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Large contingency tables arise in many contexts but especially in the
collection of survey and census data by government statistical agencies. Be-
cause the vast majority of the variables in this context have a large number
of categories, agencies and users need a systematic way of constructing ta-
bles which are summaries of such contingency tables. We propose such an
approach in this paper by finding members of a class of restricted log-linear
models which maximize the likelihood of the data and use this to find a par-
simonious means of representing the table. In contrast with more standard
approaches for model search in hierarchical log-linear models (HLLM), our
procedure systematically reduces the number of categories of the variables.
Through a series of examples, we illustrate the extent to which it can preserve
the interaction structure found with HLLMs and be used as a data simplifi-
cation procedure prior to HLL modeling. A feature of the procedure is that it
can easily be applied to many tables with millions of cells, providing a new
way of summarizing large data sets in many disciplines. The focus is on infor-
mation and description rather than statistical testing. The procedure may treat
each variable in the table in different ways, preserving full detail, treating it
as fully nominal, or preserving ordinality.

1. Introduction. Finding parsimonious summaries of data sets and contin-
gency tables generated from them has been a long term objective of statisticians.
The number of cells in a contingency table depends on the number of variables K ,
and the number of categories for each of the variables rk (k = 0, . . . ,K −1). These
numbers can quickly become large. The traditional method of analysis using hi-
erarchical log-linear models (HLLMs) as described in Bishop, Fienberg and Hol-
land (1975), Fienberg (1980), Haberman (1978) and Whittaker (1990) constructs
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an analysis using the interaction terms between the variables. There are 2K inter-
action terms, and the modeling process seeks to eliminate any terms which are not
necessary for describing the interactions in the data.

For small tables this process can work well, but for large sparse data of the sort
arising in survey and census contexts this process presents many difficulties. The
number of cells

∏
rk is not less than 2K and indicates that the number of parame-

ters required grows much more rapidly than the number of interaction terms. To
model the two factor interaction for variables i and j requires (ri − 1)(rj − 1)

terms. So a summary constructed using two factor interaction terms may still
involve large numbers of parameters and high order interactions, involving even
larger numbers.

These difficulties are compounded by experience with large data sets such as
national censuses conducted by official statistical agencies. In tables for such data
sets the number of observations may be so large that on any conventional criteria
it may be impossible to reject the saturated model. In attempting to construct an
HLLM of the table we find we cannot eliminate any interaction terms and the com-
plete table is the only valid summary. In some ways that is a useful result, but if the
table contains a million or more cells, reporting the full table is typically an inade-
quate way of conveying its structure in terms easily understood and interpreted by
human users. Both the significance of the interaction terms and the magnitude and
signs of their parameters are important. Sparsity can and does still arise in such set-
tings, thus collapsing makes even more sense since the presence of large numbers
of sampling zeros can often lead to the nonexistence of maximum likelihood esti-
mates or to minimal information about various parameter estimates, for example,
see the discussion in Fienberg and Rinaldo (2007) and Dobra et al. (2008).

In this paper we approach the problem of constructing a summary of a table by
examining the category structure within the variables and reducing the number of
categories rk . If the behavior of two categories is sufficiently similar, we collapse
them by aggregating the counts in the cells and forming a new combined cate-
gory. This leaves the set of variables unchanged, but aims to simplify the manner
in which their interactions are described. It can be thought of as examining the
saturated model between all pairs of categories and modeling the pair associated
with least information loss as having the same behavior. We will use the terms ag-
gregating two categories and collapsing two categories as synonyms and will refer
to it as Paired Category Collapsing (PCC). In this process the number of variables
is unchanged, but the size of the table necessary to model it is rapidly reduced. We
explore this process and its properties and show in many cases it provides a range
of insights into the structure of the associations in the table. For the smaller tables
obtained we recommend fitting an HLLM to examine the interaction structure of
the variables.

In summary, an analysis can be thought of as having two steps. First, consider
using a principled way of reducing the number of cells without necessarily reduc-
ing the number of variables (the PCC steps). Second, on examination of the results
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of that process select and fit an HLLM to the data. We refer to a model fitted to
the category partitions derived with PCC steps as a hierarchical log-linear partition
model (HLLPM). This paper focuses on the PCC steps since the second stage is
already well known, but we also suggest a modification of the criteria in the HLLM
analysis.

Official statistical agencies have other reasons for wanting to use the PCC
process. In large tables the most frequent cell counts are commonly “0,” “1,”
or “2.” But legislated requirements often preclude release of identifiable informa-
tion about respondents. In a table both “1”s and “2”s can contribute to revealing
such information, and thus agencies must take steps to publish their data in ways
which prevent this. The PCC process provides a systematic method of simplifying
a table to assist in satisfying these requirements. The simplification is often called
collapsing or coarsening in the statistical literature [e.g., see Lauritzen (1996) and
the references contained therein] and global recoding in the confidentiality litera-
ture [e.g., see Willenborg and de Waal (2000) who use the concept of minimizing
information loss to consider alternatives]. This paper also applies the concept of
minimizing information loss in a systematic way, and links it to a class of mod-
els and their maximum likelihood estimators. For nearly all tables we have studied,
this class provides models which perform better than the usual sequence of HLLMs
if a small number of parameters to describe the data is an important requirement
of the summary.

The PCC process constructs a partition or coarsening of the categories for each
variable. Such coarsening is typically not coarsening at random [cf., Heitjan and
Rubin (1991) and Jaeger (2005)] and thus there is a loss of information relative
to the original sets of categories. Papers by Lancaster (1949, 1951), Goodman
(1968, 1970), Kreiner (2003) and many others have explored alternative meth-
ods of partitioning the data in tables mainly for significance testing. Gokhale and
Kullback (1978) provide illustrations, applications and extensions of theses ideas.
Important results of this literature are summarized in Gilula and Haberman (1998).
Our procedure is an application of a class of models they discuss. Goodman (1981)
examined the problem of simplifying the description of social class inheritance of
persons in various groups, but his procedures do not generalize easily. Wermuth
and Cox (1998) examine ways of exploring relationships between categories in or-
dinal systems and make extensive use of local odds ratios to construct summaries.
We examine a table they studied below. Dellaportas and Tarantola (2005) outlined
a Bayesian approach to jointly exploring category partitions and model structure.
Their procedures are only feasible for tables of modest size. The class of level
hierarchic models they define is a standard HLLM applied to a partition model.
Kreiner (2003) includes procedures for combining categories in his programs but
has a different focus from here.

In Section 2 we outline the information measures we use and the sequential
category aggregation procedure. We show that it is constructing data consistent
with a maximum likelihood model with some constraints across its parameters.
Successive steps reduce the total number of parameters in the model. In Section 3
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we discuss briefly the relationship between our procedures and the extensive col-
lapsibility literature. In Section 4 we examine a simple table used by Wermuth
and Cox and illustrate how using information loss associated with a collapsing
step adds insights to analysis of even two way tables. In Section 4.3 we examine
a four way table used by Christensen (1997), and in Section 5 explore application
of these ideas to very large tables. Section 6 provides some concluding comments.
Programs are provided in Jackson, Gray and Fienberg (2008b).

