, %) = 0° . (7)

The use of scaled GCM natural variability as a proxy for the variance of the structural
error is common in climate science (see, e.g., Murphy et al. 2004). If you are faced
with a difficult elicitation, and you find you have to hand a variance matrix of the
right shape, with the right units, it is undoubtedly tempting to drop it in. But GCM
natural variability is a property of the GCM: it does not proxy the difference between
the GCM and the climate system. In climate science this has been appreciated and
discussed, but only recently has there been a genuine effort to determine a variance
for the model structural error that is not based on internal variability (Murphy et al.
2007). In Sansé et al. the unnatural effect of this choice is compounded by the scaling
factor o2 being constrained to be the same value as the scaling factor in the MIT2DCM
residual variance (through imposing v = 1). Therefore, like Y, the data z are dragging
> away from being natural variability, but in a different direction.
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The broader question of how to assess model structural error variance in practice
is unresolved, particularly for models with multivariate outputs. Rougier (2007b) sug-
gested that climate scientists use their judgement, which was dismissed by the scientists
themselves as “too subjective” (praise indeed!). The method in Murphy et al. (2007, sec.
3g), based on the use of a multi-model ensemble (MME: a collection of different models
run with the same boundary conditions and forcing), is less subjective. At Durham (UK)
Leanna House is also developing an approach using a MME, structured by second-order
exchangeability, as part of the MUCM project (http://mucm.group.shef.ac.uk/).
Craig et al. (2001) use comparisons between low-resolution and high-resolution versions
of the model, anticipating the more formal development in the reified modelling ap-
proach proposed by Michael Goldstein and myself (more on this in section 5).

To summarise, we are unsure how to interpret X in the Sansé et al. statistical model:
it starts off as GCM natural variability but it is pulled one way by Y and another by z.
And along with the difficulty of interpretation, there is the question of whether forcing
3 to play these three quite different roles overly constrains the statistical model. In
their paper Sansé et al. have not defended their treatment of ¥ directly, on the basis of
any physical rationale, but they might still persuade with extensive diagnostic testing.

4 Diagnostics

The purpose of diagnostic testing would be to reassure us that the constraints in
Sansé et al.’s DAG are not at odds with the data in {W, Y, z} This is clearly different
from doing a sensitivity analysis, which involves changing the marginal distributions
within the constraints of their DAG. In their sensitivity analysis Sansé et al. focus on
the marginal distribution of 8*. They refer to this as ‘the prior’, but the prior—if it
is anything at all—is the joint distribution of {9*, 8, 0,02, E}. The only part of this
that Sansé et al. specify as proper is the marginal distribution of 8%, but clearly their
updated distribution could be sensitive to the marginal distribution for, say, 3, no mat-
ter whether it is improper or proper. Each component of { B, 0,02, E} has well-defined
physical units, so diffuse but proper marginal distributions should be easy to specify,
and then a simple sensitivity analysis on these choices—e.g. halving and doubling the
standard deviations, once they exist—would be interesting.

Incidentally, some climate scientists have identified that one problem with a Bayesian
analysis lies with ‘the prior’, but are under the illusion that this can be ameliorated
by including evidence-based information from ‘the likelihood’ along with the posterior
(see, e.g., Frame et al. 2007). Sansé et al.’s analysis provides a clear example of how
this distinction between the properties of the prior and the likelihood is rather naive in
a complicated inference.

Sanso et al. present us with diagnostics based on holding-out 43 of the 426 evalua-
tions from Y, and then predicting the model response on the hold-out and comparing
it with the actual values. (As discussed in section 2, these diagnostics might have been
specific to the emulator, if the emulator had been constructed off-line. As it is, they
are extracted from the full update of {9*, B, 0,02, Z}) However, I suspect that there is
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plenty of information about MIT2DCM from the 383 evaluations that remain in Y. The
experimental design for Y was a multi-level grid, so the evaluations that remain will
almost certainly still do a good job of spanning the three-dimensional model-parameter
space. Therefore I am not surprised that the diagnostics show that the hold-out sample
is predicted well, but I am not sure that this tells us much about the statistical model
for {9*, W,Y, z}, or the reliability of Sansoé et al.’s conclusions about the updated dis-
tribution for #*: the verdict on the statistical model from the evidence in the paper is
‘unproven’.

