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Abstract. Statistically self-similar measures on [0,1] are limit of multiplicative cascades of random weights distributed on the
b-adic subintervals of [0,1]. These weights are i.i.d., positive, and of expectation 1/b. We extend these cascades naturally by
allowing the random weights to take negative values. This yields martingales taking values in the space of continuous functions on
[0,1]. Specifically, we consider for each H ∈ (0,1) the martingale (Bn)n≥1 obtained when the weights take the values −b−H and
b−H , in order to get Bn converging almost surely uniformly to a statistically self-similar function B whose Hölder regularity and
fractal properties are comparable with that of the fractional Brownian motion of exponent H . This indeed holds when H ∈ (1/2,1).
Also the construction introduces a new kind of law, one that it is stable under random weighted averaging and satisfies the same
functional equation as the standard symmetric stable law of index 1/H . When H ∈ (0,1/2], to the contrary, Bn diverges almost
surely. However, a natural normalization factor an makes the normalized correlated random walk Bn/an converge in law, as n

tends to ∞, to the restriction to [0,1] of the standard Brownian motion. Limit theorems are also associated with the case H > 1/2.

Résumé. Les mesures sur [0,1] auto-similaires en loi sont limites de processus multiplicatifs construits à partir de poids aléatoires
distribués sur les sous-intervalles b-adiques de [0,1]. Ces poids sont i.i.d., positifs et d’espérance 1/b. Il est naturel d’étendre la
construction à des poids prenant des valeurs négatives. On obtient alors des martingales à valeurs dans les fonctions continues sur
[0,1]. Nous nous intéressons, pour H ∈ (0,1), à la martingale (Bn)n≥1 de ce type construite en prenant des poids à valeurs dans
{−b−H ,b−H }, afin que Bn converge presque sûrement uniformément vers une fonction B auto-similaire en loi dont la régularité
Höldérienne et les propriétés fractales soient comparables à celles du mouvement brownien fractionnaire d’exposant H . C’est bien
le cas lorsque H ∈ (1/2,1), et la construction fournit alors un nouvel exemple de loi invariante par moyenne pondérée aléatoire.
Cette loi satisfait la même équation fonctionnelle qu’une loi stable symétrique usuelle d’indice 1/H . Si H ∈ (0,1/2], Bn diverge
presque sûrement, mais il existe une normalisation naturelle par une suite (an)n≥1 telle que la marche aléatoire corrélée normalisée
Bn/an converge en loi vers la restriction à [0,1] du mouvement brownien standard. Des théorèmes limites sont également associés
au cas H > 1/2.
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Hausdorff dimension

1. Introduction and results

Measure-valued martingales associated with cascades were introduced in [24,25] as a “canonical” model for intermit-
tent turbulence. They are generated by multiplicative cascades of positive random weights distributed on the nodes of
a homogeneous tree. When non-degenerate, these martingales converge to singular multifractal measures whose fine
study has led to numerous developments, both in probability and geometric measure theories (see [1–4,7,9,12,14,15,
18,19,24,26,27]). We consider the natural extension of these martingales consisting in allowing the random weights
to take negative values.
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We simplify the exposition by using cascades in basis 2 (the necessary complements to extend our results in basis
b ≥ 3 are given in Remark 1.4). The dyadic closed subintervals of [0,1] are naturally encoded by the nodes of the
binary tree T = ⋃

n≥0{0,1}n, with the convention that {0,1}0 contains the root of T denoted ∅. As in the definition
of positive canonical cascades [24], we associate to each element w of T a real valued random weight W(w); these
weights are i.i.d. and E(W) is defined and equal to 1/2. A sequence of random continuous piecewise linear functions
(Bn)n≥1 is then obtained as follows: Bn(0) = 0; Bn is linear over every dyadic interval I of the nth generation; if I

is encoded by the node w1w2 · · ·wn, i.e. I = Iw := [∑n
k=1 wk2−k,2−n + ∑n

k=1 wk2−k], the increment of Bn over I

is the product W(w1)W(w1w2) · · ·W(w1w2 · · ·wn). If W is non-negative, the derivatives in the distributions sense of
the functions Bn form the measure-valued martingale considered in [19,24,25].

This paper investigates the signed cascades in which the weight W takes the same absolute value throughout, in
order to generate fractional Brownian motion (fBm) like processes (see [21,23] for the definition of fBm). It is not
difficult to see that in this case, for some H ∈ (−∞,1], W must be of the form W = ε2−H , where ε is a random
variable taking the values 1 and −1 with respective probabilities p+ = (1 + 2H−1)/2 and p− = (1 − 2H−1)/2. Then
let us reformulate the definition of (Bn)n≥1.

Consider a sequence (ε(w))w∈T of independent copies of ε and for every n ≥ 1 and w = w1 · · ·wn ∈ {0,1}n define

ε(w) =
n∏

k=1

ε(w1 · · ·wk) ∈ {−1,1}. (1.1)

We can write Bn as a normalized correlated random walk as follows: For n ≥ 1 and 0 ≤ k < 2n define ξ
(n)
k = ε(w),

where w = w1 · · ·wn is the unique element of {0,1}n such that tw = ∑n
i=1 wi2−i = k2−n. The random variables ξ

(n)
k ,

0 ≤ k < 2n, are identically distributed and they take values in {−1,1}. Also, consider the random walk

S(n)
r =

r−1∑
k=0

ξ
(n)
k , 0 ≤ r < 2n

(with the convention S
(n)
−1 = 0). Then for t ∈ [0,1] we have

Bn(t) = 2−nH
[
S

(n)
[2nt] + (

2nt − [
2nt

])
ξ

(n)
[2nt]

]
. (1.2)

An equivalent definition of (Bn)n≥1 is

Bn(t) = 2−nH

∫ t

0
2nε(u1) · · · ε(u1 · · ·un)du,

where the sequence (uk)k≥1 stands for the digits of u in basis 2. This second definition shows by inspection that
this sequence of random continuous functions forms a martingale with respect to the filtration (Fn)n≥1, where Fn =
σ {ε(w): w ∈ ⋃n

k=1{0,1}k}.
For every p ≥ 0 and w = w1 · · ·wp ∈ {0,1}p we consider the copy of (Bn)n≥1 defined by

