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LINEAR AND QUADRATIC FUNCTIONALS OF RANDOM HAZARD
RATES: AN ASYMPTOTIC ANALYSIS

BY GIOVANNI PECCATI1 AND IGOR PRÜNSTER2

Université Paris VI and Università degli Studi di Torino

A popular Bayesian nonparametric approach to survival analysis consists
in modeling hazard rates as kernel mixtures driven by a completely random
measure. In this paper we derive asymptotic results for linear and quadratic
functionals of such random hazard rates. In particular, we prove central limit
theorems for the cumulative hazard function and for the path-second moment
and path-variance of the hazard rate. Our techniques are based on recently
established criteria for the weak convergence of single and double stochas-
tic integrals with respect to Poisson random measures. The findings are il-
lustrated by considering specific models involving kernels and random mea-
sures commonly exploited in practice. Our abstract results are of independent
theoretical interest and can be applied to other areas dealing with Lévy mov-
ing average processes. The strictly Bayesian analysis is further explored in a
companion paper, where our results are extended to accommodate posterior
analysis.

1. Introduction. Survival analysis has been the focus of many contributions
to Bayesian nonparametric theory and practice. Indeed, many statistical prob-
lems arising in the framework of survival analysis require function estimation
and, hence, they are ideally suited for a nonparametric treatment. Essentially, two
closely related lines of research have been pursued: the first is represented by the
introduction of models for the random cumulative distribution function whereas
the second deals with models for the random hazard rate and the random cumula-
tive hazard. As for the former, most proposals fall within the class of neutral to the
right processes due to Doksum [10]; among others, we mention [13–15, 23, 47,
48]. As for the latter, one can distinguish models leading to a cumulative hazard
which is almost surely discrete and models for which it is almost surely absolutely
continuous. The famous beta process derived in Hjort [17] belongs to the first class
along the contributions of, for example, [6, 24–26]. The second class focuses on
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the hazard rate which is modeled as a mixture and has recently received much at-
tention due to a relatively simple implementation in applications. After the seminal
papers [12, 32] important developments dealing also with more general multiplica-
tive intensity models can be found in [18, 20–22, 33, 34], among others. Passing
from a hazard rate function to the corresponding model for the cumulative dis-
tribution function is straightforward if the hazard rate is almost surely absolutely
continuous, but quite subtle otherwise. See [17] and [23], which establishes a nice
link via the notion of spatial neutral to the right process. It is also worth noting
that all models share a common feature, namely, that their basic building block
is represented by an increasing additive process (see [44]) or more generally by a
completely random measure, a notion introduced in [27].

Let us focus attention on hazard rates that are modeled as mixtures. Denote by
U a positive absolutely continuous random variable representing the lifetime and
assume that its random hazard rate is of the form

h̃(t) =
∫

X

k(t, x)μ̃(dx),(1)

where k is a kernel and μ̃ a completely random measure on some space X. The
random measure μ̃ will be often referred to as the background driving random
measure, a terminology introduced in [2], which indicates that μ̃ is acting on latent
feature of the model. The cumulative hazard is then given by H̃ (t) = ∫ t

0 h̃(s) ds.
Note that, given μ̃, h̃ represents the hazard rate of U , that is

h̃(t) dt = P(t ≤ U ≤ t + dt |U ≥ t, μ̃).

From (1), provided H̃ (t) → ∞ for t → ∞ almost surely, one can define a random
density function f as

f̃ (t) = h̃(t) exp(−H̃ (t))

where S̃(t) := exp(−H̃ (t)) is the so-called survival function providing the prob-
ability that U > t . Consequently the random cumulative distribution function of
U is of the form F̃ (t) = 1 − exp(−H̃ (t)). Such models, often referred to as
life-testing models, have been considered in [12] and [32] with μ̃ being an ex-
tended gamma process, also known as weighted gamma process. In [33], instead,
a weighted version of a gamma compound Poisson process was used. Analysis
beyond gamma-like choices of μ̃ was not possible due to the lack of a suitable
and implementable posterior characterization; however, in [22] this goal has been
achieved and many choices for μ̃ can now be explored. See also [18] for a posterior
characterization via S-paths.

