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Abstract: We consider the regression model with (known) random design.
We investigate the minimax performances of an adaptive wavelet block
thresholding estimator under the L

p risk with p ≥ 2 over Besov balls. We
prove that it is near optimal and that it achieves better rates of convergence
than the conventional term-by-term estimators (hard, soft,. . . ).
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1. Motivations

In recent years, wavelet thresholding procedures have been widely applied to
the field of nonparametric function estimation. They excel in the areas of spa-
tial adaptivity, computational efficiency and asymptotic optimality. Among the
various thresholding techniques studied in the literature, there are the term-by-
term thresholding (hard, soft, . . . ) initially developed by Donoho and Johnstone
(1995) and the block thresholding (global, BlockShrink, . . . ) introduced by
Kerkyacharian et al. (1996) and Hall et al. (1999).

Several recent works demonstrated that the block thresholding methods can
enjoy better theoretical properties than the conventional term-by-term thresh-
olding methods. This superiority has been proved for various statistical models
via the minimax approach under the L

2 risk. See, for instance, Cai (1999) and
Cavalier and Tsybakov (2001) for the Gaussian sequence model, Cai and Chicken
(2005) for the density estimation, Chicken (2003) for the regression model with
nonequispaced samples and Chicken (2007) for the regression model with ran-
dom uniform design.

This paper presents an extension of a result established by Chicken (2007).
We prove that a generalized version of the BlockShrink construction achieves
better rates of convergence than the conventional term-by-term thresholding
estimators.
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The main contributions of this study concern the two following points :

- The model: we consider the regression model with (known) random design,
not necessarily uniform.

- The statistical approach: we adopt the minimax approach under the L
p

risk over Besov balls (regular, sparse and critical zones). The parameter p
can be greater than or equal to 2.

From a technical point of view, the proof is significantly more complicated than
for the uniform design and the case p = 2. We combine a general theorem es-
tablished by Chesneau (2006, Theorem 4.2) with several probability inequalities
such that the Talagrand inequality and the Borel inequality.

The paper is organized as follows. Section 2 introduces the model, the adopted
minimax approach, the wavelet bases and the considered estimator. Section 3
presents the main result while Section 4 contains a detailed proof of the main
result.

2. Model, Wavelet bases and Estimator

2.1. The model

We observe n pairs of random variables {(X1, Y1), . . . , (Xn, Yn)} governed by
the equation:

Yi = f(Xi) + zi, i = 1, . . . , n, (2.1)

where the design variables (X1, . . . , Xn) are i.i.d. with Xi ∈ [0, 1], the variables
(z1, . . . , zn) are i.i.d. Gaussian with mean zero, variance one and are independent
of (X1, . . . , Xn). We denote by g the density of X1. The function f is unknown.
The goal is to estimate f from the observations {(X1, Y1), . . . , (Xn, Yn)}. Addi-
tional assumptions on the functions f and g will be specified latter (see Theorem
3.1 below).

To estimate f , several adaptive methods have been elaborated (according
to the nature of the design). See, for instance, the transformation method of
Cai and Brown (1998), the model selection method of Baraud (2002) and the
kernel method of Gäıffas (2006).

In this study, we shall consider a particular wavelet thresholding estimator.
For the sake of clarity, let us denote this estimator by f̂n. The performances of
f̂n will be measured under the global L

p risk defined by

R(f̂n, f) = E
n
f (‖f̂n − f‖p

p) = E
n
f

(∫ 1

0

|f̂n(t) − f(t)|pdt

)

.

Here, p is a real number greater than or equal to 2 and E
n
f is the expectation

with respect to the distribution of the observations {(X1, Y1), . . . , (Xn, Yn)}.
The unknown regression function f is supposed to belong to a wide class of
functions: the Besov balls. Wavelets and Besov balls are presented in the next
subsection.
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2.2. Wavelets and Besov balls

We consider an orthonormal wavelet basis generated by dilation and transla-
tion of a compactly supported ”father” wavelet φ and a compactly supported
”mother” wavelet ψ. For the purpose of this paper, we use the periodized wavelet
bases on the unit interval. Let us set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