Bn(w)(t) = 2−nH

∫ t

0
2nε(w · u1) · · · ε(w · u1 · · ·un)du, n ≥ 1,

where w · u1 · · ·uk is the concatenation of the words w and u1 · · ·uk . By construction, Bn(∅) = Bn and the following
stochastic scaling invariance holds. With probability 1, for all n ≥ 1 and t ∈ Iw

Bp+n(t) − Bp+n(tw) = ε(w)2−pH Bn(w)
(
S−1

wp
◦ · · · ◦ S−1

w1
(t)

)
, (1.3)

where S0(t) = t/2 and S1(t) = (t + 1)/2.
The previous properties of Bn may seem to suggest that if H ∈ (0,1), the construction provides a simple way

to generate a sequence of normalized random walks (see (1.2)) converging almost surely uniformly to a function B
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Fig. 1. Bk for k = 8, 12, 18, 27 in the case b = 2 and H = 0.95: Fast strong convergence.

possessing scaling and fractal properties close to those of a fBm of exponent H . In fact, our study of (Bn)n≥1 shows
the situation to be subtler and heavily dependent on H , a kind of phase transition arising at H = 1/2.

When H ∈ (1/2,1), the martingale (Bn)n≥1 indeed converges as expected as n tends to ∞ (Theorem 1.1). This is
illustrated in Figs 1 and 2. The pointwise Hölder exponent of the almost sure limit B is equal to H everywhere, and
the Hausdorff dimension of the graph of B is 2 − H . Moreover, the process B possesses scaling invariance properties
relative to the dyadic grid, with H playing the role of a Hurst exponent, as can be seen by letting n tend to ∞ in (1.3).
Furthermore, the normalized process B/

√
E(B(1)2) converges in law to the standard Brownian motion as H ↘ 1/2

(Theorem 1.2). Thus, B shares a lot of properties with fBm of exponent H , though it has not stationary increments
and it is not Gaussian (see Remark 1.1). When H ∈ (−∞,1/2], the martingale is not bounded in L2 norm and it
diverges. However, the normalized sequence Bn/

√
E(Bn(1)2) converges in law to the standard Brownian motion as

n tends to ∞ (Theorem 1.3). This is illustrated in Figs 3 and 4. When H < 1/2 this result is a version of Donsker’s
theorem, but for triangular arrays with unusual strong correlations. When H = 1/2, the same strong correlations hold,
but Bn/

√
E(Bn(1)2) corresponds to a correlated random walk normalized in the same unusual way as very different

correlated random walks considered in [11] and weakly converging to Brownian motion as well (see the discussion in
Remark 1.3).

Our results are stated and commented in the following theorems and remarks. Then we relate them with some
works on laws that are stable under random weighted mean.

C([0,1]) will denote the space of real-valued continuous functions over [0,1] endowed with the uniform norm
denoted by ‖ · ‖∞, and Id[0,1] will denote the identity function over [0,1]. We refer to [13] for the definitions of
Hausdorff and box dimensions of sets in R

d as well as [6] for the theory of the convergence of probability measures
on metric spaces.

The case H ∈ (1/2,1].

Theorem 1.1. Let H ∈ (1/2,1]. The C([0,1])-valued martingale (Bn)n≥1 converges almost surely and in Lq norm
for all q ≥ 1 to a limit function of expectation Id[0,1]. Denote this limit by B and for all w ∈ T the limit of Bn(w) by
B(w). With probability 1,

1. For all p ≥ 1, w ∈ {0,1}p and t ∈ Iw

B(t) − B(tw) = ε(w)2−pH B(w)
(
S−1

wp
◦ · · · ◦ S−1

w1
(t)

); (1.4)
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Fig. 2. Bk for k = 8, 12, 18, 27 in the case b = 2 and H = 0.7. Strong convergence.

Fig. 3. Bk/σ
√

k for k = 8, 12, 18, 27 in the case b = 2 and H = 0.5: Convergence in distribution to the Wierner Brownian motion.

2. B is α-Hölder continuous for all α ∈ (0,H), and it has everywhere a pointwise Hölder exponent equal to H , i.e.
for all t ∈ [0,1]

lim inf
s→t
s �=t

log |B(s) − B(t)|
log |s − t | = H ;

3. The Hausdorff and box dimensions of the graph of B are equal to 2 − H .

For H ∈ (1/2,1) define σH = (2 − 22−2H )−1/2 = √
E(B(1)2) (this equality will be justified in the proof of the

next result) and denote B by BH .

Theorem 1.2. The family of continuous processes {BH /σH }H∈(1/2,1) converges in law, as H tends to 1/2, to the
restriction to [0,1] of the standard Brownian motion.

Remark 1.1. When H = 1, the weights are positive and the construction coincides with the trivial positive cascade:
with probability 1, Bn(t) = t for all t ∈ [0,1] and n ≥ 1. When H ∈ (1/2,1), the limit process B − Id[0,1] is not
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Fig. 4. Bk/σbk(1/2−H) for k = 8, 12, 18, 27 in the case b = 2 and H = −2: Convergence in distribution to the Wierner Brownian motion.

fractional Brownian motion. This can be seen on (1.4) since ε(w) is not symmetric. Also, a computation shows that
the third moment of the centered random variable B(1) − 1 does not vanish, so the process is not Gaussian.

The case H ∈ [−∞,1/2]

For H ∈ (−∞,1/2], the sequence (Bn)n≥1 is not bounded in L2 norm. To get a natural normalization making it
bounded in L2 norm let

σ =
{√

1 + (
22−2H − 2

)−1 if H < 1/2,

1/
√

2 if H = 1/2

and for w ∈ T and n ≥ 1 define

Xn(w) =
{

Bn(w)/σ2n(1/2−H) if H < 1/2,
Bn(w)/σ

√
n if H = 1/2.

