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Abstract. When two Markov operators commute, it suggests that we can couple two copies of one of the corresponding processes.
We explicitly construct a number of couplings of this type for a commuting family of Markov processes on the set of conjugacy
classes of the unitary group, using a dynamical rule inspired by the RSK algorithm. Our motivation for doing this is to develop
a parallel programme, on the circle, to some recently discovered connections in random matrix theory between reflected and
conditioned systems of particles on the line. One of the Markov chains we consider gives rise to a family of Gibbs measures
on “bead configurations” on the infinite cylinder. We show that these measures have determinantal structure and compute the
corresponding space–time correlation kernel.

Résumé. Quand deux opérateurs de Markov commutent, cela suggère que nous pouvons coupler deux copies d’un des processus
correspondants. Nous construisons explicitement un certain nombre de couplages de ce type pour une famille de processus de Mar-
kov qui commutent sur l’ensemble des classes de conjugaison du groupe unitaire. Nous utilisons, à cette fin, une règle dynamique
inspirée par l’algorithme RSK. Notre motivation est de développer un programme parallèle sur le cercle, pour des connections
récemment mises à jour dans la théorie des matrices aléatoires entre des systèmes de particules réfléchies et conditionnées sur la
droite. Une des chaînes de Markov que nous considérons donne lieu à une famille de mesures de Gibbs sur des configurations de
perles sur le cylindre infini. Nous prouvons que ces mesures ont la structure déterminantale et calculons le noyau de corrélation
espace-temps correspondant.
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1. Introduction

When two Markov operators commute, it suggests that we can couple two copies of one of the corresponding
processes. Such couplings have been described in [10] in a general context. In this paper, we explicitly construct
a number of couplings of this type for a commuting family of Markov processes on the set of conjugacy classes of the
unitary group, using a dynamical rule inspired by the Robinson–Schensted–Knuth (RSK) algorithm. Our motivation
for doing this is to develop a parallel programme, on the circle, to some recently discovered connections in random
matrix theory between reflected and conditioned systems of particles on the line (see, for example, [2,4,18,30,38]).
The RSK algorithm is a combinatorial device which plays an important role in the representation theory of GL(n,C)

and lies at the heart of these developments. We refer the reader to [16] for more background on the combinatorics. One
of the Markov chains we consider gives rise to a family of Gibbs measures on “bead configurations” on the infinite
cylinder. This is related to recent work [5,6,23] on planar and toroidal models. We will show that these measures have
determinantal structure and compute the corresponding space–time correlation kernel.
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We start with some motivation, and a flavour of some of the main results in this paper. The following construction
is closely related to the RSK algorithm [28–30]. Let E1 = Z and, for n ≥ 2,

En = {
x ∈ Z

n: x1 < · · · < xn

}
.

The reader should think of an element x ∈ En as a configuration of n particles on the integers located at positions
x1 < · · · < xn. We say that a pair (x, y) ∈ Em × Em+1 are interlaced, and write x � y, if yj < xj ≤ yj+1 for all
j ≤ m. A (discrete) Gelfand–Tsetlin pattern of depth n is a collection (x1, x2, . . . , xn) such that xm ∈ Em for m ≤ n

and xm � xm+1 for 1 ≤ m < n.
Fix n ≥ 2 and denote by GTn the set of Gelfand–Tsetlin patterns of depth n. Let w1,w2, . . . be a sequence of

independent random variables, each chosen according to the uniform distribution on {1,2, . . . , n}. Using these, we
will construct a Markov chain (X(k), k ≥ 0) with state space GTn, which evolves according to

X(k + 1) = g
(
X(k),wk+1

)
, k ≥ 0,

where g : GTn ×{1, . . . , n} → GTn is defined recursively as follows. Fix m < n and let (x, y) ∈ Em × Em+1 such that
x � y. Let x′ ∈ Em such that, for some j ≤ m, x′

i = xi + δij . The reader should have in mind m particles located at
positions x1 < · · · < xm, interlaced with another set of m + 1 particles located at positions y1 < · · · < ym+1. The first
configuration x is updated by moving the particle at position xj one step to the right, that is, to position xj + 1, giving
a new configuration x′. This can be used to obtain an update y′ to the second configuration y, obtained by moving
the first available particle, strictly to the right of position yj , which can be moved without breaking the interlacing
constraint, so that x′ � y′. Such a particle is guaranteed to exist because the interlacing constraint cannot be broken
by the rightmost particle. In other words, the updated configuration is given by y′

i = yi + δik , where k = inf{l >

j :yl + 1 < xl}. Let us write y′ = φ(x, y, x′), where φ is defined on an appropriate domain. Now, given m ≤ n and a
pattern (x1, . . . , xn) ∈ GTn we define a new pattern(

y1, . . . , yn
) ≡ g

((
x1, . . . , xn

)
,m

)
as follows. First we set yj = xj for j < m. Then we obtain ym from the configuration xm by moving the first available
particle, starting from the particle at position xm

1 , which can be moved one step to the right without breaking the
interlacing constraint. Finally, we define, for m ≤ l < n, yl+1 = φ(xl, xl+1, yl).

The Markov chain X has remarkable properties. For example, if we start from the initial pattern

X(0) = (
(0), (−1,0), (−2,−1,0), . . . , (−n + 1, . . . ,0)

)
, (1)

then (Xn(k), k ≥ 0) is a Markov chain (with respect to its own filtration) with state space En and transition probabili-
ties given by

Pn(x, y) =
{

1
n

h(y)
h(x)

, x ↗ y,
0, otherwise,

(2)

where h is the Vandermonde function h(x) = ∏
i<j≤n(xj − xi) and the notation x ↗ y means that the configuration y

can be obtained from x by moving one particle one step to the right. The fact that Pn is a Markov transition kernel
follows from the fact (see, for example, [24]) that h is positive on En and satisfies

1

n

∑
x↗y

h(y) = h(x).

More generally (see, for example, [28,29]):

Proposition 1.1. Given x ∈ En, if X(0) is chosen uniformly at random from the set of patterns (x1, . . . , xn) with
xn = x, then (Xn(k), k ≥ 0) is a Markov chain started from x with transition probabilities given by Pn. Moreover, for
each T > 0, the conditional law of X(T ), given (Xn(k), T ≥ k ≥ 0), is uniformly distributed on the set of patterns
(x1, . . . , xn) with xn = Xn(T ).
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The connection with the RSK algorithm is the following: if we start from the initial pattern (1), then the integer
partition

(
Xn

n(k),Xn
n−1(k) + 1,Xn

n−2(k) + 2, . . . ,Xn
1 (k) + n − 1

)
is precisely the shape of the tableau obtained when one applies the RSK algorithm, with column insertion, to the word
w1w2 · · ·wk . We refer to [28] for more details. This construction clearly has a nested structure. If we consider the
evolution of the last two rows Xn−1 and Xn we see that we can construct a Markov chain with transition probabilities
Pn from a Markov chain with transition probabilities Pn−1 plus a “little bit of extra randomness”.

