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AbstractWe observe a large number of functions differing from each other
only by a translation parameter. While the main pattern is unknown, we
propose to estimate the shift parameters using M -estimators. Fourier trans-
form enables to transform this statistical problem into a semi-parametric
framework. We study the convergence of the estimator and provide its
asymptotic behavior. Moreover, we use the method in the applied case
of velocity curve forecasting.
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1. Introduction

A main issue in data mining is the feature extraction of a large set of curves. In-
deed, classification methods enable to split the data into different homogeneous
groups, each representing a specific mass behavior. But, within one group, the
observations differ slightly the one from another. Such variations take into ac-
count the variability of the individuals inside one group. More precisely, there is
a mean pattern such that, each observation curve is warped from this archetype
by a warping function, see for examples [18].

In this work, we focus on the particular case where the individuals usually
experience similar events, which are explained by a common pattern, but the
starting time of the event occurs sooner or later. Classification methods, like
repeated measures ANOVA or Principal Components Analysis of curves, see
for instance [17], ignore this type of variability. Hence, computing a represen-
tative curve, for each group, severely distorts the analysis of the data. Indeed,
the average curve (usually the mean or the median) oversmooths the studied
phenomenon, and is not a good description of reality.
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In our work, we restrict ourselves to the case where all the curves can be
deduced the one from another by a shift parameter. Hence, we consider the
following model: for j = 1, . . . , J and i = 1, . . . , nj, we observe

Yij = f
(

tij − θ∗j
)

+ σεij , (1)

where, J stands for the number of curves Cj, while nj is the number of ob-
servations for the j-th individual. Values tij are observation times, which are
assumed to be known. The unobserved warping effects θ∗j , j = 1, . . . , J , are shift
parameters which translate the unknown function f . We also choose tij = ti
and nj = n, which means that all curves are observed at the same time with the
same occurrence. The errors εij for (i, j) ∈ {1, . . . , n}×{1, . . . , J} are i.i.d. with
distribution N (0, 1). Moreover, without loss of generality, we assume in the fol-
lowing that σ = 1 (see Remark 3.2). We aim at estimating the shift parameters
θ∗j , j = 1, . . . , J , in order to find a good representative of the feature f .

A more general problem has been tackled in the literature and some work has
been done to find a representative of a large sample of close enough functions
fj , j = 1, . . . , J , see for examples [18]. Indeed, in a general case, we observe
realizations yij, j = 1, . . . , J , i = 1, . . . , nj, from model

Yij = fj(tij) + εij , (2)

where, εij , j = 1, . . . , J , i = 1, . . . , nj, are i.i.d. random variables, representing
the observation noise. Hence, such functions fj , j = 1, . . . , J , are close from
each other in the sense that there exists an unknown archetype f and unknown
warping functions hj , j = 1, . . . , J , such that, for all j = 1, . . . , J ,

∀t ∈ [0, T ], fj(t) = f ◦ hj(t).

Examples of such data might be growth curves, longitudinal data in medicine,
speech signals, traffic data or expenditure curves for some goods in the econo-
metric domain. Our main motivation in this paper is the analysis of the vehicle
speed evolution on a motorway. The data are curves, describing the evolution,
on observation cells, of the daily vehicle speed. After performing classification
procedures (see for instance [14] for a complete study), we obtain clusters of
functions, each one representing a typical common behavior. Indeed, all the
curves can be deduced one from another by a shift parameter.

This kind of issue led several statisticians to apply transformations to func-
tions in order to get rid of the shifts and to align the curves. If a parametric
model would be available a priori, the analysis would be made easier. But, if
the data are numerous, there is not generally enough knowledge to build such
a model. Thus, they turn into a non parametric framework. When the pattern
is known, the problem turns to align a noisy observation with a fixed feature.
Piccioni, Scarlatti and Trouvé in [15], Kneip, Li, MacGibbon and Ramsay in
[11], or Ramsay and Li in [16] proposed curve registration methods. Their main
idea is to align each curve on a target curve f0, which means finding, for all
j ∈ {1, . . . , J}, the warping function hj minimizing

Fλ(f0, fj; hj) =

∫

‖fj ◦ hj(t) − f0(t)‖2 dt + λ

∫

w2
j (t)dt,
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where hj belongs to a particular smooth monotone family defined by the solu-
tion of the differential equation D2hj = wjDhj . Hence, wj is simply D2hj/Dhj ,
the relative curvature of hj. Thus, penalizing wj yields both smoothness and
monotonicity of hj (see [16] for more details). The main drawback of such meth-
ods is that they assume that the archetype f0 is known, which is a reasonable
assumption in pattern recognition, but which is unrealistic when the observed
phenomenon is not well known as in our study. Alternatively, in a non paramet-
ric point of view, the pattern is replaced by its estimate. In this case, the issue
is a matter of synchronizing sample curves. Wang and Gasser in [21] use kernel
estimators. In another work, Gasser and Kneip, in [5], align the curves by align-
ing the local extrema of the functions, which are estimated as zeroes of the non
parametric estimate of the derivative. In all cases, the issue of estimating the
shifts is blurred by the estimation of the curves, which leads to non parametric
rates of convergence.

Hence, it seems natural to study our regression problem (1) in a semi-parametric
framework: the shifts are the parameters of interest to be estimated, while the
pattern stands for an unknown nuisance functional parameter. A very general
semi-parametric regression model called Self-modelling regression (SEMOR) has
been considered in [10]. The model is fj(·) = f(·, θ∗j ), j ∈ {1, . . . , J}, and a
general backfitting algorithm is studied. Roughly speaking, after initializing an
estimate of f by a first guess (using for example a kernel method), this algo-
rithm is based on two recursive steps. In the first step, the estimation of θ∗j ,
j = 1, . . . , J , is performed. In the second step, the estimate of f is updated.
In both steps, estimations are performed using a least squares criterion. In [10]
a complete study, including the asymptotic normality of the estimates, is per-
formed for the Shape-invariant model (SIM) introduced in [12]. See also [13], [8]
and [9] for related works. Actually, the model studied in our paper (regression
model (1)) falls in the SIM frame, so that, the methods studied in [10] may be
applied. Nevertheless, the estimation procedure developed here is new, struc-
turally simpler and computationaly easier to implement than the complicated
backfitting algorithms.