Also simply denote Xn(∅) by Xn. The process Xn is equivalent to Bn/
√

E(Bn(1)2) as n tends to ∞ (this fact will
be justified in the proof of the next result). If we let H tend to −∞ in the definition of ε and σ , then ε becomes
a symmetric random variable taking values in {−1,1}, σ = 1, and the sequence (Xn)n≥1 has the natural extension to
the case H = −∞ given by Xn(t) = 1√

2n
[S(n)

[2nt] + (2nt − [2nt])ξ (n)
[2nt]] (see Remark 1.3).

Theorem 1.3. For every H ∈ [−∞,1/2] the sequence of continuous processes (Xn)n≥1 converges in law, as n tends
to ∞, to the restriction to [0,1] of the standard Brownian motion.

Remark 1.2. When H ∈ (−∞,1/2), Theorem 1.3 yields lim supn→∞ ‖Bn‖∞2−n(1/2−H) > 0 almost surely. Thus
the martingale (Bn)n≥1 diverges in C([0,1]). The same property holds when H = 1/2. Besides, Theorem 1.1 says
that (Bn)n≥1 converges almost surely uniformly to a limit of expectation Id[0,1] when H > 1/2. Consequently, the
convergence properties of non-positive canonical cascades strongly depend on the random weight used to generate
the process. This contrasts with the positive canonical cascades martingales, which always converge almost surely
uniformly (either to a non-trivial limit with expectation Id[0,1], or to 0, see [19,24]).
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Remark 1.3. When H ∈ (−∞,1/2], due to (1.2) we have

Xn(t) =
⎧⎨⎩

1
σ
√

2n

[
S

(n)
[2nt] + (

2nt − [
2nt

])
ξ

(n)
[2nt]

]
if H < 1/2,

1
σ
√

n2n

[
S

(n)
[2nt] + (

2nt − [
2nt

])
ξ

(n)
[2nt]

]
if H = 1/2.

(1.5)

When H < 1/2, the form of Xn is familiar from Donsker’s theorem (see [6]) and its extensions to triangular arrays
of random variables that are weakly dependent (see [6,8]). However, the correlations of the Xn dyadic increments
are closely related to the natural ultrametric distance on T and it seems difficult to find a way to reduce the behavior
of (Xn)n≥1 to that of random walks with weakly dependent increments. When H = 1/2, the Xn dyadic increments
are correlated as well, and the normalization of the random walk is similar to the unusual one met in the proof of
Theorem 2 in [11] (see also Lemma 5.1 of [28]) to obtain the weak convergence to Brownian motion of certain
centered stationary Gaussian random walks.

If we denote Xn(w)(1) by Yn(w), the relation (1.7) below yields

Yn+1 =
⎧⎨⎩

ε(0)√
2
Yn(0) + ε(1)√

2
Yn(1) if H < 1/2,√

n
n+1

(
ε(0)√

2
Yn(0) + ε(1)√

2
Yn(1)

)
if H = 1/2.

(1.6)

Consequently, assuming that Xn converges in law, we can guess thanks to (1.6) that the weak limit of Yn must be the
standard normal distribution. Actually, to identify this limit we exploit the recursive equations (1.6) as well as recursive
equations satisfied by the moments of the standard normal distribution (see (3.1) in the proof of Lemma 3.1). A similar
approach exploiting the functional Eq. (2.2) is used to prove Theorem 1.2.

Letting H tend to −∞ yields σ = 1 and a random variable ε that takes the values −1 and 1 with equal probability
1/2 so that the random walk S

(n)
r becomes symmetric. In this case, the convergence in law to Brownian motion of

Xn (defined as in (1.5) in the limit H = −∞) follows from standard arguments, since Xn conditioned with respect
to Gn−1 = σ {ε(w): w ∈ {0,1}n−1} satisfies the Donsker’s theorem assumptions (given Gn−1, the ξ

(n)
k s are symmetric,

independent, and take values −1 and 1).
If H ∈ (1/2,1) and σ is defined as σ = √

E(B(1)2) − 1, the same kind of argument can be used to prove that Xn =
(B − Bn)/σ2n(1/2−H) also converges in law to Brownian motion. Indeed, due to (1.4), conditionally on σ {ε(w): w ∈
{0,1}n}, the increments of the process 2n/2Xn over the dyadic intervals of generation n are 2n independent centered
random variables distributed like (B(1) − 1)/σ or −(B(1) − 1)/σ , namely the ε(w)(B(w)(1) − 1)/σ , w ∈ {0,1}n,
whose standard deviation is equal to 1.

A link with laws that are stable under random weighted mean

For n ≥ 0 and w ∈ T we denote by Zn(w) the random variable Bn(w)(1), with the convention B0(w)(1) = 1. We
simply write Zn for Zn(∅). By construction, for every n ≥ 1

Zn = 2−H ε(0)Zn−1(0) + 2−H ε(1)Zn−1(1), (1.7)

where the random variables ε(0), ε(1), Zn−1(0) and Zn−1(1) are mutually independent, ε(0) and ε(1) are copies of ε,
and Zn−1(0) and Zn−1(1) are copies of Zn−1. Relation (1.7) is central in the sequel. When the martingale (Zn)n≥1
does converge to a non trivial limit Z (see Theorem 1.1), it follows from (1.7) that the probability distribution of Z

provides a new family of what has been called law stable by random weighted mean or fixed points of the smoothing
transformation ([9,14,24]). Indeed, there exist two independent copies Z(0) and Z(1) of Z, and two independent and
identically distributed random variables W(0) and W(1) – namely, 2−H ε(0) and 2−H ε(1) – such that (W(0),W(1))

is independent of (Z(0),Z(1)) and Z satisfies the following equality in distribution (≡)

Z ≡ W(0)Z(0) + W(1)Z(1). (1.8)