2. Data structure and information measures.

2.1. Notation and information measure. We will assume that the data consist
of observations on a set of K variables, {x0, x2, . . . , xK−1}, with {r0, r1, r2, . . . ,

rK−1} categories, respectively. Thus, we organize the data into a contingency ta-
ble N with cell counts ni , where i is an index ranging over the product set of the
integers, r . The total number of observations is n = ∑

i ni , the table shape is given
by the vector of category numbers, and number of cells by r = ∏

k rk .
The family of hierarchical log-linear models (HLLMs) implicitly provides a

parameterization for such a table by using the set of all marginal tables of the
K-dimensional array. Each marginal table m corresponds to an additional dm =∏

k∈m(rk − 1) parameters. The set M of marginal tables consists of 2K members.
The empty set is a member, and represents the model with the same frequency
for all cells. We order the elements of M using a binary representation with the
dimensions taken in sequential order.

To provide a simple link between these definitions and the common represen-
tation using variables A,B,C, . . . , use the expressions A, B , AB , C, AC, BC,
ABC, . . . to represent the sequence of marginal tables, and (μ), μA, μB , μAB ,
μC , μAC , μBC , μABC, . . . to represent the corresponding set of terms in the log-
linear model with

log(E(ni)) = ∑
m∈M

μm(i).

We use the multinomial model for the observed cell counts, where π = {πi} are
the cell probability under the model and p = {pi = ni/n} are the observed cell
proportions. The kernel of the log likelihood function L(π |n) has the form∑

i

ni log(nπi) = n
∑
i

pi log(nπi).

One way to assess the fit of a specific HLLM is via the likelihood-ratio statistic

G2 = 2n
∑
i

pi log(npi) − 2n
∑
i

pi log(nπ̂i),

which compares the fit of that model to the saturated model that includes all pos-
sible parameters and fits the data perfectly. When π̂ , the estimates of π , are com-
puted via maximum likelihood, G2 has an asymptotic χ2

h distribution. In a com-
plete table h is the number of cells less the number of independent parameters in
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the model. This statistic reduces to

2n
∑
i

pi log
(

pi

π̂i

)
,

which is just 2n times the Kullback–Leibler distance between p and π̂ . The KL-
distance is a measure of the information loss resulting from using the table with
the expected values under the simpler model compared with the original (and sat-
urated) table. We calculate the loss using a guarded method so p log(p) is zero
for p = 0. Goodman (1971) gave heuristic grounds for using the gradient of the
information loss G2/h in the model selection process and we discuss this later in
Section 2.4.

In the analysis of contingency tables, interpretability of the model, particularly
for high dimensions, is not easy unless the model is from the class of indepen-
dence models. Thinking of a three-dimensional table, the independence models
are mutual independence, with marginal tables A,B,C; joint independence, with,
for example, marginal tables AB,C; conditional independence with, for example,
marginal tables AC,BC. We can think of C jointly independent of A and B , as C

mutually independent of a supervariable AB . Interpretabilty is one motivation for
our choice of models in the PCC procedure in the next section.

2.2. Partitions and category aggregation. A typical HLLM approach to sum-
marizing a table is via the minimal sufficient statistics which are the marginals
corresponding to the highest-order terms in the model. Thus, we can think of our
goal as one of finding an adequate subset of the marginal tables. This process may
drop certain of the original variables, but always preserves the categories in any
variables present in the finally chosen set of marginal tables. As we mentioned in
the introduction, our approach to summarizing a table involves examining the cat-
egory structure within the variables and reducing the number of categories rk . At
any step, this leaves the set of variables unchanged, but aims to simplify the man-
ner in which their interactions are described. Then, of course, we may also reduce
the number of variables.

We denote by u and v categories of a variable t which we consider for aggrega-
tion in the current table. The categories provide a two-category subset or collapsing
of the source table, and we use N(u,v),t to represent this subtable and Nw,t to rep-
resent all remaining cells. Within the subtable N(u,v),t , the category aggregation is
a variable collapsing operation and we can consider the two marginal tables Nu,t

and Nv,t . Conditions for its validity are discussed in Section 3. If these two tables
have the same structure, then we have joint independence in N(u,v),t and no infor-
mation about the interaction structure is lost in aggregation (although we may still
not have coarsening at random). Otherwise, there is a loss of information about the
interaction structure in the original table as we move to the new aggregated table.
In providing summaries of the information in N , it is common to publish a mar-
ginal distribution for each possible t , so to avoid biasing the information loss, we
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always assess the loss as the Kullback–Leibler distance between N(u,v),t and the
model of independence between the marginal table formed by summing across u

and v, and the totals for category u and for category v.
Our PCC algorithm for a contingency table N is as follows:

1. For each dimension k, construct a list of all possible pairwise category aggre-
gations (i, j).

2. For each aggregation above, compute G2 and its degrees of freedom h for the
table formed from the two subtables with cells with category i and category j

on dimension k.
3. Compute the quotients G2/h.
4. Compute the dimension and category pair with the minimal quotient.
5. Aggregate the category pair, and return the new array.
6. Repeat from step 1 until the array is reduced to a single element in all but one

dimension.

Any partition of the categories of a variable provides a possible method of ag-
gregating them. For variable k with rk categories in a K-dimensional table a recode
is described by two components, the dimension k to which the recode applies, and
a vector of rk elements each a distinct element of which represents a group to be
formed. An example for rk = 5 is a vector of keys given by 2 2 3 2 5. This indicates
the first, second and fourth categories are the first partition and categories 3 and 5
are a further two partitions. For simplicity, we adopt the convention that the new
categories are in partitions in the order of first occurrence within the key vector.
The number of partitions for one variable is reduced with each step. During the
PCC process, the current table is formed by summing all categories in each parti-
tion.

By using this convention, each successive aggregation step provides an inde-
pendent component in a partition of the total distance between the table and the
model of marginal independence for all variables. The procedure permits explo-
ration of a wide class of models where the full HLLM structure is retained, but
within all marginal tables there is structure in the model probabilities. Within each
term μm(i) all terms with indices from the same partition of included variables
must have the same values.

Suppose we collapse cases in categories i to a new set of combined categories j .
Then the likelihood of the data given the new model is

L(π ′|n) ∝ ∑
j

p′
j log(p′

j /nπ ′
j ).