And let us denote the periodized wavelets by φper
j,k (x) =

∑

l∈Z
φj,k(x − l),

ψper
j,k (x) =

∑

l∈Z
ψj,k(x − l), x ∈ [0, 1]. Then, there exists an integer τ such

that the collection ζ = {φper
τ,k (x), k = 0, . . . , 2τ − 1; ψper

j,k (x), j = τ, . . . ,∞, k =

0, . . . , 2j − 1} constitutes an orthonormal basis of L
2([0, 1]). The superscript

”per” will be suppressed from the notations for convenience.
For any integer l ≥ τ , a square-integrable function on [0, 1] can be expanded

into a wavelet series

f(x) =

2l−1
∑

k=0

αl,kφl,k(x) +

∞
∑

j=l

2j−1
∑

k=0

βj,kψj,k(x),

where αj,k =
∫ 1

0
f(x)φj,k(x)dx and βj,k =

∫ 1

0
f(x)ψj,k(x)dx.

For further details about wavelets, see Meyer (1990) and Cohen et al. (1993).
Since ψ is compactly supported, the following property of concentration holds:

for any m > 0, any j ≥ τ and any x ∈ [0, 1], there exists a constant C > 0
satisfying

2j−1
∑

k=0

|ψj,k(x)|m ≤ C2jm/2. (2.2)

Now, let us define the main sets of function considered in our statistical
approach. Let M ∈ (0,∞), s ∈ (0,∞), π ∈ [1,∞] and r ∈ [1,∞]. Let us set
βτ−1,k = ατ,k. We say that a function f belongs to the Besov balls Bs

π,r(M)
if and only if there exists a constant M∗ > 0 such that the associated wavelet
coefficients satisfy





∞
∑

j=τ−1

[2j(s+1/2−1/π)[
2j−1
∑

k=0

|βj,k|
π ]1/π]r





1/r

≤M∗,

with the usual modification if q = ∞. We work with the Besov balls because
of their exceptional expressive power. For a particular choice of parameters s,
π and r, they contain the Hölder and Sobolev balls (see, for instance, Meyer
(1990)).
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2.3. The estimator

We are now in the position to describe the main estimator of the study. It is a L
p

version of the BlockShrink estimator developed by Cai (2002) for the Gaussian
sequence model.

Let p ∈ [2,∞), d ∈ (0,∞) and L be the integer L = ⌊(logn)p/2⌋ where the
square brackets denote the floor function. Let j1 and j2 be the integers defined
by

j1 = ⌊(p/2) log2(log n)⌋, j2 = ⌊(1/2) log2 (n/ logn)⌋.

For any j ∈ {j1, . . . , j2}, let us set Aj =
{

1, . . . , 2jL−1
}

and, for any K ∈ Aj ,

Bj,K = {k ∈ {0, . . . , 2j − 1} : (K − 1)L ≤ k ≤ KL− 1}.

We define the (Lp version of the) BlockShrink estimator by

f̂n(x) =

2j1−1
∑

k=0

α̂j1,kφj1,k(x) +

j2
∑

j=j1

∑

K∈Aj

∑

k∈Bj,K

β̂j,k1{b̂j,K≥dn−1/2}ψj,k(x), (2.3)

where b̂j,K =
[

L−1
∑

k∈Bj,K
|β̂j,k|p

]1/p

and

α̂j,k = n−1
n
∑

i=1

Yig(Xi)
−1
φj,k(Xi), β̂j,k = n−1

n
∑

i=1

Yig(Xi)
−1
ψj,k(Xi). (2.4)

This estimator was first defined in this L
p form by Picard and Tribouley (2000)

for general statistical models.

Comments:

- The sets Aj and Bj,K are chosen such that ∪K∈AjBj,K = {0, . . . , 2j − 1},
Bj,K ∩ Bj,K′ = ∅ for any K 6= K ′ with K, K ′ ∈ Aj , and |Bj,K | = L =
⌊(log n)p/2⌋.

- It is easy to show that α̂j,k and β̂j,k are unbiased estimators of αj,k and
βj,k, the wavelet coefficients of f . Moreover, they satisfy several probability
inequalities which will be at the heart of the proof of the main result.
Further details concerning these inequalities are given in Section 4.

- The considered BlockShrink estimator is adaptive since it does not depend
on the smoothness of the unknown function f . However, it depends on
the norm parameter p. An open question is : can we construct a block
thresholding procedure that is adaptive to the L

p risk for all p ?