The difficulty of the work is that the estimation must not rely on the pattern,
even if the quantities are deeply linked. That is the reason why we will use
an M -estimator built on the Fourier series of the data. Under identifiability
assumptions, we provide a consistent method (Theorem 2.1) to estimate at the
parametric rate of convergence the shifts θ∗j , j = 1, . . . , J , when f is unknown,
and we show that fluctuations of the estimates are asymptotically Gaussian
(Theorem 3.1). Further, our estimation method leads to a fast algorithm to
align shifted curves without any prior assumption on the feature, due to semi-
parametric techniques. We point out that this study can be linked first with
the study of Golubev in [7], dealing with the semi-parametric efficiency in the
estimation of shifts in a continuous observation scheme, and also with the study
of Gassiat and Lévy-Leduc in [6], dealing with the estimation of the periodicity
of a signal. Further, the mixed effects model (1) with random shifts is studied
in [1] (see also [2]). We outline the fact that the method we propose handles
a large variety of curves with minimal smoothness properties, namely we only
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require L1 conditions.
The present paper falls into six parts. Section 2 is devoted to the definition

of the model and to the description of the estimation method. In Section 3, we
provide asymptotic properties of the estimators. As a matter of fact, we show
that the estimators are convergent and asymptotically Gaussian. The estimating
method is effectively performed in Section 4, on some simulated data, and then
used to analyze road traffic data. We compare our results to another existing
method. The technical lemmas and the proofs are gathered in Section 5 and
Section 6.

2. Semi-parametric estimation of shifts

2.1. Model

For the j-th curve (j = 1, . . . , J), we get n observations yij , i = 1, . . . , n, mea-
sured at equispaced times ti = i−1

n T ∈ [0, T [, with T ∈ R
∗
+. We model these

observations in the following way:

Yij = f(ti − θ∗j ) + εij, j = 1, . . . , J, i = 1, . . . , n, (3)

where, f : R → R is an unknown T -periodic function, θ∗ = (θ∗1 , . . . , θ∗J) ∈ R
J

is an unknown shift parameter, θ∗j is the shift of the j-th curve, and, εij , i =
1, . . . , n, is a Gaussian white noise, with variance 1. For sake of simplicity, we
consider an unitary variance, but all our results are still valid for a general
variance.

Our aim is to estimate the translation factors (θ∗j ) without the knowledge
of the pattern f . Due to the special structure of the model, Fourier analysis
is well suited to conduct such a study, since the Fourier basis diagonalizes any
translation. Then, using a Discrete Fourier Transform we may transform the
model (3) into the following one (supposing n is odd):

djl = e−ilα∗

j cl(f) + wjl, j = 1, . . . , J, l = −(n − 1)/2, . . . , (n − 1)/2, (4)

where, cl(f) = 1
n

∑n
m=1 f(tm)e−i2π ml

n , l = −(n − 1)/2, . . . , (n − 1)/2, are the
discrete Fourier coefficients and α∗

j = 2π
T

θ∗j ∈ R, j = 1, . . . , J , are the phase
factors, and, for all j ∈ {1, . . . , J}, wjl, l = −(n − 1)/2, . . . , (n − 1)/2, is a
complex Gaussian white noise, with complex variance 1/n, and with independent
real and imaginary parts. As previously, our goal is to estimate the phase factors
α∗

j , j = 1, . . . , J , without the knowledge of the Fourier coefficients of function
f . Stricto sensu, the discrete Fourier coefficients are not the Fourier coefficients
of the functions, but the bias induced is similar to the bias induced by any
discretization in regression, which vanishes under some regularity assumptions,
as shown in [4]. Hence, from now, we will consider the model (4) with cl(f) =
1
T

∫ T

0
f(t)e−i2π tl

T dt. Observe that in this last equation we only have to assume
that f is integrable. Hence, if we only consider the discretized version given
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in Model 2.2, only a minimal smoothness conditions (f ∈ L1(R)) is necessary,
contrary to other methods in statistics, which require stronger conditions.

We point out that we are facing a semi-parametric model. As a matter of
fact, we aim at estimating the parameter α∗ = (α∗

1, · · · , α∗
J) which depends on

an unknown nuisance functional parameter (cl(f))l∈Z
, the Fourier coefficients

of the unknown function f .

2.2. Identifiability

We notice that the model (4) is not identifiable for all translation parameters.
Indeed, replacing α∗ by







α1

...
αJ






=







α∗
1
...

α∗
J






+ c







1
...
1






+ 2π







k1

...
kJ






, c ∈ R,







k1

...
kJ






∈ Z

J , (5)

and replacing f(·) by f(· − c), let invariant the equation (4). So, in order to
ensure identifiability of the model, we restrict the parameter space A:

i) A is compact,
ii) α∗ ∈ A,
iii) if α ∈ A and (5) holds for α, then α = α∗.

(6)

In this paper, we will mainly consider, in the Theorem 3.1, the parameter set
A1 =

{

α ∈ [−π, π[J : α1 = 0
}

. Hence, in (5) the constant c must be equal to 0.
Our fluctuations theorem can easily be transposed to other choices of parame-

ter spaces, for example A2 =
{

α ∈ [−π, π[J :
∑J

j=1 αj = 0 and α1 ∈
[

0, 2π
J

[

}

. In

this last case, the condition
∑J

j=1 αj = 0 implies in (5) that c = −2π
J

∑J
j=1 kj.

So that, with equation (5), we can write that







α1

...
αJ






=







α∗
1
...

α∗
J






+

2π

J













(J − 1) −1 · · · −1

−1
. . .

. . .
...

...
. . .

. . . −1
−1 · · · −1 (J − 1)



















k1

...
kJ






.

Hence, we get J different solutions in [−π, π[J⊂ R
J , and a unique solution with

the additional condition α1 ∈
[

0, 2π
J

[

.

2.3. Estimation

Since we want to estimate the shifts without prior knowledge of the function
f , we will consider a semi-parametric method, relying on an M -estimation pro-
cedure. Hence, the functional parameter is a nuisance parameter that does not
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play a role in the rate of converge of the estimates of the parameters, regardless
of smoothness conditions for f .

For this, define, for any α = (α1, . . . , αJ) ∈ A, the rephased coefficients

c̃jl(α) = eilαj djl, j = 1, . . . , J, l = −(n − 1)/2, . . . , (n − 1)/2,

and the mean of these rephased Fourier coefficients

ĉl(α) =
1

J

J
∑

j=1

c̃jl(α), l = −(n − 1)/2, . . . , (n − 1)/2.