The difference between L(π |n) and L(π ′|n) is a measure of information loss, but
we need to be careful when calculating it. To calculate the information loss, we use
the probability structure of the collapsed table, but expand each cell to the set of all
cells in the same partitions of the original variables. We constructed the expansion



INFORMATION APPROACH TO COLLAPSING TABLES 961

to match the marginal distributions of the original table. Thus, we calculate the
information loss using these expected values for all cells in the original table. Our
analysis uses a decomposition of the likelihood ratio statistic (deviance) discussed
by Gilula and Haberman (1998). As such, we can think of the information loss as
either the total loss associated with a model of the full table, or as the sum of the
information loss for all steps toward a smaller table.

2.3. Reference models. The graphical models literature emphasizes that vari-
ables in contingency tables may have very different roles. If an experiment is de-
signed over a space of two variables [AB], the design may impose some inter-
action structure which is not relevant in the comparisons made in the collapsing
procedure. The analyst may not want to collapse over these categories, or study
independently their effects.

If we exclude variables A and B from the collapsing process, then we always
include the set of interactions between them in the model during the backward fit-
ting process. It may still be of interest to consider what happens when we examine
partitions of variables A and B . To do so, we can exclude the remaining variables
from the fitting process. That may suggest that aggregating over some of the design
points will improve the efficiency of measuring effects.

In the description of our procedure we assumed that all variables are nominal.
When the categories have an ordinal structure, there may be strong grounds for
preserving it in any newly constructed categories. Then we consider forming pairs
for only adjacent categories and this simplifies and speeds up the calculations.

All of these options are provided for by allowing a different treatment for each
variable in the table. We have found that the three options, omitting a variable
from the collapsing process, including it as an ordinal variable, or treating it as a
nominal variable with all aggregates possible as in our examples, are all useful and
essential for covering common analysis problems.

We may require further options for data on geographic units, especially when
there are large numbers of such units and the G2-statistics indicate significant dif-
ferences but have many very close values. For such cases an alternative providing
a clustering procedure may be appropriate, and geographic proximity may also be
an important attribute to be considered in forming groups. Similar issues will arise
with many social, economic, and health related classification systems which have
a hierarchical structure and large numbers of categories.

2.4. Selecting categories to collapse. A recoding strategy must define a se-
quential process that will construct successive recodes. A single step approach
involves considering the entire set of possible recodes, of which there are

(rk
2

)
for

each variable. For each such case, we construct the recode, expand the model to
the original shape, and then calculate the information loss. Our algorithm processes
the combinations in a lexical order, but that is not essential.
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The selection of a recode raises a number of issues. The recodes for different
variables may be associated with very large differences in the number of terms.
To minimize the rate of information loss, we consider the gradient of information
loss with respect to the number of estimated parameters. We select recodes at each
step which minimize the mean information loss per parameter eliminated. This
is different from the usual statistical procedure of using the significance level of
the G2 statistic and making a decision on the basis of the largest p-value computed
by reference to the asymptotic χ2 distribution.

We have not followed that procedure here for two reasons. First, it seems more
appropriate to focus on the information loss directly. If there are differences in the
data structure for the marginal tables being compared, the asymptotic distribution
of G2 will be a noncentral χ2 with noncentrality parameter λ giving a measure of
the magnitude of information loss. The expected value of G2 for degrees of free-
dom r is (λ+ r) and the expected gradient is therefore 1+λ/r . Essentially, we use
the gradient as an indicator of the magnitude of the information loss with a reduc-
tion of model complexity. Second, for the typical data sets of official statisticians
there are very large numbers of cases (n > 106) and anything other than the sat-
urated model is usually rejected in tables of few dimensions. For many terms the
unknown noncentrality is large and all terms may have very small p-values under
the central χ -squared distribution. The p-values may be difficult to calculate accu-
rately and selecting on the basis of p value becomes quite impractical. Further, for
these tables they exhibit the characteristics of a large number of rare event models
explored by Khamaladze (1988) and many others and the asymptotic distribution
is no longer χ2, so decisions based on that distribution are inappropriate. For data
sets based on small or moderate numbers of observations, the procedure could be
modified to select on the conventional basis, however, it seems to work effectively
even in those cases.

After each step, we use the new reduced array to consider a further step. If the
optimal step is to collapse a variable to a single category, that is, essentially to
aggregate over all categories, then we take that step. The process will terminate
after at most (

∑
k rk) − (K + 1) steps, at which stage the array will have only one

category in each of its K dimensions. It can terminate earlier if the table has block
diagonal or triangular diagonal structure, or can be row permuted to either of these
forms. There is no further change in our measure of information loss when the data
are reduced to a single marginal vector.

While some readers might consider this procedure as just data dredging, we
would reject that claim. First, we note that while a range of considerations may
have led to the categories used in the data collection, the categories used to report
the data are often ad hoc and we should not assume that the analyst got it right.
Thus, we are letting the data determine ways in which we can reduce the size of
the data space with limited loss of information for a given modeling framework.

Clearly, we could consider other recoding strategies. We have examined selec-
tion using the set of

(rk
3

)
category triples, but they do not seem to have the flexibility
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we obtained using a single step aggregation and they increase the complexity of
the computation rapidly. We could also use strategies based on category size, but
the procedure we have adopted adjusts to size, and frequently ends up combining
one of the smallest categories with another category.

A case can be made for using some form of penalized likelihood function, such
as that associated with

AIC = −2 × log likelihood + 2 × number of parameters,

or

BIC = −2 × log(likelihood) + number of parameter × log(sample size),

instead of the KL distance in the model selection stage of the process. We note that
this does not alter the ordering for any pairs within a dimension. It may modify
the selection of the variable for a collapse. Such choices will yield differences in
cases where there are two or more pairs with small KL values and differences in
their degrees of freedom. The differences in the KL values in many cases are large
enough to offset any differences arising from making the AIC adjustment. The use
of AIC or BIC would move us away from the concept of successive partitioning of
the information, and thus, we have not pursued it further.

3. The collapsibility literature and Simpson’s paradox. We can trace the
collapsibility literature back at least to Yule (1903), and much later Simpson (1951)
examining the case where aggregating groups of different size could lead to an ap-
parent reversal of an effect. Bishop, Fienberg and Holland [(1975), pages 38–42]
examined conditions for two-factor terms in a log-linear model of a three vari-
able table being estimated consistently when collapsing over one of the variables.
Whittemore (1978) clarified necessary and sufficient conditions, but see the discus-
sion in Fienberg (1980). The notion of collapsing was extended and generalized by
Asmussen and Edwards (1983) and others and is well summarized in Lauritzen’s
book Lauritzen (1996). Theorem 2 from Asmussen and Edwards shows that you
can validly collapse over a variable whenever the saturated model on the remaining
variables is a generator in the data generating process for the whole table. These
results provide a framework within which our procedure can be justified if the
saturated model on the remaining variables after the collapsing operation is a gen-
erator in the model of the source table. For the application to Census tables, this is
generally a plausible condition.

