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LOCAL GAUSSIAN FLUCTUATIONS IN THE AIRY AND
DISCRETE PNG PROCESSES

BY JONAS HAGG
Royal Institute of Technology

We prove that the Airy process, 4(f), locally fluctuates like a Brownian
motion. In the same spirit we also show that, in a certain scaling limit, the so-
called discrete polynuclear growth process (PNG) behaves like a Brownian
motion.

1. Introduction.

1.1. The Airy process. The central object of study in this paper is the local
behavior of the Airy process, t — A(t), t € R [13]. The Airy process is a one-
dimensional process with continuous paths [6, 13]. The interest in this process is
mainly due to the fact that it is the limit of a number of processes appearing in the
random matrix literature. One example is the top curve in Dyson’s Brownian mo-
tion (see [3]), which, when appropriately rescaled, converges to the Airy process;
see, for instance, [2] and [7]. Another example is the boundary of the north polar
region in the Aztec diamond (see [4, 5] and [8]), a discrete process also converging
to the Airy process [8]. A third example, the discrete polynuclear growth model
(PNG) [7, 9], will be described in some detail in Section 1.3 where we also state a
theorem about its local (in a certain sense) fluctuations.

A precise definition of A(¢) goes as follows:

The extended Airy kernel [2, 10, 13] is defined by

o0

/ eSO Ai(x +2) Al(y +2)dz, ifs>1,
(LD A =1" o

—f 0 Ai(x + 2) Ai(y + 2) dz, ifs <t,

—0o0

where Ai is the Airy function. A ¢(x, y) is easily seen to be the ordinary Airy
kernel [15]. Given &i,..., &, e R and #; < --- < ¢, in R, we define f on
{t1,....,tm} x Rby

f@i, %) = X(&,00) (X).
It is shown in [7] that

P20, 0)Ag e, ) f12(2, y)

Received January 2007; revised June 2007.
AMS 2000 subject classifications. 60G10, 60G15, 15A52.
Key words and phrases. Stochastic processes, stationary processes, random matrix theory.

1059


http://www.imstat.org/aop/
http://dx.doi.org/10.1214/07-AOP353
http://www.imstat.org
http://www.ams.org/msc/

1060 J. HAGG

is the integral kernel of a trace class operator on L2({t1,...,tn} x R) where we
have counting measure on {f1,...,t,} and Lebesgue measure on R. The Airy
process, t — (1), is the stationary stochastic process with finite-dimensional dis-
tributions given by

PLA(t) <E1,..., Altn) < En]=det( — fPAFYD) 200y gy

.....

The determinant in the right-hand side is a Fredholm determinant.
Our main theorem states that if we condition the Airy process to be at some
given point at time #1, it will then behave, on a local scale, like a Brownian motion.

THEOREM 1.1. Let & >0 be small, ty e R and t; =t;_1 + sie, 2 <i <m,
where 52, ..., 8, > 0. Also, let p1 € R and define the sets A;,i =2,...,m, by

A ={x eR|p1 +aive <x < p1 + b/ e}
where a;, b; are given real numbers. It holds that

PlA(12) € A2, ..., Altn) € AnlA) = p1]

— dxz e~ i—xi-D?/Us) 4 |

f o3/ (452) 1—[
m M

where

m
|E| < Veloge ' [[bi —ai)Cp sn....5m

i=2
Figure 1 describes the setup in the theorem.

REMARK 1. A couple of previous results about the Airy process are the fol-
lowing:

A2 AS
Pie T | EEK Am

tl t2 t3 tmfl tm
S3€

F1G. 1. Conditioned that A(t1) = p1, Theorem 1.1 gives the approximate probability for the
process to move through the sets A;. Note that t; | —t; ~ ¢ and |A;| ~ J/e.
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In [13] it is shown that
Var(A(t) — 4(0)) =2t + O(t%)

ast — 0.

In [1] (see also [16]), the long-distance covariance asymptotics for the Airy
process is calculated to be

E[4(t) A(0)] — E[AME[AO)] =12 +ar ™+ 015

as t — oo, where a is a known constant. This proves that A (f) is not a Markov
process since this would imply exponential decay.

REMARK 2. Given Theorem 1.1, it is natural to ask the corresponding ques-
tion about processes converging to the Airy process. Theorem 1.3 in Section 1.3
below provides such a result for the discrete polynuclear growth process.

1.2. The extended Airy point process. We now present another construction
[7] of the Airy process that will help us in analyzing its local behavior.

Letm € Z, be arbitrary and let 1| < tp < --- < t,,, be points in R which we shall
think of as times. Define

E=Rl‘1 Uthu"'URtm-

We shall refer to R;; as time line 7. We define X to be the space of all locally finite
countable configurations of points (or particles) in E. Locally finite means that, if
x = (x1, x2,...) € X, then, for any bounded set C C E, it holds that #(C Nx) <
oo. Here #B represents the number of points in the set B. One can construct a
o-algebra on X from the cylinder sets: Let B C E be any bounded Borel set and
let n > 0. Define

Cl={xeX:#B=n)

to be a cylinder set and X to be the minimal o -algebra that contains all cylinder
sets. One can now define probability measures on the space (X, ¥). The extended
Airy point process is an example of such a measure and it will be described below.

For the sake of convenience, we will often denote the extended Airy kernel
by A(x,y) instead of Ati,,j (x,y) when it is clear that x € R;, and y € R,j. Let
Z1, ..., 2k be points in E. The k-point correlation function is defined by

(1.2) R(z1,....2) =det[AGzi. 7)1 ;.

It is possible to show that these correlation functions determine a probability mea-
sure on (X, X), the extended Airy point process, by demanding that the following
identity holds [14]:

(1.3) B[] 2 —f R( )d
' B — k)l | Jaltgy T T

i=1 n
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Here By, ..., B, are disjoint Borel subsets of E and k; € Z4, 1 <i <n, are such
that k1 +--- + k, = k.

It is possible to show that, at each time line R;,, there is almost surely a largest
particle, A(t;), and

(1.4) A1), s Mtm)) = (A1), ..., At))

in distribution [7]. It is through this representation that we are able to show that the
Airy process behaves locally as a Brownian motion.

1.3. Discrete polynuclear growth. The second object of interest in this paper
is the discrete polynuclear growth model (PNG) [7, 9]. It is defined by

(1.5) h(x,r+1)=max(h(x — 1,1), h(x,1),h(x + 1,1)) + o (x,1 + 1),

where x € Z,t e N, h(x,0)=0VxeZ and w(x,t +1)=01if |[x| >rorift — x
is even; otherwise w (x, t + 1) are independent geometric random variables with

(1.6) Plo(x,t+1)=m]=(—q)q", O<g<l.