When (W(0),W(1)) is positive, the non-trivial positive solutions of this equation are described in [9,14,19,24].
A class of non-positive solutions of (1.8) with positive (W(0),W(1)) has been exhibited in [22]; it naturally in-
cludes classical symmetric stable laws of index α ∈ [1,2], which obey (1.8) when W(0) = W(1) = 2−H with
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H = 1/α ∈ [1/2,1]. Actually, the classical symmetric stable law of index α = 1/H ∈ [1,2] satisfies Eq. (1.8)
under the form Z ≡ 2−H η(0)Z(0) + 2−H η(1)Z(1) as soon as η(0) and η(1) are independent, take values −1
and 1, and are independent of (Z(0),Z(1)), whatever be the distributions of η(0) and η(1). Consequently, when
(η(0), η(1)) = (ε(0), ε(1)), Theorem 1.1 provides for each H ∈ (1/2,1] another probability distribution obeying the
same functional equation as the classical symmetric stable law of index 1/H . It is worth noting that the statistically
self-similar stochastic processes associated with these solutions have very different behaviors. In the first case, if
H = 1/α ∈ (1/2,1] the process is a symmetric stable Lévy process Lα of index α (see [5]), so the distributions of
the increments have no finite moments of order larger than or equal to α, and the sample path of Lα have a dense set
of discontinuities and are multifractal [17]. In the second case, the process is the random function B of Theorem 1.1,
the distributions of the dyadic increments have a finite moment of order p for all p > 0, and the sample path of B are
continuous and monofractal.

Remark 1.4. Both the construction and results extend to the case when the construction grid is b-adic with b ≥ 3.
Then W = εb−H , where ε = 1 with probability (1 + bH−1)/2 and ε = −1 with probability (1 − bH−1)/2. The
same results hold after formal replacement of the basis 2 by the basis b. Also, σ = √

1 − 1/b if H = 1/2, σ =√
1 + (b − 1)/(b2−2H − b) if H < 1/2, and σH = √

b − 1/
√

b − b2−2H if H > 1/2.

Theorems 1.1–1.3 are proved in Sections 2–4 respectively.

2. Proof of Theorem 1.1

Lemma 2.1. The martingale (Zn = Bn(1))n≥1 converges almost surely and in Lq norm for all q ≥ 1.

Proof. For every integer q ≥ 1, raising (1.7) to the power q yields

E
(
Z

q

n+1

) = 21−qH
E

(
εq

)
E

(
Z

q
n

) + 2−Hq

q−1∑
k=1

(
q

k

)
E

(
εk

)
E

(
εq−k

)
E

(
Zk

n

)
E

(
Z

q−k
n

)
. (2.1)

Moreover, since H > 1/2 we have 0 < 21−qH
E(εq) < 1 for all integers q ≥ 2 (E(εq) is equal to 2H−1 if q is odd and 1

otherwise). Consequently, since E(Zn) = 1 for all n ≥ 1, induction on q ∈ N
∗ using (2.1) shows that the sequence

E(Z
q
n) converges as n tends to ∞ for every integer q ≥ 1. This implies that the martingale (Zn)n≥1 is bounded in Lq

norm for all q ≥ 1, hence the result. �

Lemma 2.2. Let α ∈ (0,H). With probability 1, there exists an integer p0 ≥ 1 such that

∀ p ≥ p0, sup
0≤k≤2p−1

sup
n≥1

∣∣Bn

(
(k + 1)2−p

) − Bn

(
k2−p

)∣∣ ≤ 2−pα.

Proof. For every p ≥ 1 and 0 ≤ k ≤ 2p − 1, the sequence (ΔBn(p, k) = Bn((k + 1)2−p) − Bn(k2−p))n≥1 is by
construction a martingale, so Doob’s inequality yields for every q > 1 a constant Cq > 0 such that

E

(
sup
n≥1

∣∣ΔBn(p, k)
∣∣q)

≤ Cq sup
n≥1

E
(∣∣ΔBn(p, k)

∣∣q)
.

On the one hand – by construction – if n ≤ p, then E(|ΔBn(p, k)|q) = 2−qn(H−1)2−qp ≤ 2−qpH . On the other hand,
(1.3) and Lemma 2.1 together yield a constant C′

q ≥ 1 such that E(|ΔBn(p, k)|q) ≤ C′
q2−qpH if n > p. Consequently,

for all p ≥ 1,

E

(
sup
n≥1

∣∣ΔBn(p, k)
∣∣q)

≤ CqC′
q2−qpH .
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For q > (H − α)−1, the previous inequality implies∑
p≥1

P

(
∃ 0 ≤ k < 2p: sup

n≥1

∣∣ΔBn(p, k)
∣∣ > 2−pα

)
< ∞.

We conclude thanks to the Borel–Cantelli lemma. �

For w ∈ T we define Z(w) = limn→∞ Zn(w), and we denote Z by Z(∅).

Lemma 2.3. Let ϕ stand for the characteristic function of Z. There exists ρ ∈ (0,1) such that ϕ(t) = O(ρ|t |1/H
) (|t | →

∞). Consequently, the probability distribution of Z possesses an infinitely differentiable bounded density, and
E(|Z|−γ ) < ∞ for all γ ∈ (0,1).

Proof. The case H = 1 is obvious. Suppose that H ∈ (1/2,1). The probability distribution of Z cannot be a Dirac
mass, because E(Z) = 1 and

Z = 2−H ε(0)Z(0) + 2−H ε(1)Z(1), (2.2)

with the same independence and equidistribution properties as in (1.7). So there exists α > 0 and γ < 1 such that
supt,|t |∈[α,2H α] |ϕ(t)| ≤ γ . Now, using the fact that

ϕ(t) = [
p+

H ϕ
(
2−H t

) + p−
H ϕ

(−2−H t
)]2

,

we obtain by induction that supt, |t |∈[2kH α,2(k+1)H ]α] |ϕ(t)| ≤ γ 2k
(∀k ≥ 0). Since |t |1/H ≤ 2α1/H 2k for |t | ∈ [2kH α,

2(k+1)H α], the conclusion follows with ρ = γ 1/2α1/H
.

