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Abstract: We provide a new algorithm for the treatment of inverse prob-
lems which combines the traditional SVD inversion with an appropriate
thresholding technique in a well chosen new basis. Our goal is to devise
an inversion procedure which has the advantages of localization and mul-
tiscale analysis of wavelet representations without losing the stability and
computability of the SVD decompositions. To this end we utilize the con-
struction of localized frames (termed “needlets”) built upon the SVD bases.

‘We consider two different situations: the “wavelet” scenario, where the
needlets are assumed to behave similarly to true wavelets, and the “Jacobi-
type” scenario, where we assume that the properties of the frame truly
depend on the SVD basis at hand (hence on the operator). To illustrate
each situation, we apply the estimation algorithm respectively to the de-
convolution problem and to the Wicksell problem. In the latter case, where
the SVD basis is a Jacobi polynomial basis, we show that our scheme is
capable of achieving rates of convergence which are optimal in the Lo case,
we obtain interesting rates of convergence for other L, norms which are
new (to the best of our knowledge) in the literature, and we also give a
simulation study showing that the NEED-D estimator outperforms other
standard algorithms in almost all situations.
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1. Introduction

We consider the problem of recovering a function f from a blurred (by a linear
operator) and noisy version of f: Yz = K f + ¢W. It is important to note that,
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in general, for a problem like this there exists a basis which is fully adapted
to the problem, and as a consequence, the inversion remains stable; this is the
Singular Value Decomposition (SVD) basis. The SVD basis, however, might be
difficult to determine and handle numerically. Also, it might not be appropriate
for accurate description of the solution with a small number of parameters.
Furthermore, in many practical situations, the signal exhibits inhomogeneous
regularity, and its local features are particularly interesting to recover. In such
cases, other bases or frames (in particular, localized wavelet type bases) might
be much more appropriate to represent the object at hand.

Our goal is to devise an inversion procedure which has the advantages of
localization and multiscale analysis of wavelet representations without losing
the stability and computability of the SVD decompositions. To this end we
utilize the construction (due to Petrushev and his co-authors) of localized frames
(termed “needlets”) built upon particular bases - here the SVD bases. This
construction uses a Calderdn type decomposition combined with an appropriate
quadrature (cubature) formula. It has the big advantage of producing frames
which are close to wavelet bases in terms of dyadic properties and localization,
but because of their compatibility with the SVD bases provide stable and easily
computable schemes.

NEED-D is an algorithm combining the traditional SVD inversion with an
appropriate thresholding technique in a well chosen new basis. It enables one to
approximate the targeted functions with excellent rates of convergence for any
L, loss function, and over a wide range of Besov spaces.

Our main idea is by combining the thresholding algorithm with SVD-based
frames to create an effective and practically feasible algorithm for solving the
inverse problem described above. The properties of the localized frame to be
constructed depend on the underlying SVD basis. We will consider two different
behaviors, the first corresponds to a “wavelet” behavior in the sense that the
properties of the system are equivalent (as far as we are concerned) to the
properties of a true wavelet basis. This case typically arises in the deconvolution
setting. In the second case, the properties of the frame may differ from wavelet
bases and truly depend on the SVD basis at hand (hence on the operator K).
We will explore in detail a case typically arising when the SVD basis is a Jacobi
polynomial basis. It is illustrated by the Wicksell problem. We show that our
scheme is capable of achieving rates of convergence which are optimal in the Lo
case (to the best of our knowledge, for the Wicksell problem this is the only
case studied up to now). For other L, norms we obtain interesting rates of
convergence, which are new in the literature.

We also give a simulation study for the Wicksell problem which shows that the
NEED-D algorithm applied in combination with SVD based frames is valuable
since it outperforms other standard algorithms in almost all situations.

The paper is organized in the following way: the second section introduces
the model, the classical SVD methods, and the two basic examples considered
in this paper, i.e. the deconvolution and Wicksell problems. The third section
introduces the needlet construction, gives some basic properties of needlets and
introduces the NEED-D algorithm. The fourth section explores its properties in
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the wavelet scenario. The main motivation for the NEED-D algorithm is given
there after. The fifth section is devoted to the results in a Jacobi scenario. The
sixth section is devoted to simulation results. The proofs of the main results
from sections BHA are given in sections [HY respectively. The last section is
an appendix which contains the definition and basic properties of the Jacobi
needlets and the associated Besov spaces.

2. Inverse Models

Suppose H and K are two Hilbert spaces and let K : H — K be a linear
operator. The standard linear ill-posed inverse problem consists in recovering a
good approximation f. of the solution f of

g=Kf (1)

when only a perturbation Y; of g is observed. In this paper, we will consider the
case when this perturbation is an additive stochastic white noise. Namely, we
observe Y defined by the following identity:

YE:Kf+5W, (2)

where ¢ is the amplitude of the noise. It is supposed to be a small parameter
which tends to 0. The error will be measured in terms of this small parameter.
Here W is a K-white noise, i.e. for any g,h € K, &(g) :== (W,g)k, £(h) ==
(W, h)g form random Gaussian vectors (centered) with marginal variance | g|Z,
|h||%, and covariance (g, h)x (with the obvious extension when one considers k
functions instead of 2).

Equation () means that for any g € K, we observe Y:(g9) := (Yz,9)k =
(K £,9)x + <€(g), where £(g) ~ N(0,]lgl]?), and Yx(g), Yz(h) are independent
random variables for orthogonal functions g and h.

2.1. The SVD Method

Under the assumption that K is compact, there exist two orthonormal bases
(SVD bases) (ex) of H and (gx) of K, and a sequence (by), by — 0 as k — oo,
such that

K*Kek = biek, KK*gk = bigk, Kek = bkgk; K*gk = bkek

with K™ being the adjoint operator of K.
The Singular Value Decomposition (SVD) of K

Kf =2 bi{f ex)gn
k

gives rise to approximations of the type

N
fE = Zblzl<}/€agk>ek7
k=0
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where N = N(e) has to be properly selected. This SVD method is very attrac-
tive theoretically and can be shown to be asymptotically optimal in many situa-
tions (see Mathe and Pereverzev [23] together with their non linear counterparts
Cavalier and Tsybakov [], Cavalier et al |4], Tsybakov |33], Goldenschluger and
Pereverzev [1€], Efromovich and Koltchinskii [12]). It also has the big advan-
tage of performing a quick and stable inversion of the operator. However, it has
serious limitations: First, the SVD bases might be difficult to determine and
handle numerically. Secondly, while these bases are fully adapted to describe
the operator K, they might not be appropriate for accurate description of the
solution with a small number of coefficients. Also in many practical situations,
the signal has inhomogeneous regularitiy, and its local features are particularly
interesting to recover. In such cases, other bases (in particular, localized wavelet
type bases) are much more suitable for representation of the object at hand.

In the last ten years, various nonlinear methods have been developed, es-
pecially in the direct case with the objective of automatically adapting to the
unknown smoothness and local singular behavior of the solution. In the direct
case, one of the most attractive methods is probably wavelet thresholding, since
it allies numerical simplicity to asymptotic optimality on a large variety of func-
tional classes such as Besov or Sobolev spaces.

To apply this approach to inverse problems, Donoho [10] introduced a wavelet-
like decomposition, specifically adapted to the operator K (Wavelet-Vaguelette-
Decomposition) and utilized a thresholding algorithm to this decomposition. In
Abramovich and Silverman [1], this method was compared with the similar
vaguelette-wavelet decomposition. Other wavelet schemes should be mentioned
here, such as the ones from Antoniadis and Bigot |3], Antoniadis & al [4], Dicken
and Maass [9], and especially for the deconvolution problem, Penski & Vidakovic
[29], Fan & Koo [13], Kalifa & Mallat [19], Neelamani & al [27]. Later on Co-
hen et al [4] introduced an algorithm combining a Galerkin inversion with a
thresholding algorithm.

The approach developed here was greatly influenced by these works.

2.1.1. Deconvolution

The deconvolution problem is probably one of the most famous inverse problems,
giving rise to a great deal of investigations, specially in signal processing, and
has an extensive bibliography. In the deconvolution problem, we consider the
following operator: Let in this case H = K be the set of square integrable periodic
functions, with the standard Ly [0, 1] norm, and consider

1
fe H— Kf:/ow(u—t)f(t)thH, (3)

where v is a known function in H. It is generally assumed to be a regular
function. A standard example is the box-car function which plays an important
role in extending this model to image processing and especially to analysis of
sequences of images.
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In this case simple calculations show that the SVD bases e; and g both
coincide with the Fourier basis. The singular values correspond to the Fourier
coeflicients of the function ~:

b = k- (4)

2.1.2. Wicksell’s problem

Another typical example is the following classical Wicksell’s problem [34]. Sup-
pose a population of spheres is embedded in a medium. The spheres have radii
that may be assumed to be drawn independently from a density f. A random
plane slice is taken through the medium and those spheres that are intersected
by the plane furnish circles which radii are the points of observation Y7,...,Y,.
The unfolding problem is then to determine the density of the sphere radii from
the observed circle radii. This problem also arises in medicine, where the spheres
might be tumors in an animal’s liver (see Nyshka et al [2d]), as well as in nu-
merous other contexts (biological, engineering, etc.) see for instance Cruz-Orive

]

The difficulty of estimating the target function is well illustrated by figure [
The Wicksell operator has a smoothing effect, thus the local variations of the
target function become almost invisible in the case of observations corrupted
by noise. (Also compare the blurred and noised observations in figure @ to the
target functions of figure @)
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Fic 1. Heavisine function, its image by the Wicksell operator without and with gaussian noise
with rsnr =5

Following Wicksell [34] and Johnstone and Silverman [1§], the Wicksell’s
problem corresponds to the following operator:

H = Lg([o, 1], d,u), dﬂ(l') — (455)7165%,
K = Ly ([0, 1],dX), dA(z) = 47T—1(1 _ y2)1/2dy,
and

s

1
Ty [ @ )
Yy

In this case, following [1&], we have the following SVD bases:

Kf(y)

er(z) = 4(k + 1)V222 PP (222 — 1)
gr(y) = Usiy1(y).