It is convenient to extend the process to all x € R by setting h(x,t) = h(|x], ).
A description of this process using words and pictures goes as follows:

At time t = 1 a block of width 1 and height w (0, 1) appears over the interval
[0, 1). This block then grows sideways one unit in both directions and at time t = 2
two blocks of width 1 and heights w(—1,2), w(1, 2) are placed on top of it over
the intervals [—1,0) and [1, 2), respectively. These blocks now grow one unit in
each direction disregarding overlaps. At time ¢ = 3 three new blocks are placed
over [—2, —1), [0, 1) and [2, 3). This procedure goes on producing at each time
the curve h(x, t) that can be thought of as a growing interface. Figure 2 shows a
realization forr =1, 2, 3.

The process 4 is closely connected to a growth model, G(M, N), studied in [6].
Let w(i, j), (i, j) € 72, be independent random variables with distribution given
by (1.6). Define

G(M, N) = max > w, )
(i, j)en
where the maximum is taken over all up/right paths from (1, 1) to (M, N). One
can think of G(M, N) as a point-to-point last-passage time and

Gpi(N)= max G(N+K,N —K)
|K|<N

as a point-to-line last-passage time. In [7] it is shown that
GG, j)=hG—ji+j—D.

The definition of G p; therefore inspires the study of K — h(2K,2N — 1), that is,
the height curve at even sites at time 2N — 1.
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FI1G. 2. A sample of the discrete PNG process for t = 1,2,3. The shaded blocks represent the
growth due to the random variables w(x,t).

In [7] the rescaled process, t — Hy (1), t € R, is, for appropriate ¢, defined by

1 2
ANYPHy (1) = h(2Md_1N2/3t, 2N — 1) Wy
11— /7 1-/q

and for the rest of R by the use of linear interpolation. The constant d is given by

PN RN
1—-q '

The main result about Hy (¢) in [7] is the following theorem:

THEOREM 1.2 [7]. Let A(t) be the Airy process defined by its finite-
dimensional distributions and let T be an arbitrary positive number. There is a
continuous version of A(t) and

Hy(1) — A1) —1°
as N — oo in the weak*-topology of probability measures on C(=T, T).

In particular this theorem shows that the fluctuations of / are of order N''/3 and
that nontrivial correlations in the transversal direction show up when looking at
times t; where t;41 — t; ~ N2/3.

Motivated by Theorems 1.1 and 1.2, one could guess that &, on a time scale

of order NV, 0 < y < 2/3, behaves like a Brownian motion. The theorem below
shows that this is indeed the case.
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Given some m € Z, set

1
K| = +[ ~IN23g,
l—f

Kit1= K+ +\/_ S,_HNy, i=1,....m—1,

ﬁ

where 0 <y < % and 71, 5; > 0 are real numbers such that K; € Z. Define

2
n=NU N yanPez,
1—-/q

where v is any real number such that J; € Z.

THEOREM 1.3. Define the sets A;, i =2,...,m, by
Ai={j€Zlj=N+xdN""? a; < x; < b;)
where a;, b; are given real numbers. There exists ¢ > 0 such that
Plh(2K2,2N — 1) € Ay, ..., h(2K;;,2N — 1) € Ay,
|h(2K1,2N — 1) = J1]

= dX2 f dxy, —— *(Xi*Xi—l)z/(4sl~)+E’

o ¥/ (4s52) 1—[
47 sy «/47rs,

where

m
|E| < N[ — ai)Cyys....50-
i=2

2. Proof of Theorem 1.1. The connection (1.4) shows that we can prove the
theorem by studying the largest particle in the extended Airy point process at times
fy.eoestim.

The appearance of C in formulae below should be interpreted as follows: There
exists a positive constant which may depend on p;, s;, i =2, ..., m, validating the
inequality to the left when inserted instead of C. Other error terms will typically
also depend on p;, s;.

Set J1 =[p1 — 81, p1]l CRy, and J; =[p; — +/€8i, pil CR,,, 2 <i <m, where
8; >0and p; = pi—1 + yi /¢, yi € R. We also set I; = (p;,00),i=1,....,m

We will show that

. 1 P#HL=1,... #),>1,# =-- - =#I,, =0]
1oy 0 83 Oy P[#J, > 1, #1; = 0]

2 2
— e 3/ @)= @) 1 9 [eloge),
\/(47T)m—152 S
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implying Theorem 1.1.

The first step is to show that the probabilities in the numerator and denominator
above can be approximated by appropriate expected values.

For k, n € Z, we shall use the common notation

" =nmn—1).-(n—k+1.

Let J be an interval on some time line and let x4 be the indicator function for the
event A. Since

k—1, #J=k>2,
#]—X{#J>1}—{O’ #7=0,1,
21 _ o k=D, #I=k=2,
#JE =#g#J 1)_{0’ 47 =01,
it holds that
(2.2) 0<#J — yus=1 <#J?.

This together with the following facts will be useful:
P#J1 > 1,...,#J, > 1,#1; =0]
—P#L =1, .. #y =1L, # = - =#1I, =0]
(2.3) =P#, >1,... #], > 1, # =0, # L, =--- =#I,, = 0)°]

=IP’[#J1 > 1, #0, > 1,41 =0, | #]; 750}}
i=2

m
<Y PHL =1, # = L #L £ #D].
i=2

We now express the probabilities in terms of expected values. If we set
(24) T(J)=#Ji — xgs=1)>
then
Pl#J1 > 1,...,#J, = 1,#I1 =0]
=E[#J1 = T()) - #Im — T (In)) - Xg#1,=0} ]
=E[#J1- - #m + UL, ... ) - xpen=0)],

where U is defined by the last equality. In view of (2.2) and (1.3) we get, for
example,

EIT (J1) - #J2- - #J,] < E[#J7 - #05 - #J,,]

=1/, R(X1, X2y .. Xy 1) dx = O (87 -85+ 8n).
JixX XXy
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Since U (Jq, ..., Jy;) is a sum of terms like this one [at least one 7 (J;)], we see
that

lim
81,08m—0T 81+ O
Repetition of this argument shows together with (2.3) that

E[UW, ..., Jm) - xn=0;] =0.

lim P#J >1,... . #J, > 1,#]=---=#I,, =0]
81,eesdn—0T 81 -+ O

= i B[#]) - #J - xia7—
81y }s{,,n_)o+ 81O [ 1 m X{#Il_o}]
- 1
+0 lim E[#J)---#J,, - 4
(g Lesbm— 0t 81 -+ 8y [#1 m X{#I,;e#h}])

and also that
1
lim —P#J; >1,#1=0 lim —E #J

s 3, [#J1 > 1=0]= s, [#J1 - x#1,=0}]-

Later it will be shown that

1

(2.5) lim

8108y —0T 81+ O

but let us first be constructive.
We want to show that

E[#J1 - #Jm - xppr241] = O(Veloge),

o B Sy, T xiwnol]
(2.6) = lim lE[#J] #11:0}]
§1—07F
1

e_yg/(432)_"'_yr%1/(4Sm)+0(ﬁ)‘

X
VAT sy s
To start with, we need to find a representation of the left-hand side of (2.6) that is
suitable for analysis:

E[#Jl - X = }]:E #J---#J, - lim ex#ll]

A—>00

XD
=E #Jl---#Jm-Ali)ngogT#ll

S (=DF
=E|#J1 - #]y - Yy ———HI]|




GAUSSIAN FLUCTUATIONS IN THE AIRY PROCESSES 1067

In the second equality we have used the formula

k
@.7) o=y I (e - D,

k=0
In the fourth equality we take the sum out of the expectation. By Fubini’s theorem
we are allowed to do this since

o0 # [k] o0 #Ik
]E[#Jl o Z }<E{#J1 A Y }
! = k!
=E[#J) - #Jy - €"1]
<E[#J?-- - #J21V2E[ 112 < 0.