In the above construction we are thinking in terms of particles moving on a line. In random matrix theory, there
are often strong parallels between natural measures on configurations of particles (or “eigenvalues”) on the line, and
configurations of particles on the circle. It is therefore natural to ask if there is an analogue of the above construction
for configurations of particles on the circle. The notion of interlacing carries over in the obvious way. However, in this
setting, interlaced configurations should have the same number of particles, and the analogue of a Gelfand–Tsetlin
pattern could potentially be an infinite object. Despite this fundamental difference between the two settings, there
is indeed a natural analogue of the above “RSK dynamics” and a natural analogue of Proposition 1.1. Consider the
discrete circle with N positions which we label {0,1, . . . ,N − 1} in the anti-clockwise direction. The analogue of
the Markov chain with transition matrix Pn is a Markov chain on the set CN

n of configurations of n indistinguishable
particles on the discrete circle with transition probabilities given by

Q(x,y) =
{

c
n

Δ(y)
Δ(x)

, x ↗ y,
0, otherwise,

(3)

where, similarly as before, the notation x ↗ y means that the configuration y can be obtained from x by moving one
particle one step anti-clockwise, and the function Δ is again a Vandermonde function defined, for a configuration x

which consists of a particles located at positions k1, . . . , kn, by

Δ(x) =
∏

i<j≤n

∣∣e2πikj /N − e2πiki/N
∣∣. (4)

The constant c is chosen so that Q(x, ·) is a probability distribution; the fact that c can be chosen independently of x

follows from the fact (see, for example, [24]) that Δ is a positive eigenvector of the matrix 1x↗y , that is,

∑
x↗y

Δ(y) = λΔ(x)

for some λ > 0. A formula for the eigenvalue λ can be found in [24].
In this setting we will say that a pair of configurations (x, y) are interlaced, and write x � y as before, if there is

a labelling of the particles such that x consists of a particles located at positions k1, . . . , kn, y consists of a particles
located at positions l1, . . . , ln, kj < lj ≤ kj+1 for j < n and either kn < ln ≤ k1 + N or kn < ln + N ≤ k1 + N .

Let (X(k), k ≥ 0) be a Markov chain with state space CN
n and transition matrix Q. On the same probability space,

without using any extra randomness, we can construct a second process (Y (k), k ≥ 0), also taking values in CN
n , such

that X(k) � Y(k) for all k. This is given as follows. For each k > 0, given X(k), Y(k) and X(k + 1) we obtain the
configuration Y(k + 1) from Y(k) by moving a particle one step anti-clockwise; this particle is chosen as follows. The
transition from X(k) to X(k + 1) involves one particle moving one step anti-clockwise; starting at the position of this
particle, choose the first particle in the configuration Y(k) that we come to, in an anti-clockwise direction, which can
be moved by one step anti-clockwise without breaking the interlacing constraint.

The function Δ defined by (4) is also a positive (left and right) eigenvector of the matrix 1x�y . This follows, for
example, from the discussion given at the end of Section 3. In particular,

∑
x�y

Δ(x) = γΔ(y)
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for some γ > 0 and we can define a Markov kernel on CN
n by

M(y,x) = 1

γ

Δ(x)

Δ(y)
1x�y. (5)

The analogue of Proposition 1.1 in this setting is the following:

Proposition 1.2. If Y(0) = y and X(0) is chosen at random according to the distribution M(y, ·), then (Y (k), k ≥ 0)

is a Markov chain started at y with transition matrix Q. Moreover, for each T > 0, the conditional law of X(T ), given
(Y (k), T ≥ k ≥ 0), is given by M(Y(T ), ·).

In the sequel we will present a number of variations of this result, firstly involving random walks with jumps in
a continuous state space and secondly involving Brownian motion. Proposition 1.2 follows from results presented in
Section 3 (see discussion towards the end of that section).

We will also study continuous analogues of the Markov chain with transition matrix M . These Markov chains also
arise naturally in the context of a certain random walk on the unitary group which is obtained by taking products
of certain random (complex) reflections, as studied for example in [15,33]. This is described in Section 2 and taken
as a starting point for the exposition that follows. The main point is that these Markov chains commute with each
other and with the Dirichlet Laplacian on the set of conjugacy classes of the unitary group. In Sections3 and 4, we
present couplings which realise these commutation relations, first between interlaced random walks on the circle and
later between interlaced Brownian motions. These couplings are precisely the variations of Proposition 1.2 mentioned
above. Actually there are two natural couplings for the random walks and these correspond to dynamical rules inspired
by the RSK algorithm with row, and column insertion, respectively. The couplings between interlaced Brownian
motions can be thought of as a limiting case where the two types of coupling become equivalent. In Section 5,
we consider a family of Markov chains which can be thought of as perturbations of a continuous analogue of the
Markov chain with transition matrix given by (5). These give rise to a natural family of Gibbs measures on “bead
configurations” on the infinite cylinder. This is a cylindrical analogue of the planar bead model studied in [5] and, in
one special case (the “unperturbed” case), can also be regarded as a cylindrical analogue of some natural measures
on Gelfand–Tsetlin patterns related to “GUE minors” [2,14,22,31] (see also [7] for extensions to the other classical
complex Lie algebras). We show that these measures have determinantal structure by first writing the restrictions of
these measures to cylinder sets as products of determinants and then following the methodology of Johansson (see,
for example, [21]) to compute the space–time correlation functions.

2. Markov processes on the conjugacy classes of the unitary group

Consider the group U(n) of n × n unitary matrices, and denote by Cn the set of conjugacy classes in U(n). Each
element of Cn can be identified with an unlabelled configuration of n points (eigenvalues) on the unit circle, which
in turn can be identified with the Euclidean set Dn = {θ ∈ R

n: 0 ≤ θ1 ≤ · · · ≤ θn < 2π}. Denote by dx the image of
Lebesgue measure under the latter identification, and by μ the probability measure on Cn induced from Haar measure
on U(n). Then μ(dx) = (2π)−nΔ(x)2 dx, where Δ(x) is defined, for x = {eiθ1, . . . , eiθn}, by

Δ(x) =
∏

1≤l<m≤n

∣∣eiθl − eiθm
∣∣. (6)

The irreducible characters χλ of U(n) are indexed by the set

Ωn = {
λ ∈ Z

n: λ1 ≥ λ2 ≥ · · · ≥ λn

}
.

We assume that these are normalised, that is,
∫ |χλ|2 dμ = 1 for all λ ∈ Ωn.

Let x ∈ Cn and consider the random walk on U(n) which is constructed by multiplying together independent,
randomly chosen elements from the conjugacy class x. (By “a randomly chosen element from the conjugacy class x”
we mean a random element of the conjugacy class x which admits a representation of the form MDxM

∗, where Dx

is an arbitrary element of the conjugacy class x and M is a Haar-distributed, randomly chosen element of U(n).) The
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corresponding Markov kernel px(y,dz) can be interpreted as the law of DxMDyM
∗, where Dx and Dy are arbitrary

elements of the conjugacy classes x and y, respectively, and M is a Haar-distributed randomly chosen element of
U(n). Write pxf = ∫

p(·,dz)f (z) for f ∈ L2(Cn,μ). Then, for each λ ∈ Ωn,

pxχλ = χλ(x)

dλ

χλ, (7)

where dλ is the dimension of the representation corresponding to λ (see, for example, [13], Proposition 6.5.2). More-
over, μ is an invariant measure for the Markov kernel px , that is,∫

μ(dy)px(y, ·) = μ. (8)

The Markov kernels {px, x ∈ Cn} are the extreme points in the convex set M of all Markov kernels on L2(Cn,μ)

with the irreducible characters as eigenfunctions. (See, for example, [1]).) All of the Markov kernels in M have μ

as an invariant measure and, as operators on L2(Cn,μ), they commute. They correspond to random walks on U(n)

such that the law of the increments is invariant under conjugation. Such random walks on U(n), and other classical
compact groups, have been studied extensively in the literature (see, for example, [8,9,32,33,36]).

The case of interest in this paper is the random walk obtained by taking products of certain random (complex)
reflections in U(n) (see, for example, [15,33]). More precisely, we take x = {eir ,1,1, . . . ,1} in the above kernel,
where r ∈ (0,2π). Let us write

pr := px (9)

for this case. A concrete description of this kernel can be given as follows (see [15] for details). For a, b ∈ Dn, write
a � b if

a1 ≤ b1 ≤ a2 ≤ · · · ≤ an ≤ bn.

For y = {eia1, . . . , eian} and z = {eib1, . . . , eibn}, where a, b ∈ Dn, write y �r z if either a � b and
∑

j (bj − aj ) = r ,
or b � a and

∑
j (bj − aj ) + 2π = r . The measure pr(y, ·) is supported on the set

Fr(y) = {z ∈ Cn :y �r z}.
This set can be identified with the disjoint union of a pair of (n − 1)-dimensional Euclidean sets{

b ∈ Dn: a � b,
∑
j

(bj − aj ) = r

}
∪

{
b ∈ Dn: a � b,

∑
j

(bj − aj ) = r − 2π

}
,

each of which can be endowed with (n − 1)-dimensional Lebesgue measure giving a natural measure on their
union. The measure obtained on Fr(y) via this identification can be extended to a measure νr(y, ·) on Cn by set-
ting νr(y,Cn\Fr(y)) = 0. The following identity can be deduced from [15], Lemma 2.