G. Kerkyacharian et al. /NEED-D: estimation in inverse problems 35

Here P,S ! is the kth degree Jacobi polynomial of type (0,1) and Uy, is the second
type Chebishev polynomial of degree k. The singular values are

- -1/2
b= 1o (1+ k)72 (5)

In this article, in order to avoid some additional technicalities, we consider
this problem in the white noise framework, which is simpler than the original
problem described above in density terms.

3. General scheme for construction of frames (Needlets) and
thresholding

Frames were introduced in the 1950’s by Duffin and Schaeffer [11] as a means for
studying nonharmonic Fourier series. These are redundant systems which behave
like bases and allow for a lot of flexibility. Tight frame that are very close to
orthonormal bases are particularly useful in signal and image processing.

In the following we present a general scheme for construction of frames due
to Petrushev and his co-authors [2€, 31l, 13(]. As will be shown this construction
has the advantage of producing easily computable frame elements which are
extremely well localized in all cases of interest. Following [26, 131l, 30] we will call
them “needlets”.

Recall first the definition of a tight frame.

Definition 1. Let H be a Hilbert space. A sequence (1) in H is said to be a
tight frame if

IFI1P =D [ f,en)® VS €H.

Let (Y, 1) be a measure space with p a finite positive measure. Suppose we
have the following decomposition

Lo(Y, 1) = € Hi,
k=0

where the Hy’s are finite dimensional spaces. For simplicity, we assume that Hy
is reduced to the constants.

Let (eX);—1..1, be an orthonormal basis of Hy,. Then the orthogonal projector
Ly onto Hj, takes the form

L)) = [ 10 Lateduty). 9T € Lo,
where
lk -
Li(z,y) =Y ef(@)ef (y).
i=1
Note the obvious property of the orthogonal projectors:

/yL;g(:v, Y) L (y, 2)du(2) = 6g,mLi(x, 2). (6)
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The construction, inspired by the ¢-transform of Frazier and Jawerth [15],
consists of two main steps: (i) Calderén type decomposition and (ii) Discretiza-
tion, which are described in the following two subsections.

3.1. Calderon type decomposition

Let ¢ be a C* function supported in [—1,1] such that 0 < ¢(§) < 1 and
@(&) = 1if [¢] < 3. Define a(£) > 0 from

a*(€) = (£/2) — p(€) > 0.
Then _

d_a’(€/2) =1, Vg2 (7)

Jj=20
We now introduce the operator

E>0
and its associated kernel
Aj(,y) =Y a?(k/2)Li(x,y) = Y d®(k/2)Li(z,y).
k>0 27—l < k<2itl

The operators A; provide a decomposition of Lo (Y, ) which we record in the
following proposition.

Proposition 1. For all f € Lo(Y, p), we have
f=Lo(f)+ D M(F) in La(Y, p). (8)
3=0
Proof. By the definition of L and ()

Lo+ Z Aj=Lo+ > Y aP(k/2)Ly =) o(k/2"T)Ly (9)

j=0 k k
and hence
J
1F=Lo(f) =D MNP = D2 ILHIP+ DY L)1 —e/27 P
7=0 1>27+1 27 <l<2/+1
< Z ILi(F)|>? — 0 as J — oo,
1>27
which completes the proof. o

3.2. Discretization

Let us define
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We make two additional assumptions which will enable us to discretize decom-
position @) from Proposition [t

(a)
fEICkaQEICl:>fg€’Ck+l.

(b) Quadrature formula: For any k € N there exists Xj a finite subset of
and positive numbers A\, > 0, n € &}, such that

[ =3 s i €K (10)
N neEXk
(Obviously, #Xp = 1.)
We define ‘
Mj(z,y) =Y a(k/2)Li(x,y) for j>0. (11)
k

Then as a consequence of (), we have
M) = [ My 0 () (12

It is readily seen that M;(z, z) = M;(z,z) and
Va, 2z Mj(z,z) € Koj+r 1y and hence 2z — M;(z,2)M;(z,y) € Koj+2_s.
Now, by (I0)
May) = [ M DM dn) = 3 MM )
Y NEXgj42_y
which implies
Ajf(z) = / Aj(z,y) f(y)duly) = / > A M, m)M;(n,y) £ (y)du(y)
Y

Y NEXyj+2_o
(13)

= ) VAM) /y F@)V X0 M; (y, m)dp(y).

NEXojt2_y

We are now prepared to introduce the desired frame. Let Z; = Xsj+2_5 for j > 0
and Z_; = Xy. We define the frame elements (needlets) by

Vin(@) =/ AM;(z,m), neZ; j>-L1 (14)

Notice that Z_; consists of a single point and g = ¥_1,, 7 € Z_1, is the
Lo-normalized positive constant. Now ([[3) becomes

Ajf(@) =D (frtbjn)tim(@). (15)

NEZ;

Proposition 2. The family (vV;)nez; j>—1 s a tight frame for Lo (Y, p).
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Proof. As
f= Jim Lo(f) + Z A5
we have ”
A2 = Jim_(Lo(f), )+ §;<Aj(f),f>-

But by (I3
M) L) =D i) Wy £) = D> Wi, G20,

nELj €L

3
<

and since 1 is the normalized constant (Lo(f), f) = |{f,%0)|*. Hence

A1 = Whwo)lP+ D Kl

j€No, n€EZ;

which shows that (v;,) is a tight frame. O

3.3. Localization properties

The critical property of the frame construction above which makes it so at-
tractive is the excellent localization of the frame elements (needlets) (¢;,) in
various settings of interest (see [23, 26, 31, 130]). The following figure (due to
Paolo Baldi) is an illustration of this phenomenon. The rapidly oscillating func-
tion is the Legendre polynomial of degree 28, whereas the localized one is a
needlet constructed as explained above using Legendre polynomials of degree
< 28 and centered approximately at zero. Its localization is remarkable taking
into account that both functions are polvnomials of the same degree.
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In the case of the unit sphere in R4*!, where H}, are the spaces of spherical
harmonics, the following localization property of the needlets is established in
Narcowich, Petrushev and Ward [25, 2€]: For any k£ € N there exists a constant
C}, such that:

C),2%/2
[1+ 27 arccos < 1, & >|*°

[9n ()] <

In the case of Jacobi polynomials on [—1,1], the localization of the needlets
proved in Petrushev, Xu [31] takes the form: For any k& € N there exists a
constant C} such that

C,29/2

in(cosf)| < o o=
[¥in( )= (14 27|60 — arccosn|)*\/wa,3(27, cos ) !

where wq g(n,2) = (1 — 2 +n"2)*"2(1 + z +n2) 2 and o, > —1/2.
The almost exponential localization of the needlets and their semi-orthogonal

structure allows to use them for characterization of spaces other than Lo, in

particular the more general Triebel-Lizorkin and Besov spaces (see [26, 31]).

3.4. NEED-D algorithm: thresholding needlet coefficients

We describe here the general idea of the method. The first step is to construct a
needlet system (frame) {¢;, : n € Z;,j > —1} as described in section Bl where
Hj, is simply the space spanned by the k-th vector ej of the SVD basis.

The needlet decomposition of any f € H takes the form

F=320 (o tbim)uthin:

Jj n€ZL;

Using Parseval’s identity, we have 8, = (f, ¥jn)u =2, fi ;‘n with f; = (f, ei)m
and Y%, = (Y, ei)u. If we put Y; = (Yz, gi)x, then

Yi=(Kf,g9)x+e& = (f, K gi)x + €& = (Z fiej K™ gi)m + €& = b fi + €&,

where & = (W, gi)k form a sequence of centered Gaussian variables with vari-
ance 1. Thus v
5 i
Bin=2_ %
- v
1

is an unbiased estimate of 3;,. Notice that from the needlet construction (see
the previous section) it follows that the sum above is finite. More precisely,
in # 0 only for 2771 < i < 27+,
Let us consider the following estimate of f:

J
JEZ Z Z 6J77 1/’Jnv
j= €Z;
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where ¢ is a thresholding operator defined by

t(Bin) = BinI{|Bin| > Kteo;}  with (16)

1
te = ey /log - (17)

Here k is a tuning parameter of the method which will be properly selected later
on. Notice that the thresholding depends on the resolution level j through the
constant ¢; which will also be specified later on, and the same with regard to
the upper level of details J. Notice also that, in this paper, we concentrated on
hard thresholding, whereas various other kind of thresholdings could be used,
likely giving comparable results at least theoretically.

We will particularly focus on two situations (corresponding to the two exam-
ples discussed above). In the first case (see subsection H), the needlets have very
nice properties and behave exactly like wavelets. This is for instance the case
of the deconvolution, where the SVD basis is the Fourier basis. However, more
complicated problems e.g. the Wicksell’s problem exhibit more delicate concen-
tration properties for the needlets giving rise to different behaviors in terms of
rates of convergence for the estimators.