In fact E[z#/1] is an entire function in z [14].
Another technical issue we need to deal with is to prove that

I &= [k
; > E[#J1 - #Jy - #1]"]

31y 5m—>0+ 61 m o k'
et E[#J, - --#Jy - #1]
k=0 k! 51, 6m—0F 81O
X (—Dk 1
fred k‘ ‘/\k(\/g)mi R(pl,---,pm,xl,...,)Ck)dx‘
k:o * Il

Please recall definition (1.2) and note that the second equality is immediate
from (1.3). Define Gi(z1, ..., zm), zi € R;;, by

—1k
(2.8) Gr(zty ooy 2m) = =D

/kR(Zl’aZm,xl,,xk)dx
Il

The identity sought for is

1 o0
lim / Gr(zt, ..., zm)dz
814eees8—>07F 51"'5m]§) Ji XX Jy K@ m)
(2.9)
i -1
k=0
This will hold if for some neighborhood 2 of (p1, ..., p;y) there exist constants

Cr > 0 such that
|Gr(z1, ... zm)| < Ck
if (z1,...,zm) € 2 and

o
Z Cj < 0.
k=0
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That this is indeed the case follows from calculations similar to the ones appearing
in the proof of Lemma 2.2 which is given at the end of this section.
The following lemma can be found in [11]:

LEMMA 2.1. Let«a > 0, then

o0 1 2 3
e AI(x +2) Ai(y + 2) dz = ——=e ) /U= (/D) Fe /12,
/—oo Véara

In this section we call this function ¢, (x, y) or simply ¢ (x, y) when it is clear
what « is. From Lemma 2.1 and the definition of the Airy kernel, it follows that,
fors <t

Asi(x,y) = /Ooo e?(t=9) Ai(x +2) Ai(y +2)dz — ¢r—5(x, y)
= A (x, ) — pr—s(x, ).

For s >t it is convenient to set Avs,,(x, y) =As(x,y).

LEMMA 2.2. Suppose that 1 <v <m, v € Z. Then, for some C depending on
plv ey pma

(\/g)m_l ,/[k R(p]v---;pm,X],...,Xk)dX

v

(2.10) = (Ve)" ' (p1, p2)b (P2, P3) -+ D (Pm—ts Pm)

X fk R(p1,x],...,xk)dx+\/Z(9((Ck)(k+m)/2).
Il
Furthermore, if v > 2, then
(\/E)m—lfl dx/; dyR(p1,..., Pm,X,Y)
1 v

2.11) = (Ve)" o (p1, p2)d (P2, p3) -+ (Pi—ts P)
X </112 R(p1, x1,x2)dx +/I1 R(pl,x)dx) + O(V/eloge).

From (2.10) we now get (2.6).
We turn now to (2.5). Clearly

E[#Jy - #Jm - xipn 2411
<E[#J) - #Jy - B —#11)?]
= E[#J1 - #y - I+ #1441, 41 — 2#1041) ).
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We now obtain (2.5) since

(ﬁ)m_l</12R(p1,...,pm,x,y)dxdy+/12R(p1,...,pm,x,y)dxdy
i 1

+/I R(pl,...,pm,x)dx—i-_/; R(p1,..., pm,x)dx
(2.12) : :

-2 R(pl,...,pm,x,y)dxdy)
L x1;

= 0(eloge)

by Lemma 2.2.
To get (2.1) we need one more result, namely that

2.13 lim L E[#] 0.
(2.13) m o [#J1 x#1,=0}] >

Let F>(s) be the Tracy—Widom distribution function corresponding to the largest
eigenvalue in the Gaussian Unitary Ensemble (GUE) [15]. Then

1
lim _E[#JIX#Il }]

51—)0 81
2.14 — fim o g~ (CD* d d*x det(A
(2.14) = Jim 5325 fj Xo/]f x det(A ;. x)))oxi.j<k

(-1 )"
= Z / det(A(xl,xJ))oq J<kd X = Fz(pl)

where in the last row xo = p;. The last equality can be obtained by differentiating
the corresponding equality for the distribution function F,(¢) [15]; we omit the
details here. The first equality has been shown above and the second is a special
case of (2.9). Since Fz/(s) > ( for all s € R (see [15]), we obtain (2.13).

What is still left is to prove Lemma 2.2.

PROOF OF LEMMA 2.2. We start with (2.10). ForO<r <m — 1l and k > 1,
define D, (k) by

D, (k) = (V&) $(p1. P9 (p2. 1)+ 9 (pro pr) [ d

A(pri1, p1) VeAPra1. Pr2) .. VEAPri1. Pm)  A(Prit.Xj)
« : : : :

A(pm, 1) NEAPm. Pr+2) .. JEA(Pm, Pm)  A(Pm, X))

A(xi, p1) VEA(Xi, pri2) ... JEAX, pm) A(xj, xj)

In the determinant 1 < i, j <k and for r = 0 we set the empty product in front
of the integral to 1. Please note that Dg(k) is equal to the left-hand side in (2.10).
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\ﬁ’e let l~)r (k) be almost the same as D, (k). The only difference is that we put in
A(pr41, pr42) in position (1, 2) in the matrix instead of A(p,+1, pr+2). By using
induction we shall now prove that

(2.15) Do(k) = D, (k) + /O ((Ck)*kTm)/2)

for 0 <r <m — 1. Clearly (2.15) holds if r = 0. Suppose now that (2.15) holds for
some r such that 0 <r < m — 2. By expanding the determinant in D, (k) along the
first row we see that

(2.16) D, (k) = Dr41(k) + D (k).
What has to be proved is hence that
D, (k) = Je0((Ck)*+™/2),

To do this, Hadamard’s inequality will come in handy, but before we recall this
inequality we present a lemma which will be frequently used from now on. The
proof is readily obtained from Lemma 2.1 and the standard estimates (see [12]):

| Ai(x)] < Cpre 251773,

AT (x)] < Cyry/xfe 2117273
that hold forx > —M. O

LEMMA 2.3. Suppose that s <t and M > 0. For x,y > —M and any A > 0
it holds that

|45 (x, Y)| < Cpp e ),

At,s(X, y) = AZ,I(X, y) + (9(1 _ s)e—)»(x-ky)’

1 2
A1 (X, 9) = Ari(x, ) — (14Ot — §)) —om——e ™ ~))/=5)

VAT (t — )

+ O — s)e 0,
The errors depend only on M and A. Moreover,
|Ag.s(x 40, y) — Ag s (x, V)| < aCppe )
forall o > 0.