Proposition 2.1.

pr(y,dz) = 1

γr

Δ(z)

Δ(y)
νr(y,dz), (10)

where γr = |1 − eir |(n−1)/(n − 1)!.

In Section 5, we will present a determinantal formula for
∫ 2π

0 qrνr (y,dz)dr , where q > 0 is a parameter, and use this
to give an alternative proof of Proposition 2.1.

Another operator which will play a role in this paper is the Dirichlet Laplacian on the (closed) alcove

An = {
θ ∈ R

n: θ1 ≤ θ2 ≤ · · · ≤ θn ≤ θ1 + 2π
}
. (11)
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Let (Qt ) denote the transition semigroup of a standard Brownian motion conditioned never to exit An. This is a Doob
transform of the Brownian motion which is killed when it exits An, via the positive eigenfunction

h(θ) =
∏

1≤l<m≤n

∣∣eiθl − eiθm
∣∣. (12)

We can identify Cn with exp(iAn)/Cn, where Cn denotes the group of cyclic permutations which acts on An by
permuting coordinates. It is known [3] that the eigenfunctions of the induced semigroup (Q̂t ) on L2(Cn,μ) are given
by the irreducible characters {χλ, λ ∈ Ωn}, which implies that Q̂t ∈ M, for each t > 0. Note that the corresponding
process on Cn can be thought of as n standard Brownian motions on the circle conditioned never to collide.

We will also consider discrete analogues of the above processes. Set

AN
n = (NAn/2π) ∩ Z

n, CN
n = exp

(
2πiAn(N)/N

)
/Cn, ΩN

n = {λ ∈ Ωn: λ1 ≤ N − 1}.

Much of the above discussion can be replicated in this setting, but for our purposes it suffices to make the following
remark. Think of CN

n as the set of configurations of n particles at distinct locations on the discrete circle with N

positions. Consider the random walk in CN
n where at each step a particle is chosen at random and moved one position

anti-clockwise if that position is vacant; if it is not vacant the process is killed. It is known that the restriction of
the function Δ to CN

n is the Perron–Frobenius eigenfunction for this sub-Markov chain. In fact, a complete set of
eigenfunctions (with respect to the measure Δ(x)2) is given by the restrictions of the characters {χλ,λ ∈ ΩN

n } to CN
n .

(See, for example, [24].) As we shall see later, the discrete analogues of the νr (thought of as operators) commute with
the transition kernel of this killed random walk and therefore share these eigenfunctions.

3. Couplings of interlaced random walks

The Markov chain on Cn with transition probabilities pr , defined by (9), can be lifted to a Markov chain on An,
which is better suited to the constructions of this section. To make this precise let us say x and x′ belonging to An are
r-interlaced, for some r ∈ (0,2π), if

x′
i ∈ [xi, xi+1] for i = 1,2, . . . , n and

n∑
i=1

(
x′
i − xi

) = r, (13)

when we adopt the convention that xn+1 = x1 + 2π. In this case we will write x �r x′. Define π :An → Cn by
π(x) = {eix1, . . . , eixn}. Denote by lr (x,dx′) the (n − 1)-dimensional Lebesgue measure on the set

Gr(x) = {
x′ ∈ An :x �r x′}.

Clearly the restriction of π to Gr(x) is injective, with π(Gr(x)) = Fr(π(x)). Moreover, for measurable B ⊂ An,
lr (x,B) = νr(π(x),π(B ∩ Gr(x))). Thus, if we define, for measurable B ⊂ An,

qr(x,B) = pr

(
π(x),π

(
B ∩ Gr(x)

))
(14)

then, by Proposition 2.1,

qr(x,B) =
∫

π(B∩Gr(x))

pr

(
π(x), dz

)

=
∫

π(B∩Gr(x))

1

γr

Δ(z)

Δ(π(x))
νr

(
π(x), dz

)

=
∫

B

1

γr

Δ(π(x′))
Δ(π(x))

lr
(
x,dx′),
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and hence,

qr

(
x,dx′) = 1

γr

Δ(π(x′))
Δ(π(x))

lr
(
x,dx′). (15)

We will refer to a Markov chain with values in An and transition probabilities qr as an r-interlacing random walk. As
far as we are aware, such processes have not previously appeared in the literature. Note that since prps = pspr we
have qrqs = qsqr or, equivalently, lr ls = ls lr .

The goal of this section is to construct, for given r, s ∈ (0,2π), two different Markovian couplings (X(k),Y (k); k ≥
0) of a pair of r-interlacing random walks on An, having the property that X(k) and Y(k) are s-interlaced for each n

and moreover, for each l ≥ 0, the trajectory (Y (k);0 ≤ k ≤ l) will be a deterministic function of Y(0) together with
the trajectory (X(k);0 ≤ k ≤ l).

The existence of such couplings is suggested by the commutation relation qrqs = qsqr , equivalently lr ls = ls lr .
For any u,v ∈ An consider the two sets τu,v = {x ∈ An: u �s x �r v} and τ ′

u,v = {y ∈ An: u �r y �s v}. If either is
non-empty, then they both are, and in this case they are (n − 1)-dimensional polygons, and the relation lr ls = ls lr can
be interpreted as saying these two polygons have the same (n − 1)-dimensional volume. In fact the two polygons are
congruent. Define

y = φu,v(x) (16)

via

yi = min(ui+1, vi) + max(ui, vi−1) − xi. (17)

It is easy to see that φu,v is an isometry from τu,v to τ ′
u,v using the facts that

yi ∈ [
max(ui, vi−1),min(ui+1, vi)

]
if and only if xi ∈ [

max(ui, vi−1),min(ui+1, vi)
]
,

and

n∑
i=1

yi =
n∑

i=1

(
min(ui+1, vi) + max(ui, vi−1) − xi

) =
n∑

i=1

(ui + vi − xi).

Proposition 3.1. Let (X(k); k ≥ 0) be an r-interlacing random walk, starting from X(0) having the distribution
qs(y,dx) for some given y ∈ An, where qs is defined by (14). Let the process (Y (k); k ≥ 0) be given by Y(0) = y and

Y(k + 1) = φY(k),X(k+1)

(
X(k)

)
for k ≥ 0,

where φ is defined by (16). Then (Y (k); k ≥ 0) is distributed as an r-interlacing random walk starting from y.

Proof. We prove by induction on m that the law of (Y (1), . . . , Y (m),X(m)) is given by qr(y,dy(1)) · · ·qr(y(m −
1),dy(m))qs(y(m),dx(m)). Suppose this holds for some m. Then, since Y(1), . . . , Y (m) are measurable with respect
to X(0),X(1), . . . ,X(m) the joint law of (Y (1), . . . , Y (m),X(m),X(m + 1)) is given by

qr

(
y,dy(1)

) · · ·qr

(
y(m − 1),dy(m)

)
qs

(
y(m),dx(m)

)
qr

(
x(m),dx(m + 1)

)
.

Equivalently we may say that the law of (Y (1), . . . , Y (m),X(m + 1)) is

qr

(
y,dy(1)

) · · ·qr

(
y(m − 1),dy(m)

)
(qsqr )

(
y(m),dx(m + 1)

)
and that the conditional law of X(m) given the same variables is uniform on τY(m)X(m+1). From the measure preserving
properties of the maps φu,v , it follows that, conditionally on (Y (1), . . . , Y (m),X(m + 1)), Y(m + 1) is distributed
uniformly on τ ′

Y(m),X(m+1), and the inductive hypothesis for m + 1 follows from this and the commutation relation
qsqr = qrqs . �
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The dynamics of the coupled processes (X(k),Y (k); k ≥ 0) are illustrated in the following two diagrams, in which
interlacing configurations x = X(k) and y = Y(k) are shown together with updated configurations x′ = X(k + 1) and
y′ = Y(k +1). It is natural to think of these as particle positions on (a portion of) the circle. For simplicity we consider
an example where x′ and x differ only in the ith co-ordinate.