4. NEED-D in wavelet scenario

In this section, we assume that the needlet system has the following properties:
For any 1 < p < oo, there exist positive constants cp,, Cp, and D), such that

Card Z; < 027, (18)
Cp2j(%_l) < ijnHﬁ < Cp2j(%_1)= (19)
| Z upinllh < Dy Z |[un|P||thjyl5, for any collection (uy). (20)
NEL; nELj
We define the space By, as the collection of all functions f with f =
ijo Znezj Bjntjn such that
1fll5;, = 1228 nez, i, )jzoll, < oo, and (21)
feBr (M) <= |flls;, <M (22)

Theorem 1. Let 1 <p < oo, 2v+1>0, and

J

02 = supZ[%]2 <027 Y j>0. (23)
n i 1

Suppose k% > 16p and 27/ = [ts]#+21 with te as in ().
Then for f € B (M) with m > 1, s > 1/, r > 1 (with the restriction r <
if s = (v+3)(& —1)), we have

E|lf — fII5 < Clog(1/e)"~ 'ev/log(1/2))", (24)
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where
R R L
M_s—|—u+1/27 - 27
s—1/m+1/p L1 Lop
- - < HE .
ey ey A G Y

The proof of this theorem is given in section [1
Remarks :

1. These results are essentially minimax (see Willer [35]) up to logarithmic
factors. We find back here the elbow, which was already observed in the
direct problem, as well as in the deconvolution setting (see [11], for in-
stance).

2. Condition (Z3)) is essential in this problem. In the deconvolution case, the
SVD basis is the Fourier basis and hence w;n are simply the Fourier coef-
ficients of 1;,. Then assuming that we are in the so-called “regular” case
(b ~ k7, for all k), it is easy to show that [3) is true for the needlet
system as constructed above (see also the discussion in the following sub-
section). A similar remark can be made regarding conditions (@) and 0.
In the deconvolution setting, the needlet construction is not strictly needed
and, as is shown in Johnstone, Kerkyacharian, Picard, Raimondo|17], the
periodized Meyer wavelet basis (see Meyer [24] and Mallat [22]) can re-
place the needlet construction. Condition (3] also holds in more general
cases such as the box-car deconvolution, see [11], [2(] where this algorithm
is applied using Meyer’s wavelets. &

4.1. Condition (Z3) and the needlet construction

The following lines are intended to a posteriori motivate our decision to build
upon the needlet construction. As was mentioned above condition Z3) is very
important for our algorithm. The proof will reveal that it is essential, since 0]2 is
exactly the variance of our estimator of 3;,, so in a sense no other thresholding
strategy can be better.

Let us now examine how condition (E3)) links the frame (1j,) with the SVD
basis (ex). To see this clearly let us suppose that (1j,) is an arbitrary frame

and let us place ourselves in the regular case:
b; ~ i

(this means that there exist two positive constants ¢ and ¢’ such that ¢'i ™" <
b; < ci™). If condition (Z3) holds true, we have

%

crzy Y R

m om<i<omtil 1 ¢
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Hence, V m > j,

Z [w;n]Q < C22V(j—m)'

2m Si§2m+1_1

This means that the energy of w§n decays exponentially for i > 27, which reveals
the role of the Littlewood Paley decomposition in the previous construction,
replacing the exponential discrepancy by a cut-off.

The following proposition establishes a kind of converse property: The con-
struction of needlet systems always implies that condition [ Z3) is satisfied in the
regular case.

Proposi_tion 3. ]f (i) s a frame such that {i : 4% # 0} is contained in a
set {C127,...,C927}, and b; ~ 7Y, then
2y < oo
Proof. Since the elements of an arbitrary frame are bounded in norm and w;n #+
0 only for C127 < i < C27, we have

D IR < 028 gy |17 < O'27.

K3

5. NEED-D in a Jacobi-type case

Properties ([A)-@0) are not necessarily valid for an arbitrary needlet system,
since as mentioned above the localization properties of the frame elements de-
pend on the initial underlying basis, and hence on the problem at hand. We will
consider here a particular case motivated by Wicksell’s problem.

We consider the space H = Ly (I, dvy(z)), where I = [—1, 1], dy(z) = wq, g(z)dx,

Wa,3(z) = ca,p(1 —x)*(1+ x)ﬁ, a,f>—1/2,

and cq,g is selected so that [} dys,p(x) = 1. We will assume that oo > § (other-
wise we can interchange the roles of a and ().

Let (Pg)k>0 be the La(I, dy(z)) normalized Jacobi polynomials. We assume
that the Jacobi polynomials appear as an SVD basis of the operator K. This is
the case of Wicksell’s problem, where =0, o = 1, by, ~ k= /2,

In the Jacobi case, the needlets have been introduced and studied in Petru-
shev and Xu [31]. See also the appendix, where the definition and some impor-
tant properties of Jacobi needlets are given.

We will state our results in a more general setting, assuming that only a
few conditions on the needlet system are valid. Note that these conditions are
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fulfilled by the needlet system (Jacobi needlets) constructed using the Jacobi
polynomials (Py)i>0. The proofs are given in the appendix.

We will consider two sets of conditions. The first one (which only depends on
«) is the following:

Card Z; < 27, (25)
, , 1
P < O, 21p/2 \y 9i(p=2)(A+a) iy o4 - 26
n§‘ M’m”p— P ) J, Vp# +a—|—1/27 (26)
1" Batbimlly < CCY_ 1BaPbmlD) . (27)
neEX; neX;

We define the space B2, as the collection of all functions f on [—1,1] with

™,
representation
f= Z Z Bintin

j>—1n€ez;

such that

I l5, = 1@ 1Byl il ) )iz -1l < oo, and  (28)
f€B; (M) = |flz <M. (29)

In the Jacobi case, Efrr is the Besov space defined in the Appendix as a space
of approximation (not depending on the special needlet-frame).

Theorem 2. Let 1 <p<oo and o> 3> —%. Suppose

2
te =e/logl/e and 27 — 4 T,

Let k2 > 16p[1 + 4{($ — «), v (% - %)Jr}] and assume that we are in the

: P
reqular case, i.e.
_ 1
by~i7Y, > ——.
2

Then for f € E;)T(M) with s > [3 —2(a+1)(3 — %)]+, we have

El|lf — f]I5 < Cllog(1/)]"~ e /log(1/2)]"7,
where

(i) f p <2+ gyr7g, then

(it) ifp>2+ #1/2, then

s v e -2y
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Remarks :

1. In the case p < 2+ #1/2, the rate obtained here is the usual one, and can
be proved to be minimax (see [3H]). The case p > 2 + #1/2 introduces a
new rate of convergence.

2. Conditions ([Z3)—(1) enabled us to estimate the rates of convergence of
our scheme, whenever the index 7 of the Besov space is the same as the
index of the loss function (p = 7). In the sequel, we will study the case
where p and 7 are independently chosen. This requires, however, some

additional assumptions. ¢

If in addition to properties ZH)—(E), we now assume that the following
conditions are fulfilled: For any n € Z;, j > 0,

CQj(pf2)(a+1)k(n)f(p%)(aﬂ/?) < |lnllp < OQj(pf2)(a+1)k(n)f(p%)(aﬂ/?)7

k(n) <2771, (30)
(DI P=DEHD () == FH1/2) < |y 1P < CIE=DE+D () ~G=D(3+1/2),
K (n) =2 —k(n) <27, (31)

where k(n) € {1,...,27} is the index of € Z;. Here we assume that the
points in Z; are ordered so that 7; > 72 > --- > ;. Note that in the case of
Jacobi needlets Z; consists of the zeros of the Jacobi polynomial PQO;’B (see the
appendix). In the following we will briefly write k instead of k(n) and &’ instead
of k¥'(n). Of course, [E0) is now a consequence of conditions B)—(E).

Observe the important fact that properties B0)—(E1) are valid in the case of
Jacobi Polynomials (see the appendix).

Theorem 3. Let 1 < p < o0 and o > [ > —%. Suppose that conditions

&) — 27 and @) — FD) are fulfilled. Let

2 1 1
2 =T and k2 16p[1+4{(5 - ot g f+

)+ V( »

)+}]

and suppose that we are in the regular case, i.e.

.
1% —_—.
’ 2

b; ~ 1

Then for f € E;T(M) with s > maxye(am{s — 2y +1)(E — ) vo(y +
1)(% - %) V 0}, we have

s

E|lf — flIp < Cllog(1/e)]"**[e/log(1/e)], (32)

where

p=min{u(s), pu(s,a), p(s,B)} and a=max{a(a), a(f)} <2 with
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H(S):m,
oy = 220G
T Cstv+2(1+9)(3 -1
and,
| H{ép=0} iflp—nl[l—(p—2)(y+1/2)] >0,
a(y) = (v+3)(n—p) _ M
ety T H0s =0} iflp—7][l-(p-2)(v+1/2)] <0,

with 6, =1—(p—2)(y+1/2) and 6 = s[1 — (p = 2)(y + 1/2)] = p(2v + 1) (v +
e

The proofs of Theorems Pl and B are relegated to section

Remarks :

1. Naturally, Theorem B follows by Theorem Bl We stated this two theorems
separately because the hypotheses of Theorem B are less restrictive than
the conditions in Theorem Bl and hence Theorem B potentially has wider
range of application than Theorem

2. Tt is interesting to notice that the convergence rates in ([B2) depend only
on three distinctive regions for the parameters (which are actually present
in Theorem B, but hidden in the condition o > ), which depends on a
very subtle interrelation between the parameters s, «, 0, p, 7.

3. It is also interesting to note that the usual rates of convergence obtained

e.g. in the wavelet scenario are realized in the extreme case o = f = —32.

2
&

6. Simulation study

In this section we investigate the numerical performances of the NEED-D es-

timator in the context of the Wicksell problem described in section We

compare the results for simulated datasets to those obtained with several SVD
methods.