We have that c̃jl(α
∗) = cl(f) + eilα∗

j wjl, for all j ∈ {1, . . . , J}, and

ĉl(α
∗) = cl(f) +

1

J

J
∑

j=1

eilα∗

j wjl.

Hence, |c̃jl(α) − ĉl(α)|2 should be small when α is close to α∗.

Now, consider a bounded measure µ on [0, T ] and set

δl :=

∫

[0,T ]

exp

(

2iπl

T
ω

)

dµ(ω) (l ∈ Z).

Obviously, the sequence (δl) is bounded. Without loss of generality we will
assume that δ0 = 0. Assume further that

∑

l |δl|2|cl(f)|2 < +∞. So that f ∗ µ
is a well defined square integrable function:

f ∗ µ(x) =

∫

f(x − y)dµ(y).

Consider the following empirical contrast function:

Mn(α) =
1

J

J
∑

j=1

n−1

2
∑

l=− n−1

2

|δl|2 |c̃jl(α) − ĉl(α)|2 . (7)

In the sequel, we will always assume that:

The set {l : δlcl 6= 0} contains at least two integers which are coprime. (8)

The random function Mn is non negative. Furthermore, its minimum value
should be reached close to the true parameter α∗.Then, the following theorem
provides the consistency of the M -estimator, defined by

α̂n = arg min
α∈A

Mn(α).
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Theorem 2.1 Under the following assumptions on f and on the weight se-
quence (δl)l∈Z

:














∑

l∈Z

|δl|2|cl(f)|2 < +∞,

∑

l∈Z

|δl|4|cl(f)|2 < +∞
(9)

we have that α̂n
Pα∗−−−−−→

n→+∞
α∗.

We point out that we only assume that f∗µ and f∗µ∗µ are square integrable and
yet are able to build estimates of the shifts in the model (4). The computation
of the estimator is quick since only a Fast Fourier Transform algorithm and a
minimization algorithm of a quadratic functional are needed.

Proof 2.2 (Proof of Theorem 2.1) The proof of this theorem follows the clas-
sical guidelines of the convergence of M -estimators (see for example [19]). In-
deed, the contrast is split into two parts, a determinist and a random one. Then,
it suffices to show that the following conditions hold for the criterion function
to ensure consistency of α̂n.

i) Convergence to a contrast function:

Mn(α)
Pα∗−−−−−→

n→+∞
K(α), α ∈ A, (10)

where K(·) has a unique minimum at α∗.
ii) Set the modulus of uniformly continuity W , defined by

W (n, η) = sup
‖α−β‖≤η

|Mn(α) − Mn(β)| .

There exists two sequences (ηk)k∈N
and (ǫk)k∈N

, decreasing to zero, such
that for a large enough k, we have

lim
n→+∞

Pα∗ (W (n, ηk) > ǫk) = 0. (11)

These two conditions are fulfilled, as it is proved in Section 6. Notice that we
chose to privilege the uniform convergence of the modulus of continuity of the
contrast and not the uniform convergence of the criterion itself. Nevertheless, the
two proofs use the same kind of arguments, i.e proving the uniform convergence
of empirical processes of Gaussian variables.

3. Asymptotic normality

In this section, we prove that the estimator built in the previous section is
asymptotically Gaussian, and we give its asymptotic covariance matrix. In gen-
eral, the asymptotic covariance matrix hardly depends on the geometric struc-
ture of the parameter space A. So, for sake of simplicity, we study the asymptotic
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normality for the parameter space A1. Hence, the parameter space has dimen-
sion J −1, and we rewrite this set as Ã1 = [−π, π[J−1 and, any element in Ã1 as
α = (α2, . . . , αJ). Also, for sake of simplicity, in this section and in the proofs of
Theorem 3.1, we will write Mn(α) instead of Mn(0, α2, . . . , αJ). So, we consider
any estimator defined by

α̂n = arg min
α∈Ã1

Mn(α).

Theorem 3.1 Under the following assumptions (δl)l∈Z
:







































0 <
∑

l∈Z

|δl|2l2|cl(f)|2 < ∞
∑

l∈Z

|δl|2l4|cl(f)|2 < ∞

n
∑

l=−n

|δl|4l4 = o(n2),

(12)

we get that √
n(α̂n − α∗)

D−−−−−→
n→+∞

NJ−1(0, Γ), (13)

with

Γ =

∑

l∈Z
|δl|4l2|cl(f)|2

(∑

l∈Z
|δl|2l2|cl(f)|2

)2
(IJ−1 + UJ−1) ,

where, IJ−1 is the identity matrix of dimension J − 1, and UJ−1 is the square
matrix of dimension J − 1 whose all entries are equal to one.

Remark 3.2 If the white noise in the model (3) has a variance equal to σ2,
then the limit distribution in the previous theorem has a covariance matrix equal
to σ2Γ.

Proof 3.3 (Proof of Theorem 3.1) Recall that the M -estimator is defined
as the minimum of the criterion function Mn(α). Hence, we get

∇Mn(α̂n) = 0,

where ∇ is the gradient operator. A second order decomposition leads to: there
exists ᾱn in a neighborhood of α∗ such that

√
n (α̂n − α∗) = −

[

∇2Mn (ᾱn)
]−1 √

n∇Mn (α∗) , (14)

where ∇2 is the Hessian operator. Now, using the two asymptotic results from
Proposition 5.1 and from Proposition 5.2, we get

√
n∇Mn(α∗)

D−−−−−→
n→+∞

NJ−1(0, Γ0),

[

∇2Mn (ᾱn)
]−1 Pα∗−−−−−→

n→+∞
V,
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where V is a non negative symmetric matrix of dimension J − 1. Hence, if we
set Γ = V ′Γ0V , the result of Theorem 3.1 follows easily. Finally, we see that
∑n

l=−n |δl|4l4 = o(n2) implies that
∑n

l=−n |δl|4l2 = o(n). Indeed, 1
n2

∑n
l=−n |δl|4l4 ≥

n2|δn|4 + n2|δ−n|4, so lim|n|→+∞ |δn|2|n| = 0. Hence 1
n

∑n
l=−n |δl|4l2 = o(1).