The configuration y′ is of course determined by y, x and x′ together. The simplest possibility is shown above, in
this case ith y particle advances by the same amount as the ith x-particle. However should the ith x-particle advance
beyond yi+1 then it pushes the (i + 1)th y particle along, whilst the increment in the position of the ith y particle is
limited to yi+1 − xi .

The proof of Proposition 3.1 made use of only the measure preserving properties of the family of maps φuv , and
consequently we can replace it by another family of maps having the same property and obtain a different coupling of
the same processes. The pushing interaction in the coupling constructed above is also seen in the dynamics induced
on Gelfand–Tsetlin patterns by the RSK correspondence. There exists a variant of the RSK algorithm (with column
insertion replacing the more common row insertion), in which pushing is replaced by blocking. We will next describe
a family ψuv of measure-preserving maps that lead to a coupling with such a blocking interaction.

We recall first a version of the standard Skorohod lemma for periodic sequences.

Lemma 3.2 (Skorohod). Suppose that (zi; i ∈ Z) is n-periodic and satisfies
∑n

i=1 zi < 0. Then there exists a unique
pair of n-periodic sequences (ri; i ∈ Z) and (li;∈ Z) such that

ri+1 = ri + zi + li+1 for all i ∈ Z,

with the additional properties ri ≥ 0, li ≥ 0 and li > 0 �⇒ ri = 0 for all i ∈ Z.

A configuration (x1, x2, . . . , xn) of n points on the circle will be implicitly extended to a sequence (xi; i ∈ Z)

satisfying xi+n = xi + 2π.

Proposition 3.3. Suppose that u, v and x are three configurations on the circle with u �s x �r v, where s > r . Define
an n-periodic sequence via

zi = vi − xi − xi+1 + ui+1 for i ∈ Z,

and let (r, l) be the associated solution to the Skorohod problem. Set yi = xi − li , then (y1, . . . , yn) is configuration
on the circle such that u �r y �s v.

Proof. Notice that
∑n

i=1 zi = r − s < 0 so the appeal to the Skorohod construction is legitimate.
Summing the Skorohod equation gives

∑n
i=1 zi = −∑n

i=1 li . Consequently, using the definition of y,

n∑
i=1

(yi − ui) =
n∑

i=1

(xi − li − ui) = s −
n∑

i=1

li = r.

Similarly
∑n

i=1(vi − yi) = s.
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To conclude we will verify the inequalities

max(ui, vi−1) ≤ yi ≤ xi ≤ min(ui+1, vi).

It is easily checked that z−
i−1 ≤ min(xi − ui, xi − vi−1). The solution of the Skorohod problem satisfies 0 ≤ li ≤ z−

i−1.
Together with the definition of yi , this gives the desired inequalities. �

By virtue of the preceeding result we may define ψu,v : τuv → τ ′
uv via ψuv(x) = y.

Proposition 3.4. ψuv is a measure-preserving bijection.

Proof. For x ∈ An, extended as before to a sequence (xi; i ∈ Z), let x† be defined by x
†
i = −x−i for i ∈ Z. Observe

that if x ≺r y, then y† ≺r x†. For u,v, x and y as in the previous proposition we will show that the application

(u, x, v) �→ (
v†, y†, u†)

is an involution, and this implies in particular that ψu,v is invertible with x† = ψv†u†(y†). To this end first note that
v† ≺s y† ≺r u†, and hence it is meaningful to apply ψv†u† to y†. We must proof that the resulting conguration x̃ say,
is equal to x†.

We have x̃i = y
†
i − l̃i , where (r̃, l̃) solves the Skorohod problem with data

z̃i = u
†
i − y

†
i − y

†
i+1 + v

†
i+1.

Since x̃i = y
†
i − l̃i = −x−i + l−i − l̃i verifying that x̃ = x† boils down to checking that l̃i = l−i . For this it is suffices,

by the uniqueness property of solutions to the Skorohod problem, to confirm that r ′
i = r−i and l′i = l−i solve the

Skorohod problem with data z̃. Now r ′ and l′ are non-negative and satisfy l′i > 0 �⇒ r ′
i = 0 because r and l have

these properties. We just have to compute

r ′
i + z̃i + l′i+1 = r−i + u

†
i − y

†
i − y

†
i+1 + v

†
i+1 + l−(i+1)

= r−i − u−i + y−i + y−(i+1) − v−(i+1) + l−(i+1)

= r−i − u−i + x−i − l−i + x−(i+1) − l−(i+1) − v−(i+1) + l−(i+1)

= r−i − z−(i+1) − l−i

= r−(i+1) = r ′
i+1.

This proves the involution property.
It remains to verify the measure-preserving property. The construction of ψuv is such that it is evident that it is a

piecewise linear mapping, and that its Jacobian is almost everywhere integer valued. Since the same applies to the
inverse map constructed from ψv†u† we conclude the Jacobian is almost everywhere ±1 valued. �

Finally the following proposition follows by exactly the same argument as Proposition 3.1.

Proposition 3.5. Suppose that s > r . Let (X(k); k ≥ 0) be an r-interlacing random walk, starting from X(0) having
the distribution qs(y,dx) for some given y ∈ An. Let the process (Y (k); k ≥ 0) be given by Y(0) = y and

Y(k + 1) = ψY(k),X(k+1)

(
X(k)

)
for k ≥ 0.

Then (Y (k); k ≥ 0) is distributed as an r-interlacing random walk starting from y.

Let us illustrate this coupling in a similar fashion to before.
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In the simplest case shown above, the (i + 1)th y particle advances by the same amount as the ith x-particle.
However in the event that this would result in it passing the position xi , then it is blocked at that point, and the unused
part of the increment (x′

i − xi) is passed to the (i + 2)th y particle as is shown beneath.

We can also consider discrete analogues of these constructions. Set AN
n = An ∩ Z

n/(2πN). Then, for r ∈
{1/(2πN),2/(2πN), . . . , (N −1)/(2πN)} we may define a Markovian transition kernel qN

r on AN
n as follows. Define

lNr (x, x′) =
{

1, if z �r x′,
0, otherwise

and let

hN(x) =
∏

1≤l<m≤n

∣∣eix̄l − eix̄m
∣∣, (18)

where x̄j = N
N+n

(xj + j/(2πN)). Then, as we shall see below, lNr , as a kernel on AN
n , admits hN as a strictly positive

eigenfunction, and consequently

qN
r

(
x, x′) = 1

γ N
r

hN(x′)
hN(x)

lNr
(
x, x′), (19)

defines a Markovian transition kernel, where γ N
r > 0 denotes the Perron–Frobenius eigenvalue of lNr . We will call a

Markov chain (X(k); k ≥ 0) with these transition probabilities, an r-interlacing random walk on AN
n .

In the special case r = 1/(2πN) the r-interlacing random walk on AN
n is closely related to non-coliding random

walks on the circle, as considered in [24] for instance. Specifically if (X(k); k ≥ 0) is the walk on AN
n then the process

given by(
eiX̄1(k), eiX̄2(k), . . . , eiX̄n(k)

)
,

where X̄j (k) = N
N+n

(Xj (k)+ j/(2πN)), gives a process of n non-coliding random walks on the circle {eik/(2π(N+n);
k = 0,1,2, . . . ,N + n − 1}.