6.1. The estimators

6.1.1. Singular value decomposition estimators

With the notations introduced before, f can be naturally estimated by the fol-
lowing linear estimator based on the singular value decomposition of operator K:

F=Y npen

where ()\;)ien is a deterministic filter.
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In the simulations a first SVD estimator with projection weights was used:

N =1 ifi<N,
N =0 ifi>N,

where the parameter N was fitted for each setting so as to minimize the root
mean square error (RMSFE) of the estimator.

We also use the SVD estimator developed in Cavalier and Tsybakov [f], which
is completely adaptive with a data driven choice of the filter and thus much more
convenient than the former in practice. The values of \; are constant in blocs
I; = [Kj—1,Kk; — 1] with limits ko =1 and k7 = N + 1 determined further:

o’?(l-&—A;) p . .
)\i:(l—WL ifiel;, j=1,...J,
Ai=0 if 1 > N,

where:
_._E H?H2 _2?2 2 _ 2Zb72
T G) = i» 0; =€ i
i€l; i€l;
max;er. b 2

A= 2L <y < 1)2,

—
Zielj b

and we used the notation z = max(0, x).

The blocks are determined by the following procedure. Let v, ~

max(5,loglog(1/¢)) and p. = @, we define:

Kj = 1 lf] =0,
Kj = Ug if j =1,
Kj = fj-1+ [Vepe(1+ pe)’ 71 ifj=2,...,J,

where J is large enough such that: x; > max{m : >.7", b; 2 < e 2p-3}.

=1" =

In the simulation settings considered further the value taken by Ky = N + 1
is too large compared to the level n of the discretization resolution, thus the
estimation was performed at the level No = min (3, N) instead of V.

6.1.2. Construction of the needlet basis

Every needlet v, defined on I = [—1,1] is a linear combination of Jacobi
polynomials as described in section B, with weights depending on some filter a.
This function is chosen as:

a(z) = Ve(x/2) = p(z), Yo=0



G. Kerkyacharian et al. /NEED-D: estimation in inverse problems 47

where ¢(x) = I{x < 0.5} 4+ P(x)I{0.5 <z < 1} and P is a polynomial adjusted
such that the corresponding needlet is sufficiently regular. In practice this choice
seems to be slightly better than a C'*° filter with exponential shape.

The shape of a is given by figure Bl and some examples of needlets are given
in figure Bl Their amplitudes and supports fit automatically to the location of
7n: the needlets located near the edges of I are much sharper than those located
in the middle.

0.8 1
06 1
0.4 1
0.2 1

0 I I I
0 0.5 1 15 2 25 3

Fic 2. Filter a with polynomial shape

60 6 3 6
40 4 2 4
20 2 1 2
0 0 Wﬂ M 0 «v\/\ M 0
-20 -2 -1 -2
0, 07 H 0 172 0 1 07 1

F1G 3. Examples of needlets: V7m0, V7,n10, V7m0 AN Y7.n109 (from left to right)

Finally NEED-D is performed by using the following basis (@ij) adapted to
the Wicksell problem:

Vo € [0,1], ¢j,(z) = 4v22%p; (22 — 1).
With such a basis we have for all 7 € N:
4= ali/2 ) Pi(n) /by,

thus the estimated coeflicients of f in the frame are very easy to compute.

6.2. Parameters of the simulation

We consider the four commonly used target functions f represented in figure Bl
and three levels of noise o corresponding to three values of the root signal to
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Blocks Bumps Heavisine Doppler
1 1
0.5 0.5
0.5
0.5 0
0
’ J
o WM |-o05

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fic 4. Target functions

noise ratio of K(f): rsnr € {3,5,7}. The discretization resolution level is set to
n = 1024, and the constant 7 in the thresholds of NEED-D is set to n = 0.75v/2.

The estimation error is evaluated by a Monte Carlo approximation of several
L, (1) losses:

z z
n n

e L1 is computed as the average over 20 runs of 2 > [f(L) — f( )|/ (4.
i=1

e RMSE is computed as the average over 20 runs of , [1 Y~ (f(£) — f(%))Q/(%)
i=1

In each run, the gaussian noise component is simulated independently of its
values in the other runs.

6.3. Analysis of the results

The performance of the non adaptive SVD estimator depends very strongly
on the choice of N (see figure E). A large N is needed in the case of small
noise (first row of the figure) and in the case of very oscillating functions such
as Doppler and Bumps. However even with this optimal a posteriori choice of
N, the adaptive filter leads to better results than the non adaptive projection
weights as shown in tables [l and Pl Indeed the former is more adapted to the
ill posed nature of the problem and to the variations of the noise, by adjusting
over the singular values (b;) and the data (yx).

Moreover the NEED-D estimator generally outperforms both SVD estima-
tors. As can be seen on figure Bl the differences are obvious in high noise for
the Bumps and Doppler targets, where the SVD estimators are very noisy (in
fact all the estimators happen to leave some noise unfiltered near the right edge
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0.8 0.8 0.5
0.6 0.6
0.2 0.4
0.4 0.4
0.3
0.2 0.1 0.2 V
0 0 0.2
0 200 400 O 200 400 O 200 400 0 200 400
0.8 0.4 0.8 0.5
06 0.3 06 0.4
0.4 \/// 0.4
2 .
0.2 0 0.2 03
0 0.1 0 0.2
0 200 400 0 200 400 0 200 400 0 200 400
0.8 0.4 0.8 0.8
0.6 03 0.6 06
0.4 0.4
0.2 02 \\// 0.2 04
0 0.1 0 0.2
0 200 400 0 200 400 O 200 400 0 200 400

Fic 5. Value of the mean square error of the non adaptive SVD estimator (y-axis) for each
value of N (z-axis) for rsmr =T to rsnr = 3 (from top to bottom) and for the target function
Blocks, Bumps, Heavisine and Doppler (from left to right)

of the interval, which is given lesser importance by errors measured with the
weight p(x) = 1/(4x), for x €]0,1].) This order of comparison is confirmed by
the lower values of L1 and RM SE for NEED-D than for SVD in all the settings
(see tables [ and BI).

SVD Adaptive SVD NEED-D
low med  high low med  high low med  high
Blocks 0.0452 0.0495 0.0677 || 0.0399 0.0465 0.0591 || 0.0347 0.0404 0.0511
Bumps |[0.0324 0.0388 0.0463 || 0.0258 0.0295 0.0361 || 0.0180 0.0206 0.0270
Heavisine | 0.0257 0.0305 0.0402 || 0.0248 0.0299 0.0401 || 0.0205 0.0254 0.0321
Doppler |0.1032 0.1138 0.1307 || 0.1002 0.1085 0.1230 || 0.0858 0.0909 0.1007

TABLE 1
Error L1 for each target, each noise level and each estimator
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0.1 0.05 0.1 0.1
0.05
0 0
0 0
-0.05 -0.1 -0.1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
1 1 1 1
0.5
M 05 H | | OW ; W
0
0
0.5 1 1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
1 1 1 1
0.5
0
0
-0.5 -1 -1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
1 1 1 1
0.5
0
0
-0.5 -1 -1
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fic 6. From top to bottom: observed data, NEED-D estimator, adaptive SVD estimator and
non adaptive SVD estimator for high noise (rsnr=3)

7. Proof of Theorem [l

In this proof, C' will denote an absolute constant which may change from one
line to the other.

SVD Adaptive SVD NEED-D
low med  high low med  high low med  high
Blocks 0.0714 0.0790 0.0959 || 0.0665 0.0743 0.0900 (| 0.0606 0.0673 0.0816
Bumps | 0.0489 0.0577 0.0706 || 0.0453 0.0508 0.0617 || 0.0378 0.0416 0.0523
Heavisine | 0.0278 0.0327 0.0422 || 0.0266 0.0317 0.0418 || 0.0235 0.0288 0.0379
Doppler | 0.1092 0.1200 0.1378 || 0.1042 0.1114 0.1258 || 0.0969 0.0999 0.1071

TABLE 2

Error L2 for each target, each notse level and each estimator
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First we have the following decomposition:

J
Ellf = 15 < 207HEI Y > (#Bin) = Bin)inlls + 1> > Binthinll}

j=—1n€L; §>J neL;
= I1+1I

The term I1 is easy to analyse, as follows: Since f belongs to B; ,.(M), using

standard embedding results (which in this case simply follows from direct com-
(1_1

parisons between [, norms) we have that f also belong to BS7T(’r P+ (M), for

some constant M’. Hence

—J[s— (-1
I Z Z Bininlly < C2 Ts=(z=3)+],
j>J nel;

s=(3-3)+

Then we only need to verify that T/Q

difficult.

is always larger that u, which is not

Bounding the term I is more involved. Using the triangular inequality together
with Holder inequality, and property [20) for the second line, we get

I < 2P~ 1Jp ! Z E” Z 6]7] ﬁ]ﬂ wm”

j=—1 nELj
J .
<207 e N TS EIH(By) — BinlPllnlID-
Jj=—1n€Z;
Now, we separate four cases:

J
S S EItG) — Binl L

Jj=—1n€Z;

J
= 3 Y E(S) —6jn|P||wm||g{f{|ﬁ;-n| > wteoy} + I < ntsaj}}

Jj=—1n€Z;

J
Y Y [Ew;-n—6jn|p||wm||§f{|ﬂ;n| > htooy)

Jj=—1n€Z;

{I{Iﬁml > o} 4 {18y < tao]}}

Bl imEI{1B50] < msaj}{f{wjm > 9nteos} + I{|B] < mgj}}]
<:Bb+ Bs+ Sb+ Ss.

N . [ .