3. Main result

Theorem 3.1 below determines the rates of convergence achieved by the Block-
Shrink estimator under the L

p risk over Besov balls.
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Theorem 3.1. Let us consider the regression model with random design (2.1).
Suppose that :

• the unknown regression function f is bounded from above, i.e. ‖f‖∞ ≤M ′,
where M ′ > 0 denotes a known constant.

• the density g of X1 is known and bounded from above and below.

Let us consider the BlockShrink estimator f̂n defined by (2.3) with a large enough
threshold constant d. Let p ∈ [2,∞[. Then there exists a constant C > 0 such
that, for any π ∈ [1,∞], r ∈ [1,∞], s ∈ (1/π + 1/2,∞) and n large enough, we
have

sup
f∈Bs

π,r(M)

E
n
f

(

‖f̂n − f‖p
p

)

≤ Cϕn,

where

ϕn =











n−α1p(logn)α1p1{p>π} , when ǫ > 0,

(logn/n)α2p(logn)(p−π/r)+1{ǫ=0} , when ǫ ≤ 0,

with α1 = s/(2s+1), α2 = (s−1/π+1/p)/(2(s−1/π)+1) and ǫ = πs+2−1(π−p).

The rates of convergence presented in Theorem 3.1 above are minimax except
in the cases {p > π} ∩ {ǫ > 0} and ǫ = 0 where there is an extra logarithmic
term. They are better than those achieved by the conventional term-by-term
thresholding estimators (hard, soft,. . . ). The main difference is for the case
{π ≥ p} where there is no extra logarithmic term. Let us mention that Theorem
3.1 can be proved for p ∈ (1, 2) if we consider the BlockShrink estimator (2.3)
defined with L = lnn. Further details can be found in Chesneau (2006). Further
details about the rates of convergence for the regression problem (2.1) via the
minimax approach under the L

p risk over Besov balls can be found in Chesneau
(2007).

As mentioned in the motivations of the paper, Theorem 3.1 is an extension
of a result proved by Chicken (2007, Theorem 2) for the uniform design, the L

2

risk and the Hölder balls Bs
∞,∞(M).

Comments on the choice of the thresholding constant d. From a theoretical
point of view, it is difficult to determine the exact minimum value of d such that
f̂n achieves the rates of convergence exhibited in Theorem 3.1. In fact, Theorem
3.1 holds for d ≥ µ1 where µ1 refers to the constant of Proposition 4.1 below.

4. Proof of Theorem 3.1

Thanks to a result proved by Chesneau (2006, Theorem 4.2), the proof of Theo-
rem 3.1 is an immediate consequence of Proposition 4.1 below. This proposition
shows that the estimators (β̂j,k)k defined by (2.4) satisfy a standard moments
inequality and a specific concentration inequality.
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Proposition 4.1. Let p ≥ 2. There exist two constants µ1 > 0 and C > 0
such that, for any j ∈ {j1, . . . , j2}, K ∈ Aj and n large enough, the estimators

(β̂j,k)k defined by (2.4) satisfy

- the following moments condition :

E
n
f

(

|β̂j,k − βj,k|
2p
)

≤ Cn−p, (4.1)

- the following concentration inequality :

P
n
f



[L−1
∑

k∈Bj,K

|β̂j,k − βj,k|
p]1/p ≥ µ12

−1n−1/2



 ≤ 4n−p. (4.2)

The moments inequality has been proved by Chesneau (2007). The proof of
the concentration inequality (4.2) combines several concentration inequalities
such that the Talagrand inequality and the Borel inequality. They are recalled
in the two auxiliary lemmas below.

Lemma 4.1 (Talagrand (1994)). Let (V1, . . . , Vn) be i.i.d. random vari-
ables and (ǫ1, . . . , ǫn) be independent Rademacher variables, also independent
of (V1, . . . , Vn). Let F be a class of functions uniformly bounded by T . Let
rn : F → R be the operator defined by:

rn(h) = n−1
n
∑

i=1

h(Vi) − E(h(V1)).

Suppose that

sup
h∈F

V ar(h(V1)) ≤ v, E

(

sup
h∈F

n
∑

i=1

ǫih(Vi)

)

≤ nH.