The rate of decay of ϕ at ∞ yields the conclusion regarding the probability distribution of Z and the moments
of |Z|−1. �

Proof of Theorem 1.1: the convergence properties of (Bn)n≥1 and the global Hölder continuity of the limit process

Let α ∈ (0,H). It follows from Lemma 2.2 that with probability 1, there exists δ > 0 and C > 0 such that for all
(t, s) ∈ [0,1]2 such that |t − s| ≤ δ we have supn≥1 |Bn(t) − Bn(s)| ≤ C|t − s|α (see for instance the proof of the
Kolmogorov–Centsov theorem in [20]). Since the sequence (Bn)n≥1 converges almost surely on the set of dyadic
numbers of [0,1] which is dense in [0,1], this implies that, with probability 1, (Bn)n≥1 converges uniformly to a limit
B which is α-Hölder continuous. To see that the convergence holds in Lq norm for all q ≥ 1, it is enough to show that
the sequence (E(sup1≤p≤n ‖Bp‖q∞))n≥1 is bounded for all integer q ≥ 2. We show that it is true for q = 2 and leave
the reader verify by induction that it is true for q ≥ 2. For n ≥ 1, define

Z̃n = sup
1≤p≤n

‖Bp‖∞ and Z̃n(k) = sup
1≤p≤n

∥∥Bp(k)
∥∥∞, k ∈ {0,1}.

Due to (1.3) we have for n ≥ 2

Z̃n ≤ max
(

2−H Z̃n−1(0),2−H Z̃n−1(1) + sup
1≤p≤n

∣∣Bp(1/2)
∣∣).

Thus, if we denote sup1≤p≤n |Bp(1/2)| by Mn we have

E
(
Z̃2

n

) ≤ E
(
2−2H Z̃n−1(0)2 + 2−2H Z̃n−1(1)2 + 2Z̃n−1(1)Mn + M2

n

)
≤ 21−2H

E
(
Z̃2

n−1

) + 2E
(
Z̃2

n−1

)1/2‖Mn‖2 + ‖Mn‖2
2.
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Lemma 2.1 shows that (Bp(1/2))p≥1 is a martingale bounded in L2 norm, so (‖Mn‖2)n≥1 is bounded. Consequently,
there exists C > 0 such that

∀n ≥ 1, E
(
Z̃2

n

) ≤ f
(
E

(
Z̃2

n−1

))
with f (x) = 21−2H x + C

√
x + C. (2.3)

Since 21−2H < 1, there exists x0 > 0 such that f (x) < x for all x > x0. This fact together with (2.3) yields E(Z̃2
n) ≤

max(x0, f (E(Z̃2
1))) for all n ≥ 2.

Proof of Theorem 1.1: the properties 1–3

1. This is an immediate consequence of (1.3).
2. The global Hölder regularity property has already been established. To obtain the pointwise Hölder exponent

we use an approach similar to that used for the Brownian motion in [10] (see also [20]).
Fix ε > 0 and let O be the set of points ω ∈ Ω such that Bn converges uniformly as n → ∞ and the limit B

possesses points at which the pointwise Hölder exponent is at least H + ε. We show that O is included in a set of null
probability.

We fix an integer K > 4/ε and denote by nK the smallest integer n such that K2−n ≤ 1. For t ∈ [0,1] and
n ≥ nK , consider SK

n (t) a subset of [0,1] consisting of K + 1 consecutive dyadic numbers of generation n such
that t ∈ [minSK

n (t),maxSK
n (t)]. Also denote by SK

n (t) the set of K consecutive dyadic intervals delimited by the
elements of SK

n (t). If the pointwise Hölder exponent at t is larger than or equal to H + ε then for n large enough
we have necessarily sups∈SK

n (t) |B(s) − B(t)| ≤ (K2−n)H+ε/2, so that supI∈SK
n (t) |ΔB(I)| ≤ 2(K2−n)H+ε/2, where

ΔB(I) stands for the increment of B over I .
Now let SK

n be the set consisting of all K-uple of consecutive dyadic intervals of generation n, and if S ∈ SK
n ,

denote the event {supI∈S |ΔB(I)| ≤ 2(K2−n)H+ε/2} by ES . The previous lines show that

O ⊂ O′ =
⋂

n≥nK

⋃
p≥n

⋃
S∈SK

p

ES.

By construction, if S ∈ SK
p , (|ΔB(I)|)I∈S is equal to (2−pH |YI |)I∈S , where the K random variables YI are mutually

independent and identically distributed with B(1). Consequently, P(ES) depends only on K and p and

P(ES) ≤ [
P
(∣∣B(1)

∣∣ ≤ 2KH
(
K2−p

)ε/2)]K
≤ (

2KH
)K/2

KKε/42−pKε/4[
E

(∣∣B(1)
∣∣−1/2)]K

,

where E(|B(1)|−1/2) < ∞ due to Lemma 2.3. Since the cardinality of SK
p is less than 2p , this yields P(

⋃
S∈SK

p
ES) =

O(2p2−pKε/4). Our choice for K implies that the series
∑

p≥nK
P(

⋃
S∈SK

p
ES) converges, hence P(O′) = 0.

3. Let us introduce additional notations. If w ∈ �∗ and J = Iw then we define ε(J ) := ε(w) = ∏|w|
k=1 ε(w1 · · ·wk).

We denote by Γ the graph {(t,B(t)): t ∈ [0,1]} of B . We recall that the Hausdorff dimension of a subset of R
2 is

always smaller than of equal to its box dimension.

At first, since B is α-Hölder continuous for all α < H , 2 − H is an upper bound for the box dimension of Γ

(see [13], Chapter 11).
To find the sharp lower bound 2 − H for the Hausdorff dimension of Γ we show that, with probability 1, the

measure on this graph obtained as the image of the Lebesgue measure restricted to [0,1] by the mapping t �→ (t,B(t))

has a finite energy with respect to the Riesz Kernel u ∈ R
2 \ {0} �→ ‖u‖−γ for all γ < 2 − H (see [13], Chapter 4.3

and 11 for details about this kind of approach). This property holds if we show that for all γ < 2 − H we have∫
[0,1]2

E
((|t − s|2 + ∣∣B(t) − B(s)

∣∣2)−γ /2)dt ds < ∞.