Moreover
∑

l |δl|2l4|cl(f)|2 < +∞ implies Assumption (19). So that, the set of
assumptions (12) implies the ones of both Propositions 5.2 and 5.1.

Observe that the extra terms (δl)l∈Z
used in the definition (7) smooth the cri-

terion function Mn(α). Indeed, without this term, i.e under the choice δl = 1,
the random part of the derivative of the criterion function does not converge
towards a determinist function but to a random process, which prevents the
study of the asymptotic distribution. The weights enable to get rid of this part,
smoothing the contrast to zero.

Moreover, the convergence of the criterion is speeded up by using these
smoothing weights. We illustrate this purpose on Section 4 by comparing a
weighted criterion with a non weighted one (see Figure 3). Moreover, this result
will be highlighted in the proof of Theorem 3.1.

Practical choice of the δl’s

The problem of choosing the weights (δl)l∈Z
in the definition of the criterion

function is important. If we work with L2 functions, the assumption (12) is
satisfied for example as soon as |δl| = O

(

|l|−2−ν
)

, for some ν > 0. In the sim-
ulations our functions are much more regular. Hence, we have taken δl = 1/|l|1.3.
This choice guarantees consistency and good numerical results. Moreover, in or-
der to illustrate the importance of the weight sequence, we have also taken
δl ≡ 1 and δl = 1/|l|2 in Figure 3. Indeed, when looking at the asymptotic vari-
ance, we can see that there is a trade-off which leads to a lower bound for the
smoothing sequence, the smaller the weights, the larger the variance. Since the
function f is unknown and so the sequence does not depend on the Fourier coef-
ficients, hence the optimal choice for (δl)l∈Z

should be given by semi-parametric
efficiency. Using Cauchy-Schwarz’s inequality, we get that

∑

l∈Z
|δl|4l2|cl(f)|2

(
∑

l∈Z
|δl|2l2|cl(f)|2

)2 ≥
(

∑

l∈Z

l2|cl(f)|2
)−1

.

This case, corresponding to the least favorable case in the semi-parametric effi-
ciency framework, is obtained for the optimal choice of coefficients δl = 1. If an
asymptotic fluctuation results would hold for this sequence, we would obtain:

√
n

√

∑

l∈Z

l2|cl(f)|2 (α̂n − α∗)
D−−−−−→

n→+∞
NJ−1 (0, IJ−1 + UJ−1) .

Nevertheless, for the choice of the weight sequence δl = 1 the asymptotic nor-
mality result does not hold. Non optimality as regards asymptotic efficiency
is the price to pay both to deal with a discretized version of the regression
model and to handle simultaneous estimation for all the unknown functions.
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Maybe, a different way of estimation could get rid of this drawback. Yet, an-
other choice could have been done to smooth the contrast by restricting the
number of Fourier coefficients, as it is done in [7] for example. Some links could
also be established between the estimator we consider and a Bayesian penalized
maximum likelihood estimator, where the weights (δl)l∈Z

stand for a particular
choice of a prior over the unknown function f . This Bayesian point of view is
tackled in [3]. However, the optimal choice of the smoothing parameter to ob-
tain efficiency is a very interesting issue in the semi-parametric framework (i.e
when the weights are not allowed to depend on the Fourier coefficients of the
functions). Quite posterior to the first submission of this work, this problem has
been solved in a [20].

Remark 3.4 Throughout all the work, we assume that the observation noise
in the model (3) is Gaussian. Nevertheless, we could get rid of this assumption
with moment conditions on the errors.

4. Applications and simulations

In this section, we present some numerical applications of the method. The first
one gives results on simulated data. The second one is based on an experiment
on human fingers force. The last one is carried out with traffic data.

The optimization algorithm used in any resolution is based on a Krylov
method (the conjugate gradient method). Indeed, minimizing an L2 criterion
function with a conjugate gradient algorithm yields a reduced step number, and
hence, a small complexity.

Simulated data

Simulated data are carried out as follows:

yij = f(ti − θ∗j ) + εij, j = 1, . . . , J, i = 1, . . . , n,

with the following choice of parameters: J = 10; n = 100; values ti = −π +
i−1
n

2π, i = 1, . . . , n, are equally spaced points on [−π, π[; f(t) = 15 sin(4t)/(4t);
(θ∗2 , . . . , θ∗J) are simulated with a uniform law on [−π/4, π/4] and θ∗1 = 0; for all
j ∈ {1, . . . , J}, for all i ∈ {1, . . . , n}, values εij are simulated from a Gaussian
law with mean 0 and standard deviation 1. Results are given on Figure 1. The
target function f is considered as a 2π-periodic function (T = 2π), hence α∗ =
θ∗. The function f is plotted by a solid line in Figure 1 (d). Figure 1 (a) shows
simulated data yij , j = 1, . . . , J , i = 1, . . . , n. The cross-sectional mean curve
of these data is given on Figure 1 (d) by the dotted line. We can see that this
mean function is representativeness of data. Indeed, the amplitude of higher
optimum is reduced, and smallest ones disappeared. Figure 1 (c) shows curves
unshifted by the estimated parameters. The mean function of these unshifted
curves is given on Figure 1 (d) by dashed line. Figure 1 (b) plots θ∗j on abscissa

axis against θ̂j on ordinate axis, j = 1, . . . , J . Estimations are very close to
true parameters. Comparison between mean curves, before and after the shift
estimation, is straightforward.
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Figure 1. Estimation results with the M -estimation methodology.

We now compare our estimations with those obtained with an existing method:
curve registration by landmarks. This method aims at aligning curves by, first,
estimating landmarks of curves (here, the maximum) and by, secondly, align-
ing these landmarks. For more details on this procedure, see [5]. In Figure 2,
we show the results on our simulated data. These results are not as good as
those we obtain with our method. It can be explained by the fact that we need
first to estimate each curve maximum by a non parametric method (a kernel
estimation), which leads to estimation errors. Moreover, our method uses all
information given by the data, not only that given by landmarks.