If we notice that 3;, — Bj, = >, Yl%{”ﬂ i = EZ {}% is a gaussian ran-
K3 K3

2

dom variable centered, and with variance €23 ,[ “’] , we have using standard
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properties of the gaussian distribution, for any ¢ > 1, if we recall that we set

o} = ZZ[%]Q < C2%", and denote by s, the gth absolute moment of the

K

gaussian distribution when centered and with variance 1:

Ew;n - ﬁjn|q < SqU?EQ

~ K pe
P{an - ﬁjn| > §t80j} <2 &

Hence,
J K
Bb < Z Z U§5p||¢jn||£l{|ﬁjn| 2 §t80j}
j=—1n€Z;
J
Ss< Y > Bl llsmlBI{18m| < 2xte0s}.
Jj=—1nez;
And,

J
Bs < 3 S [EIGy — B2 B{B50 — Byl

Jj=—1n€L;

K K
St 2 51810 ] < Gt}

Y]

J
1/2 2 K
< 3D e e s || < Gteo)

J=—1n€;
J
<O Y DRt 16 < /16,
j=—1

Now, if we remark that the (;, are necessarily all bounded by some constant
(depending on M) since f belongs to B; ,.(M), and using ([[J),

J
Sb< Y3 1Bl lBBL 1By — Bin| > 26teo; }I{|Bjy| > 2kto05}

Jj=—1n€Z;

’{2
< Z Z |1Bjnl?ll45n 1522 /SI{|6j77| > 2rtcte05}

Jj==1n€Z;
J 2
<C Z 215 er° /8 < CT @A
j=—1

It is easy to check that in any cases if k2 > 16p the terms Bs and Sb are
smaller than the rates announced in the theorem.

If we recall that:
1
te = e4/log -
€
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We have using [[d) and condition (23)) for any z > 0:

K
—t

J
Bb< Ce? Y 2UrHETD Y T3] > o

Jj=-1 nNEL;

J
< Ce? Z i (vp+5-1) Z 1B [teos] >

j=-1 neL;j

J
< YD P S g

Jj=-1 nEZL;

0j}

Also, for any p > 2 >0

J
Ss<C Y PETD N8 ol T[]

Jj=-1 NELj
J
<Ot Y PO Y g,
j=—1 NnE€ZLj

So in both cases we have the same bound to investigate. We will write this
bound on the following form (forgetting the constant):

Jo
T4+ 1T =t )y 2=ty 2y ]

j=-1 neLj
J
e Y 2Ot 3 g
j=jo+1 n€z;

The constants z; and jo will be chosen depending on the cases, with the only
constraint p > z; > 0.

Notice first, that we only need to investigate the case p > , since when
p<m, B2,(M) C By,(M).

Let us first consider the case where s > (v + )(2 — 1), put

. op2r+1)
C2(s+v)+1

and observe that on the considered domain, ¢ < 7 and p > ¢. In the sequel it
will be useful to observe that we have s = (v + %)(% —1). Now, taking z2 = ,
we get:

J
ST Y P 3 )
Jj=Jjo+1 77€Z]‘

Now, as
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and ‘ L

5l — et

NELj
with (7;); € I (this last thing is a consequence of the fact that f € B; (M)
and item (5)), we can write:

[r<tr™ N -t
Jj=Jjo+1

< Otsp—ﬂ'Qjop(l—%)(V‘f‘%)

The last inequality is true for any r > 1 if # > ¢ and for r < 7 if 7 = ¢q. Notice

that ™ = ¢ is equivalent to s = (2v 4 1)(£ — 3). Now if we choose jjo such that

2
2705 ("+3) . =1 we get the bound
tsp—q

which exactly gives the rate announced in the theorem for this case.
As for the first part of the sum (before jg), we have, taking now z; = ¢, with
1

g < m, so that [ 2 onez, |Bjn|9]s < (57 2onez, |8;|™]7, and using again (@),

_Jo ) - ~
I < tsp*q[ZQJ[V(p*q)Jr%*l] Z Bl

-1 nNEL;
- Jo ) . ~ ~
< Ay DAY |, 7]
-1 nNEL;
__Jo ~
< tspfq Z 2.7[(”"‘%)17(1_%)]7-?
- J
-1
< CtEP*;QjO[(V-F%)P(l—%)]
S CtEP*q

The last two lines are valid if ¢ is chosen strictly smaller than ¢ (this is possible
since ™ > q).
Let us now consider the case where s < (2v + 1)(£ — 1), and choose now

11
In such a way that we easily verify that p — ¢ = :f:fl :l) and g — ™ =
2 ks
(L) —
% > 0 Furthermore we also have s + 1 — 1 = = - % +v(E-1).
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Hence taking z; = 7 and using again the fact that f belongs to B; (M),

Jo
I <t Py 2Wemmte= N g, 7]
-1 NELj
Jo -
< tsp—ﬂ' Z 2][(”+§_;)%(q_77)]7-;r
-1

1

< CtSP—W2J‘0{(V+%*;)§(¢I*ﬂ')]

This is true since v + % — % is also strictly positive because of our constraints.
If we now take 2705 (*t27%) ~ ¢.~1 we get the bound
tEZD*q
which is the rate announced in the theorem for this case.
Again, for I, we have, taking now zo = ¢ > ¢(> 7)

~ (] ~ ~
IT < .77 Z 9ilv(p—a)+5—1] Z B9

i=jot1 nez,
~ . ~. g

< Ct. P9 Z 9il(v+3—3)E(a— )]ij
Jj=jo+1

< Ct ragholr+3-1)2(a=a)]

< Ctspiq

8. Proof of the Theorems 2] and
The proof essentially follows the same steps as in the previous section. However,
the following proposition will be helpful in the sequel.

Proposition 4. Let us suppose that the following estimates are verified: Under
the conditions (3) and {F1), we have

1.
T2p= (Z |ﬁjn|p”¢jm||g)l/p < (Z |5jn|w||¢j7n||:)l/w
n n
2.
T<p = ( Z |ﬁjn|p”¢jm”£)l/p
n,k(n)<27—1
= O S M e S
ok (n)<2i-1
T<p = ( Z |ﬁjn|p”¢jm”£)l/p
n,k(n)>29-1

IN

(>0 1Bl Il IH) /™22 DO/ =1/p)
n,k(n)>2i-1
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Proof. e If m > p clearly, because, CardZ; < 27,

(Z |5jn|p||1/)j,n||g)l/p < 2j(1/p_1/7r)( Z |ﬁjn|ﬂ||1/’jqn”g)l/w

nez; neZ;

But, using (B) and &),
TZp=[Yjnlp < C||¢j7n||w2j(l/w_l/p)-
Q1B lial)? < O 1Bial 1l 7)™
7 n

o If m < p, clearly

C > Bl < C Y0 1Bl sl

n,k(n)<27~1 n,k(n)<29—1
But _ ‘
5.l < Cllthjl| 272D/ m=1/0) gy k() < 2771
Hence,
( Z |ﬁjn|p||¢j,n||§)l/p < ( Z |ﬁjn|7r”wjm||:)1/7r22j(a+1)(1/7r—1/:0)
n,k(n)<29-1 n,k(n)<2i-1

The proof of the inequality with 3 instead of « obviously is identical.

Going back to the main stream of the proof, we first decompose:

J
EIf = flp < 227HEI Y D (Bm) = Bin)vinlly + 11D D Bintoinlh}

j=—1n€Z; j>J nel;
= I+1I

e For 11, using (27,
1D Bl < QoI D Binthinllp)? < O (D 1Bimtinllf)/71P
3>J neL; ji>J n€Lj j>J n€Zy

If 7 > p, if we put § = H%’ using f € E;)T(M),

I1 < C277 = Ctdsr

If # < p, we decompose I1 in the following way

o< {320 > 1BmPlemlB) PP

3> nk(n)<2i—1
D0 D Bl 1Py
3>J m,k(n)>2i-1
= II(a)+ II(B).
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Now, using @), and f € E;)T(M),
II(a) < O[Z 97Js9i2(e+)(A/m=1/p)1p
i>J
If s >2(a+1)(1/m—1/p)

TI(a) < C2~(=24D(/7=1/mp _ g3ls=2(et)(1/7=1/p)p,

The term () can be treated in the same way.

e For J

Using the triangular inequality together with Holder inequality, and ) for
the second line, we get

I < op-igpl Z E| Z ﬁm — Bin) 1/’Jn”p
j=—1 neL;j
J ~
< 20 S SEKE)) - Bl
Jj=—1n€Z;
< 27LJPIC[ () + 1(B))]

In the last line we separated as previously, in the sum 7 € Z;, the indices
k(n) <2771 and k(n) > 277!, We will only investigate in the sequel I(«), since
the argument for () goes in the same way.