Fix r and s ∈ {1/(2πN),2/(2πN), . . . , (N −1)/(2πN)}. For u,v ∈ AN
n we may consider the two sets τN

u,v = τu,v ∩
Z

n/(2πN) and τN ′
u,v = τ ′

u,v ∩Z
n/(2πN), where τu,v and τ ′

u,v are the polygons defined previously. The map φu,v carries
Zn/(2πN) into Zn/(2πN), and since we know it to be an isometry between τu,v and τ ′

u,v it must therefore restrict to a
bijection between τN

u,v and τN ′
u,v . In particular the cardinalities of these two sets are equal. Since lNs lNr (u, v) = |τN

u,v| =
|τN ′

u,v| = lNr lNs (u, v) we deduce that lNr and lNs , and so qN
r and qN

s commute. This is useful in verifying our previous
assertion that hN is a eigenfunction of lNr . The case r = 1 may be easily deduced by direct calculation, see [24] for
a similar calculation. Moreover, the statespace AN

n is irreducible for lNr for r = 1 (though not in general), and thus
the Perron–Frobenius eigenfunction of lN1 is unique up to multiplication by scalars. Consequently it follows from the
commutation relation that hN is an eigenfunction of lNr for every r .

Using the fact that φu,v is a bijection between τN
u,v and τN ′

u,v , we see that, substuting τN
u,v for τu,v , qN

r for qr and
so on, the proof of Proposition 3.1 applies verbatum in the case that X is an r interlacing random walk on AN

n rather
than An. Similarly ψu,v is a bijection between τN

u,v and τN ′
u,v , and so Proposition 3.5 holds also in the discrete case.
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We can extend the above constructions, by Kolmogorov consistency, to define a Markov chain ({X(m)(k), m ∈
Z}, k ∈ Z) on the state space{

x ∈ AZ

n : x(m) �r x(m+1), m ∈ Z
}

with the following properties:

(1) For each m ∈ Z, (X(m)(k), k ∈ Z) is an s-interlacing random walk.
(2) For each k ∈ Z, (X(m)(k),m ∈ Z) is an r-interlacing random walk.
(3) For each m,k ∈ Z,

X(m)(k + 1) = φX(m+1)(k),X(m)(k+1)

(
X(m)(k)

)
.

In the above, we can replace φ by ψ , and also consider the discrete versions. It is interesting to remark on the non-
colliding random walk case, that is, the discrete model on AN

n with r = s = 1/2πN . In this case, the evolution of the
above Markov chain is completely deterministic. Indeed, by ergodicity of the non-colliding random walk, for each
k ∈ Z, with probability one, there exist infinitely many m such that X(m)(k) ∈ {((1 + c)/2πN, . . . , (n+ c)/2πN), c ∈
Z} and for these m there is only one allowable transition, namely to X

(m)
j (k + 1) = X

(m)
j (k) for j ≤ n − 1 and

X
(m)
n (k + 1) = X

(m)
n (k) + 1/2πN . By property (3) above, this determines X(m)(k + 1) for all m ∈ Z.

4. Couplings of interlaced Brownian motions

In this section we describe a Brownian motion construction that can considered as a scaling limit of the coupled
random walks of the previous section.

The Laplacian on An with Dirichlet boundary conditions admits a unique non-negative eigenfunction, the func-
tion h defined previously at (12) which corresponds to the greatest eigenvalue λ0 = −n(n − 1)(n + 1)/12. A h-
Brownian motion on An, is a diffusion with transition densities Qt given by

Qt

(
x, x′) = e−λ0t

h(x′)
h(x)

Q0
t

(
x, x′), (20)

where Q0
t are the transition densities of standard n-dimensional Brownian motion killed on exiting An, given explicitly

by a continuous analogue of the Gessel–Zeilberger formula, [17,20]. If (X(k); k ≥ 0) is an h-Brownian motion in An

then (eiX1(t), eiX2(t), . . . , eiXn(t)) gives a process of n non-coliding Brownian motions on the circle, the same as arises
as the eigenvalue process of Brownian motion in the unitary group, see [12].

We wish to construct a bivariate process (X,Y ) with each of X and Y distributed as h-Brownian motions in An, and
with Y(t) �s X(t), for some fixed s ∈ (0,2π). The dynamics we have in mind is based on the map φ of the previous
section. Y should be deterministically constructed from its starting point and the trajectory of X, with Yi(t) tracking
Xi(t) except when this would cause the interlacing constraint to be broken. In the following we set θ0(t) = θn(t).

Proposition 4.1. Given a continuous path (x(t); t ≥ 0) in An, and a point y(0) ∈ An such that y(0) �s x(0), there
exist unique continuous paths (y(t); t ≥ 0) in An and (θ(t); t ≥ 0) in Rn such that:

(i) yi(t) �s xi(t) for all t ≥ 0;
(ii) yi(t) − yi(0) = xi(t) − xi(0) + θi−1(t) − θi(t);

(iii) for i = 1,2, . . . , n, the real-valued process θi(t) starts from θi(0) = 0, is increasing, and the measure dθi(t) is
supported on the set {t : yi+1(t) = xi(t)}.

Our principal tool in proving this proposition is another variant of the Skorohod reflection lemma. For l > 0, let
An(l) = {x ∈ Rn: x1 ≤ x2 ≤ · · · ≤ xn ≤ x1 + l}. We adapt our usual convention, letting xn+1 = x1 + l and x0 = xn − l.

Lemma 4.2. Given a continuous path (u(t); t ≥ 0) in Rn starting from u(0) = 0, and a point v(0) ∈ An(l) then there
exists a unique pair of Rn-valued, continuous paths (v, θ) starting from (v(0),0) with
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(i) v(t) ∈ An(l) for every t ≥ 0,
(ii) each component θi(t) increasing with the measure dθi(t) supported on the set {t : vi(t) = vi+1(t)},

(iii) vi(t) = vi(0) + ui(t) − θi(t).

Proof. Fix T > 0. The path u is uniformly continuous on [0, T ], and so there exists ε > 0 such that
∑

i |ui(t) −
ui(s)| < l/n2 for all |s − t | < ε. We prove existence and uniqueness over the time interval [0, ε], and then repeat the
argument over consecutive time intervals [ε,2ε], etc.

Observe that there must exist k ∈ {1,2, . . . , n} such that vk+1(0) − vk(0) ≥ l/n. Set vk(t) = vk(0) + uk(t) and
θk(t) = 0 for t ∈ [0, ε]. Then we the usual Skorohod lemma applied successively to give vk−1, vk−2, . . . , v1, vn, . . . ,

vk+1, in particular we let

θi(t) = sup
s≤t

(
vi+1(t) − ui(t) − vi(0)

)−
.

The choice of ε is such that the vk−1 so constructed satisfies vk(t) < vk+1(t) for all t ∈ [0, ε], and consequently all
the desired properties of v and θ hold. For uniqueness, we note that any (v, θ) for which the desired properties holds
must be equal to the one just constructed, which follows from the uniqueness for the usual Skorohod construction. �

Proof of Proposition 4.1. This is based on applying the Skorohod mapping to the path u specified from x by ui(t) =
xi(t) − xi(0).

Choose v(0) ∈ An(2π − s) so that vi(0) − vi−1(0) = yi(0) − xi−1(0), and let (v, θ) be given by the Skorohod
mapping for the domain An(2π − s) with data u and v(0). Then for t ≥ 0 define

yi(t) = yi(0) + ui(t) + θi−1(t) − θi(t).

We claim that

(i) y(t) ∈ An with y(t) �s x(t) for every t ≥ 0,
(ii) the measure dθi(t) is supported on the set {t : yi+1(t) = xi(t)}.
Calculate as follows.

yi(t) − xi−1(t) = (
yi(0) + ui(t) + θi−1(t) − θi(t)

) − (
xi−1(0) + ui−1(t)

)
= (

vi(0) + ui(t) − θi(t)
) − (

vi−1(0) + ui−1(t) − θi−1(t)
) = vi(t) − vi−1(t).