In order to illustrate the importance of the weight sequence, we compare now
the criterion function for various values of (δl)l∈Z

. For this purpose, simulated
data sets are carried out, with J = 2, θ∗1 = 0 and θ∗2 = π/3. Figure 3 shows
the obtained results. The first column of this figure presents these simulated
data sets, with respectively, σ = 1 in Figure 3 (a,1), σ = 3 in Figure 3 (a,2),
σ = 5 in Figure 3 (a,3) and σ = 7 in Figure 3 (a,4). The second column presents
the unweighted criterion functions, i.e with δl ≡ 1, associated respectively with
(a,1), (a,2), (a,3) and (a,4). The third and fourth columns present the associated
weighted criterion functions Mn(·) with, respectively, δl = 1/|l|1.3 and δl =
1/|l|2. In all these figures, the vertical dashed line represents the value π/3 where
the minimum value of our criterion function is achieved. It clearly appears that
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Figure 2. Estimation results with the landmark methodology.

without the weight sequence, i.e with δl ≡ 1, the criterion function converges to a
random process. Moreover, the variance of this random process is proportional to
the noise variance σ2. We also see that even with an important noise variance, as
in Figure 3 (a,4), our weighted criterion functions, (c,4) and (d,4), are smooth,
with a unique minimum around π/3. This shows that our procedure is quite
robust to the SNR. Moreover, it appears that the impact of the exponent β >
1.25 of the weight sequence δl = 1/|l|β is only on the amplitude of the M -
function.

These numerical results emphasize the fact that the weight sequence (δl)l∈Z

is important, but that its value can be easily chosen.

Pinch force data

Data presented here are extracted from an experiment described in [16] with
a Curve Registration methodology. Data represent the force exerted by the
thumb and forefinger on a force meter during 20 brief pinches. These 20 force
measurements having arbitrary beginning, Ramsay and Li in [16] begin their
study by a landmark alignment of curve maxima (with single shifts). These
aligned data are shown in Figure 4 (a).

Our purpose is to study these data with our shift estimation methodology.
Shift estimations and unshifted curves are respectively shown in Figure 4 (b) and
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Figure 3. Criterion functions, with different values of the weight sequence (δl)l∈Z
.

Figure 4 (c). In Figure 4 (b), we only show a boxplot of the estimated parameters
because, obviously, we do not know the real parameters. We note that shift
parameters are almost all close to zero, between −10−3 and 3 × 10−3. In this
case, landmark alignment unshift quite well the data. Nevertheless, comparing
Figure 4 (a) and Figure 4 (c), we can see that curves are slightly better aligned
after our shift estimation methodology. In Figure 4 (d), the cross-sectional mean
curves of unshifted curves (solid line) and of primary curves (dotted line) are
almost the same ones.

Application to road traffic forecasting

Most of the Parisian road traffic network is equipped with a traffic road mea-
surement infrastructure. The main elements of this infrastructure are counting
stations. These sensors are situated approximately every 500 meters on main
trunk roads (motorways and speedways principally). Every counting station
measures, daily, the average speed of vehicle flow on 6 minutes periods. We
consider measurements from 5 AM to 11 PM, hence, the length of the daily
measurement is 180. We note yij the speed measurement of day j ∈ {1, . . . , J}
and of period i ∈ {1, . . . , n}, with n = 180.

Our purpose is to improve, with our shift estimation methodology, an existing
forecasting methodology. This forecasting methodology is described in [14]. This
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Figure 4. Shift estimation results on the pinch force data set.

procedure is based on a classification method. We dispose of a sample of J speed
curves and we want to summarize it by a small number N of standard profiles,
representatives of each cluster.

Consider several clusters of J speed curves. Indeed, we note frequently that
many subgroups are composed by curves describing the same behavior. For
example, we observe a speed curve subgroup with a same traffic jam or speed
reduction, but with different starting times for each curve. Thus, Figure 5 (a)
represent a particular cluster on a particular counting station. Figure 5 (b) is a

boxplot of the estimated shifts θ̂j , j = 1, . . . , J . Unshifted curves are plotted on
Figure 5 (c). So, in this homogeneous cluster, where only a shift phenomenon
appear, the mean curves in Figure 5 (d) of unshifted curves (solid line) and
of primary curves (dotted line) aren’t the same. The shift estimated mean is
clearly more representative of individual pattern.

5. Technical Lemmas

The two following propositions, Proposition 5.1 and Proposition 5.2, are used in
the proof of asymptotic normality (Theorem 3.1). Their proofs are postponed
to the appendix.
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Figure 5. Shift estimation results on a particular traffic data set.

Proposition 5.1 Assume that the δl’s are such that

∑

l∈Z

l2|δl|4|cl(f)|2 < +∞ (15)

∑

l∈Z

l2|δl|4 = o(n) (16)

Then √
n∇Mn(α∗)

D−−−−−→
n→+∞

NJ−1(0, Γ), (17)

where the variance matrix is Γ = 4
J2

∑

l∈Z
|δl|4l2|cl(f)|2

(

IJ−1 − 1
J
UJ−1

)

.

Proposition 5.2 Assume moreover that the sequence δl satisfies

∑

l∈Z

l2|δl|2|cl(f)|2 < +∞ (18)

∑

l∈Z

l4|δl|4|cl(f)|2 < +∞ (19)

∑

l∈Z

l4|δl|4 = o(n2) (20)
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Then, for any sequence (ᾱn)n∈N
such that ‖ᾱn −α∗‖ ≤ ‖α̂n −α∗‖ (n ∈ N ), we

have

∇2Mn (ᾱn)
Pα∗−−−−−→

n→+∞
2

J2

∑

l∈Z

|δl|2l2|cl(f)|2 (JIJ−1 − UJ−1) . (21)

6. Appendix

Let z be a complex number and z̄ its conjugate. We write Re(z) = 1
2
(z + z̄) (the

real part of z) and Im(z) = 1
2i

(z − z̄) (the imaginary part of z).

Proof 6.1 (Proof of Theorem 2.1) In the sequel we assume without loss of
generality that all the α∗

j are equal to 0. Consider the following notation: for all

j = 1, . . . , J , for all l = −(n−1)/2, . . . , (n−1)/2, wjl = 1√
n
ξjl = 1√

n

(

ξx
jl + iξy

jl

)

.

Here,
(

ξx
jl

)

and
(

ξy
jl

)

are independent Gaussian sequences, with law Nn(0, In).

Also, set

∀l = −(n − 1)/2, . . . , (n− 1)/2, cl(f) = |cl(f)|eiθl , with θl ∈ [0, 2π[.

Note that

Mn(α) =
∑

l∈Z

δ2
l





1

J

J
∑

j=1

|c̃jl(α)|2 − |ĉl(α)|2


 .