Now, we separate four cases:

J
S S ERBi) = Bl lvmlE

j=—1 n7k(n)<2j’1

Y Y EE) - ﬁmpnwmng{f{w;nl > kteos} + (|G| < Wj}}

j=—1n,k(n)<2i-1

-y ¥ [Ew;-n—5jn|p||wm||51{|ﬁ;n|zmsaj}

Jj=—1n,k(n)<2i-1

{10801 2 §teos} + 10033 < 10|

8P IsalBI (5] > Fataoj}{f{lﬁml > 9nteos} + {8 < m(fj}H
<:Bb+ Bs+ Sb+ Ss

If we notice, as before, that 6;-77 —Bin =2, bf i 52 & J;’ is a gaus-

sian random variable centered, and with variance 52 E (52 Yin )2, we have using
standard properties of the gaussian distribution, for any ¢ > 0:
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By — O|? < sqle® 3 (N2 < sqoffet < C2vet

~ K 1 2
P{|8jn — Bjnl > 55\/10g50'j} <t /®

K 1
Bb < Z > o8l > 5oy /log—o;)
J_—lnk( <2i—1
1
Ss < Z S Bl 515 < 262 flog ~ar;}
J_—lnk( <2i—1

R . 1
Z > (BB — Binl ™1 P{|Bjn — Bin| > gf log gaj}]m

j=—1n,k(n)<2i-1

K 1
ijn”gf{wgﬂ < 58\/10g g”j}

J
/2 2 o
Z Z / fgpcl/2 /16||¢Jn||pl{|5jn| < log Eaj}

J==1n,k(n)<2i-1

J
CEED DL D (M

Jj=—1 UGZJ'

Hence,
And,

Bs <
<
<
<

2P /1697 (vp+(p/2)V (p=2)(1+0)

using (20). Now, if we remark that the (3}, are necessarily all bounded by some

constant

Sb

M, since f € B (M),

J
< Z Z |ﬁjn|p”¢jn”g]}p{|ﬁ;n - ﬁjn|

J=—1nk(n)<2i—1

1 1
key[log gaj}I{|6jn| > 2ke/log gaj}

>
! 2 1
< D0 D 1Bl ltee” /8I{|ﬂjn|22/€€\/10ggffj}
J=—11,k(n)<2i~1
J
fi2
< @SS gl
Jj=—1n€i;
< e 2l P/2V(-2)(1+a)
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It is easy to check that in any cases for k2 large enough, the terms Bs and
Sb are smaller than the rates announced in the two theorems.

Now we focus on the bounds of Bb and Ss. Let g € [0, p], we always have:

Bjul o
2 Y el s 5y
J

J—*lnk( )<2i—1

<spz

j=—1

D S ST P

Jj=—1n,k(n)<2i-1

<2i-1 0 ||1/)Jn||p|5m|q

(Kot /2)1

And

Z Z |ﬁjn|p||¢jn||gl{|ﬁjn| < 2kteo;}

Jj=—1n, k( )<2i-1

< Z 2ito;)P > 1Billinly

j=-1 n,k(n)<29-1
J
< (2Kt )P4 Z Z U§7q||7/fjn||g|5jn|q-
J==1nk(n)<2i-1

So like in the wavelet scenario we have the same bound to investigate:

Bb+ 8s < Z Yo (e U518,

Jj=—1n,k(n)<27-1

then we use (Bl and we separate as before the bound obtained in two terms A
and B with some parameters jo, 21 and zo determined later, depending on the
cases:

Jo

A= Z (tsgj)pﬁ12j(p*2)(a+1) Z |gjn|Z1k*(p*2)(a+1/2)

J=-1 k(1) <2971
J .
B .= Z (tooj)P~#22i(P=2) (1) Z | By |72k~ (P2 @ F1/2),
Jj=jo+1 n,k(n)<2i—1

Let us first suppose that p < 7 and (p —2)(a +1/2) < 1, or that p > 7 and
(p—2)(a+1/2) > 1.
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Then we take z; = 0 and 2 = p, and let us denote §, =1 — (p — 2)(a + 3). We
have:
Jo
A = Z (too;)P2iP=2et) Z E—(P—2)(a+1/2)
j==1 n.k(n) <27~
Jo
= Y (oo, PRI /DDt j1(6,=0)

j=—1

, Ve 1 _
< Ofteay,)P2io®/2VE=2) +1)(10gg)1(6" 0.

And by treating B as was done previously with the term I7(«), we obtain:

J
B = Z 97 (p—2)(e+1) Z |5jn|pk*(p*2)(a+1/2)
J=jo+1 n,k(n)<2i—1

< O2-jop[5—2(a+1)(%—%)+] .

Soif p < 7 and (p—2)(a +1/2) < 1 we set 20 = ¢ /2 Gnien
yields:
pS j 5 1 —
A+ B <Ct.""" 2 (log =) 6:=0),
19

and if p > 7 and (p—2)(a+1/2) > 1 we take 270 = t;lﬂﬁyﬂaﬂ)(li%)], which
yields:

1 1
5*2(C¥+1)(;*;)

A4 B<Cr e (1 1)I%:OX
3

In the other cases: p < m and (p—2)(a+1/2) > 1, orp > 7 and (p—2)(a+1/2) <
(p—2)(a+1/2)—1
(m—2)(a+1/2)—1

. 2(a+1)(m —p) Cand mog— (o +1/2) (7 — p) |

(m=2)(a+1/2)—1 (m=2)(a+1/2)—1

1, let us set ¢ = 7, which satisfies:

so ¢ €]0, p A 7r[ under the assumptions made above.

Let us bound the quantity »_, ;) 051 |Bjn| 1k~ P=2(@+1/2) We define:

b= —L(m=2(a+1/2), and & =—(p—2)(a+1/2)=d.
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Using Holder inequality, (B0), and the fact that f € E;T(M ), we have:

Z |ﬁjn|qk—(p—2)(a+1/2)

777/@(77)<2j71
= 3 I
NEL;
92
< [ Z |6jn|7rk—(7r—2)(a+1/2)]?[ Z kl—%]l—;
n,k(n)<29-1 n,k(n)<29-1
< Og—isa—iF(m=2)(at1) Z k%]l—%

n,k(n)<27—1

_ 02*3'(11*2)(0&1)2J’(*Sq+%)j1*% )

In the last line we used the fact that:
pb—q

(p—2)(a—|—1)—sq—2(77—2)(044—1):—sq—l——, and =-1.
us 2 T™—q
1. Let us assume that:
1
—s¢+(p-qv+3) <0,
i.e. that:
—sm[(p—2)(a+1/2) = 1]+ (a+1)(m —p)2v+1)
< 0.
(m—2)(a+1/2) -1
Then we take z;1 = 0 and 22 = ¢:
Jo
A = Z (taaj)p2j(p_2)(o‘+l) Z E—(P—2)(a+1/2)
Jj==1 n,k(n) <271
< (t€0j0)p2jo(p/2)v(p*2)(0t+1),
J
B = Z (tsaj)p—qQJ’(p—%(a-irl) Z |gjn|qk—(z7—2)(a+1/2)
Jj=Jjo+1 n,k(n)<2i-1
J
< Cf Z (taaj)p—qy(—sq-i-%)]b]l—%
J=Jjo+1
5 pP—ag 1 q
< Clteoy, 12057+ 25%) (log 1)1 ~#
€

stv+(a+1)(1-2)]

If (p—2)(a+1/2) > 1 we take 270 = 1! , which yields:

1 1
5*2(a+1)(;*;)

P ferna-2) 1
A+B< Ct8\+ +(at+1)(1 ’2')(10g

g)l_%,
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and if (p — 2)(a+1/2) < 1 we take 290 = 17 /EH 2] Gnieh yields:
A+B< Ct:ﬁ (log %)1_%.
Notice that, because of our conditions on s, we always have jo < J.

. Let us now assume that:
—sm[(p—2)(a+1/2) = 1]+ (a+1)(m —p)(2v + 1)

0.
r—2)(a+1/2) —1 -
Then we take z; = ¢ and zo = p:
Jo ‘ B
A € OLY (o prpiContizn) it
j=—1
< Clteo,, 129050+ 55 (log 1)1,
5
and as before with the bias term IT(a):
J
B o< Y 206 Y |5 inp-deti/2)
Jj=jo+1 n,k(n)<2i-1
< Oz—jop[5—2(a+1)(%—%)+]_
If 7 > p we take 270 = t;l/[s+u+%], which yields:
PraT, 1
A+B<Cp 3 (log =)',
and if T < p we take 270 = t;l/[s+y+(a+l)(l_%)], which yields:

s—2(a+1)(2-1)

P T arn 1

stvt(at1)(1-2) _4a
A4 B <Ot IR (1og Z) 1R
€

. Let us finally assume that:
—sm[(p—2)(+1/2) = 1] + (a + 1) (7 — p)(2v + 1) = 0.
We take 21 = ¢ and 22 = p as previously:
Jo
A+B < C Z =417 4 ¢ Jopls— et (5 —5)4]
j=—1

1 a ;
< CtT(log —)*TF + Cdorls—2(a+ ) (5 =5)+],

We proceed exactly like in the previous case, and we obtain the same rate
whether 7 > p or m < p:

PTT 1., 4
A+B<Ct."" 2 (log =) %,
13
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We can sum up all the results for Bb and Ss (and thus on I(«)) very simply:

if 2(a+1)(3 —3) <sand s[1 = (p—2)(a+1/2)] <p(2v +1)(a+1)(5 — )

P
then:
s+2(at+1)(F— %)
eI 1

P v+ (o —
Bb4 Ss < Ottt (log —)%,

€
if s[1—(p—2)(a+1/2)] > p2v+1)(a+1)(2 - %) then:

PT 1
Bb+Ss < Ct.”"""? (log = )°,
€
where the power of the log factor depends on the parameters:

1{op = 0} if [p—=][l = (p—2)(a+1/2)] =0,
a = at+ty(r= .
e + {0, =0} if [p— ][l - (p—2)(a+1/2)] <0,
withd, =1—(p—2)(a+1/2) and §s = s[1 — (p —2)(a+1/2)] — p(2v + 1) (v +
e
Note that the first term in the second case is bounded by 1, so we have a < 2

whatever the case.

9. Appendix: Needlets induced by Jacobi polynomials

The main references for this appendix are the two papers [31] of Petrushev and
Xu, and [21]] of Kyriazis, Petrushev and Xu.

9.1. Jacobi needlets: Definition and basic properties

In this section we apply the general scheme from 88l for the construction of
Jacobi needlets. We begin by introducing some necessary notation. We denote
I =[-1,1] and dvya,g(x) = Cq,pwa,s(x)dz, where

wap(x)=(1-2)*1+2)% oB>-1/2

and ¢, p is defined by [} dvap(x) = 1. Assume P8 are the classical Jacobi

polynomials (cf. e.g. [32]). Let HZ"B be the Jacobi polynomial of degree k, nor-
malized in La(dvyag), i-e.