The collapsibility literature poses a real problem for the statistical user. Gener-
ally, one’s objective in collapsing over variables is to provide some simplification
of a data set of unknown structure, while the conditions for its validity depend on
knowledge of that structure. Hence, our approach has been to assume that there are
components of the model associated with all terms in the hierarchical model, but
to endeavor to find simplifications which will minimize the noncentrality parame-
ter arising from aggregating categories. The strict conditions for collapsibility of
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categories depend on marginal or joint independence. Those conditions occur for
a relatively small proportion of cases in our experience. It is nevertheless useful to
explore what happens when they are not met, and departures from them are small
relative to other components in the model.

It is clearly possible in a general collapsing process without restrictions to gen-
erate examples of Simpson’s Paradox. In Jackson, Gray and Fienberg (2008a) we
show that the PCC procedure throws an interesting light on conditions under which
Simpson’s paradox arises. While completely collapsing the variables of a table
may generate such cases, in general they cause large losses of information and are
avoided in the collapsing sequence.

4. Examples for two and four dimensional tables.

4.1. Constructing a sequence of models of a table. Wermuth and Cox (1998)
give a table on schooling and age group from a social survey of adults in West
Germany. The first dimension (0) corresponds to the rows and is a sequence of
education categories and the second dimension (1) to the columns, a set of age
groups. Both the variables in this table are ordinal variables. We note that all se-
quences begin with 0 in the tables below.

In their analysis of the data, Wermuth and Cox used identification of patterns
in the standardized local odds ratios and their deviations from unity for pairs of
cell entries. Consider an arbitrary pair of rows. If the odds ratios are the same for
all columns, then in the table formed from that pair of rows, the entries display
independence between the distribution across the rows and the distribution across
the columns. G2 provides a test of the similarity of the odds ratios for this pair of
rows. Table 2 gives this distance for each possible pair of rows.

Having a formal summary statistic of the distances between all category pairs
gives insight into the category structure. For the schooling categories in Table 2,
category 1 is obviously very different from all the others except category 0. Com-
bining categories 0 and 1 will simplify the category structure with little or no loss.

TABLE 1
Observed counts in 1991/ 92 for schooling and age groups

Age

18–29 30–44 45–59 60–74 75+
Schooling 0 1 2 3 4

Basic, incomplete 0 12 13 12 20 7
Basic, complete 1 215 507 493 460 137
Medium 2 277 300 192 126 38
Upper medium 3 52 91 47 15 6
Intensive 4 233 225 102 74 19
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TABLE 2
Information loss for aggregation of row pairs—schooling categories

0 1 2 3 4

0 6.95 20.44 32.92 30.40
1 173.69 77.52 236.06
2 14.77 12.99
3 16.31
4

The numbers are revealing about the confidence we might wish to assign to there
being a difference between each pair of categories and highlight the large dif-
ferences between category 1 and the remaining categories. If the data are from
the range of HLLMs discussed by Birch (1963), then, if there is no underlying
difference between the categories being compared, the distance measure will be
distributed as chi-squared with 4 degrees of freedom. The table shows that nearly
all possible aggregates lead to some information loss.

To consider odds ratios in the columns rather than the rows, we construct Ta-
ble 3. Those at the youngest age have the largest difference in educational profile
from all other groups and those groups at 45 and above are much closer to each
other than the others, even though there are significant differences. Combining the
information in the two tables, we see that we can combine the two highest age cat-
egories without significant loss of information. Having done so, we recalculate the
values in Table 2 and we find that the smallest entry is now 6.82 and in the same
location as in the original table. Thus, we can combine the lowest two educational
categories without any significant loss of information.

If we repeat the process outlined above until there are only cells in a single row,
we obtain Table 4 which provides information about each of the sequential steps
pairing two categories.

The columns of the table give us, respectively, a row identifier, the dimension
on which the collapsing step takes place, the key vector for the current step ex-
pressed in terms of the original categories, the dimensions of the new table, the

TABLE 3
Information loss for aggregation of column pairs—age categories

0 1 2 3 4

0 70.52 178.53 253.15 117.20
1 43.25 110.11 45.81
2 23.96 10.13
3 0.84
4
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TABLE 4
Summary of sequence of PCC steps and models

r d Key dim dev dfmod dfres dev (term) df AdRsq

0 5 5 0.00 24 0 0.00 0 1.000
1 1 0 1 2 3 3 5 4 0.84 20 4 0.84 4 0.991
2 0 0 0 1 2 3 4 4 7.66 17 7 6.82 3 0.951
3 0 0 0 1 2 1 3 4 20.39 14 10 12.73 3 0.909
4 0 0 0 1 1 1 2 4 35.69 11 13 15.30 3 0.877
5 1 0 1 2 2 2 2 3 52.89 10 14 17.20 1 0.831
6 1 0 0 1 1 1 2 2 110.54 9 15 57.65 1 0.670
7 0 0 0 0 0 0 1 2 357.15 8 16 246.61 1 0.000
8 0 0 0 0 0 0 1 2 357.15 8 16 0.00 1 0.000

total information loss relative to the saturated model with the degrees of free-
dom for the current model and for the residuals, the change of deviance and its
degrees of freedom to assess the current step, and the adjusted R2 defined as
1 − dev(r)dfres(r = 8)/(dev(r = 8)dfres(r)) for this table, and r the current row.

Using conventional criteria in rows 1 and 2, the information loss is not signifi-
cant. In row 3 a further step to reduce the education classification leads to a small
but significant information loss (12.7 with 3 df), and row 4 gives a further step
showing that the table can be reduced to a 2 × 4 table with a total information loss
of 35.69 or approximately 10% of the information about the interaction between
the categories on these two variables.

Even more striking is row 6. This shows that we can collapse this data to a
single parameter model for the interaction between the variables with merely two
categories for each variable and retain two thirds of the information in the data
about the association between age categories and education levels. We can refine
the model by refining the age classification as in line 5 and retain 83 percent of the
information with a simple 2-parameter model. Note how we have identified more
sensitivity to changes in the age structure than the educational categories.

In Table 4 the components of information are relative to the model of inde-
pendence of the two variables. Distinguishing between basic education and other
categories and using the four age groups formed by aggregating the highest two
age categories preserves a high proportion of the information about the associa-
tion between the two variables. This type of summary goes beyond the inferences
of Wermuth and Cox, and is a member of a simple sequence of summaries with
nested parameter sets.

In Table 5 we fit a HLLM to the data. Since we retain all main effects for the
5 × 5 table, there are two lines, one specifying the saturated model which has zero
information loss, and the other based on the two main effects. The information
in the line listed as main effects [A] [S] contains deviance between the saturated
model and the marginal independence model, the degrees of freedom for the model
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TABLE 5
Fitted HLLM components

2 Vars Shape 5 5

Terms Deviance dfmod dfres dev (term) df Rsq

SA 0 24 0 0 0 1
AS 357.146 8 16 357.146 16 0

and the residuals. Hence, there are only two points at which it gives the information
loss. The collapsing process gives a systematic sequence of steps adding structure
to the model and reducing the number of parameters required.