If I is a closed subinterval of [0,1], we denote by G(I ) the set of closed dyadic intervals of maximal length included
in I , and then mI = min

⋃
J∈G(I ) J and MI = max

⋃
J∈G(I ) J .
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Let 0 < s < t < 1 be two non dyadic numbers. We define two sequences (sp)p≥0 and (tp)p≥0 as follows. Let s0 =
m[s,t] and t0 = M[s,t]. Then let define inductively (sp)p≥1 and (tp)p≥1 as follows: sp = m[s,sp−1] and tp = M[tp−1,t].
Let us denote by C the collection of intervals consisting of [s0, t0] and all the intervals [sp, sp−1] and [tp−1, tp], p ≥ 1.
Every interval I ∈ C is the union of at most two intervals of the same generation nI , the elements of G(I ), and

ΔB(I) =
∑

J∈G(I )

ΔB(J ) =
∑

J∈G(I )

ε(J )2−nI H YJ ,

where ΔB(J ) and Y(J ) have been introduced in the discussion regarding the pointwise exponents. By construction,
we have minI∈C nI = n[s0,t0] and (t − s)/3 ≤ 2−n[s0,t0] ≤ (t − s). Also, all the random variables YJ are mutually
independent and independent of TC = σ(ε(J ): J ∈ G(I ), I ∈ C). Now, we write

B(t) − B(s) = 2−n[s0,t0]H
( ∑

J∈G([s0,t0])
ε(J )YJ + Z(s, s0) + Z(t0, t)

)
,

where{
Z(s, s0) = limp→∞

∑
0≤k≤p 2(n[s0,t0]−n[sk+1,sk ])H ∑

J∈G([sk+1,sk]) ε(J )YJ ,

Z(t0, t) = limp→∞
∑

0≤k≤p 2(n[s0,t0]−n[tk ,tk+1])H ∑
J∈G([tk,tk+1]) ε(J )YJ .

Let Z(t, s) = ∑
J∈G([s0,t0]) ε(J )YJ + Z(s, s0) + Z(t0, t) and fix J0 ∈ G([s0, t0]). Conditionally on T C , Z(t, s) is the

sum of ±Y(J0) plus a random variable U independent of Y(J0). Consequently, the probability distribution of Z(t, s)

conditionally on TC possesses a density ft,s and ‖f̂t,s‖L1 ≤ ‖ϕ‖L1 , where ϕ is the characteristic function of Y(J0)

studied in Lemma 2.3.
Thus, for γ < 2 − H we have

E
((|t − s|2 + ∣∣B(t) − B(s)

∣∣2)−γ /2|TC
) =

∫
R

ft,s(u)

(|t − s|2 + 2−2n[s0,t0]H u2)γ /2
du

≤
∫

R

ft,s(u)

(|t − s|2 + 3−2H (t − s)2H u2)γ /2
du

= |t − s|1−H−γ

∫
R

ft,s(|t − s|1−H v)

(1 + 3−2H v2)γ /2
dv.

The function ft,s is bounded independently of t, s and TC since it is bounded by ‖f̂t,s‖L1 and we just saw that this
number is bounded by ‖ϕ‖L1 . Thus,

E
((|t − s|2 + ∣∣B(t) − B(s)

∣∣2)−γ /2) ≤ ‖ϕ‖L1 |t − s|1−H−γ

∫
R

dv

(1 + 3−2H v2)γ /2
.

This yields the conclusion. Notice that the fact that the distribution of the increment of B over [0,1], namely Z, has a
density plays a crucial role in this proof, as the same kind of property is a powerful tool in finding a lower bound for
the Hausdorff dimension of the graphs of fractional Brownian motions, symmetric Lévy processes of index α ∈ (1,2)

and certain Weierstrass functions with random phases (see [13,16]).

3. Proof of Theorem 1.3

The case H = −∞ has been discussed in Remark 1.3. We fix H ∈ (−∞,1/2].

Lemma 3.1. The sequence (Xn(1))n≥1 converges in law to the standard normal distribution as n tends to ∞.
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Proof. Let u0 = E(Z2
0) = 1. By definition, we have u0 = 1. Let � be the solution of � = 21−2H � + 1

2 when H < 1/2,
i.e. � = (2−22−2H )−1. Taking successively the square and the expectation in (1.7) yields E(Z2

n) = 21−2H
E(Z2

n−1)+ 1
2

for n ≥ 1. Consequently, E(Z2
n) = � + 2n(1−2H)(u0 − �) if H > 1/2 and E(Z2

n) = u0 + n/2 if H = 1/2. This yields

E(Z2
n) ∼ 22−2H −1

22−2H −2
2n(1−2H) = σ 22n(1−2H) if H < 1/2 and E(Z2

n) ∼ n/2 = σ 2n if H = 1/2. This is why we consider
the normalized processes Xn.

For n ≥ 1 and q ≥ 1 let M
(q)
n = E(Xn(1)q). We are going to prove by induction and by using (1.7) that:

1. for every p ≥ 0 one has the property (P2p): M(2p) = limn→∞ M
(2p)
n exists; moreover M(2) = 1;

2. for every p ≥ 0 one has the property (P(2p+1)): limn→∞ M
(2p+1)
n = 0;

3. the sequence (M(2p))p≥1 obeys the following induction relation valid for p ≥ 2:

M(2p) = (
2p − 2

)−1
p−1∑
k=1

(
2p

2k

)
M(2k)M(2p−2k). (3.1)

Suppose that these properties have been established. Then, 1 insures that the probability distributions of the Xn(1)

form a tight sequence. Moreover, it is easy to verify that a N (0,1) random variable N has the property that its
moments of even orders satisfy the same relation as the numbers M2p , p ≥ 1, defined by M2 = 1 and the induction
relation 3. To see this, write N as the sum of two independent N (0,2−1/2) random variables. Consequently, since the
law N (0,1) is characterized by its moments, 1–3 imply that Xn(1) converges in law to N (0,1).