Then, there exist two absolute constants C1 > 0 and C2 > 0 such that, for any
t > 0, we have:

P

(

sup
h∈F

rn(h) ≥ t+ C2H

)

≤ exp
(

−nC1

(

t2v−1 ∧ tT−1
))

.

Lemma 4.2 (The Borel inequality (see Adler (1990))). Let D be a subset
of R. Let (ηt)t∈D be a centered Gaussian process. Suppose that

E

(

sup
t∈D

ηt

)

≤ N, sup
t∈D

V ar(ηt) ≤ Q.

Then, for any x > 0, we have

P

(

sup
t∈D

ηt ≥ x+N

)

≤ exp
(

−x2/(2Q)
)

. (4.3)
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We are now in the position to prove Proposition 4.1. Here, C represents a
constant which may be different from one term to the other. We suppose that
n is large enough.

Proof of the Proposition 4.1. By the definiton of β̂j,k, we have the following
decomposition

β̂j,k − βj,k = Aj,k +Bj,k,

where

Aj,k = n−1
n
∑

i=1

f(Xi)g(Xi)
−1ψj,k(X1) − E

n
f

(

f(X1)g(X1)
−1
ψj,k(X1)

)

, (4.4)

Bj,k = n−1
n
∑

i=1

g(Xi)
−1ψj,k(Xi)zi. (4.5)

By the lp-Minkowski inequality, for any µ > 0, we have

P
n
f



[L−1
∑

k∈Bj,K

|β̂j,k − βj,k|
p]1/p ≥ 2−1µn−1/2



 ≤ U + V ,

where

U = P
n
f



[L−1
∑

k∈Bj,K

|Aj,k|
p]1/p ≥ 4−1µn−1/2



 ,

V = P
n
f



[L−1
∑

k∈Bj,K

|Bj,k|
p]1/p ≥ 4−1µn−1/2



 .

Let us investigate separately the upper bounds of U and V .
• The upper bound for U . Our goal is to apply the Talagrand inequality

described in Lemma 4.1. Let us consider the set Cq defined by

Cq =
{

a = (aj,k) ∈ Z
∗;

∑

k∈Bj,K

|aj,k|
q ≤ 1

}

and the functions class F defined by

F =
{

h; h(x) = f(x)g(x)−1
∑

k∈Bj,K

aj,kψj,k(x), a ∈ Cq

}

.

By an argument of duality, we have

[
∑

k∈Bj,K

|Aj,k|
p]1/p = sup

a∈Cq

∑

k∈Bj,K

aj,kAj,k = sup
h∈F

rn(h),
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where Aj,k is defined by (4.4) and rn denotes the function defined in Lemma
4.1. Now, let us evaluate the parameters T , H and v of the Talagrand inequality.

First of all, notice that, for p ≥ 2 (and, a fortiori, q = 1 + (p− 1)−1 ≤ 2), an
elementary inequality of lp norm gives

sup
a∈Cq

[
∑

k∈Bj,K

|aj,k|
2]1/2 ≤ sup

a∈Cq

[
∑

k∈Bj,K

|aj,k|
q]1/q ≤ 1.

− The value of T . Let h be a function in F . By the Cauchy-Schwarz inequality,
the assumptions of boundedness of f and g and the property of concentration
(2.2), for any x ∈ [0, 1], we find

|h(x)| ≤ |f(x)||g(x)|−1
[
∑

k∈Bj,K

|ψj,k(x)|2]1/2 sup
a∈Cq

[
∑

k∈Bj,K

|aj,k|
2]1/2

≤ ‖f‖∞‖1/g‖∞[
∑

k∈Bj,K

|ψj,k(x)|2]1/2 ≤ C2j/2.