Let B = (b; j)1<i,j<n- bi,j € R, be a matrix. Hadamard’s inequality states that

n n 1/2
(2.17) |det3|5<ﬂ2b§i> :

i=1j=1
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Below we find upper bounds for the equivalent to Z’}Zl b?i in the matrix appearing

in D, (k).
Column 1:
m k
Y A(pry1.p)+ Y A, p1) < Clk+m).
j=r+1 j=1
Column 2:

m k
e(A2<pr+1,pr+z>+ > A2<p,-,pr+z>+ZAz(xj,pr+z>>
j=r+2 Jj=1

C(k +m), ifv>r+2,
k

SEVCm+C Y (Axj. pria) —¢(xj. pry2)’.  ifv<r+2.
j=1

Columns 3,....m—r (r+3<i <m):

m k
8( > Az(Pj,Pi)JrZAZ(Xj,pi)) < C(k+m).

j=r+1 j=1

Last k columns (1 <i <k):

m k
> Ap )+ ) AN x0)

j=r+l j=l1
v—1 N )
> (Apj,xi) —(pj.x))" +Cke ™, ifv=r+2,
j=r+l1
Ck +m)e >, ifv<r+2.

Next we multiply everything together, take the square root and then integrate. As-
sume that v < r 4 2:

k
/]k |:C(k +m)e (C +C Y (Alx), pran) — o (xj, Pr+2))2)

v j=1

1/2
X (C(m + k)" "> (Ck + m))"e—2<x1+"'+x'<>} dx

I

v

k
o~ (1) (1 + Z(l + o (xj, Pr+2))) dx
j=1

The case v > r 4 2 can be treated similarly.



1072 J. HAGG

To obtain (2.10) it remains to show that

/det[A(pm,pl) A(pm»xj)i|
7 Alxi, pr) AGGXG) i< j<k

- det[A(pl’pl) A(pl’xj)}
i LAG pY) AGG X)) L <

This is quite easily achieved using Hadamard’s inequality and Lemma 2.3. We do
not present the details here but instead go on to prove (2.11).

The first part of the proof will be similar to the proof of (2.10) and the second
part is an application of Lemma 2.4 below.

Let D, (2) and D, (2) be as defined above with the exception that the variables x|
and x, are now integrated over I; and I,, respectively. By construction Dg(2)
equals the left-hand side in (2.11). If we can show that

(2.18) D,2)=0(e),

then by the same argument as above

Do(2) = Du—1(2) + O(Ve).

To see this we shall only need the trivial fact that

n n
|det Bl <] Ibjil.

i=1j=1

dx

dx + /eO((Ck)*k+m/2).

where as before B is areal n x n matrix. Define B asthe (m+2—r) x (im+2—r)
matrix appearing in D, (2). We now estimate the column sums

n
Bi:=) |bjil.
j=1
Column 1:

By =A(pr+1, PO+ -+ |A(Pm, P + |A(x1, p1)| + |A(x2, p1)| < Cm.
Column 2:
By = e(lA(pri1, pra)| + 1ADr42, Prea)| + -+ 1A(Pm, Pre2)|

+|A(x1, pr42)| + [A(x2, pry2)l)
<Je(Cm + |A(x1, pra2)| + |A(x2, pri2)l).

Middle columns (if any) (r +3 <i <m):

Bi = Ve(|A(prs1, p)l + -+ + |A(pm, pi)| + 1A(x1, p)| + |A(x2, pi)l) < Cm.
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Last two columns:
Byp—r+1 = [A(prs1, X0+ + [A(Pm, x1)|
+ A1, x|+ |A(x2, x1)| < Cme™,
Bm—r+2 = |A(pr41, x| + -+ |A(pm, x2)|
+ 1A(x1, x2)| + |A(x2, x2) |

v—1

<Ce ™ +¢p(x1,x)+ Y. ¢(pi.x2).
k=r+1

Consider the estimates above for B, and Bj,_,+>. The function A(x;, py42) will
contain a ¢-function if and only if v < r + 2, but in this case the sum

v—1
> ¢ (pk,x2)

k=r+1
is empty. This means that we do not get terms like

¢ (x2, pr42)® (Pr, X2)

in the product B B, —+2. Given this observation, it is easy to see that

/; ; BoBy—r1Bn—ri2dx = (9(\/5)
1 X1y

and this proves (2.18).
The second part of the proof consists of showing that

A(pm,p1) APm,x1) A(Pm,x2)
/ det| AGri.py)  AGx)  AG.x) | dx
Iixty A(x2, p1)  A(x2,x1)  A(xz,x2)

(2.19)
:/[2 R(pl,xl,xz)dx+/1 R(p1,x)dx + O(/eloge).
1 1

The left-hand side is equal to

A(I?m,l?l) A(pm,xl) é(pm,XZ)
| et AGip) AGrw) AGnx) | de
Tixty A(x2, p1)  A(x2,x1)  A(xz,x2)

A(pm, p1) A(pm,xl)}
, det dx.
T, g, S X2 de [A(xz,po A, x1) | 9%

In view of Lemma 2.3 and (2.21) in Lemma 2.4 below, we obtain (2.19).

LEMMA 2.4. Suppose that f:R — R has a continuous derivative and that
g:R? — R has continuous first partial derivatives. Assume that

| F O 1 f (x)] < Ce™,
lg(x, W, 18" (x, y)| < Ce ™77,
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Then, for 1 <i, j <m, it holds that

e—(x—Pj)z/(48)f(x) dx

i A4
(2.20) e B
2
= f(p;) *x/4dx+c9\/5,
/ (pi— 17/)/\/_ \’ ( )
1 2
—(x—y)7/(4¢)
/ ——e g(x,y)dxdy
I; /I Vame

(2.21) !

=/ g(x,x)dx + O(Jeloge).

I;
PROOF.
/OO Lm0 p () dy = [ }
i Aame

e_zz/4f(]7j + Vez) dz.