This is valid even if i = 0 when we adhere to our conventions regarding v0, etc. Assertion (ii) above follows since
we see that {t : yi(t) = xi−1(t)} = {t : vi(t) = vi−1(t)}, and this latter set carries dθi−1. Also since vi(t) ≥ vi−1(t) we
obtain one part of the interlacing condition, namely, yi(t) ≥ xi−1(t). For the other part, consider the equality

xi(t) − yi(t) = xi(0) − yi(0) + θi(t) − θi−1(t).

Since this quantity is initially xi(0) − yi(0) > 0 and decreases only when θi−1 increases it follows that if there exists
an instant t1 for which xi(t1)−yi(t1) < 0, then there exists another instant, t0, for which xi(t0)−yi(t0) < 0 and which
belongs to the support of dθi−1. The latter implies that yi(t0) = xi−1(t0), and thus xi(t0) < yi(t0) = xi−1(t0) which
contradicts x(t0) ∈ An. This proves existence. Uniqueness follows from the uniqueness statement in Proposition 4.2. �

By virtue of this result we may make the following definition. For y(0) ∈ An, let Γy(0) be the application which
applied to an An-valued path (x(t) ≥ 0) returns the path (y(t); t ≥ 0) specified by Proposition 4.1. The main result of
this section is the following.

Proposition 4.3. Let (X(t); t ≥ 0) be an h-Brownian motion in An, starting from a point X(0) having the distribution
qs(y,dx) for some given y = y(0) ∈ An. Then the process Y = Γy(0)(X) is distributed as a h-Brownian motion in An.
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The domain An is unbounded, which is a nuisance when we come to the probability, where life is easier if we
have a finite invariant measure on the state space. Everything we do is invariant to shifts along the diagonal of Rn,
and it is useful to project onto the hyperplane H0 = {x ∈ Rn:

∑
xi = 0}. For x ∈ Rn, the orthogonal projection of x

onto H0 is given by x �→ x − x̄1, where 1 ∈ Rn is the vector with every component equal to 1, and x̄ = n−1 ∑
i xi .

If (X(t); t ≥ 0) is an h-Brownian motion in An, then its projection onto H0 is itself a diffusion process and indeed
can be described as the h-transform of an (n − 1)-dimensional Brownian motion in H0, killed on exiting An ∩ H0.
Introducing more generally Hs = {x ∈ Rn:

∑
xi = s}, and the notion of an h-Brownian motion on An ∩ Hs , we have

the following variant of Proposition 4.3.

Proposition 4.4. Let (X(t); t ≥ 0) be an h-Brownian motion in An ∩ Hs/2, starting from a point X(0) having the
distribution qs(y,dx) for some given y = y(0) ∈ An ∩ H−s/2. Then the process Y = Γy(0)(X) is distributed as a
h-Brownian motion in An ∩ H−s/2.

Proposition 4.3 is easily deduced from this variant using the fact that if (X(t); t ≥ 0) is an h-Brownian motion
in An, then the projection of X onto H0 is independent of the process n−1/2 ∑

i Xi(t), which is a one-dimensional
Brownian motion.

The results in the previous section were proved using the measure-preserving properties associated with the dy-
namics for a single update. Since here we are working with continuous time processes such one time-step methods
are not applicable. The use of the Skorohod lemma in the construction of Γ suggests that there may be a role to be
played by a certain reflected Brownian motion. We describe next how, adapting the idea of Proposition 4.1 slightly,
we can construct interlaced processes X and Y from a reflected Brownian motion R in the domain H0 ∩ An(2π − s).
Then it will turn out that time reversal properties of R can be used to prove Proposition 4.4.

Let E(s) = {(x, y) ∈ (An ∩Hs/2)× (An ∩H−s/2): y �s x}. We can introduce new co-ordinates on E(s) as follows.
For (x, y) ∈ E(s) we let f (x, y) be the unique (r, l) ∈ H0 × H0 such that

ri+1 − ri = yi+1 − xi, (21)

li+1 − li = xi+1 − yi+1, (22)

where rn+1 = r1 + (2π − s) and ln+1 = l1 + s. It is easily seen that f : E(s) → (H0 ∩ An(2π − s)) × (H0 ∩ An(s))

is bijective.
Now we construct a process in E(s) via these alternative co-ordinates. Begin by letting (U(t); t ≥ 0) be a standard

Brownian motion in Rn starting from zero, and let V (0) be an independent random variable, uniformly distributed in
H0 ∩ An(2π − s). Let (V ,Θ) be determined from U and V (0) by applying the Skorohod mapping for An(2π − s)

as given in Proposition 4.2. Finally let R(t) be the projection of V (t) onto H0, so R(t) = V (t) − V̄ (t)1. The process
(R(t); t ≥ 0) is, by construction, a semimartingale reflecting Brownian motion in the polyhedron An(2π − s) ∩ H0.
See [39] for the general theory of such processes. Next we introduce a process L also taking value in H0, which is
constructed out a random initial value L(0) together with the increasing processes Θi for i = 1,2, . . . , n. Choose L(0)

independent of R and uniformly distributed on An(s) ∩ H0, and let L(t) be given by

L(t) = Li(0) − πΘ(t),

where π : Rn → H0 denotes the projection onto H0 defined by πx = x − x̄1. Define the stopping time τ = inf{t ≥
0: L(t) /∈ An(s)}. Then for t ≤ τ , we define X(t) and Y(t) by (R(t),L(t)) = f (X(t), Y (t)). The joint law of (X(t ∧
τ), Y (t ∧ τ); t ≥ 0) may be described as follows.

(1) (X(0), Y (0)) is uniformly distributed on E(s).
(2) (X(t ∧ τ); t ≥ 0) is distributed as a Brownian motion in H0 stopped at the instance it first leaves An, and condi-

tionally independent of Y(0) given X(0).
(3) Y = ΓY(0)X.

We now turn to the time reversibility of R. For any vector x ∈ Rn we will denote by x† the vector given by
x

†
i = −xn−i+1. Note that if x ∈ H0 ∩An(2π− s) then x† ∈ H0 ∩An(2π− s) also. We also define, for any x ∈ Rn, the

vector x‡ via x
‡
i = −xn−i − s/n for 1 = 1,2, . . . , (n − 1) and x

‡
n = −xn + s(n − 1)/n. Note that if x ∈ H0 ∩ An(s)

then x‡ ∈ H0 ∩ An(s) also.
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Proposition 4.5. Fix some constant T > 0. Let the processes R and L be as above and let � be the event {L(t) ∈
An(s) for all t ∈ [0, T ]}. Then conditionally on �,

(
R(t),L(t); t ∈ [0, T ]) law= (

R†(T − t),L‡(T − t); t ∈ [0, T ]).
Proof. As remarked above R is a semimartingale reflected Brownian motion in the polyhedral domain An(2π −
s) ∩ H0. Indeed it satisfies

R(t) = R(0) + B(t) + 1√
2

∑
Θi(t)v

i,

where B is a standard Brownian motion in H0 and the vector vi describes the direction of reflection associated with
the face Fi = {x ∈ An(2π − s) ∩ H0: xi = xi+1}. Let ni be the inward facing unit normal to this face. Then an easy
calculation shows that vi , which is normalized so that the inner product ni · vi = 1, is given by vi = ni + qi where the
j th component of the vector qi is given by

qi
j =

{√
2/n − 1/

√
2, if j = i, i + 1,√

2/n, otherwise.

We observe that the skew-symmetry condition,

ni · qj + qi · nj = 0,

for all i �= j , is met. Consequently by Theorem 1.2 of [39], the reflected Brownian motion R is in duality relative to
Lebesgue measure to another reflected Brownian motion on H0 ∩ An(2π − s) with direction of reflection from the
face Fi being ni − qi . It is not difficult to check that R† is such a reflected Brownian motion. Thus

(
R(t); t ∈ [0, T ]) law= (

R†(T − t); t ∈ [0, T ]).
The process 2Θi(t) is the local time of Ri+1(t) − Ri(t) at zero, and can be represented as

lim
ε↓0

1

ε

∫ t

0
1
(
Ri+1(s) − Ri(s) ≤ ε

)
ds.