Hence T = C2j/2.
− The value of H. The lp-Hölder inequality and the Hölder inequality imply

E
n
f



 sup
a∈Cq

n
∑

i=1

∑

k∈Bj,K

aj,kǫif(Xi)g(Xi)
−1ψj,k(Xi)





≤ sup
a∈Cq

[
∑

k∈Bj,K

|aj,k|
q]1/q





∑

k∈Bj,K

E
n
f

(

|
n
∑

i=1

ǫif(Xi)g(Xi)
−1ψj,k(Xi)|

p

)





1/p

≤





∑

k∈Bj,K

E
n
f

(

|
n
∑

i=1

ǫif(Xi)g(Xi)
−1ψj,k(Xi)|

p

)





1/p

. (4.6)

Since (ǫ1, . . . , ǫn) are independent Rademacher variables, also independent of
X = (X1, . . . , Xn), the Khintchine inequality yields

E
n
f

(

|
n
∑

i=1

ǫif(Xi)g(Xi)
−1ψj,k(Xi)|

p

)

= E
n
f

(

E
n
f (|

n
∑

i=1

ǫif(Xi)g(Xi)
−1ψj,k(Xi)|

p|X)

)

≤ CE
n
f

(

|
n
∑

i=1

|f(Xi)|
2|g(Xi)|

−2|ψj,k(Xi)|
2|p/2

)

= CI. (4.7)

Now, let us consider the i.i.d. random variables (N1, . . . , Nn) defined by

Ni = |f(Xi)|
2|g(Xi)|

−2|ψj,k(Xi)|
2, i = 1, . . . , n.
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An elementary inequality of convexity implies I ≤ 2p/2−1(I1 + I2) where

I1 = E
n
f

(

|
n
∑

i=1

(Ni − E
n
f (N1))|

p/2

)

, I2 = np/2
E

n
f (N1)

p/2.

Let us analyze the upper bounds for I1 and I2, in turn.
− The upper bound for I1. The Rosenthal inequality applied to (N1, . . . , Nn)

and the Cauchy-Schwartz inequality imply

I1 ≤ C
(

nE
n
f (|N1 − E

n
f (N1)|

p/2) +
(

nE
n
f (|N1 − E

n
f (N1)|

2)
)p/4

)

≤ C
(

nE
n
f (|N1|

p/2) +
(

nE
n
f (|N1|

2)
)p/4

)

.

For any m ≥ 1, j ∈ {j1, . . . , j2} and k ∈ {0, . . . , 2j − 1}, the assumptions of
boundedness of f and g give

E
n
f (|N1|

m) =

∫ 1

0

|f(x)|2m|g(x)|−2m+1|ψj,k(x)|2mdx

≤ ‖f‖2m
∞ ‖ψ‖2m−2

∞ 2j(m−1)

∫ 1

0

|ψj,k(x)|2dx ≤ C2j2(m−1) ≤ Cnm−1.

Therefore I1 ≤ Cnp/2.
− The upper bound for I2. Since E

n
f (N1) ≤ C, we have I2 ≤ Cnp/2.

Combining the obtained upper bounds for I1 and I2, we find

I ≤ C(I1 + I2) ≤ Cnp/2. (4.8)

Putting (4.6), (4.7) and (4.8) together, we see that

E
n
f



 sup
a∈Cq

n
∑

i=1

∑

k∈Bj,K

aj,kǫif(Xi)g(Xi)
−1ψj,k(Xi)



 ≤ C[
∑

k∈Bj,K

I]1/p ≤ Cn1/2L1/p.

Hence H = Cn−1/2L1/p.
− The value of v. By the assumptions of boundedness of f and g and the

orthonormality of ζ, we obtain

sup
h∈F

V ar(h(X1))

≤ sup
a∈Cq

E
n
f



|f(X1)|
2|g(X1)|

−2|
∑

k∈Bj,K

aj,kψj,k(X1)|
2





≤ ‖f‖2
∞‖1/g‖∞ sup

a∈Cq

E
n
f





∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′g(X1)
−1ψj,k(X1)ψj,k′ (X1)





= C sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

∫ 1

0

ψj,k(x)ψj,k′ (x)dx

= C sup
a∈Cq

∑

k∈Bj,K

|aj,k|
2 ≤ C.
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Hence v = C.
Now, let us notice that, for any j ∈ {j1, . . . , j2}, we have n2j ≤ n2j2 ≤

2n3/2(log n)
−1/2

. Since (log n)1/2 ≤ L1/p < 21/p(log n)
1/2

, for t = 8−1µL1/pn−1/2,
we have

(

t2v−1 ∧ tT−1
)

≥ C
(

µ2(log n/n) ∧ µ
√

(logn/(n2j))
)

≥ Cµ2(log n/n).