/ Pj)/«/— V47T

By Taylor’s theorem
f(pj++ez)= f(pj)+vVezf (pj +6:(2)),

where 0, (z) is a number between 0 and /¢z. Since by assumption
1/ (pj +0:(2))| < Ce™PitVeRL
we obtain (2.20):

eGP 1G) g (v vy dx dy

/ p; Jare
=7
=|z= ﬁ
[ e et e dxd
= —F—€ g\X, X £z)axdz.
i J(pj—x)/E AT

By Taylor’s theorem
g(x, x +Vez) = g(x, %) + Vezg'(x, x +6: (x, 2)),

where 6. (x, z) lies between 0 and /ez. The error can be discarded since

el o
78 (x,x +0:(x,2))|dxdz
[ i e 0. 0)

1 2
< C/ a’x/ 7] T A VER g <
i -0 \/471| |
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We now split the main term into two terms:

fOO o0 1
.
i (pj—x)/e 4
pi—+/€loge o0 1
dx/ dz
(pj—x)/ve 4w

+/OO d /OO d 1 *Z2/4 ( ) /+/
X 7———e X,Xx)=: .
pi—veloge  J(pj—x)/e W4T § L2

We can estimate the first integral by
pi—+/cloge 00
[ <C dx/ dz e~ @/H=2x < —C./elogs.
1 —00
If x > pj — /eloge, then Pi” % < Cloge and hence

Pi
JE

e /g (x, x)

e lg(x,x)
Pi

/OO —1 e_zz/4dz:/oo _1 6_12/4dz+/(p]_x>/\/E —1 e~/
(pj—x)/e Vam —oco A4 —00 Var
=1+ O lose)/4),

We finally get
“ —(loge)? /4
.L:/»—ﬁlogs(l +0O(e ))g(x,x)dx

o0
= g(x,x)dx + O(Veloge).
pi

This concludes the proof of the lemma. [
3. Theorem 1.3.

3.1. Multilayer discrete PNG. Before we give the proof of Theorem 1.3 we
must present some preliminary results.

How does one get a hand on the process & described in the Introduction? In [7]
it is shown that # can be embedded as the top curve in a multilayer process given
by a family of nonintersecting paths {h;,0 <i < N}, h = ho. It turns out (see [7])
that this multilayer process is an example of a discrete determinantal process.

THEOREM 3.1 ([7]). Letu,v € Z be such that |u|, |v| < N and let q = 2. Set

(1- a/z)N+”(1 —aqw)V-v
(1 —az)VN 741 — a/w)N+y

G(z,w) = (1 — )™
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and

(2mi)? 2y, wz—w

- 1 d d
R u, x: 20, y) = / —Z/ W G w),
Vrz )/r

where y, is the circle with radius r centered around the origin, o <r; <ry < 1/«
and x,y € Z. Furthermore, define

1 = . 9
¢2u’2v(x, y) = _/ el(}—X)gG(ele, el@)de
2T -7
foru < v and ¢y,2,(x,y) =0 foru > v. Set
Ky Qu, x32v, y) = K (2u, £, 20, y) = ¢ 20(x, ).
Then,
P[Qu, x3") € {(2t,hi(2t,2N —1));0 <i < N.|t] < N},
lul < N,1<j<ky]
= det(Ky Qu, x7"; 2v, sz'v))lul,|v|<N,1§i§ku,1§j§kv
foranysz-“ € Z and any k, € {0, ..., N}.
The asymptotic information about the kernel K  needed to prove Theorem 1.3
is contained in two lemmas. The first can be extracted from [7], Chapter 4, and
the proof of the second is provided at the end of this section. Please note that we

make a slight redefinition of the function ¢ from the last section. However, for the
purposes of this text ¢ acts as one and the same.

LEMMA 3.1. Let 1, T’ be any real numbers such that
1
w= TN e,
l -«
1
V= ﬂd_lNZBI' €Zy.
l—«
Let x,y € Z+ and define x', y' by
x=2a(1-a) "N+ —1tHdN'7,
y=2a(l—a) 'N+ (' -t dN'".
For any L € R there exist positive constants, ¢ and C, such that
|KnQu, x; 20, y)| < CN™/3eme@+y)
ifx',y > L.
If 1x'|, 1y'| <log N, then there exists ¢ > 0 such that

le/3EN(2u, X 2U, y) — e((t3_t/3)/3)+y/-[’_x’rZ(T’ x/; f/, y/) + (g(N—C)
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LEMMA 3.2. Letx,y € Z and define x’, y' by
x=2a(l —a)"'N +x'dN'3,
y=2a(l—a) 'N+y dN'/.

Take s > 0, let u ~ N?/3 and define v by

14+«
l—«

v=u-+ d'sNY

where 0 <y < % There exists a constant C > 0 such that

1
¢2u,2v(xv )’) = d—d)(x,’ y/) + ¢E(x/’ y/)

N1/3
where
1 2 y—2/3
x/’ " — e x'=y")*/(4sN )
P T
and
CN_SV/Z,
lpe(x’, ¥ < ¢
N1/3|x/_y/|Ny’
forall x, y.

3.2. Proof of Theorem 1.3. This proof is really a discrete analogue of the proof
of Theorem 1.1. Unfortunately things are more involved in this case where N¥~%/3
plays the role of .

Please recall that J; = uN 4+ ¥ dN'/3, where y = 2a(1 —)™! and g = .
Set Ji=Ji_1+yidN"/*e€Z,i=2,...,m,and

I ={zeZlz> Ji}.

Here the y;’s are arbitrary numbers such that J; € Z. For later convenience we also
define y;,i=1,...,m,by Jy =uN + ;i dN'/3.
We will prove that

Pl#), = =#Jy=1,#L = -=#I,, =0#J, = 1,#I, = 0]
= ¢k, 2k, (J1, 2) - D2k, 1 2K (T—15 Im)
+ QNP TINTY),
This implies Theorem 1.3:

D2k1.2k, (J1, J2) - D2k, 1 2K (Im—15 Im)

L 1T S S -y T S

Nz Vi s, (dNv/2ym=1 (1+0(N"™)
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by Lemma 3.2. The sum of this function over the sets A; is a Riemann sum that is
well approximated by the integral in Theorem 1.3.
Define the finite integer intervals [;, 1 <i <m, by

li={z€Z;Ji <z< |uN]+ N}.
The probability of finding a particle in ; but outside of ; is very small:
PH#I\I)=11< Y Pix=1= Y K(x,x)

xEE\[,' )CE[N,'\],'

= i K(L,uNJ + <1N2/3 + L) dN1/3,
= d dN1/3

1 k
LuN ] + (—N2/3 + —) a’Nl/3>

d dN1/3
2/3 ad 1/3 2/3
< Ce~ /DN / Zefk/(dN By _ (9(6ch /—)'
k=0

This means that we can work with J; instead of I;. We now proceed much like we
did in the proof of Theorem 1.1. If we set

A=#I =1, #, =1},

then
PlA,#I) =---=#1, =01+ P[A,#I, =0, (#, = --- = #I,,, = 0)]
=P[A, #I} = 0],
where
PlA,#1; =0, (#, = --- =#1I,, = 0)°]
:IP)|:A,#11 =0, CJ{#I,- 7&0}]
i=2
< iIP[A,#Il =0,#1; #0] < iP[A,#I,- #+ #11]
i=2 i=2
and

PLA, #1; ##110 =E[Xpn=1) - Xi#sm=1) - Xt 41,)]
=B[#J1 - #Jm - xp1,241,)]
<E[#J) - #]y #]] — #1))2.