I think holding out z and predicting it would have been more telling: in order for
the information in W and Y to get to z it has to traverse the whole of the statistical
model, including the various roles for 3. For the case where two types of output are
combined, it would be natural to hold-out one type and predict it with the other.
Goldstein and Rougier (2006) discuss diagnostics based on predicting z, extending to
the circular problem of predicting z using the model evaluated at the best guess for 6*
based on z, which is what happens, informally, when model parameters are ‘tuned’.

A final observation on diagnostics. In a comment on a Royal Statistical Society read
paper by John Haslett and co-authors (Haslett et al. 2006), I wrote

I wonder how much we really trust the inferences that we draw from the
fully probabilistic analysis. I suspect that much of the fine scale structure
we observe in the results comes from trading off tail probabilities in the
various model components, none of which we really believe. (Rougier 2006)

I can only imagine that this ‘battle of the tails’ is more pronounced when the marginal
distributions are improper. Ida Scheel, a PhD student at the University of Oslo, is de-
veloping visual diagnostics to examine exactly this issue in statistical models structured
as chain graphs (of which DAGs are a special case). Another solution is to switch to a
Bayes linear approach (see, e.g., Craig et al. 1997, 2001; Goldstein and Rougier 2006),
which gives me an opportunity to plug Michael Goldstein and David Wooff’s new book,
Bayes Linear Statistics: Theory & Methods (Goldstein and Wooff 2007).

5 Calibration: the bigger picture

My final point concerns the end-product of the analysis. Three parameters of MIT2DCM
are treated as uncertain, to be updated using observations on climate itself, using a sta-
tistical model. I will focus on MIT2DCM’s climate sensitivity, S, and denote the ‘best’
value of this input as §*. ‘True’ climate sensitivity is troublesome to operationalise,
but there is no doubt that it is perceived as a property of the climate system itself. It
is extensively discussed in the recent IPCC report
(http://ipcc-wgl.ucar.edu/wgl/wgl-report.html). Edwards et al. (2007) gives a
clear summary of the concept and various attempts to estimate it. Chris Forest’s pre-
vious work with MIT climate models has contributed to our current understanding of
true climate sensitivity, and I am sure this paper will also have an impact.
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The title of Sansé et al.’s paper and the first line of the abstract leaves us no room
for doubt:
S* = true climate sensitivity.

It is a common mistake to confuse model parameters with system values. S is a pa-
rameter of MIT2DCM, and as such S* inherits that model’s limitations. Including a
careful assessment of MIT2DCM’s structural error is a necessary part of updating our
judgements about S&*, but it does not turn S* into true climate sensitivity: if only life
were that simple! Note that I am not critical of Sansé et al.’s use of the ‘best input’
approach—this is the de facto standard in computer experiments, and pretty close to
the state of the art—Dbut it cannot support the interpretation they would like to give it.

Having said that, I am, in general, critical of the ‘best input’ approach. Michael
Goldstein and T identify two main problems (Goldstein and Rougier 2007). The first one,
as outlined here, is that the best input to a particular model is hard to operationalise,
although we would like to define it in terms of the corresponding system property, where
such a property exists. The second is that it asserts something that we may not believe,
namely that the single evaluation 7(6*) is sufficient for the system. A third problem, less
of an issue here, is that it is demanding to combine evaluations from different models,
since we would have to specify the ways in which the best inputs and structural errors
of the different models were related—they cannot be independent if the models are all
predicting the same thing.