So, for µ large enough and t = 8−1µL1/pn−1/2, the Talagrand inequality yields

U = P
n
f



[L−1
∑

k∈Bj,K

|Aj,k|
p]1/p ≥ 4−1µn−1/2





≤ P
n
f



[L−1
∑

k∈Bj,K

|Aj,k|
p]1/p ≥ 8−1µn−1/2 + Cn−1/2





≤ P
n
f

(

sup
h∈F

rn(h) ≥ t+ C2H

)

≤ exp
(

−nC1

(

t2v−1 ∧ tT−1
))

≤ exp
(

−nCµ2(log n/n)
)

≤ n−p.

We obtain the desired upper bound for U .

• The upper bound for V. Here, we apply the Borel inequality described in
Lemma 4.2. Let us consider the set Cq defined by

Cq =
{

a = (aj,k) ∈ Z
∗;

∑

k∈Bj,K

|aj,k|
q ≤ 1

}

and the process Z(a) defined by

Z(a) =
∑

k∈Bj,K

aj,kBj,k,

whereBj,k is defined by (4.5). Let us notice that, conditionally on X = (X1, . . . , Xn),
Z(a) is a centered Gaussian process. Moreover, by an argument of duality, we
have

sup
a∈Cq

Z(a) = sup
a∈Cq

∑

k∈Bj,K

aj,kBj,k = [
∑

k∈Bj,K

|Bj,k|
p]1/p.

Now, let us investigate separately the upper bounds for E
n
f (supa∈Cq

Z(a)|X) and
supa∈Cq

V arn
f (Z(a)|X).

− The upper bound for E
n
f (supa∈Cq

Z(a)|X). Let us consider the set Bµ defined
by

Bµ =

{

|n−1
n
∑

i=1

g(Xi)
−1|ψj,k(Xi)|

2 − 1| ≥ µ

}

.
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Let us work on the set Bc
µ, the complementary of Bµ. By the Jensen in-

equality, the fact that Z(a) | X ∼ N (0, n−2
∑n

i=1 |g(Xi)|−2|ψj,k(Xi)|2) and the
assumptions of boundedness made on g, we find

E
n
f

(

sup
a∈Cq

Z(a)|X

)

≤ [
∑

k∈Bj,K

E
n
f (|Bj,k|

p|X)]1/p

= C[
∑

k∈Bj,K

(n−2
n
∑

i=1

|g(Xi)|
−2|ψj,k(Xi)|

2)p/2]1/p

≤ C‖1/g‖∞[
∑

k∈Bj,K

(n−2
n
∑

i=1

g(Xi)
−1|ψj,k(Xi)|

2)p/2]1/p

≤ Cn−1/2[
∑

k∈Bj,K

(n−1
n
∑

i=1

g(Xi)
−1|ψj,k(Xi)|

2 − 1 + 1)p/2]1/p

≤ Cn−1/2[
∑

k∈Bj,K

(µ+ 1)p/2]1/p ≤ C(µ+ 1)1/2L1/pn−1/2.

Hence N = N(X) = C(µ+ 1)1/2L1/pn−1/2.
− The upper bound for supa∈Cq

V arn
f (Z(a)|X). Let us define the set Aµ by

Aµ =







sup
a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n
∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′ (Xi))

−
∑

k∈Bj,K

|aj,k|
2) ≥ µ







.

Let us work on the set Ac
µ, the complementary of Aµ. Using the assumptions

of boundedness of g, we have

G = sup
a∈Cq





∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n
∑

i=1

|g(Xi)|
−2ψj,k(Xi)ψj,k′ (Xi))





≤ C

[

sup
a∈Cq

(

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

(

n−1
n
∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′ (Xi)

)

. . .

−
∑

k∈Bj,K

|aj,k|
2

)

+ sup
a∈Cq

∑

k∈Bj,K

|aj,k|
2

]

≤ C(µ+ 1).
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Since E
n
f (zizi′) = 1 if i = i′ and E

n
f (zizi′) = 0 otherwise, we have

sup
a∈Cq

V arn
f (Z(a)|X) = sup

a∈Cq

E
n
f (|Z(a)|2|X)

= sup
a∈Cq

E
n
f





∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′Bj,kBj,k′ |X





= sup
a∈Cq



n−2
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

n
∑

i=1

n
∑

i′=1

|g(Xi)|
−2ψj,k(Xi)ψj,k′ (Xi′)E

n
f (zizi′)





= n−1 sup
a∈Cq





∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n
∑

i=1

|g(Xi)|
−2ψj,k(Xi)ψj,k′(Xi))





= n−1G ≤ Cn−1(µ+ 1).