The second equality holds since the probability of finding two particles at the same
place is zero.
We need to prove three things:
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1. PlA#11 =0] =2k, 2k, (J1, J2) - D2k, 1 2K (In—15 Imn)

x Pl#J; = 1,#I; = 0]+ O(N~3=¢(n—v/2ym=1y,
2. B #0, (L — #1)°] = O(N e (N 2ymeh,
3. P#J=1,#,=01>CN~'/3.

Before giving the proofs we need some preliminaries.
When summing a function f(x) over, say, /] we can write

Y f= %f(uN+ (11/1 + lel/g)dN”S)’

xel; =1

where 71 ~ N. The next lemma will be frequently used later on.
LEMMA 3.3. There exist constants C|, Co > 0 such that

o0
Y ok/N'3 )N <

k=1

and
N2
Y ppk/N'P x) <CoN77?
k=1

for any x e R.

PROOF.
o0

S pk/N'3, )N

k=1

k=—00
0 00
k _1 1-f _ k—1 _
= /3 1/3 1/3
skZ ¢(N1/3,0>N +¢(N1/3,0)N +Z¢<N1/3’O)N
=—00 k=2
s k

522¢<— 0>N—1/3 +2<C
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and
N2
Y prk/N' x)
k=1
N3_NY 1
Y
=CN ) TN _ &
k=1
xN'B4NY N? 1
=3y/2 -y - -
+C Y N +CN > N
xN13—NY xN134NY
<CN771logN+CN7"?4+CNV1logN <CN~"/2 O

We now turn to the proof of item 1. As in the proof of Theorem 1.1 we get

(3.1) PIA #1; =0]=) a E[#J; - - #J,#1M].
k=0 "

ForO<r <m —1 set

D, (k)
=2k, .2k, (J1, J2) P2k, 2k5(J2, J3) - - P2k, 2K, (Jrs Jrv1) Z
x;el,1<i<k
K(Jr+1,J1)  K(rt1,Jr42) oo K(Jrg1,Im)  K(Jr41,X5)
K(Un, J1)  KUn, Jry2) .. KUm, Jw) KU, xj)
K (xi, J1) K(xi, Jr+2) ... K(xi, Jm) K (xi, x;)

The indicies 7, j run from 1 to k and if r = 0 the (empty) product of ¢-functions
is to be interpreted as 1. Let D (k) be like D, (k) but having K (Jr+1, Jr42) in
position (1, 2) in the matrix. We want to show that

|Do(k) — Dy (k)| < N~V3=¢(N=v/2yn=1(Cp)ktm)/2

which, by the induction argument in the proof of Theorem 1.1, follows if we can
prove that

(3.2) |D, (k)| < N~'B3=c(N—v/2ym=1(Cl)k+tm/2

To show this we shall use Hadamard’s inequality and therefore need to estimate
sums of column elements squared (cf. with the proof of Theorem 1). Lemmas 3.1,
3.2 and 3.3 will be frequently used below.
Column 1:
m k
Y K Ui I+ Y K (i, J) < CN TP (m+ k).
i=r+1 i=1
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Column 2:

m
K2(Ur1, D) + ) K2 Jrp2) <CN“m
i=r+42

and

k
Y K2 (xi, Jrs2)
i=1

k
<SCN P 1+ ¢Ui/dN'P 1 = Y1)

i=1
+ NYBgpUi /AN 91— 12)]

Columns 3,...,m —r (r +3 < j <m), if they exist:

m k
Y KA I+ D> K xi, J) <CN 7Y (k +m).
i=r+1 i=1

Last k columns (1 < j <k):
3 - —~1/3
> K2 xp) + 3 K2 (ix)) < Clk 4 m)N 2N,
i=r+1 i=1

Using Hadamard’s inequality, we get after some manipulations that

T 1
Dyl < Y NNl RN eV

I,enlk=1 i=1

k
x Y [+ ¢Ui/dN'? Yy — Y1)

i=1
+ NP ppli /AN g1 — i) 1.

It follows from Lemma 3.3 that
T
3 eIV Gy AN gy — )N < C
li=1
and also that
T
SN g p (1 /AN Yy — rg2)| < CN TV
li=1

From this we get (3.2).
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To get 1 we also need to show that

) det[K(Jm,Jl) K(Jm,x]')}
K(xi, Ji)  K(xi,xj) li<ij<k

xiel,1<i<k

3.3) — Z det[K(h,h) K(Jl,xj)}
xiely,1<i<k K(xi, J1) K xj) |1<ij<k
+ N71/3fc(9((ck)(k+m)/2)'

Write

l;
x; =N + (1//1 + le/3)dN1/3

and consider first the case 1 <, < N1/3 log N. From Lemmas 2.3 and 3.1 it is
straightforward to deduce that if z = x; or z = Ji, then
K(Um 2)=K(1,2)+OWNT'37).
We now expand the determinant in the sum to the left in (3.3):
det |:K(Jm, J1) K, xj)i|
K(xi, 1) K(xi,xj) Ji<i j<k
:det[K(Jl,Jo K(Jl,xj)}
K(xi, J1)  K(xi,xj) J1<i j<k
k
+ONTP7) 3" detlK (xi, JDK (i, X)i<i, <k jp
p=1
+ONT3) det[K (x;, x ) 1<i, j<k-
We now use Hadamard’s inequality to get
N31ogN

Z |det[ K (x;, JI) K (xi, xj)1<i, j<k, j#p]
li=1

N'B31logN 0
=< Z (CkN_2/3)k/2€_N / U+t 1+l 1+

li=1
< (Ck*?logN
and
NY31logN

> | detlK (xi, xj11<i, <k
li=1

N'31ogN
< Z (CkN—2/3)k/Ze—N_1/3(11+-~-+lk)S(Ck)k/zl
=1
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This takes care of the summation over 1 </[; < N1/3 log N, 1 <i <m. By using
Hadamard’s inequality once more, one readily shows that the contribution coming
from the remaining terms in the sums in (3.3) is small enough to make (3.3) hold.
We now prove item 2. Note that
@ —#1)2 =17+ 1P+ L+ L - 200
By arguing as in the proof of item 1 above we obtain
E[#]) - #u# 1] = dok, 2k, (1, 12) - 92K, 12K Tt )

Ky, J1) K, xg) 1<r,s<k

x1,xk €l
+ @(Nfl/%cfy(mfl)ﬂ)’
where u = 1,7 and k = 1, 2. One also gets
E#Jy - - - #Ju#01#1;] = P2k, 2k, (J1, J2) - - P2k, 1 2K (=1, Im)

K(Jn,J1) K(Un,x) K(n,y)
X Z det|: K(x, J1) K(x,x) K(x,y) :|
xely,yel; Ky, J1) K(y,x) K(y,y)

+ (9(N71/3*C*)/(m71)/2).
We omit the details. Using Lemma 3.1 and Lemma 2.3 one readily gets

Z det[K(vajl) K(Jm’xs)

— E[#J,#1" + @(Nn—1/3¢
K (x;, J1) K(x,,xs)]lfr’sfk [#1#17] + O( )