Using the following decompositions

|c̃jl(α) = |cl(f)|2 + |wjl|2 + 2Re[cl(f)w̄jl],

|ĉl(α)|2 =

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

eilαj cl(f)

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

eilαj wjl

∣

∣

∣

∣

∣

∣

2

+ 2Re









1

J

J
∑

j=1

eilαj cl(f)





(

1

J

J
∑

k=1

e−ilαk w̄kl

)



 ,

lead to the following expression of the criterion function Mn(α)

Mn(α) =

n−1

2
∑

l=− n−1

2

|δl|2|cl(f)|2 −
n−1

2
∑

l=− n−1

2

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

eil(αj)δlcl(f)

∣

∣

∣

∣

∣

∣

2

(22)

+
J − 1

J2

J
∑

j=1

1

n

n−1

2
∑

l=− n−1

2

|δl|2
(

ξx
jl

2 + ξy
jl

2
)

(23)

− 2

J2

J
∑

j=1

∑

k>j

1

n

n−1

2
∑

l=− n−1

2

|δl|2
[

cos(l(αj − αk))(ξx
jlξ

x
kl + ξy

jlξ
y
kl)

+ sin(l(αj − αk))(ξx
jlξ

y
kl − ξy

jlξ
x
kl)
]

(24)
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+
2(J − 1)

J2

J
∑

j=1

1√
n

n−1

2
∑

l=− n−1

2

|δl|2|cl(f)|
[

cos(θl)ξ
x
jl + sin(θl)ξ

y
jl

]

− 2

J2

J
∑

j=1

∑

k 6=j

1√
n

n−1

2
∑

l=− n−1

2

|δl|2|cl(f)| [cos(l(αj − αk) + θl)ξ
x
kl

+sin(l(αj − αk) + θl)ξ
y
kl] . (25)

We have split the criterion function into four different terms: (22), (23), (24),
and (25). We aim at proving the convergence of these terms to a determinist
contrast function and the uniform convergence of their increments.

• The term (22) is a deterministic one. Using Parseval theorem, we have
that

(22) −−−−−→
n→+∞

∫ T

0

|(f ∗ µ)(t)|2 dt

T
−
∫ T

0

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

(f ∗ µ)(t + θj − θ∗j )

∣

∣

∣

∣

∣

∣

2

dt

T
.

• The term (23) is a pure noise term composed of terms of the type
1
n

∑

n−1

2

l=− n−1

2

|δl|2ξx
jl

2. Since ξjl, l ∈ In are independent, by the SLLN we

get

1

n

n−1

2
∑

l=− n−1

2

|δ2
l |ξx

jl
2 Pα∗−−−−−→

n→+∞
Λ(δ) < +∞,

for a constant Λ(δ) which only depends on the choice of the smoothing
sequence and not on the unknown parameter α. This constant is bounded
since the weights are bounded. Note that if µ has a density lying in L

2,
this constant vanishes since 1/n

∑

l∈Z
|δl|2 → 0.

• The first term in (24) is also a pure noise term composed of terms of the
type

Un(αj − αk) =
1

n

n−1

2
∑

l=− n−1

2

|δl|2 cos(l(αj − αk))ξx
jlξ

y
kl, k 6= j.

One has E(Un) = 0 and E(exp(t
∑

n−1

2

l=− n−1

2

δ2
l |ξx

jlξ
y
kl|)) < +∞. Thus for

a, b > 0 a Bernstein type inequality holds giving

Pα∗

(

sup
αj−αk∈[−2π,2π]∩Z/n2

|Un(αj − αk)| > x

)

≤ O

(

n2 exp(−1

2

n2x2

a + bnx
)

)

.

Choosing xn =
√

8b log(n)/n, we get both

xn → 0 and Pα∗( sup
αj−αk∈[−2π,2π]∩Z/n2

|Un(αj − αk)| > xn) → 0.
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For |h| ≤ 1/n2 the inequality | cos lh − 1| ≤ 1/n leads to

|Un(αj − αk + h) − Un(αj − αk)| ≤ 1

n2

n−1

2
∑

l=− n−1

2

|δl|2ξx
jlξ

y
kl

≤ 1

n





1

n

n−1

2
∑

l=− n−1

2

ξx
jl

2





1

2




1

n

n−1

2
∑

l=− n−1

2

|δl|2ξx
kl

2





1

2

→ 0,

so that
sup

αj−αk∈[−2π,2π]

|Un(αj − αk)| Pα∗−−−−−→
n→+∞

0.

Hence the first term in (24) goes to 0 in probability.
• The remaining term in (24) is similar to the term (25), which has the

same asymptotic behavior as

Vn(αj − αk) =
1√
n

n−1

2
∑

l=− n−1

2

|δl|2|cl(f)| cos(l(αj − α∗
j − αk) + θl)ξ

x
kl.

Here we only give the proof of the uniform convergence of (25) which
holds under slight modifications of the second term of (24). As the noise
is Gaussian we get



















E(Vn(αj − αk)) = 0

VarVn(αj − αk) ≤ 2

n

n−1

2
∑

l=− n−1

2

|δl|4|cl(f)|2 ≤ 2

n

+∞
∑

l=−∞
|δl|4|cl(f)|2

so that

Pα∗



 sup
αj−αk∈[−2π,2π]

|Vn(αj − αk)| ≥

√

16 logn
∑+∞

l=−∞ |δl|2|cl(f)|2
n





≤ Kn2 exp(−4 log n).

Using again previous bound for h ≤ 1/n2, we obtain

|Vn(αj − αk + h) − Vn(αj − αk)| ≤ 1

n
√

n

n−1

2
∑

l=− n−1

2

|δl||cl(f)|ξx
kl

≤ 1

n

(

+∞
∑

l=−∞
|δl|2|cl(f)|2

) 1

2

(

1

n

+∞
∑

l=−∞
ξx
kl

2

)1

2

→ 0
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so that
sup

αj−αk∈[−2π,2π]
|Vn(αj − αk)| Pα∗−−−−−→

n→+∞
0.

In conclusion, we have that supα∈[−π,π]J |Mn(α)−K(α)−| Pα∗−−−−−→
n→+∞

0 with

K(α) =

∫ T

0

|(f ∗ µ)(t)|2 dt

T
−
∫ T

0

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

(f ∗ µ)
(

t + θj − θ∗j
)

∣

∣

∣

∣

∣

∣

2

dt

T
+ Λ(δ).