Hence Q = Q(X) = Cn−1(µ+ 1).
The obtained values of N and Q will allow us to conclude. For any x > 0, we

have

P
n
f

(

sup
a∈Cq

Z(a) ≥ x+ C(1 + µ)1/2L1/pn−1/2

)

= E
n
f

(

P
n
f ( sup

a∈Cq

Z(a) ≥ x+ C(1 + µ)1/2L1/pn−1/2|X)(1Bµ + 1Bc
µ
)

)

≤ P
n
f (Bµ) + E

n
f

(

P
n
f ( sup

a∈Cq

Z(a) ≥ x+N(X)|X)

)

. (4.9)

The Borel inequality described in Lemma 4.2 implies

E
n
f

(

P
n
f ( sup

a∈Cq

Z(a) ≥ x+N(X)|X)

)

≤ E
n
f

(

exp(−x2/(2Q(X)))
)

. (4.10)

Moreover, by definition of Aµ, we have

E
n
f

(

exp (−x2/(2Q(X)))
)

= E
n
f

(

exp (−x2/(2Q(X)))(1Aµ + 1Ac
µ
)
)

≤ P
n
f (Aµ) + exp (−nx2/(2(µ+ 1))). (4.11)

Putting the inequalities (4.9), (4.10) and (4.11) together, for x = 8−1µL1/pn−1/2

and µ large enough, we obtain

V = P
n
f

(

sup
a∈Cq

Z(a) ≥ 4−1µL1/pn−1/2

)

≤ P
n
f

(

sup
a∈Cq

Z(a) ≥ 8−1µL1/pn−1/2 + C(1 + µ)1/2L1/pn−1/2

)

≤ P
n
f (Aµ) + P

n
f (Bµ) + exp

(

−Cµ2L2/p/(µ+ 1)
)

. (4.12)
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Lemma 4.3 below provides the upper bounds for P
n
f (Aµ) and P

n
f (Bµ).

Lemma 4.3. For µ and n large enough, we have

max
(

P
n
f (Aµ),Pn

f (Bµ)
)

≤ n−p.

By the inequality (4.12), the fact that L = ⌊(log n)p/2⌋ and Lemma 4.3, for
µ large enough, we have

V ≤ 3n−p.

Combining the obtained upper bounds for U and V , we achieve the proof of
Proposition 4.1.

Proof of Lemma 4.3.. Let us investigate the upper bounds for P
n
f (Bµ) and P

n
f (Aµ).

• The upper bound for P
n
f (Bµ). First of all, notice that the random variables

(|ψj,k(X1)|
2g(X1)

−1, . . . , |ψj,k(Xn)|2g(Xn)−1),

are i.i.d. and, since g is bounded from below, we have

|ψj,k(Xi)|
2g(Xi)

−1 ≤ ‖1/g‖∞‖ψ‖2
∞2j, E

n
f

(

|ψj,k(X1)|
2g(X1)

−1
)

= 1.

So, for any j ∈ {j1, . . . , j2}, the Hoeffding inequality implies the existence of a
constant C > 0 such that

P
n
f (Bµ) ≤ 2 exp

(

−Cnµ22−2j
)

≤ 2 exp
(

−Cnµ22−2j2
)

≤ n−Cµ2

.

We obtain the desired upper bound by taking µ large enough.

• The upper bound for P
n
f (Aµ). The goal is to apply the Talagrand inequality

described in Lemma 4.1. Let us consider the set Cq defined by

Cq =
{

a = (aj,k) ∈ Z
∗;

∑

k∈Bj,K

|aj,k|
q ≤ 1

}

and the functions class F ′ defined by

F ′ =







h; h(x) = g(x)−1
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ψj,k(x)ψj,k′ (x), a ∈ Cq







.