/Hg’ﬁnf;-ﬂd%,ﬁ = G-
I

Let a(§) be as in @8I with the additional condition: a(§) > ¢ > 0 for 3/4 < ¢ <
7/4. Note that suppa C [1/2,2]. We define as in 811

Aj(x,y) = alk/2)IE7 ()T (y).
k



G. Kerkyacharian et al. /NEED-D: estimation in inverse problems 64

Let n, = cosfj,, v =1,2,..., 27, be the zeros of the Jacobi polynomial Ps;
ordered so that 1y >n2 > --- > 1y and hence 0 < 0;1 < 0;2 <--- <09 <.
It is well known that (cf. [32])

v
20

>

(33)

R ~

J

We set ‘
Xj={n:v=1,2,...,27}.

Let II,, denote the space of all polynomials of degree less than n. As is well
known [32] the zeros of the Jacobi polynomial P,; serve as knots of the Gaussian
quadrature which is exact for all polynomials from Ily;+1_q, that is,

1 mEX;

where the coefficients b;,, > 0 are the Christoffel numbers [32] and b;,, ~
27 wa, 5(27;m,) with

Wap(252) = (1 — x4 27 ) V2(1 4 g 4 272)0H+1/2,
We now define the Jacobi needlets by

wjﬂ]u(w) =V bjﬂ]uAQj(‘TvnV)? V= 1727 e '72j; .7 > 07

and we set o(z) = Y_1,(x) =1, n € X_; with X_; consisting of only one
point 7 = 0. From Proposition B (v;,, ) is a tight frame of La(dvyag), i-e.

A3 =D D K wml? Vf € Lo(dyag).

J>—1n€X;

Hence
%5, ll2 < 1. (34)

Notice that B2)) cannot be an equality since otherwise the needlet system (¢; ., )
would be an orthonormal basis and this is impossible since

> Vbimin, = bin, Loi(x,n,) = /ILQf (2, y)dy(z) = 0.

We now recall the two main results from [31] which will be essential steps in
our development.

Theorem 4. For anyl > 1 there exists a constant Cy; > 0 such that

1 94/2

- - , 0<0<m. 35
War3(27, cos B) (1 + 2710 — Z7])! (35)

|95, (cos O)] < Cy
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Obviously
Wa5(27; cos0) = (2sin?(0/2) + 27 %)+ 1/2(2cos?(0/2) + 27 H)PHY2. (36)
Therefore, 0 < 0 < 7/2 = wa 5(27, cos0) ~ ((270 + 1)22+12-3(22+1) and hence

9i(1+a) 1
(L+ 210 — Z5))] (200 + 1)ati/2’

|¥j.n,, (cos )] < Ci 0<0<m/2. (37)

Similarly, from (B8
T/2 <0 <7 = wap(2,co80) ~ (2 (1 — §) + 1)2P+1273(25+D)

and hence
97 (1+8) 1
(14270 — X5)) (29 (7 — 0) + 1)8+1/27

27

|5, (cos O)] < C 7/2<6<m. (38)

Theorem 5. Let 0 < p < co. Then

27 )1/271/1)

1/p
145m 1> = (/I|¢j,nu(w)|pd7a,ﬁ) < Cp(m

Using B3) and (B8), we infer wa g(j;7,) ~ 277Gy 20t if 1 < < 201
and wq 5(j; ) ~ 277220 —p 1)+ §f 2071 < 1 < 27, Consequently,

. 9ila+1)\ 172/P
1<v<27 = [[¢jnlp <Cp (u“+1/2> J (39)
- _ 93 (B+1) 1=2/p
27 <v<? = (Uil <G ((23- T 1)5+1/2) : (40)

Corollary 1. Let 1 <p<oo and 1/p+1/q=1. Then

V(j,nu), ||¢j,nu||p||¢j,nu”q < Cqu

9.2. Estimation of the L, norms of the needlets

Here we establish estimates ([BI)—@I) for the norms of the Jacobi needlets. In
fact we only need to prove the lower bounds because the upper bounds are given
above, see Theorem Bl and ([B9)—E0). We record these bounds in the following
theorem. We want to express our thanks to Yuan Xu for communicating to us
another proof of this result.

Theorem 6. V0 <p < oo, Vj €N,

- gilati)y 1-2/P 9iact1)\ 172/P
Vv=1,...,277", ¢ (W) < 1/’j,m||p§010(ya+1/2)
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VoIl < <9,
9d (B+1) 1-2/p 0d (B+1) 1=2/p
o (arm—gpm) <1 <o (ra—pn)

or equivalently

sl ~ (—aes)
e \oes@in))
A critical role in the proof of this theorem will play the following proposition.

(41)

Proposition 5. Let ¢® be an arbitrary positive constant. Then there ezists a
constant ¢ > 0 such that
2N—1
Z (PP (cos0)]? > cwa g(Nicos8) ™t for CNT1<@<rm—c®N7! N>2.
k=N

(42)
Proof. The proof will rely on the well known asymptotic representation of Jacobi
polynomials (sf. [32, Theorem 8.21.12, p. 195]): For any constants ¢ > 0 and

e>0
0\ 0\"
in— Z a,f
(sm 2) (cos 2) PP (cos )

:N—ar(””‘“)( 0 )I/QJQ(N9)+91/2(’)(n_3/2) (43)

n!

sin 0
foren™! <0 < mw—¢, where N = n+(a+3+1)/2 and J, is the Bessel function.
Further, using the well known asymptotic identity

1/2
Ja(2) = <3) cos(z+7)+0(z7%?), z—-00 (y=—an/2—n/4), (44)

Tz

one obtains (sf. [32, Theorem 8.21.13, p. 195])

—a—1/2 —B8-1/2
PP (cos§) = (mn)~1/? (sin g) (cos 5) {cos(NO+7)+(nf) "t O(1)}

(45)
foren ! < <m—ent.

As is well known the Jacobi polynomials Py’ # and P} _ﬁ have no common
zeros and hence it suffices to prove ([@2) only for sufficiently large N. Also,
PP (—z) = (=1)*P?*(2) and therefore it suffices to prove (@) only in the
case N1 <0 < 7/2.

Denote by Fi(6) the left-hand side quantity in ([@2). Then by #X), applied
with ¢ = 1/2, it follows that

2aN-1
Fy(6) > N'o721 Y (cl cos? (kO + h(6)) — cz(kt?)_2)
k=N
2N—1
>N tg et Z cos? (kO + h(0)) — "9~ 21 (Ng) 2,
k=N
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for N1 <0 < /2, where h(0) = (o + 3+ 1)8/2 — /2 — 7 /4. Tt is easy to
verify that for tN =1 < 0 < /2

2N-1 .
N sinN6 N T N
2k +h) = = N-10+2h)>—=(1——]>—.
k;vcos( ) =5+ Sgng (G )0+ )—2( 2N9)—4
Therefore,
Fn(0) > 07271 (/4—¢"(NO)?) > (¢/8)0 2!
> cwap(N;0) for *N7'<0<7/2, (46)

where ¢* = max{r, (8¢”/c')*/?} > 0.

It remains to establish (@) for c°N~1 < § < ¢*N~1. Denote § = (a+3+1)/2.
We now apply E3) with ¢ = ¢® and € = 7/2 to obtain using that I'(n + o +
1)/n! ~n®, sinf ~ 0, and (@)

[P (cos)] ‘> g2 (crl a(k + )0 — k26" 1o (k +5)0)])
> 1072 Jo((k + 8)0)]* — 02k 2.

Choose A so that § = % and ¢® < X < ¢*. Summing up above we get

2N—-1
Fy(0) > 107 > [Ja((k +6)0)] — 0> N~
k=N
2N—-1

= 107N Z [ (M)} —ch2e N1

= c0” QQNZ [( A+‘j\?)] — N

Obviously, the last sum above involves only values of the Bessel function J,(6)
for ¢® < 6 < ¢*(2 + §) and hence uniformly in A € [¢°, ¢*]

| A A e 2
S sl R -EglaF o] —o vy —w
j= j=

The second sum above can be viewed as a Riemann sum of the integral

fol J2(A(0 + 1))dd, which is a continuous function of A € [c°, ¢*] and hence
Minye[eo e fol J2(A(0 +1))df > ¢ > 0. Consequently, for sufficiently large N

Fy(0) 0 2*(@CEc1N/2 —eN~h) > 2N

>
> cwq,3(N;0)for AN P<f<eENTL

From this and &) it follows that (@) holds for sufficiently large N and this
completes the proof of Proposition B O
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Proof of Theorem B We first note that (sf. [39]) 113°% () ~ k/2P2P (2) and
hence

[ l3 =bj0 Y @P(k/2) (I3 (cos b))
2172< k<27
> cwa,p(2im) Y @ (k/2) (P (cosb;,))?
2172 < k<29
> cwap(@im) Y. (P (cos,)?.