Figure 1 provides a useful graphical display of the way in which the information
loss is associated with the number of model parameters for the Wermuth and Cox
data. In all cases the PCC model is expanded out to the original size array, and
the original marginals are matched. It plots the loss of information with additional
terms by model types, PCC and HLLM.

FIG. 1. Information loss by number of model parameters for the schooling and age group data
discussed by Wermuth and Cox.
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In the two variable case with a single interaction term [SA], there are only
two points on the HLLM graph, corresponding to the saturated and independence
modes. The blue line shows how information loss with PCC in fact tracks quite
slowly upward initially and a small number of parameters provide most of the
information. In Section 4.2 we find those parameters by looking at the marginal
tables associated with the lines of the PCC summary.

While we express the sequence in terms of reducing the size of the data array,
this is simply a tool for constructing models for the source table. The entries in
Table 6 derive from the calculation of sufficient statistics at each step. The ratios
in Table 7 show the structure of the coefficients for the model at each step of the
process, and provide a direct comparison with the saturated model.

4.2. Examining the departures from independence. Goodman (1996) summa-
rized the structure of several measures of association in a contingency table. A cen-
tral component of all these measures is what he calls the ψ-statistics or Pear-
son ratios. For the two-dimensional table they are simply the ratio of the ob-
served probability to the estimated probability under the independence model.
Such ratios played a fundamental role in the original work of Lancaster (1951)
and Kullback (1959) and also appear throughout the literature on correspondence
analysis. Table 6 lists the summary tables for the collapsing process corresponding
to each line of Table 4 and Pearson ratios for each summary table. It provides a
picture of the way that the steps have simplified the interaction pattern between the
variables. Table 7 gives these ratios for the model of the whole data set associated
with each row of Table 4. The ratios characterize the summary of the table at each
stage and enable a comparison with the saturated model. The log of the ratios be-
tween the matrices in row 0 and row r give the residuals for the log-linear model
fitted by the PCC procedure. Note that the numbers in the original table are impor-
tant in assessing the significance of the residuals and they will have very different
variances.

If we start with row 0 from Table 4, we have a saturated model and ratio of
cell entries to the independence model. Later rows give the ratios after the succes-
sive collapsing steps. Direct comparison using Table 7 makes it easy to compare
the observed model ratios with the ratios in the original table, and to observe the
coefficient structure imposed by the model. In Table 7 groups of cells have the
same estimated ratios. Examining the residuals for these groups gives all the data
information along with the lack of fit at each stage of the PCC sequence. It there-
fore provides a valuable summary of the process. An alternative way of examining
these changes is to use odds ratios, but it is omitted here to conserve space.

By row 4 of the fitting process, the key for dimension 0 is 0 0 1 1 1 and the
key for dimension 1 is 0 1 2 3 3. These specify the way in which the rows and
columns of the model from row 4 in Table 6 are expanded to generate the model
of the initial table.
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TABLE 6
Summary tables corresponding to rows of Table 4 and Pearson ratios for the current summary

(a) (b)
r Current table Pearson ratios

0 12 13 12 20 7 0.873 0.657 0.814 1.652 1.941
215 507 493 460 137 0.552 0.905 1.181 1.342 1.342
277 300 192 126 38 1.382 1.040 0.893 0.714 0.723

52 91 47 15 6 1.147 1.394 0.967 0.376 0.505
233 225 102 74 19 1.661 1.114 0.678 0.599 0.516

1 12 13 12 27 0.873 0.657 0.814 1.718
215 507 493 597 0.552 0.905 1.181 1.342
277 300 192 164 1.382 1.040 0.893 0.716

52 91 47 21 1.147 1.394 0.967 0.405
233 225 102 93 1.661 1.114 0.678 0.580

2 227 520 505 624 0.563 0.896 1.169 1.354
277 300 192 164 1.382 1.040 0.893 0.716

52 91 47 21 1.147 1.394 0.967 0.405
233 225 102 93 1.661 1.114 0.678 0.580

3 227 520 505 624 0.563 0.896 1.169 1.354
510 525 294 257 1.497 1.070 0.805 0.660

52 91 47 21 1.147 1.394 0.967 0.405

4 227 520 505 624 0.563 0.896 1.169 1.354
562 616 341 278 1.456 1.108 0.824 0.630

5 227 520 1129 0.563 0.896 1.265
562 616 619 1.456 1.108 0.724

6 747 1129 0.760 1.265
1178 619 1.251 0.724

7 1925 1748 1.000 1.000

8 1925 1748 1.000 1.000

4.3. The Christensen abortion opinion table. The procedure we have outlined
generalizes to higher dimensions. Christensen (1997) uses the data in Table 8 on
opinions about abortion given without further information on its source. Table 9 is
an example of the new information loss table. We still examine all pairwise com-
parisons for variable 3, but now we display the information loss for the difference
in the joint distribution across all of the remaining variables. Each term has 11 de-
grees of freedom and the terms above the diagonal show the similarity of adjacent
groups. Table 10 summarizes the steps and shows in row 1 that we can aggregate
the two highest age categories, in row 2 aggregate the middle two age categories,
and in row 3 aggregate the lowest two age categories, all with no loss of informa-
tion as shown by values from the dev (term) column. Row 4 shows that collapsing
over the sex categories would not be accepted using a conventional 5% signifi-
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TABLE 7
Ratios of fitted values to independence model for each row of Table 6

0 0.87 0.66 0.81 1.65 1.94
0.55 0.90 1.18 1.34 1.34
1.38 1.04 0.89 0.71 0.72
1.15 1.39 0.97 0.38 0.50
1.66 1.11 0.68 0.60 0.52

1 0.87 0.66 0.81 1.72 1.72
0.55 0.90 1.18 1.34 1.34
1.38 1.04 0.89 0.72 0.72
1.15 1.39 0.97 0.41 0.41
1.66 1.11 0.68 0.58 0.58

2 0.56 0.90 1.17 1.35 1.35
0.56 0.90 1.17 1.35 1.35
1.38 1.04 0.89 0.72 0.72
1.15 1.39 0.97 0.41 0.41
1.66 1.11 0.68 0.58 0.58

3 0.56 0.90 1.17 1.35 1.35
0.56 0.90 1.17 1.35 1.35
1.50 1.07 0.80 0.66 0.66
1.15 1.39 0.97 0.41 0.41
1.50 1.07 0.80 0.66 0.66

4 0.56 0.90 1.17 1.35 1.35
0.56 0.90 1.17 1.35 1.35
1.46 1.11 0.82 0.63 0.63
1.46 1.11 0.82 0.63 0.63
1.46 1.11 0.82 0.63 0.63