We have

sup
a∈Cq





∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n
∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′ (Xi)) −

∑

k∈Bj,K

|aj,k|
2





= sup
h∈F ′

rn(h),
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where rn denotes the function defined in Lemma 4.1. Thus, it suffices to deter-
mine the parameters T , H and v of the Talagrand inequality.

− The value of T. Let h be a function of F ′. Using the Hölder inequality, the
fact that g is bounded from below and the concentration property (2.2), for any
x ∈ [0, 1], we find

|h(x)| ≤ ‖1/g‖∞
∑

k∈Bj,K

|aj,k|
2
∑

k∈Bj,K

|ψj,k(x)|2 ≤ C2j .

Hence T = C2j .
− The value of H. The Cauchy-Schwarz inequality implies that

E
n
f



 sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′

n
∑

i=1

ǫig(Xi)
−1ψj,k(Xi)ψj,k′ (Xi)





≤ sup
a∈Cq

[
∑

k∈Bj,K

∑

k′∈Bj,K

|aj,k|
2|aj,k′ |2]1/2 . . .





∑

k∈Bj,K

∑

k′∈Bj,K

E
n
f

(

|
n
∑

i=1

ǫig(Xi)
−1ψj,k(Xi)ψj,k′ (Xi)|

2

)





1/2

≤





∑

k∈Bj,K

∑

k′∈Bj,K

E
n
f

(

|
n
∑

i=1

ǫig(Xi)
−1ψj,k(Xi)ψj,k′ (Xi)|

2

)





1/2

.(4.13)

Since (ǫ1, . . . , ǫn) are independent Rademacher variables, also independent of
X = (X1, . . . , Xn), the Khintchine inequality and the fact that g is bounded
from below give

E
n
f

(

|
n
∑

i=1

ǫig(Xi)
−1ψj,k(Xi)ψj,k′ (Xi)|

2

)

= E
n
f

(

E
n
f

(

|
n
∑

i=1

ǫig(Xi)
−1ψj,k(Xi)ψj,k′ (Xi)|

2

)

|X

)

≤ CE
n
f

(

n
∑

i=1

|g(Xi)|
−2|ψj,k(Xi)|

2|ψj,k′(Xi)|
2

)

≤ C‖1/g‖2
∞nE

n
f

(

|ψj,k(X1)|
2|ψj,k′(X1)|

2
)

. (4.14)

Using the property of concentration (2.2) and the inequalities (4.13)-(4.14), we
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find

E
n
f



 sup
a∈Cq

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ (

n
∑

i=1

ǫig(Xi)
−1ψj,k(Xi)ψj,k′ (Xi))





≤ C



nE
n
f



|
∑

k∈Bj,K

|ψj,k(Xi)|
2|2









1/2

≤ Cn1/22j .

Hence H = C2jn−1/2.
− The value of v. Using the fact that g is bounded from below, the Hölder

inequality and the property of concentration (2.2), we have

sup
h∈F

V ar(h(X1)) ≤ sup
a∈Cq

E
n
f



|g(X1)|
−2|

∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′ψj,k(X1)ψj,k′ (X1)|
2





≤ C‖1/g‖2
∞ sup

a∈Cq

[
∑

k∈Bj,K

|aj,k|
2]2E

n
f



|
∑

k∈Bj,K

|ψj,k(X1)|
2|2





≤ C22j .

Hence v = C22j .
Now, let us notice that if t = 2−1µ then

(

t2v−1 ∧ tT−1
)

≥ C
(

µ22−2j ∧ µ2−j
)

= Cµ22−2j .

For any j ∈ {j1, . . . , j2}, t = 2−1µ with µ large enough, the Talagrand inequality
gives

P
n
f (Aµ)

≤ P
n
f ( sup

a∈Cq

(
∑

k∈Bj,K

∑

k′∈Bj,K

aj,kaj,k′(n−1
n
∑

i=1

g(Xi)
−1ψj,k(Xi)ψj,k′(Xi)) − . . .

∑

k∈Bj,K

|aj,k|
2) ≥ 2−1µ+ C2jn−1/2) ≤ P(sup

h∈F

rn(h) ≥ t+ C2H)

≤ exp
(

−nC1

(

t2v−1 ∧ tT−1
))

≤ exp
(

−nCµ22−2j
)

≤ exp
(

−nCµ22−2j2
)

≤ n−p.

This ends the proof of Lemma 4.3.
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