395 795
32)<k<T2i

Observe also that there exists a constant ¢® > 0 such that ¢®/27 < §;, <
T —c/2,v=1,2,...,29. We now employ Proposition B and (B4 to conclude
that

0<e<|hjmllz <1, (47)

We need to establish only the lower bound in Theorem Bl Recall first the
upper bound from Theorem B

9 1/2-1/p
) , 0<p<oo. (48)

Yimllp < Co( —m—
|| J:M HP p Wa,ﬁ(2j;77u)

Suppose 2 < p < oo and let 1/p+ 1/¢g = 1. By @) and Hoélder’s inequality we
have

0 < 2 < ( 27 )1/271/q
<cs ||1/’J7nuH2 > H¢J,77u||p||1/h7nu”q > C|‘¢J,nu||p m
which yields
27 1/2—1/p
Yimllp = 0(7_ ) : 49
” 2:M ||P Wa,ﬁ(ZJ”?v) ( )

The case p = oo is similar. In the case 0 < p < 2, we have using ()

2 p 2—-p P 2 1=/2
0< ¢ < Wi B < Wi 510 507 < i, I3 (o —rs)
«, y v

which implies ([d). The lower bound estimates in Theorem [ follow by ). O
9.3. Bounding for the norm of a linear combination of needlets

Our goal is to prove estimate (1), which we record in the following theorem:

Theorem 7. Let 0 < p < co. There ezists a constant A, > 0 such that for any
collection of numbers {\, : v =1,2,...,27}, j >0,

27 27
I Mmooy <A > Pl 2 o - (50)
v=1 v=1
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and if p = 0o,
27
| Z Avjm, HJLoo('Va,B) <Aw S‘ill) Alllbgm, ”Lao(’ya,ﬂ)' (51)

Proof. Let us begin with the simplest case p = oo

w s v
”Z)‘ij,nuHoo < SUPP‘ %5, Nloo HZ T oo
193.m, [loo
We can conclude using the following lemma:
Lemma 1. 3C < oo such that
i
VieN, | Z lo < C
”"/]]JZL/ ||OO
Proof. Using Theorem Bl and [{d)), we have
$jon, (cos b) 1 29/ wa,3(27, 1)
[imloe = " Va2, cos0) 1L+ 20 —ml)l 2072
and hence

1/’777 \V Wa,p 237771/) 1
Y o <supC
H Z 195, [l H & Z VVwa 5(27, cos ) (14 [276 — v|)!

It remains to prove that this last quantity is bounded.
But using (B0l), one easily shows that (see [21]):

\/wa,ﬁ@JWV) _ \/wa,ﬁ(2]76089u) < (14 (200 — vm])V/2Hev8
Wa,3(27, cosh) Wa,3(27, cosd)

consequently,

\/waﬁ 2J777V) 1
su
pz VVwa 527, cos ) (14 [276 — v|)!

1
<
= S‘;pz,; (L1200 —qo))i-1/2—avs =

for sufficiently large [. O
Let now 0 < p < co. Consider the maximal operator
(M) = s (57 [ rran) s>
Jozx |J|

where the supremum is taken over all intervals J C [—1,1] which contain z
and |J| denotes the length of J. As elsewhere, let o A 8 > —1/2. It is well
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known that the weight w, g(z) = (1 — 2)*(1 + x)” on [—1,1] belongs to the
Muckenhoupt class A, with p > 1 if a V3 < p — 1. Then in the weighted
case the Fefferman-Stein maximal inequality (see [14] and [2]) can be stated as

follows: If 1 < p,7 < 00 and wq g € A, then for any sequence of functions (fx)
n [_15 1]

[(Sannr)” o[ (Z15)”
k

Using that M;|f|® = (Mf)® one easily infers from above that the following
maximal inequality holds: If 0 < p,r < co and 0 < s < min{p, r, ﬁ}, then

Lp(Ya,8) Lp(Yas)

for any sequence of functions (fx) on [—1,1]

[(Sonnr),,,, , <cl(Swr)”

As in §01 let 1, = cos®j,, v = 1,2,...,27, be the zeros of the Jacobi
polynomial PQO‘].’B. Set mg =1, n9i41 = —l and 0,0 = 0, 0, 9541 = 7, respectively.
Denote [, = [zt Betlet] ang pug

(53)

»(Ver,8) »(Ver,)

9J 1/2
H,=h,1;, with h, = (7) :
wa-ﬂ(2j§77u)

where 17, is the indicator function of I,.
We next show that for any s > 0

|1/}j>77u (I)| S C(MsHV)(x)v S [_17 1]7 VV = 15 27 sty 2J7 .] Z O (54)

Obviously, (Ms1y,)(z) = 15, (z) for z € I,,. Let € [—1,1]\ I, and set cos§ = z,
6 € [0, 7]. Then

|L,| Mv—1 — Mv41
[(Ms1y,)(2)]® ~ ~
|z — |z —

Sml(ej vl — O l)Sml(HJ vi1 +050-1)
sin 3|0 — 0;,[sin (60 +6;,,)
2796,
16— 0;,](6 +65,)

Using that 6, , > 277 for some constant ¢, > 0, one easily verifies the inequal-
ity
0iv S 1
O0+0;, — 2+cH(1+2110—0;.])

From above it follows that

c

M1 0 )
( IV)(COS ) (1+2]|9 9 |)2/S

6 €[0,7],
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which along with @B3) (applied with I > 2/s) yields ([B4).
Combining (B4l) and [B3) we get

27
1S Mty 2 < cZ NPIEE (55)
v=1

, ) 1/p
Straightforward calculation show that |17, (L, (v, 5) ~ (2_Jwa7g(23; 771,)) and

hence, using Theorem 6]

97 )1/2—1/p

1l e ~ (5 ~ s e
This coupled with ([B3) implies ([&1). O

Corollary 2. We have, for 1 < p < oo,

2.7
1Y i i s < Z| i P 12 VP

v=1 v=1

A;||f||1Lp(ya,ﬂ) (56)

Proof. We have only to prove the righthand side inequality.
Let us first consider the case p = 1.

IN

27 2J
D im0 s (e ) < Z/|f|($)|¢j,nu (@) dp(@)[959, L1 (0 ,0)
v=1 v=1

- [ 116 {Z 'H‘i; - Wi @l g 1 }ia() < CCLCooll f
.7»771/

using lemma [ and corollary [l
For p = oo, we have

sup |<f51/}j,77u>||‘wjvnu||ﬂ-too(7a,ﬂ)

1<v<2J

sup / |F1@) 5., @A) [0 e )

1<V<2J

<fllee sup [¢5.m, 11llthjm, loo < CrC%][f]loo
1<v<2i

and again we have used corollary [l
Let now 1 < p < oo Using Holder’s inequality (1/p+1/g = 1) we get

)P < / g [Py [} < / 121465 / . )P/

< [ 171830 50, 1
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Hence

ZI Fy i Wi | < Z/Iflpl% w4l 5,0, |15,

27
= [1PL s @ I 50, I3
v=1

¢ v
- Jur Zlnqifmu Wb ol I8/ W I3} (o) < COn TR

as by B9) and ) we have

%5, Nl 1850, [ N[t 1 < CouCP/ACE

we have concluded using lemma [

O
Corollary 3. let
27
A () =D im )i,
v=1
2J
1A Dy < ColS I g Py I )P
v=1
< CollAjaf + A F + A fllL, (e (57)

(by convention A_1(f) =0)

This claim is a simple consequence of the previous corollary, as
Vinu € Xj, (i ¥in,) = (N f + Ajf + Aja frbjn,)
9.4. Besov Space
For f € L,(7a,3) let us define:
Vn e N, Eu(fp) = jnf [f = Pl

Clearly
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Definition 2. Besov space B, ,
Let 1 <p < oo, 0 <g< oo, 0<s<oo. The space B, , is defined as the
set of all the functions f € L, such that:

o0

1713, = 1l + (0" BalF,p)* =)0 < 00, if g < o0,

(resp- |1 fll3; .. = I£llp +supn®En(f.p) < o0)

As n — Ey(f,p) is not increasing, we have an equivalent norm || f| ;s ,

o0

1£1lss., ~ 1 F1lp+ (27 Eas (f,p))M9, if ¢ < oo,
7=0

(resp. | flz; .. = ||f||p+s_1>1182jsE2f (f.p))
)=z

Theorem 8. Let f € Ly(va,3) and

2j
A(F) = A Ftim ) Cim,
v=1
then
1. -
1£lBs, ~ Ifllo + O @7 I1A; (H)llp) D) (58)
7=0

with the usual modification for ¢ = oo
2.

00 27
Ifp<oo, [fllss, ~Iflle+{D (27 Q[ ym ) P 5) /)73

7=0 v=1
(59)
with the usual modification for ¢ = oo

1fllBs, , ~ IIflleo + {Z (27%( (sup {905, 15, l]o0))* Y/ (60)
7=0
with the previous modification for ¢ = oo
Proof. If Q € 151, j > 1, we have
185 (Nllp = 14 (f = @)llp < Cpllf = Qllp

and hence

1A (Nllp < Eai-r(f,p)-
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On the other hand

o0

Eyi(fip) < Z [[Amllp-

m=j+1
Therefore, if
[Amllp < em2™™, e €ly(N),

we have

Ey(fp) < D em2 M =270 3 g 27Imeils = 5,070,
m=j-+1 m=j+1

with ¢ € [,(N), by a classical convolution result. Thus ([E8) is established.
Now, by (BZ) we have

2J
oS 1 i Wi 1 i )V

1A;(Dllp <
v=1
< CoUlAi—1fllp + A5 £llp + 1851 £ll)-
This combined with ([B8) readily implies (B9) and (@0). O

Remark 1. Suppose A;,, is a family of numbers such that

00 27
D@ Py P, )Y 13

7=0 v=1

(with the usual modifications for p = 0o,q = c0)
and let

oo 27

f=cl+ Z Z i Vi,

j=0v=1

(which is, by Theorem [}, obviously defined in 1,) f € B, , even though not
necessarily

>\jv77u = <f5 1/}j,77,,>'
This is due to Theorem[], and since

(fs¥im) = (Aj—1+ Aj + Ajr1,Y5,)-

where

27 27
A= N imes 1451l < CoOO 1A gm bim, [19)7
v=1

v=1
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