5 0.56 0.90 1.26 1.26 1.26
0.56 0.90 1.26 1.26 1.26
1.46 1.11 0.72 0.72 0.72
1.46 1.11 0.72 0.72 0.72
1.46 1.11 0.72 0.72 0.72

6 0.76 0.76 1.26 1.26 1.26
0.76 0.76 1.26 1.26 1.26
1.25 1.25 0.72 0.72 0.72
1.25 1.25 0.72 0.72 0.72
1.25 1.25 0.72 0.72 0.72

7 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00

cance level for G2 but differential patterns of response by sex are not very large
for these data, and the table can perhaps be reduced to a 2 × 3 × 2 table for race,
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TABLE 8
Christensen’s abortion opinion data

Age

Opinion on 0 1 2 3 4 5
Race Sex legalised abortion 18–25 26–35 36–45 46–55 56–65 66+
0 white 0 male 0 supports 96 138 117 75 72 83

1 opposes 44 64 56 48 49 60
2 undecided 1 2 6 5 6 8

1 female 0 supports 140 171 152 101 102 111
1 opposes 43 65 58 51 58 67
2 undecided 1 4 9 9 10 16

1 nonwhite 0 male 0 supports 24 18 16 12 6 4
1 opposes 5 7 7 6 8 10
2 undecided 2 1 3 4 3 4

1 female 0 supports 21 25 20 17 14 13
1 opposes 4 6 5 5 5 5
2 undecided 1 2 1 1 1 1

opinion and age. The resulting table is a third of the size of the original one. Row 5
shows that any further steps lead to larger noncentrality terms and significant loss
of information.

For this example, the second step in table analysis, constructing a HLLM, is
valuable. We fit the HLLM using backward selection based on information and
information gradients rather than by the more traditional approach using statistical
significance. The table has only one item in dimension one, so the corresponding
log-linear model terms are zero. Table 11 shows an extract from the report on a
HLLM fitted to the four way table associated with line 4. It is an example of a
HLLP model. Since the distribution across the other variables is independent of
the sex variable, we omit all interaction terms involving sex. We retain Sex in the

TABLE 9
Information loss for age categories

0 1 2 3 4 5

0 7.21 14.29 22.21 35.21 54.45
1 7.05 15.24 22.48 38.21
2 4.58 9.87 19.60
3 3.43 9.59
4 2.19
5
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TABLE 10
PCC steps for abortion data

r d Key dim dev dfmod dfres dev (term) df AdRsq

0 2 2 3 6 0.00 71 0 0.00 0 1.000
1 3 0 1 2 3 4 4 2 2 3 5 2.19 20 60 2.19 11 0.898
2 3 0 1 2 2 3 3 2 2 3 4 6.77 17 49 4.58 11 0.843
3 3 0 0 1 1 2 2 2 2 3 3 13.98 14 38 7.21 11 0.784
4 1 0 0 2 1 3 3 42.65 11 21 28.67 17 0.565
5 0 0 0 1 1 3 3 65.87 10 13 23.21 8 0.420
6 3 0 0 1 1 1 1 1 1 3 2 77.61 9 11 11.74 2 0.340
7 2 0 0 1 1 1 2 2 93.28 8 10 15.67 1 0.219
8 2 0 0 0 1 1 1 2 121.47 8 9 28.19 1 0.000
9 0 0 0 1 1 1 2 121.47 8 9 0.00 1 0.000

model specification because the sex marginal will be preserved in the model of the
entire data.

The saturated model for the data is [roa] and the main effect [s] is included
because we expand the condensed model to match the marginals of the table, as-
suming independence of categories within the partitions. For this reduced model,
given the marginals of each of the variables, the two terms of the [oa] interaction
and a single parameter for an [or] interaction are associated with most of the in-
formation in the table. Christensen reaches a similar conclusion—that these two
interactions provide a nearly complete summary of the data—but after a much
more extensive discussion. We have shown that a model of the same structure but
with fewer categories contains nearly all the information.

Figure 2 shows in this case a PCC sequence provides a very similar relationship
between the information loss and number of parameters to the sequence using a
HLL model. There is a sense in which they provide approximately equally infor-
mative summaries for a given number of parameters.

TABLE 11
HLLP model for line 4 from Table 10

r Terms dev dfmod dfres dev (term) df AdRsq

0 rsoa 0.000 17 0 0.000 0 1.000
7 roa s 0.000 17 0 0.000 0 –
8 oa ra ro s 5.245 13 4 5.245 4 0.800
9 oa ro s 9.225 11 6 3.980 2 0.766

10 oa s r 23.214 9 8 13.989 2 0.558
11 a o s r 78.811 5 12 55.597 4 0.000
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FIG. 2. Information loss alternative procedures with abortion opinion data.

Most examples of HLLMs in the statistical literature are based on examples with
few category levels. If there are only two, our collapsing procedure is equivalent to
collapsing over the variable. This is not necessarily helpful with such models and
is not really designed to deal with tables of that structure. Even so, in nearly all
cases we have examined in which some variables have more than two categories
the PCC model gives much lower information loss statistics than an HLLM in the
region near the model of marginal independence for all variables.

5. Large census tables. Working with and developing parsimonious models
for large data sets is much easier using PCC since the procedure permits rapid
scanning of large tables. In the case of nominal categories, the calculation time
expands as the square of the number of categories, so tables with a few variables
but large numbers of categories are less tractable than tables with more variables
and smaller sets of categories for each variable. In official collections there are
often between 10 and 20 categories associated with a variable, but the calculations
remain feasible. Variables with larger numbers of cases are discussed below.

We have used PCC for tables with 7 variables, 50 million cells, 600,000 cells
with nonzero counts, and up to 30 categories per variable with interesting and use-
ful results that we will report elsewhere. To handle such large contingency tables
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requires the use of sparse array methods. The procedure may remain feasible for
much larger tables.

Census data often yield far bigger contingency tables and the decisions on how
to summarize and report the data are inevitably complex and almost always ad
hoc. For example, the 2000 U.S. census long form, completed by a sample of one
in six households nationwide, contains 53 questionnaire items, most of which are
categorical, and these data are, in principle, available for over 3000 counties and
even lower levels of geography in many instances. Many of the categorical vari-
ables have very large numbers of categories, some with ordinal structure and some
not. The U.S. Census Bureau has developed an elaborate confidentiality protection
scheme based on the reporting of a large number of marginal tables from the data
and made only these margins available.1

To illustrate the application to more reasonably-sized tables, we explore the
analysis of a table with 9,680 cells drawn from a slightly altered version of the
1981 Australian population census, involving about 10 million individuals.2

We consider a table where individuals are cross-classified by Age (11)×Marital
Status (5) × Qualification (11) × Family Income (16), yielding a table with 9,680
cells. The numbers are so large that the information associated with higher order
interactions is large. Only a saturated model really fits this data. Figure 3 shows
that by using the partitioning model and a linear scale we can associate a large part
of the information with a modest number of parameters in a collapsed table.