Now we prove 1–3. By construction, we have M
(1)
n ∼ 1/(E(Z2

n))
1/2 hence limn→∞ M

(1)
n = 0, as well as

limn→∞ M
(2)
n = 1. Consequently, (P1) and (P2) hold.

Let q be an integer ≥ 3. Raising (1.6) to the power q yields

M
(q)

n+1 = r
q
n

(
21−q/2

E
(
εq

)
E

(
Z

q
n

) + 2−q/2S(q,n)
)
, (3.2)

where rn =
√

n
n+1 if H = 1/2 and rn = 1 otherwise, and S(q,n) = ∑q−1

k=1

(
q
k

)
E(εk)E(εq−k)M

(k)
n M

(q−k)
n . Since

E(ε
q

0 ) = 2H−1 or 1 according to q is odd or even, (3.2) yields

M
(q)

n+1 =
{

r
q
n

(
2H−q/2M

(q)
n + 2−q/2S(q,n)

)
if q is odd,

r
q
n

(
21−q/2M

(q)
n + 2−q/2S(q,n)

)
if q is even.

(3.3)

Let us show by induction that ((P2p−1), (P2p)) holds for p ≥ 1, as well as (3.1).
We have already shown that ((P1), (P2)) holds. Suppose that ((P2k−1), (P2k)) holds for 1 ≤ k ≤ p − 1, with

p ≥ 2. In particular, M
(k)
n tends to 0 as n tend to ∞ if k is an odd integer belonging to [1,2p − 3]. Consequently,

S(2p − 1, n) tends to 0 as n tends to ∞; indeed, for each integer k between 1 and 2p − 1, either k or 2p − 1 − k

is an odd number. The sequence (rn)n≥1 being bounded, it follows from this property and (3.3) that M
(2p−1)

n+1 =
r

2p−1
n 2H+1/2−pM

(2p−1)
n + o(1) as n → ∞. Since r

2p−1
n 2H+1/2−p ≤ 21−p < 1, this yields limn→∞ M

(2p−1)
n = 0, that

is to say (P2p−1).

Also, our induction’s assumption implies that in the right-hand side of M
(2p)

n+1 , the term S(2p,n) tends to L =∑p−1
k=1

(2p
2k

)
M(2k)M(2p−2k) as n tends to ∞. Define L′ = (2p − 2)−1L. By using (3.3) we deduce from the previous

lines that

M
(2p)

n+1 =
{

r
2p
n 21−pM

(2p)
n + 2−pL + o(1) if H = 1/2,

21−pM
(2p)
n + 2−pL + o(1) if H < 1/2.

Since rn → 1 as n → ∞ when H = 1/2 and L′ = 21−pL′ + 2−pL we obtain

M
(2p)

n+1 − L′ =
{

r
2p
n 21−p

(
M

(2p)
n − L′) + o(1) if H = 1/2,

21−p
(
M

(2p)
n − L′) + o(1) if H < 1/2.
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This yields both (P2p) and (3.1) since rn ≤ 1 and 21−p < 1. �

Lemma 3.2. The laws of the random continuous functions Xn, n ≥ 1, form a tight family in the set of probability
measures on C([0,1]).

Proof. By Theorem 7.3 of [6], since Xn(0) = 0 almost surely for all n ≥ 1, it is enough to show that for each positive ε

lim
δ→0

lim sup
n→∞

P
(
ω(Xn, δ) ≥ ε

) = 0, (3.4)

where ω(Xn, ·) stands for the modulus of continuity of Xn.
We leave the reader to check the following simple properties for p,n ≥ 1 and w ∈ {0,1}p: If n > p then

Xn

(
tw + 2−p

) − Xn(tw) = ε(w)2−p/2 ·
{

Xn−p(w)(1) if H < 1/2,√
n−p

n
Xn−p(w)(1) if H = 1/2

(3.5)

and if 1 ≤ n ≤ p then

∣∣Xn

(
tw + 2−p

) − Xn(tw)
∣∣ ≤

{
2−p/2/σ if H < 1/2,
2−p/2/σ

√
n if H = 1/2.

(3.6)

Moreover, the proof of Lemma 3.1 shows that supn≥1 E(Xn(1)2K) < ∞ for every integer K ≥ 1. Consequently, it
follows from (3.5) and (3.6) that there exists a family {Vn,p,k}n,p≥1,0≤k≤2p−1 of positive random variables such that
|Xn((k + 1)2−p) − Xn(k2−p)| ≤ 2−p/2Vn,p,k , and for any integer K ≥ 1, CK = supn,p≥1,0≤k≤2p−1 E(V 2K

n,p,k) < ∞.
The end of the proof is then standard. Fix α ∈ (0,1/2) and K a positive integer such that 2K(1/2 − α) > 1. Define
ρp = CK2p(1+2K(α−1/2)) and Rp = ∑

j≥p ρj for p ≥ 1. For all n,p ≥ 1, our control of the moments of the dyadic
increments of Xn yields, using Markov inequalities, P(

⋃
0≤k<2p {|Xn((k + 1)2−p) − Xn(k2−p)| > 2−pα}) ≤ ρp .

Thus, infn≥1 P(En
p) ≥ 1 − Rp for all p ≥ 1, where

En
p = {∀j ≥ p, ∀0 ≤ k < 2−j ,

∣∣Xn

(
(k + 1)2−j

) − Xn

(
k2−j

)∣∣≤ 2−jα
}
.

Also, on En
p we have ω(Xn,2−p) ≤ 21−pα/(1 − 2−α). This yields

inf
n≥1

P
(
ω

(
Xn,2−p

) ≤ 21−pα/
(
1 − 2−α

)) ≥ inf
n≥1

P
(
En

p

) ≥ 1 − Rp.