X1,Xk€1;
fork=1,2 and
K(Jm: J1) K(m,x) K(Im,y)
3 det|: K(x,J1) K@xx) K, y):| E[#i#112] + o (N 7137,
xely,yel; K(y,J)  K@,x) K@,y

We now see that item 2 follows if

Z 2k, 2K; (X, y)det[

xely,yel;
=E[#JJ1#1]+ ON 137,

We shall prove this by showing that both sides are well approximated by integrals.
On the integral containing the function ¢ we can then apply Lemma 2.4.
By using Lemma 3.3 we get rid of the error term associated with ¢g:

I 13
Z —(h+1)/N' n—2/3
ni 1¢E<W1+le/3"”l dN1/3)e B

1,62=

K(Jm"]l) K(Jm’x)i|
K(y,J1) K(y,x)
3.4

N
<C Y BN N < N,
h=1
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The following calculation, again using Lemma 3.3, shows that the main contribu-
tion to the sums in (3.4) comes from summing over 1 </, [ < N3 log N:

N
1/3 i 1/3y ,—(1+h) /N3 \1—2/3
E E ¢(/dN"" Y1 —Yi +1/dN"'")e N
l1=N131og N =1

< i Ce /NP N3 < oNT
1=N13log N
We shall use Euler’s summation formula for two variables:
LEMMA 3.4. Let f(x,y) be a function of two variables such that its partial
derivatives up to second order are continuous in the rectangle
{x,Mla<x=<b,c<y=d}
where a, b, c,d are integers. Then

> Y fom, n>—/ / F(x, y)dxdy

a<m<bc<n<d

b rd

+/ / Folry)(x — |x))dxdy
b pd

+/ / Fo oG — Ly)) dxdy

b prd
+/a / Fey (o) — L))y — Ly))dxdy.

The case that we are interested in is when

Flxoy) = (wl v+ )g(x/de y/ANN,

dN1/3’ dN1/3
where
g (x, M1, lgy (x, Y1, g (x, y)] < Cem 0,

We need to show that the integrals involving the absolute values of fy(x,y),
fy(x,y) and fyy(x,y) are negligible. We only present the details for | fx (x, y)|
here; the other terms are treated similarly:

N'BlogN »N'3logN
/ / | fex, y)ldx dy
0 o0
<@V [ [ £l = g0 dN P, (v = i) dN'P) dxdy
Y1 J

o0 x0
<CcN /w fw (16 (s V)] + S (x, 1)e T+ dx dy.
1 i
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By Lemma (2.4)

o0 o0 .
/ f $(x, y)e~ O dx dy < C.
Y i

The remaining term demands some analysis:

0 o0
/ / b (x, V)& dx dy
1// i

_/ /Oo |x — | 1 eV @NT ) meety) g
12

2NY— 2/3 /47.[Ny—2/3

_ dx(/x+/ )'x_yl !
i v Jx J2NY723 Jag Nv=2/3

x e~ (= ANTZE) —e(ety) gy

e~ ANTTEE) p—eety) g,

I
X

= [ ax([pr e e [T g e ay)
V1 ! Vi

<CN'3 V24 c<CcN'/BP7r/2

We can do the same calculation for the remaining integral. The | f;(x, y)| inte-
gral is hence O(N~1/377/2) and the same goes for the | fy(x, y)| and | fyy(x, y)|
integrals.

Set

AT (x,y) = A(t1, x + 1 11, y + T2).

Applying the above calculations to the left-hand side of (3.4) and using Lemmas
2.2-2.4 and 3.1, we obtain

> ¢k, 2k, (x, ) det [

xely,yel;

K(va‘ll) K(Jma-x)]
K(y,J1) K(y,x)

N1/3logN

1 2
_ 1/3 13
= X Rt AN g (5173)
1,02=

AT (Y1, Y1) e /AN AT () gy 1, /AN Y3)
e BN AT (g 1o JdNB ) AT+ fdNE 4 1 /AN

+OWP
1 / de t[A”(Wl Y1) AT (Y, x)} dx + O(N~1/3¢).

T AN AT (x, ¥ ATH(x, x)



1086 J. HAGG

We get the same expression for the right-hand side of (3.4) when applying Euler’s
summation formula. This concludes the proof of item 2.

Let F>(t) be the Tracy—Widom distribution function corresponding to the largest
eigenvalue of the Gaussian Unitary Ensemble (GUE) [15]. That item 3 is true
follows from the fact that Fz/ (t) > 0Vt (see [15]) together with the next lemma.

LEMMA 3.5. Let J| and Iy be as above. It holds that

P#J; =0, #I} = 0] = ——= Fy (Y + t{) + O(N/3).

1
dAN1/3

PROOF. This will, again, be an exercise in using Hadamard’s inequality. We
have the following representation for F; [see the third equality in (2.14)]:

% (_1)k
(3.5) Fz’(t):z( )/(t )kdet(A(x,-,x,))oS,-,jSkdkx

!
iy K

where xg = ¢. In three steps we will now show that

13 v (=D
AN Y e D det(K (i, x Do,k
k=0 Coxiel,1<i<k

where xo = J; is well approximated by the right-hand side in (3.5). By (3.1) this
will prove the lemma. In steps one and two we will use Lemma 3.1 to insert the
kernel A instead of K. In the last step we show that we can change from summation
to integration.

First we show that we can sum over x; = uN + (Y1 +1; /AN '/3)dN'/? where
1<l <N3 log N, 1 <i <k, instead of over /1. By Hadamard’s inequality and
Lemma 3.1

12
det(K(-xlvx_/))O<l j<k = (1_[ ZK (-xhx_/))

j=0i=

12
< (C(k +1)N~23 ]_[ C(k + 1)N_2/3e_dj/N1/3>

j=1
k
< N‘1/3(C(k+ 1))(k+1)/2 1—[ e—czj/N1/3N—1/3‘
j=0
We have that
00 k l/310gN k
Z He—czj/N1/3N—1/3_ Z 1—[ —cl; /N‘/3 -1/3
=1 j=1 =1 j=1
1<i<k 1<z<k

l/310gN 00

<k ¥ ¥ He_d SNV N3 < ok,
Lh=1 =1 j=1
2<i<k
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Since

o
1
= k!
we see that we can indeed restrict the summation.