Over the entire region down to about 500 parameters the PCC model is clearly
dominated by the HLLM. Retaining the ability of the HLLM to have arbitrary
patterns of the odds ratios within each of the factor interaction terms permits closer
modeling of the cell values, but having regard to the huge numbers of observations,
one needs to think very carefully about the accuracy and adequacy of the data
generating process in giving weight to these differences.

Table 12 provides information which helps us examine effects of collapsing this
table. It is not a full listing of the PCC output, but gives the first six lines and
then every fifth line, and omits the aggregation keys to save space. There remains
sufficient information to see the main character of what is happening.

Dimension 2 distinguishes qualifications. Aggregation of two of the qualifica-
tion categories leads to no loss of information in row 1. Thereafter, there are no
subtables where the category on some dimension is independent of the distribution
of other variables. Row 2 shows that the least of these has a noncentrality para-
meter about 1.6. Each further step leads to some further loss, but by line (r = 10)
it has not reached 1% and by line 15 has reached only about 2% of the deviance
from the independence model. A table one fifth the size expanded to the original

1See the Census Bureau’s American Factfinder webpage at http://factfinder.census.gov/home/saff/
main.html?_lang=en.

2This data is from the Australian Bureau of Statistics and was made available for this research by
the Australian Social Science Data Archive at http://assda.anu.edu.au/index.html.

http://factfinder.census.gov/home/saff/main.html?_lang=en
http://assda.anu.edu.au/index.html
http://factfinder.census.gov/home/saff/main.html?_lang=en
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FIG. 3. Information Loss with Census table (Age × Marital Status × Qualification × Family In-
come.

TABLE 12
Lines from the PCC summary for the Australian census data extract

r d dim dev dfmod dfres dev (term) df AdRsq

0 11 5 11 16 0.00 9679 0 0.00 0 1.000
1 2 11 5 10 16 725.04 8800 879 725.04 879 0.999
2 2 11 5 9 16 4515.16 7921 1758 3790.12 879 0.998
3 2 11 5 8 16 10226.25 7042 2637 5711.09 879 0.998
4 1 11 4 8 16 31271.80 5635 4044 21045.56 1407 0.995
5 3 11 4 8 15 38089.68 5284 4395 6817.88 351 0.995

10 3 9 4 7 13 119605.04 3285 6394 17616.83 251 0.988
15 3 8 4 6 10 316797.86 1934 7745 41883.01 191 0.975
20 0 6 4 5 8 750387.67 979 8700 133362.68 159 0.947
25 3 6 4 3 5 1892492.24 384 9295 104126.96 71 0.875
30 3 5 4 2 2 4549042.79 109 9570 826921.73 39 0.707
35 3 3 3 1 1 9731662.12 43 9636 1965711.15 8 0.378
39 0 1 2 1 1 15663099.18 39 9640 0.00 1 0.000
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margins gives 98% of the information about associations and one tenth size only
drops the information to 95% of the original table.

For this table there are 15 terms in a saturated HLLM. For tables of census data
available to us with up to four variables the data reject any model short of the
saturated model, using as a very crude measure the G2 statistic calculated for all
nonzero cells, with no adjustments for the zeros made to the degrees of freedom.
See Fienberg and Rinaldo (2007) for a discussion of such adjustments. Even with
these assumptions the noncentrality parameter must be several multiples of the
number of degrees of freedom. At this point in the sequence of collapsing steps, the
key vectors reflected the ordinal structure of the data except for the final variable,
Family Income. Although the ordinal pattern is clearly a feature of this variable, it
showed some differences from the ordinal structure with the key: 0 1 1 1 0 2 3 3
1 1 4 4 5 5 6 7. This is not surprising as Family Income is an aggregate variable
with a complex interaction between family circumstances and income sources,
so requiring ordinality for this particular variable may not be appropriate. This
substantial simplification at various points in the PCC sequence is clearly helpful
in constructing simpler descriptions.

It is interesting to examine the HLLP models selected using the PCC sequence.
Table 13(a) gives the analysis for the original data, and Table 13(b) the HLLP
model for the line 20 table with 960 cells. The table shows that the PCC collapsing
steps which have reduced the number of cells from 9,680 to 960 have made no
difference at all to the sequence of steps followed in the HLL calculations, and
none of the adjusted R2 values at any stage of the process differ by more than 1
percentage point. The collapsed table shows all the main features of the source
data. Table 13(c) gives a much more radical collapse and over a third of the total
information loss. We have collapsed this table to less than 0.5% of the source table
size, but much of the structure is still preserved. In this case there are differences
in the sequence in the HLLP model, but several points in the sequence are still
the same. Estimates of the noncentrality parameters are broadly preserved. There
is no change in the set of significant terms using conventional criteria. In other
cases we have examined, there are examples where there are some differences in
the sequence of steps selected, but they have been for only a few steps until the
original sequence is re-established.

Clearly, going too far in the process will lose sufficient information to cause
difficulties, but an information loss of 5 to 10% often leads to virtually no change
in the HLL modeling, with a huge gain in the ability to describe the data in simple
ways.

We have been careful to distinguish the PCC process within the class of HLLP
models. Alternative procedures for determining the set of partitions can be used,
but the PCC sequence has a number of simple and attractive features.

6. Further observations. We can learn a great deal about the PCC process
from examining a wide range of examples. Jackson, Gray and Fienberg (2007) we
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TABLE 13
Hierarchical log-linear models at PCC steps for the Australian census data extract

r Terms dev dfmod dfres dev (term) df AdRsq

(a) Source table—dimensions 11 5 11 16

0 AMQF 0.000 9679 0 0.000 0 1.000
1 MQF AQF AMF AMQ 33887.855 3679 6000 33887.855 6000 0.997
2 MQF AQF AMF 61348.366 3279 6400 27460.512 400 0.994
3 MQF AMF AQ 136770.866 1779 7900 75422.500 1500 0.989
4 QF AMF MQ AQ 247723.904 1179 8500 110953.038 600 0.982
5 QF AMF AQ 365642.032 1139 8540 117918.128 40 0.974
6 QF MF AF AQ AM 682961.719 539 9140 317319.687 600 0.954
7 MF AF AQ AM 1721725.583 389 9290 1038763.863 150 0.886
8 MF AQ AM 3636440.284 239 9440 1914714.702 150 0.763
9 MF Q AM 6006085.780 139 9540 2369645.496 100 0.613