Since limp→∞ Rp = 0, the previous inequality gives (3.4). �

Proof of Theorem 1.3. Since for all p ≥ 1 the random sequences (Xn(w))n≥1, w ∈ {0,1}p , are mutually indepen-
dent, it follows from (3.5) and Lemma 3.1 that for all p ≥ 1, the sequence of vectors Vn(p) = (Xp+n(tw + 2−p) −
Xp+n(tw))w∈{0,1}p converges in law, as n tends to ∞, to the distribution of the increments of the standard Brownian
motion on the dyadic subintervals of [0,1] of generation p. This is seen by taking the limit as n tends to ∞ of the
characteristic function of Vn(p) conditionally on σ(ε(w), w ∈ {0,1}p) and then by using the fact that ε(w)2 = 1.
Consequently, the only possible weak limit of a subsequence of (Xn)n≥1 is the standard Brownian motion. Then
Lemma 3.2 yields the desired conclusion. �

4. Proof of Theorem 1.2

Theorem 1.2 follows from the next proposition. For H ∈ (1/2,1) and w ∈ T we denote BH (w)/σH by B̃H (w)

(B̃H (∅) = BH /σH is denoted B̃H ).

Proposition 4.1. Let (Hm)m≥1 be a (1/2,1)-valued sequence converging to 1/2 as n → ∞.
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1. The sequence (B̃Hm(1))m≥1 converges in law to the standard normal distribution as m tends to ∞.
2. The laws of the random continuous functions B̃Hm , m ≥ 1, form a tight family in the set of probability measures on

C([0,1]).
3. For every p ≥ 1, the sequence of vectors Ṽm(p) = (B̃Hm(tw + 2−p) − B̃Hm(tw))w∈{0,1}p converges in law, as m

tends to ∞, to the distribution of the increments of the standard Brownian motion on the dyadic subintervals of
[0,1] of generation p.

Proof. 1. The proof is close to that of Lemma 3.1, but the differences deserve to be made explicit.
For every q,m ≥ 1, let us denote E(B̃Hm(1)q) by M̃

(q)
m . Since H = Hm > 1/2 and by definition B̃Hm(1) =√

2 − 22−2HmB(1) = √
2 − 22−2HmZ, taking the limit in (2.1) as n → ∞ thanks to Lemma 2.1 and using the fact

that E(ε
q

0 ) = 2H−1 or 1 according to q is odd or even, we obtain

M̃
(q)
m =

{
2−(q−1)HmM̃

(q)
m + 2−qHmS̃(q,m) if q is odd,

21−qHmM̃
(q)
m + 2−qHmS̃(q,m) if q is even,

(4.1)

where S̃(q,m) = ∑q−1
k=1

(
q
k

)
E(εk)E(εq−k)M̃

(k)
m M̃

(q−k)
m . Now we prove by induction that:

1. for every p ≥ 0 one has the property (P2p): M̃(2p) = limm→∞ M̃
(2p)
m exists. Moreover, M̃(2) = 1;

2. for every p ≥ 0 one has the property (P2p+1): limm→∞ M̃
(2p+1)
m = 0;

3. the sequence (M̃(2p))p≥1 obeys the same induction relation (3.1) as the sequence (M(2p))p≥1 defined in the proof
of Lemma 3.1.

The conclusion is then the same as in the proof of Lemma 3.1.
To prove that (P1) and (P2) hold we first recall that H being fixed, we have seen in the proof of Lemma 3.1

that E(Z2
n) = 21−2H

E(Z2
n−1)+ 1

2 . For H > 1/2 this yields E(Z2) = limn→∞ E(Z2
n) = (2 − 22−2H )−1. Consequently,

E(B̃H (1)) = √
2 − 22−2H E(B(1)) = √

2 − 22−2H tends to 0 as H ↘ 1/2 and E(B̃H (1)2) = 1.
Suppose that ((P2k−1), (P2k)) holds for 1 ≤ k ≤ p − 1, with p ≥ 2. The same approach as in the proof of

Lemma 3.1 implies that in (4.1), the term 2−(2p−1)HmS̃(2p − 1,m) in the right-hand side of M̃
(2p−1)
m tends to 0

as m tends to ∞. This implies M̃
(2p−1)
m = 2−(2p−2)HmM̃

(2p−1)
m + o(1) as m → ∞. Since 2−(2p−2)Hm ≤ 2−(p−1) < 1,

this yields limm→∞ M
(2p−1)
m = 0, that is to say (P2p−1). The induction’s assumption also implies that in the right-hand

side of M̃
(2p)
m , the term S̃(2p,m) tends to L = ∑p−1

k=1

(2p
2k

)
M̃(2k)M̃(2p−2k) as m tends to ∞. Define L′ = (2p −2)−1L.

By using (4.1) we deduce from the previous lines that M
(2p)
m = 21−2pHmM

(2p)
m +2−pL+o(1) as m → ∞. As 21−2pHm

tends to 21−p as m → ∞, the definition of L′ implies M
(2p)
m − L′ = 21−2pHm(M

(2p)
m − L′) + o(1) as m → ∞. Since

21−p < 1 the last equality yields both (P2p) and (3.1) for (M̃(2p))p≥1 instead of (M(2p))p≥1.

2. If H ∈ (1/2,1), p ≥ 1 and w ∈ {0,1}p , due to Theorem 1.1.1 we have

B̃H

(
tw + 2−p

) − B̃H (tw) = ε(w)2−pH B̃H (w)(1). (4.2)

This implies |B̃Hm(tw + 2−p) − B̃Hm(tw)| ≤ 2−p/2|B̃Hm(w)(1)|. Moreover, the proof of 1 above shows that CK =
supm≥1 E(|B̃Hm(1)|2K) < ∞ for every integer K ≥ 1. We conclude as in the proof of Lemma 3.2.

3. Use (4.2) and the same arguments as in the proof of Theorem 1.3 as well as the fact that 2−pHm tends to 2−p/2

as m → ∞.
�
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