In the second step we replace K by A. As before we shall use the notation
AT(x,y)=A(x+ 72, v+ 72).For1 <l < N'/3 log N it holds by Lemma 3.1 that

det(K (x;i, x;))o<i, j<k

1 3 3 .
= iy det(AT GNP [N + O (N )o oy

where we let lo = ¥{dN'/3. If we expand the determinant in the right-hand side
we get (k + 1)? error terms of type

—C

AN det(A™ (l; /AN, 1;/dAN'?) + (9(N—C))Osi’j§k :
0, j7Jo
An application of Hadamard’s inequality together with Lemma 3.1 shows that the
total error we get when changing from K to A™ is of order N ~!/37¢. We omit the
details.
Finally we want to go from summation to integration. To do this we shall use

that
N31ogN
Y. ANU/AN'P AT (p, 1 /dN')

li=1
3.6)

o0
—dN'/3 / AT (2, ) AT (y, 2) dz + O ()
0

and
N31ogN 00

(3.7) > Afl(l,-/le/3,l,»/dN1/3):dN1/3/0 A% (z,2)dz + O(1).
li=1

This follows from the Euler—Maclaurin summation formula and Lemma 2.3. We
will show that

N'Y3logN 1

2 (dN1/3)k+1 det(A™(I; JAN'/3,1;/dN1/3))
l[:l

1<i<k

0<i,j<k

_ 1
- dN1/3

+ (9((Ck)(k+5)/2N_2/3),

(3.8)

o QAT O v ozt vy
,00
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where lp =dN"/ 3% and yg = ¥1. This will prove the lemma since

00
2
k=1

| —

'(Ck)(k”)/z < 0.

=~

Forr =0, ...,k we set

det(A™ (zi, 2j)o<i, j<ks

r

1
= (dN13)k=r+1
where

Y1, i =0,
Zi =3 Yi» 1<i<r,
l;/JdN'3,  r+l1<i<k.

Please note that Dy is what we sum over in (3.8) and that Dy is what we integrate
over. D, should roughly be what we get after having changed summation over
[1, ..., to integration over yi, ..., y,. We can expand D, in such a way that we
get k2 terms of type

1

= anyEr AT Gt /AN AT (g JAN', 2 )
x det(A™(z;, 2j))o<i, j<k
i#r+1,ip
J#r+1,jo

and one term

A" (lpg1 /AN 11 JAN'?) det(A™ (21, 2))o=i, j <k-

(le/S)k—r—H i jr il

We now apply (3.6) and (3.7) and therefore need to deal with the corresponding
errors:

C(N1/3)k—r+1e—z,-0—zjo det(A™ (z;, Zj))0§i,j§k
iig,r+1
J#Jjo.r+1

k 1/2
SC(N1/3)k—’+1e—Zfo‘Zf0< [1 C(k—l)e_"zf)
j=0
J#jo.r+1

k
< (N1/3)k—r+1(c(k _ 1))(k_1)/2 1_[ e_czf.
Jj=1
JjF#Fr+1
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Since

N1/310gN k

d"x el < Ck N1/3 k—(r+l)’
/(O’Ooy SO < CH(N1P3)

li=1 j=l1
r+2<i<k j#r+1

we find that the error from the k2 terms of the first type is estimated by
kZ(C(k _ 1))(k_l)/2N_2/3.

The error coming from the remaining term can be treated in the same way. Chang-
ing from summation over /; to integration over y;, 1 <i <k, hence results in an
error estimated by

as needed. [

PROOF OF LEMMA 3.2. By definition

— )2(v—u)
oo (s y) = (1 =)= /” o =18+ (=) log (14+a> ~2a cos6) 7

2 —
Define
g@) =log(1+ o? —2a cos6)
in [—m, w]. This function is analytic in a neighborhood of zero and a Maclaurin

expansion gives

2(0) =log (1 — ) + ——

(1-a)?
where c4 < 0. It is easy to see that for any § > O there exists &€ > 0 such that

g(0)>log(1 —a)* +¢

0% + c260* + 9(6%)

if |#| > 6. Hence
_ )2
‘/ (1 —q)2v—u o =)0+ —0)g(0) dQ‘ < i/ﬂ SU=VE gg ~ o—ENT
10]>5 21 2w Js
We expect that the main contribution to ¢y, 2, will be

i/a S =00+ u—v)e/(1-2)0 49
2w J—s

- 2L fa ol O/ ANTPO—SEENTE g [ = /5 dN"/0]
T J-§

8/sdN/3
1 /‘ Vs ei(y’—x’)/ﬁt—NV‘mtz dr

T 2 /sdN3 s ssaniss
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1 o0 i()>'—x’)/ﬁt—Ny_2/3t2 —_NY
~ g )¢ o)

1 1 Iy -
e~ @'=y )2/ (4sNY 2/3)+(9(6—NV)‘

T dAN'B JamsNr-21
Below we will analyze the error. For simplicity we take s = 1.
Define h(6) by
o
(1—a)?

g(0) =log(1 —a)* + (6% + h(9)).

This means that

h©) =" hd"

k=4

where h4 < 0. Note that % is even since g is and also that, for § small enough,
h(0) < 0if |0| < 6. The error becomes

8 —xNdN e
Err:‘/ ol /=) F(@)d@',
)

where

_ 2NV P2 _I2NYR2_ 12NV
F0) = e N0 _ (~d*N"O>~d*N"h©)

Next we integrate by parts:

1
[i(y’—X’)de

Err <

)
ei(y'—x’) dN'39 F(0)1|
-4

SRS S ‘fﬁ O =DANT0 pr 9y g
ly/ _xllle/3 _5

3 _dZNy52 1 /8 ’
<— = O Sre— F'(6)]de6.
— |y/_x/|le/3e + |y/_x/|dN1/3 —8| ( )l

The last integral will be easy to compute if we can find out where F’(6) changes
sign:

F'(6) =2d2N)’ge—d2N”(92+h(9))(1 n %@9) _ edZNVh(9)>‘

A point in [—8, 8] \ {0} where F’ changes sign will satisfy

I OR—
d2NY ~ log[1+h(0)/(20)] 2 '



GAUSSIAN FLUCTUATIONS IN THE AIRY PROCESSES 1091

This shows that if N is large, then F’ has two zeros 6y in [—8, 8] \ {0}. More-
over, 6 is of order N~"/2. Given this information, we check which sign F’ has in
different intervals and get

S S
/ |F'(0)|do = 2/ |F'(9)|do
-8 0

b 5

:—f F/(Q)de—i-/ F'(6)dé
0 o

= F(0) — F(6p) + F(8) — F(6o)

=0O(N77Y).

This almost finishes the proof of the second inequality in the lemma. We should not
forget the exponentially small error terms that appeared above. They do not have
the factor |x’ — y’|~! in front of them. However, a couple of partial integrations
can be used to take care of this obstacle.

The first inequality in the lemma follows from the following calculation:

§
f |F(0)|do =6 =;N_V/2]
0

NV/ZS 2.2 2 —y/2 2 —y/2
_ N—y/Z/ oA —d?h(N Y (1 - SENVRANTY ) di
0
/2
< N—V/Z/NV 8e—c1t2(1 _e—CQN_yt4)dt
- 0
NY/2§ ) 4
< N—Wf te™ " (1 —e N Y dr 4+ 9N,
1

We now use partial integration:

N7/28 )
_ _ —v4
/ re 1 (1 —e 2N T qr
1

NY/2s
— |:_ 1 e—C1t2(1 _e—czN_yt4)]
2cq
2
20N~V NP
+ / e cit t3e NVt dt
C1 1

= (N7,

This concludes the calculations in this section as well as in this paper. [
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