10 F Q AM 8569234.731 79 9600 2563148.951 60 0.451
11 F Q M A 15663099.176 39 9640 7093864.445 40 0.000

(b) Condensed table from line 20—dimensions 6 4 5 8

0 AMQF 0.000 959 0 0.000 0 1.000
1 MQF AQF AMF AMQ 20254.229 539 420 20254.229 420 0.997
2 MQF AQF AMF 36045.634 479 480 15791.405 60 0.995
3 MQF AMF AQ 78960.937 339 620 42915.303 140 0.992
4 QF AMF MQ AQ 160606.450 255 704 81645.513 84 0.986
5 QF AMF AQ 271689.641 243 716 111083.191 12 0.976
6 QF MF AF AQ AM 529426.958 138 821 257737.317 105 0.959
7 MF AF AQ AM 1466497.479 110 849 937070.521 28 0.891
8 MF AQ AM 3192037.053 75 884 1725539.574 35 0.772
9 MF Q AM 5455415.358 55 904 2263378.305 20 0.620

10 F Q AM 7934859.751 34 925 2479444.393 21 0.459
11 F Q M A 14912711.502 19 940 6977851.752 15 0.000

(c) Condensed table from line 32—dimensions 4 3 2 2

0 AMQF 0.000 47 0 0.000 0 1.000
1 MQF AQF AMF AMQ 51.212 41 6 51.212 6 1.000
2 AQF AMF AMQ 186.612 39 8 135.400 2 1.000
3 QF AMF AMQ 1702.175 36 11 1515.564 3 0.999
4 QF AMF MQ AQ 5157.652 30 17 3455.477 6 0.999
5 QF AMF AQ 25974.274 28 19 20816.622 2 0.995
6 AMF AQ 48953.668 27 20 22979.394 1 0.990
7 MF AF AQ AM 85517.442 21 26 36563.774 6 0.987
8 AF AQ AM 832835.299 19 28 747317.857 2 0.882
9 F AQ AM 2057950.185 16 31 1225114.886 3 0.737

10 F Q AM 3687777.788 13 34 1629827.603 3 0.571
11 F Q M A 10107312.737 7 40 6419534.948 6 0.000

provide examples from the literature and some detailed comparisons of analyses



978 L. F. JACKSON, A. G. GRAY AND S. E. FIENBERG

from several multi-dimensional tables using the PCC framework and our original
analyses. Here we comment on some aspects from that experience.

The PCC process may not generate a set of categories which provides the min-
imal information loss across all possible category groupings. The limitations of
single step procedures in seeking clusters in multi-dimensional problems are well
known. A minimal step at some stage may preclude other alternatives at a later
stage and prevent the sequence from passing through some minimal points. Analy-
sis of the Wermuth and Cox data set used by Dellaportas and Tarantola showed that
neither the PCC procedure nor their Bayesian model selection procedure found the
global minimal information loss solution.

For small models it is possible to examine all possible partitions of the cate-
gories and evaluate the information loss associated with those partitions. For small
numbers of categories, it is possible to consider all partitions across each dimen-
sion of a table, but as the Bell Numbers 1,2,5,15,52,203,877, . . . grow rapidly
it quickly becomes infeasible. For a 4 × 4 × 4 × 4 table there are 154 options,
so it can be explored, but anything much larger can quickly become infeasible.
It is clearly not feasible for most of the tables of interest for large data sets with
moderate numbers of categories per variable.

In some cases, where there are a group of categories with a small distance be-
tween them, we could also consider a search procedure which takes one or two
further steps before making a decision. Our experience so far, however, is that
the simple local valley based on following our procedure provides useful sum-
maries, a valuable guide to the information structure, and improved confidence in
the model structure obtained.

An interesting and more general alternative to the scheme outlined so far is to
permit different partitions in different terms within a hierarchic log-linear model.
Such a model would not be a hierarchic model on partitions of the categories. An
[AB] term might be fitted better with a different partition of the categories of A
from an [AC] term. The procedure explored in Sections 2 and 3 can be applied to
any table to clarify its information structure.

Because categories with smaller numbers of cases have less information, the
PCC commonly aggregates small categories with a much larger one, or with an-
other small category. The number of cells which are problematic can reduce rapidly
with this aggregation, but even in condensed tables confidentiality problems can
arise. These issues and a range of other examples are examined in Jackson, Gray
and Fienberg (2007).

6.1. Where is the information in a contingency table? The deviance vs para-
meter graph is very informative about the structure of a contingency table. If it is
nearly a straight line, then either the table is nearly all noise, or the information is
widely dispersed and all collapsing steps generate similar average significant in-
formation loss. If you consider the Gini like coefficient for the graph, based on the
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ratio of the area under the curve to the area of the triangle, very small values indi-
cate a high degree of concentration of the information in a manner associated with
the category structure. The tools in this paper give two ways of exploring that. The
PCC framework helps clarify the coefficient structure for individual components of
an HLLM. It generates a sequence of models within the HLLP class and the simpli-
fication associated with the collapsed data often helps explain and characterize the
structure associated with the terms in the HLLM. The PCC framework provides
a consistent way of thinking about increasingly detailed models, with a shifting
boundary of the effects considered as noise depending on the threshold necessary
for a particular analysis. However, other processes can also generate sequences of
HLLP models and we see PCC as a first step in exploring them. For all of them
the gradient of the information curve will provide insight into the magnitude of the
effects being ignored at any level of description.

6.2. Guided category collapse: priors or data based. In Table 2 we gave the
deviance associated with alternative category aggregates for schooling. It shows
clearly the magnitude of the effect of different category aggregates on the deviance
from the independence model. The impact of aggregating two categories can rank
from none (the deviance is of the order expected from independent sampling alone)
to approximately two-thirds of the total deviance from independence. Even con-
sidering adjacent pairs, there are alternative ways of grouping the categories, and
an inappropriate choice based solely on the user’s prior views may have a high
risk of generating a poor outcome. In some large tables, three or four inappropriate
aggregations can largely destroy the information about variable interactions in a
table. Even in small tables such as the one in Tables 1 and 3 showed that aggregat-
ing age categories 0 and 3 would be very destructive of the information about the
association between them. That is an unlikely pair to be selected, but it does pro-
vide a warning of the potential for large loss when information loss tables are not
used to guide selection. It highlights the difficulty of meta analysis and comparing
analyses where different categories or concepts are used. Differences in category
combinations can have large effects. We strongly recommend at least construction
of an information loss table, as illustrated in Tables 2, 3 and 10, before any cate-
gory aggregation is undertaken prior to data publication and some reporting of its
effects when it is used.
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SUPPLEMENTARY MATERIAL

Tools for construction and comparison of PCC and HLL models (DOI:
10.1214/08-AOAS175SUPP; .zip). A program to execute the procedures in the

http://dx.doi.org/10.1214/08-AOAS175SUPP
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paper are provided in the supplementary material and illustrated with steps to gen-
erate some graphs and tables from the paper. The read.me file provides some in-
structions on its use. The program requires the free array programming language J
available from http://www.jsoftware.com.
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