The ‘reified’ modelling approach that we propose as a generalisation addresses these
problems. We assert the existence of a ‘reified model’, n*; for concreteness, think of
this as a better model that we could not afford to build and evaluate. The ‘best input’
0* is an input into the reified model, and it is n*(6*) that is sufficient for the system.
Evaluations of 7 are useful because they tell us about the structure of n*. The chain
graph for the reified modelling approach is

npar - - - n;ar
~
N
~
/ N
Y n*(0%) —z (8)
0*

(cf. eq. 1); the structure of the joint distribution for 7., and 7y, will depend on the
application. The reified approach makes 6* more like the true system property, because
n* is a better model than 7. For example, the accepted view in climate science is that
the ‘climate sensitivity’ of a high-resolution model like a GCM is a better proxy for true
climate sensitivity than the ‘climate sensitivity’ of an intermediate complexity model,
like MIT2DCM. The reified approach also saves us from having to assert the existence
of a best input for 7 itself. Michael and I see the introduction of the reified model as a

conceptual step that clarifies the joint distribution of the actual model evaluations, and
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system properties that may correspond to both model inputs and model outputs. In
our rejoinder we suggest a simple way of implementing it (‘direct reification’, for which
Npar — ngar), in response to the suggestion from some of the discussants that reified
modelling is too arduous.

If we really want to make statements about system values that correspond in some
way to model inputs, then sooner or later we will have to move on from an uncritical
application of the ‘best input’ approach. Clearly, Sansé et al. want to make statements
about true climate sensitivity. Naturally I would be gratified if they decided to use
the reified modelling approach. But they might also proceed more informally. Having
updated their judgements about &*, they might then go on to use those judgements in
some fashion, not necessarily formally probabilistic, to make some statement about true
climate sensitivity. They might, at the very least, add on another chunk of uncertainty
to account for the deficiencies of S*. To do this they would have to quantify their
judgements about the limitations of MIT2DCM when used in the ‘best input’ approach;
clearly very challenging, but if not them, who?

6 Summary

As I stated at the beginning of this discussion, I think it is splendid to have this collabo-
ration between statisticians and climate scientists. I hope this case-study is the starting-
point for a long and fruitful relationship, that will contribute methods to Statistics and
results to Climate Science. I particularly commend the use of a statistical model to link
model evaluations, model parameters, and system observations. This, and the inclu-
sion of an explicit term for model structural error, are major steps forward for Climate
Science.

But I do have some concerns about the implementation presented here. To sum-
marise:

1. Sansé et al. choose not to cut feedback on 1pa, — Y, denying us detailed diagnos-
tics on their emulator performance, but they do cut feedback on ¥ — W, which
might be considered ‘excessively incoherent’.

2. In their statistical model ¥ is required to play three different roles, which makes
the updated distribution for ¥ hard to interpret, and risks over-constraining the
statistical model.

3. The emulator residual has a natural formulation that distinguishes between short
and long correlation lengths in #. The Sansé et al. choice, though, seems to com-
bine these in a way that is inconsistent with with either effect dominating.

4. The choice of improper marginal distributions for { B, 0,02, E} impedes a sensi-
tivity analysis with respect to the marginal distributions of these parameters, and
is unnecessary when all of these parameters have well-defined physical units.

5. It is always a pleasure to see statistical model diagnostics, but the ones presented
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do not traverse the statistical model, and do not give us confidence that ¥ can
play all three of its roles. No diagnostics are presented for the joint modelling of
two output types, for which additional simplifications are made.

6. The claims of the paper, notably in the title, are too bold: at best we have learnt
about MIT2DCM’s parameters. It is not clear, for example, what we have learnt
about true climate sensitivity, or about true natural variability.

Excepting point 2, these concerns are easily addressed, from a technical point of view,
although this may be time-consuming. The acid test for me is whether I would accept
Sansé et al.’s updated distribution for #* as my own. At the moment I hesitate: I
remain to be convinced that the three roles for ¥ are compatible. For me, this would
require a physically-based rationale and very extensive full-statistical-model diagnostic
testing. I look forward to these eagerly.
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