This ensures that (11) is fulfilled and that the convergence property in (10)
is ensured. It remains to be seen that the asymptotic contrast enables to
identify the αj’s, which concludes the proof of Condition (10). Cauchy-
Schwartz inequality yields that

∫ T

0

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

(f ∗ µ)(t + θj − θ∗j )

∣

∣

∣

∣

∣

∣

2

dt

T

≤
∫ T

0

1

J

J
∑

j=1

∣

∣(f ∗ µ)(t + θj − θ∗j )
∣

∣

2 dt

T
=

∫ T

0

|(f ∗ µ)(t)|2 dt

T
,

hence, K(·) ≥ 0, and the minimum value is reached for

∫ T

0

|(f ∗ µ)(t)|2 dt

T
=

∫ T

0

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

(f ∗ µ)(t + θj − θ∗j )

∣

∣

∣

∣

∣

∣

2

dt

T
,

which is equivalent, using Parseval theorem to

∑

l∈Z

|δlcl(f)|2 =
∑

l∈Z

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

δlcl(f)eil(αj−α∗

j )

∣

∣

∣

∣

∣

∣

2

. (26)

So, we have that

(26) ⇐⇒ ∀l ∈ {l : clδl 6= 0},

∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

eil(αj−α∗

j)

∣

∣

∣

∣

∣

∣

2

= 1.

Now, from (8) this implies that

∀j = 1, . . . , J, αj = α∗
j + c [2π], c ∈ R.

In a matrix way, we get the equation (5), i.e







α1

...
αJ






=







α∗
1
...

α∗
J






+ c







1
...
1






+ 2π







k1

...
kJ






, c ∈ R,







k1

...
kJ






∈ Z

J .
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Hence, since α ∈ A and A is defined by (6), we have shown that αj = α∗
j

for all j = 1, . . . , J . Since α 7→ K(α) achieves its unique minimum for
α = α∗, the condition (10) is fulfilled.

Proof 6.2 (Proof of Proposition 5.1) The first and the second derivatives
of the empirical contrast, for all k ∈ {2, . . . , J}, for all m ∈ {2, . . . , J} can be
written as:

∂Mn

∂αk
(α) =

2

J

n−1

2
∑

l=− n−1

2

|δl|2lIm

(

c̃kl(α)ĉl(α)
)

, (27)

∂2Mn

∂α2
k

(α) =
2

J2

n−1

2
∑

l=− n−1

2

|δl|2l2Re



c̃kl(α)
∑

j 6=k

c̃jl(α)



 , (28)

∀m 6= k,
∂2Mn

∂αk∂αm
(α) = − 2

J2

n−1

2
∑

l=− n−1

2

|δl|2l2Re

(

c̃kl(α)c̃ml(α)
)

. (29)

By straightforward calculations, we get that

√
n

∂Mn

∂αk
(α∗) =

2

J

n−1

2
∑

l=− n−1

2

|δl|2l
(

|cl(f)|
(

V k
l − Vl

)

+ W k
l

)

,

where, for all l ∈ Z,

W k
l =

1

J
√

n

J
∑

j=1

[

sin(l(α∗
k − α∗

j ))(ξ
x
klξ

x
jl + ξy

klξ
y
jl)

+ cos(l(α∗
k − α∗

j))(ξ
y
klξ

x
jl − ξx

klξ
y
jl)
]

,

V k
l =(cos(lα∗

k + θl)ξ
x
kl − sin(lα∗

k + θl)ξ
y
kl) , and Vl =

1

J

J
∑

j=1

V j
l .

Let, for l ∈ Z, Yl = (ξx
1l ξx

2l · · · ξx
Jl ξy

1l ξy
2l · · ·ξy

Jl)
′
, and, let fk

l be the vector of
length 2J , defined by

(

fk
l

)

k
= cos (lα∗

k + θl) ,
(

fk
l

)

J+k
= − sin (lα∗

k + θl) , and
(

fk
l

)

i
= 0 if i /∈ {k, J+k}. As a consequence, we get the following expression for

V k
l : V k

l =
〈

fk
l , Yl

〉

= fk
l

′
Yl. In a same way, for l ∈ Z, let B̄k

l be the (2J)× (2J)
matrix defined by rows by
(

B̄k
l

)

k
=(sin[l(α∗

k − α∗
1)] · · · sin[l(α∗

k − α∗
J)] − cos[l(α∗

k − α∗
1)] · · ·

− cos[l(α∗
k − α∗

J)]) ,
(

B̄k
l

)

J+k
=(cos[l(α∗

k − α∗
1)] · · ·cos[l(α∗

k − α∗
J)] sin[l(α∗

k − α∗
1)] · · · sin[l(α∗

k − α∗
J)]) ,

(

B̄k
l

)

i
=(0 · · ·0) if i /∈ {k, J + k}.



F. Gamboa et al. / Semi-parametric estimation of shifts 636

Further, let the symmetric matrix Bk
l be defined by Bk

l =
B̄k

l +(B̄k
l )

′

2 . Hence,

write W k
l = 1

J
√

n
Yl

′Bk
l Yl. Define also for k = 2, . . . , J B̃k

l = 2
J Bk

l , f̃k
l = 2

J fk
l .

Our aim is to study the asymptotic distribution of the gradient
√

n∇Mn(α∗).
For this purpose consider u = (u2, . . . , uJ)

′ ∈ R
J−1 and t = (t2, . . . , tJ)

′ ∈ R
J−1,

and define the couple of random variables:

(Rn, Sn) =





2

J

J
∑

k=2

uk

n−1

2
∑

l=− n−1

2

|δl|2l|cl(f)|(V k
l − Vl),

2

J

J
∑

k=2

tk

n−1

2
∑

l=− n−1

2

|δl|2lW k
l



 .

Using previous notations, we get

Rn =

n−1

2
∑

l=− n−1

2

|δl|2l|cl(f)| 〈gl(u), Yl〉 , with gl(u) =

J
∑

k=2

uk



f̃k
l − 1

J

J
∑

j=1

f̃j
l



 ,

Sn =
1

J
√

n

n−1

2
∑

l=− n−1

2

|δl|2lYl
′Al(t)Yl, with Al(t) =

J
∑

k=2

tkB̃k
l .

First note that E(Sn) = 0. Moreover Assumption (16) implies that

VarSn ≤ 1

n

∑

l∈Z∗

|δl|4|l|2 → 0.