Now note that,∫ t

0
1
(
Ri+1(s) − Ri(s) ≤ ε

)
ds

law=
∫ t

0
1
(
R

†
i+1(T − s) − R

†
i (T − s) ≤ ε

)
ds

=
∫ T

T −t

1
(
Rn−i+1(s) − Rn−i (s) ≤ ε

)
ds.

From this we deduce that the time reversal property extends to

(
R(t),Θ(t); t ∈ [0, T ]) law= (

R†(T − t),Θ�(T ) − Θ�(T − t); t ∈ [0, T ]),
where Θ

�
i (t) = Θn−i for i = 1,2, . . . , (n − 1) and Θ

�
n = Θn.

Let F be a bounded path functional. Let vn(s) denote the Lebesgue measure of H0 ∩ An(s). Then using the time
reversal property,

E
[
F

(
R(t),L(t); t ∈ [0, T ])1�

]
= 1

vn(s)
E

[∫
H0

dαF
(
R(t),α − πΘ(t); t ∈ [0, T ])1

{
α − πΘ(t) ∈ An(s); t ∈ [0, T ]}]
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= 1

vn(s)
E

[∫
H0

dαF
(
R†(T − t), α − πΘ�(T ) + πΘ�(T − t); t ∈ [0, T ]).

× 1
{
α − πΘ�(T ) + πΘ�(T − t) ∈ An(s); t ∈ [0, T ]}

]
.

Now we make the substitution α̂ = α − πΘ�(T ) to obtain

1

vn(s)
E

[∫
H0

dα̂F
(
R†(T − t), α̂ + πΘ�(T − t); t ∈ [0, T ])

× 1
{
α̂ + πΘ�(T − t) ∈ An(s), t ∈ [0, T ]}

]

= E
[
F

(
R†(T − t),L‡(T − t); t ∈ [0, T ])1�

]
,

where we have used L‡(t) = L‡(0) + πΘ�(t). �

Proof of Proposition 4.4. Let R, Θ and L be as above, and once again let � be the event that {L(t) ∈ An(s) for all t ∈
[0, T ]}. Recall the mapping f such that (R(t),L(t)) = f (X(t), Y (t)). It is easily verified that (Y †(t),X†(t)) ∈ E(s)

and that

(
R†(t),L‡(t)

) = f
(
Y †(t),X†(t)

)
.

Thus the preceeding time reversal result implies that, conditionally on �,

(
X(t), Y (t); t ∈ [0, T ]) law= (

Y †(T − t),X†(T − t); t ∈ [0, T ]).
For the final step of the argument we consider X and Y be as above and denote the governing measure by P. Then we
let

P̃ = e−λ0T

γr

1�h(Y (0))h(X(T )) · P.

Under P̃, the equality in law,

(
X(t), Y (t); t ∈ [0, T ]) law= (

Y †(T − t),X†(T − t); t ∈ [0, T ])
holds unconditionally. Finally we note that under P̃, the distribution of (X(t), t ∈ [0, T ]) and hence of (Y †(T − t), t ∈
[0, T ]) is that of a stationary h-Brownian motion on An ∩ Hs/2. But this latter law is invariant under time reversal,
and its image under the conjugation x �→ x† is the law of a stationary h-Brownian motion on An ∩ H−s/2. This is
therefore the law of (Y (t), t ∈ [0, T ]). Conditioning on Y(0) gives the statement of the proposition. �

In the case n = 2, the results of this section can be expressed in terms of Brownian motion in a compact interval.
Let X = (Xt , t ≥ 0) be a Brownian motion conditioned, in the sense of Doob, never to exit the interval [−p,p], where
p > 0. Let y ∈ [−p,p], a ∈ [0,2p] and suppose that the initial law of X is supported in the interval [|y + a − p| −
p,p − |y + p − a|] with density proportional to cos(πx/2p). Let Z be the image of the path X + (y − X0 + a)/2
under the Skorohod reflection map for the interval [0, a]. In other words,

Zt = Xt + (y − X0 + a)/2 + Lt − Ut,
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where L and U are the unique continuous, non-decreasing paths such that the points of increase of L occur only at
times when Zt = 0, the points of increase of U occur only at times when Zt = a, and Zt ∈ [0, a] for all t ≥ 0. Then
the process

Yt = y − X0 + Xt + 2(Lt − Ut), t ≥ 0

is a Brownian motion conditioned, in the sense of Doob, never to exit the interval [−p,p]. This is a special case
of Proposition 4.4. Actually, in the statement of that proposition we have p = π, but this can be easily modified for
general p. It is interesting to consider this statement when y = 0 and p → ∞. Then X is a standard Brownian motion,
initially uniformly distributed on the interval [−a, a]. The process Z is a reflected Brownian motion in [0, a], initially
uniformly distributed on [0, a]. The conclusion in this case is that Y is a standard Brownian motion started from zero.
We remark that in this setting, if instead we take X0 = −a, then Y is a Brownian motion started from zero, conditioned
(in an appropriate sense) to hit a before returning to zero. This is a straightforward consequence of the above result
(for uniform initial law) and the fact (see [35]) that, if we set T = inf{t ≥ 0: Yt = a}, then the law of XT is uniform on
[−a, a]. Note that if we let a → ∞ in this case we recover Pitman’s representation for the three-dimensional Bessel
process. There are explicit formulae for the Skorohod reflection map for the compact interval [0, a] and hence for
the process Y in the above discussion. Let f (t) = Xt + (y − X0 + a)/2 and write f (s, t) = f (t) − f (s). A discrete
version of the Skorohod problem was considered in [37], from which we deduce the expressions

Zt = max
{

sup
0≤r≤t

min
{
f (r, t), a + inf

r≤s≤t
f (s, t)

}
,min

{
f (t), a + inf

0<s<t
f (s, t)

}}

= min
{

inf
0≤r≤t

max
{
a + f (r, t), sup

r≤s≤t
f (s, t)

}
,max

{
f (t), sup

0<s<t

f (s, t)
}}

.

An alternative formula was obtained in [25], which yields

Zt = φ(t) − sup
0≤s≤t

[(
φ(s) − a

)+ ∧ inf
s≤u≤t

φ(u)
]
,

where

φ(t) = f (t) + sup
0≤s≤t

[−f (s)
]+

.

It could be interesting to relate the corresponding expressions for Yt to the Pitman transforms introduced in [4].

5. A bead model on the cylinder

In this section it will be convenient to work with a slightly weaker notion of interlacing, defined as follows. For
a, b ∈ Dn, write a ≺ b if

a1 ≤ b1 < a2 ≤ · · · < an ≤ bn,

and a � b if

b1 < a1 ≤ b2 < · · · ≤ bn < an.

For y = {eia1, . . . , eian} and z = {eib1, . . . , eibn}, where a, b ∈ Dn, write y ≺ z if either a ≺ b or a � b, and define

l(y, z) =
{∑

j (bj − aj ) if
∑

j (bj − aj ) ≥ 0,∑
j (bj − aj ) + 2π otherwise.

Consider the Markov kernels defined, for q > 0, by

mq(y,dz) = c−1
q

∫ 2π

0

∣∣1 − eir
∣∣n−1

qrpr(y,dz)dr, (23)
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where pr is defined by (9) and

cq =
∫ 2π

0

∣∣1 − eir
∣∣n−1

qr dr.

By Proposition 2.1, if we define

Iq(y, z) =
{

ql(y,z) if y ≺ z,
0 otherwise,

then

mq(y,dz) = c̃−1
q

Δ(z)

Δ(y)
Iq(y, z)dz, (24)

where c̃q = cq/(n − 1)!. Recall that μ(dx) = (2π)−nΔ(x)2 dx is the probability measure on Cn induced from Haar
measure on U(n). The Markov chain with transition density mq has μ as an invariant measure and, with respect to μ,
has time-reversed transition probabilities

mq(z, dy) = c̃−1
q

Δ(y)

Δ(z)
Iq(y, z)dy.