Hence, Sn
Pα∗−−−−−→

n→+∞
0. So, the quadratic part is vanishing in probability when n

increases.
For the last term, we have that 〈gl(u), Yl〉 ∼ N

(

0, ‖gl(u)‖2
2

)

, where ‖gl(u)‖2
2 =

4
J2 u′ (IJ−1 − 1

J
UJ−1

)

u, with, IJ−1 the J − 1 identity matrix, and UJ−1 the
J − 1 × J − 1 matrix which all entries are equal to 1. The independence of the
Yl’s yields that under Assumption (15)

Rn
D−−−−−→

n→+∞
N
(

0,
4

J2

∑

l∈Z

|δl|4l2|cl(f)|2u′
(

IJ−1 −
1

J
UJ−1

)

u

)

.

Finally we get that

√
n∇Mn(α∗)

D−−−−−→
n→+∞

NJ−1

(

0,
4

J2

∑

l∈Z

|δl|4l2|cl(f)|2
(

IJ−1 −
1

J
UJ−1

)

)

.

Proof 6.3 (Proof of Proposition 5.2) First, we pay attention to the non di-
agonal terms of the matrix of the second derivatives. For m 6= k, we get after
some calculations:
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−J2

2

∂2Mn

∂αk∂αm
(α) =

n−1

2
∑

l=− n−1

2

|δl|2l2Re

(

c̃kl(α)c̃ml(α)
)

=

n−1

2
∑

l=− n−1

2

|δl|2l2|cl(f)|2 cos (l[αk − α∗
k + α∗

m − αm]) (30)

+

n−1

2
∑

l=− n−1

2

|δl|2l2|cl(f)| (cos[l(αk − α∗
k − αm) + θl]w

x
ml

+sin[l(αk − α∗
k − αm) + θl]w

y
ml) (31)

+

n−1

2
∑

l=− n−1

2

|δl|2l2|cl(f)| (cos[l(αm − α∗
m − αk) + θl]w

x
kl

+sin[l(αm − α∗
m − αk) + θl]w

y
kl) (32)

+

n−1

2
∑

l=− n−1

2

|δl|2l2 [cos(l[αk − αm])(wx
klw

x
ml + wy

klw
y
ml)

− sin(l[αk − αm])(wy
klw

x
ml − wx

klw
y
ml)] . (33)

We now study the asymptotic behaviour of each term separately. Indeed, the
second derivatives are taken at a point ᾱn which converges to α∗: ᾱn is in the
neighborhood of α∗ with radius ‖α∗ − α̂n‖. Hence, we need conditions to claim
uniform convergence of ∇2Mn(·).

First note that the deterministic term
∑(n−1)/2

l=−(n−1)/2 |δl|2l2|cl(f)|2 cos(l[ᾱk −
α∗

k+α∗
m−ᾱm]) converges towards

∑

l |δl|2l2|cl(f)|2 as soon as
∑

l |δl|2l4|cl(f)|2 <
+∞, as assumed in (12).

Now consider the random terms. Since for all k ∈ {1, . . . , J}, the random
variables wx

kl and wy
kl follow a Gaussian law N (0, 1/n), we consider the inde-

pendent variables ξx
kl and ξy

kl such that wx
kl = 1√

n
ξx
kl and wy

kl = 1√
n
ξy
kl. For the

two second terms (31) and (32), we write

(31) =
1√
n

∑

|δl|2l2|cl(f)| (cos[l(αk − α∗
k − αm) + θl]ξ

x
ml

+sin[l(αk − α∗
k − αm) + θl]ξ

y
ml) ,

(32) =
1√
n

∑

|δl|2l2|cl(f)| (cos[l(αm − α∗
m − αk) + θl]ξ

x
kl

+sin[l(αm − α∗
m − αk) + θl ]ξ

y
kl) ,

whose asymptotic behaviours are of the same nature. As in the proof of Proposi-

tion 5.1, Condition (19) leads to supα∈Ã1
(31)

Pα∗−−−−−→
n→+∞

0, and supα∈Ã1
(32)

Pα∗−−−−−→
n→+∞

0. Further, Assumption (20) implies that (33) converges in probability uniformly
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to 0. The diagonal terms can be written as follows:

J2

2

∂2Mn

∂α2
k

(α) =

n−1

2
∑

l=− n−1

2

|δl|2l2Re



c̃kl

∑

j 6=k

c̃jl





=

n−1

2
∑

l=− n−1

2

|δl|2l2|cl(f)|2
∑

j 6=k

cos
(

l[αk − α∗
k + α∗

j − αj]
)

(34)

+

n−1

2
∑

l=− n−1

2

|δl|2l2|cl(f)|
∑

j 6=k

(

cos[l(αk − α∗
k − αj) + θl]w

x
jl

+sin [l(αk − α∗
k − αj) + θl]w

y
jl

)

(35)

+

n−1

2
∑

l=− n−1

2

|δl|2l2|cl(f)|
∑

j 6=k

(

cos[l(αj − α∗
j − αk) + θl]w

x
kl

+sin
[

l(αj − α∗
j − αk) + θl

]

wy
kl

)

(36)

+

n−1

2
∑

l=− n−1

2

|δl|2l2
∑

j 6=k

[

cos(l[αk − αj])(w
x
klw

x
jl + wy

klw
y
jl)

− sin(l[αk − αj])(w
y
klw

x
jl − wx

klw
y
jl)
]

. (37)

Using similar arguments as for the previous terms, we can see that, under the
same assumptions we get that all the terms (34), (35), (36) and (37) converges
uniformly, and we get

∂2Mn

∂α2
k

(ᾱn)
Pα∗−−−−−→

n→+∞
2(J − 1)

J2

∑

l∈Z

|δl|2l2|cl(f)|2.

As a result, gathering the two previous results leads to the following asymp-
totic behavior:

∇2Mn(ᾱn)
Pα∗−−−−−→

n→+∞
2

J2

∑

l∈Z

|δl|2l2|cl(f)|2 (JIJ−1 − UJ−1) ,

which proves the result. Moreover, this matrix is invertible. As a result, we have
that

[

∇2Mn (ᾱn)
]−1 Pα∗−−−−−→

n→+∞
J

2
∑

l∈Z
|δl|2l2|cl(f)|2 (IJ−1 + UJ−1) .
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