We can thus construct a two-sided stationary version of this Markov chain to obtain a probability measure α on
CZ

n , supported on configurations · · · ≺ x−1 ≺ x0 ≺ x1 ≺ x2 ≺ · · ·. We will show that α defines a determinantal point

process on [0,2π)Z. By stationarity it suffices to consider the restrictions αm to the cylinder sets Cn,m := C
{1,2,...,m}
n .

Writing x̄ = (x1, . . . , xm) and dx̄ = dx1 · · ·dxm,

αm(dx̄) = μ
(
dx1)mq

(
x1,dx2) · · ·mq

(
xm−1,dxm

)
. (25)

Assume for the moment that q �= 1. Define a function f : R → C by

f (u) = (qei(n−1)/2)u mod 2π

1 − (−1)n−1q2π
.

Lemma 5.1. For y = {eia1, . . . , eian} and z = {eib1 , . . . , eibn}, where a, b ∈ Dn,

Iq(y, z) = (
1 − (−1)n−1q2π

)
ei(n−1)/2

∑
j (aj −bj ) det

(
f (bk − aj )

)
1≤j,k≤n

.

Proof. Let c �= 1 and consider the n × n matrix W = (wjk) defined by

wjk =
{

1, aj ≤ bk ,
c, aj > bk .

If a ≺ b, W consists of 1’s on and above the diagonal and c’s below, so that detW = (1 − c)n−1. If a � b, W

consists of 1’s above the diagonal and c’s on and below the diagonal, so that detW = c(c − 1)n−1. If neither a ≺
b or a � b, then there must exist an index j such that, either aj = aj+1, or aj < aj+1 ≤ bk for all k, or bk <

aj < aj+1 ≤ bk+1 for some k. In each of these cases, rows j and j + 1 of W are identical and hence detW = 0.
Thus,

detW =
⎧⎨
⎩

(1 − c)n−1, a ≺ b,
c(c − 1)n−1, a � b,
0, otherwise.

(26)
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Taking c = (qei(n−1)/2)2π = (−1)n−1q2π, we can write

(1 − c)ei(n−1)/2
∑

j (aj −bj ) det
(
f (bj − ak)

)
1≤j,k≤n

= q
∑

j (bj −aj )
(1 − c)−(n−1) detW

=
⎧⎨
⎩

q
∑

j (bj −aj )
, a ≺ b,

q
∑

j (bj −aj )+2π
, a � b,

0, otherwise

= Iq(y, z),

as required. �

For r = 1, . . . ,m − 1, define φr,r+1 : [0,2π)2 → C by φr,r+1(a, b) = f (b − a). Define φ0,1 : R × [0,2π) → C

and φm,m+1 : [0,2π) × R → C by φ0,1(a, b) = eiab and φm,m+1(a, b) = e−iab . For r = 1, . . . ,m, write xr =
{eiar

1 , . . . , eiar
n}, where ar ∈ Dn, and set a0

j = am+1
j = j − 1, for j = 1, . . . , n.

Theorem 5.2. For q �= 1,

αm(dx̄) = Z−1
m

m∏
r=0

det
(
φr,r+1

(
ar
j , a

r+1
k

))
1≤j,k≤n

dx̄,

where Zm = c̃m−1
q (1 − (−1)n−1q2π)−(m−1)(2π)n.

Proof. By (24) we can write

αm(dx̄) = c̃−(m−1)
q (2π)−nΔ

(
x1)Δ(

xm
)

Iq

(
x1, x2) · · · Iq

(
xm−1, xm

)
dx̄.

Using the formula

Δ
(
x1)Δ(

xm
) = det

(
ei(j−(n+1)/2)a1

k
)

1≤j,k≤n
det

(
e−i(j−(n+1)/2)am

k
)

1≤j,k≤n

and Lemma 5.1, we obtain

αm(dx̄) = Z−1
m ei(n−1)/2

∑
j (a1

j −am
j ) det

(
ei(j−(n+1)/2)a1

k
)

1≤j,k≤n

× det
(
e−i(j−(n+1)/2)am+1

k
)

1≤j,k≤n

m−1∏
r=1

det
(
φr,r+1(a

r
j , a

r+1
k )

)
1≤j,k≤n

dx̄

= Z−1
m det

(
ei(j−1)a1

k
)

1≤j,k≤n
det

(
e−i(j−1)am+1

k
)

1≤j,k≤n

×
m−1∏
r=1

det
(
φr,r+1(a

r
j , a

r+1
k )

)
1≤j,k≤n

dx̄

= Z−1
m

m∏
r=0

det
(
φr,r+1

(
ar
j , a

r+1
k

))
1≤j,k≤n

dx̄,

as required. �

Corollary 5.3. For any q > 0, the measure α defines a determinantal point process on [0,2π)Z with space–time
correlation kernel given by

K(r, a; s, b) =
{

1
2π

∑n−1
k=0 gr−s

k ei(b−a)k, r ≥ s,
− 1

2π

∑
k∈Z\{0,...,n−1} g

r−s
k ei(b−a)k, r < s,
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where

gk =
(∫ 2π

0
f (u)e−iuk du

)−1

= i

(
k − n − 1

2

)
− logq.

Proof. For q �= 1, this follows from Theorem 5.2, [21], Proposition 2.13 and a straightforward computation. The case
q = 1 is obtained by continuity. �

Lemma 5.1 can be used to give a direct proof of (24), and hence Proposition 2.1.

Proof of Proposition 2.1. The characters χλ are given, for y = {eia1 , . . . , eian}, by

χλ(y) = i−(n
2)Δ(y)−1 det

(
eiμj ak

)
1≤j,k≤n

,

where μ = λ + ρ and

ρ =
(

n − 1

2
,
n − 1

2
− 1, . . . ,−n − 1

2
+ 1,−n − 1

2

)
.

Using Lemma 5.1 and the Cauchy–Binet formula, we obtain∫
Δ(z)

Δ(y)
Iq(y, z)χλ(z)dz = (

1 − (−1)n−1q2π
)∏

j

(−iμj − logq)−1χλ(y).

On the other hand, writing xr = {eir ,1,1, . . . ,1}, an easy calculation shows that

∫ 2π

0

∣∣1 − eir
∣∣qr χλ(xr)

dλ

dr = (n − 1)!(1 − (−1)n−1q2π
)∏

j

(−iμj − logq)−1

and so, by (7),

mqχλ = c̃−1
q

(
1 − (−1)n−1q2π

)∏
j

(−iμj − logq)−1χλ.

Since {χλ,λ ∈ Ωn} is a basis for L2(Cn,μ), this implies (24). �

Analogous results to those presented in this section can be obtained for the discrete version of this model, which
is equivalent to considering a certain family of Gibbs measures on rhombic tilings of the cylinder. For more details,
see [27]. The couplings defined in Section 3 are quite useful in this setting, where the group-theoretic considerations
of Section 2 no longer apply. For example, they can be used to prove that the discrete analogues of the interlacing
operators {Iq, q > 0} commute with each other. In this setting, the symmetric functions

(q1, . . . , qk) �→ Iq1 · · · Iqk
(y, z)

are essentially the cylindrical skew Schur functions discussed in the papers [26,34].
Finally, we remark that, in the case q = 1, the probability measure α2 defined by (25) also arises naturally in

random matrix theory. The probability measures on Cn given by μ(dx) = (2π)−nΔ(x)2 dx and A−1
n Δ(x)dx, where

An is a normalisation constant, are known, respectively, as the circular unitary ensemble and circular orthogonal
ensemble. It is a classical result, which was conjectured by Dyson [11] and subsequently proved by Gunson [19], that
the set of alternate eigenvalues from a superposition of two independent draws from the circular orthogonal ensemble,
are distributed according to the circular unitary ensemble. Moreover, the joint law of the “even” and “odd” eigenvalues
has probability density on Cn × Cn proportional to Δ(y)Δ(z)I1(y, z), which is the same as α2, the joint distribution
at two consecutive times of the stationary Markov chain with transition kernel mq (defined by (23)) in the case q = 1.
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