In this paper, we provide asymptotic results for random hazard rates constructed
via a mixture approach as in (1). In particular, for i = 1,2,3, we will be interested
in establishing the existence of two positive functions τi(T ) and ηi(T ) such that
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the following central limit theorems (CLTs in the sequel) take place as T → +∞:

η1(T ) × [H̃ (T ) − τ1(T )] law−→ X1(σ1),(2)

η2(T ) ×
[

1

T

∫ T

0
h̃(t)2 dt − τ2(T )

]
law−→ X2(σ2),(3)

η3(T ) ×
[

1

T

∫ T

0
[h̃(t) − H̃ (T )/T ]2 dt − τ3(T )

]
law−→ X3(σ3),(4)

where, for i = 1,2,3, Xi(σi) is a centered Gaussian random variable, with vari-
ance σi depending on the analytic structures of μ̃ and k. For a fixed T > 0, the
random objects T −1 ∫ T

0 h̃(t)2 dt and T −1 ∫ T
0 [h̃(t) − H̃ (T )/T ]2 dt are called, re-

spectively, the (realized) path-second moment and the (realized) path-variance as-
sociated with h̃. As we will point out in the subsequent sections, weak convergence
results such as (2), (3) and (4) give a description of the overall variability of the
hazard rate h̃(t), by providing a synthetic answer to the following crucial ques-
tions: (i) “How fast does the cumulative hazard rate diverge from its long-term
trend τ1(T )?,” (ii) “How fast increases the magnitude of the fluctuations of h̃(t)

above zero?,” and (iii) “How big are the oscillations of h̃(t) around its average
value?.” We stress that our choice of +∞ as a limiting point is mainly conven-
tional, and that one can easily modify our framework to deal with models that live
within a finite window of time by using an appropriate deformation of the time
scale. For instance, one can embed a hazard rate model defined on [0,+∞) into a
finite time interval, by substituting the time parameter T in the previous discussion
with an increasing function of the type log [T ∗/(T ∗ − T )], where T ∗ < +∞ and
0 ≤ T < T ∗. Note that models defined on a finite time interval are more apt to
represent hazard rates associated to the age of a given human population.

To the authors’ knowledge, this represents a completely new line of research.
Indeed, by now, many results have been obtained in terms of consistency of pos-
terior distributions. See [16] for an exhaustive account. However, little is known
about the distributional behavior of the prior ingredients of a Bayesian nonpara-
metric model such as (1), in particular with reference to functionals of statistical
relevance. In the more conventional setup of random probability measures, instead
of the one concerning hazard rates considered here, the first results on linear func-
tionals of the Dirichlet process were achieved in the pioneering paper of Cifarelli
and Regazzini [5], whereas the variance functional is studied in [4] and [41]. One
may try to adopt the approach of [42] based on Gurland’s inversion formula to
derive expressions for the distribution of linear functionals of general random haz-
ards as in (1), but to tackle quadratic functionals seems impossible to date. In light
of these considerations, it seems important to remark that, despite the theoretical
relevance of our asymptotic results, they also turn out to be helpful in terms of prior
specification: on one hand they can serve as a guide for deciding which particular
completely random measure μ̃ to use for defining the model (1) and on the other
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hand, once μ̃ is chosen, provide hints for selecting the parameters of μ̃. Indeed, up
to now these two steps were carried out in a conventional way, leaving aside the
problem of properly incorporating prior knowledge, in particular with respect to
the choice of μ̃. A first contribution highlighting the different clustering behaviors
induced by alternative random measures in the context of mixtures for Bayesian
density estimation is provided in [30]. See also [19].

It is important to remark that our results can be extended to the posterior case.
More precisely, in [7] analogous CLTs for linear and quadratic functionals of ran-
dom hazard rates are proved, after conditioning on an arbitrarily large (fixed) num-
ber of observations. One of the main findings in [7] is that, for the most widely used
models, the CLTs associated with the posterior hazard rate are exactly the same as
the prior ones. This is proved by combining the results of the present paper with
the aforementioned general posterior characterization of random hazards of James
[22]. In particular, James’ theory allows to successfully tackle the fact that the
models we are considering are not conjugate. More details are given in Section 5.

Before providing an outline of the paper, we shall also stress that our results can
be of potential interest in other areas where moving averages of Lévy processes
appear, such as finance (see, e.g., [2]) or telecommunications modeling (see, e.g.,
[50]).

The paper is structured as follows. In Section 2 we introduce some basic con-
cepts and notation. In Section 3 we state the main results concerning linear and
quadratic functionals of random hazard rates. In particular, we derive CLTs for the
cumulative hazard function and for the path-second moment and path-variance of
the hazard rate. Moreover, we provide a useful comparison theorem which allows
to bypass the verification of the most delicate conditions thus leading to obtain
CLTs for hazard rates based on complex kernels or random measures. Section 4 is
devoted to applications: we consider specific models involving kernels and random
measures commonly exploited in practice and analyze their asymptotic behavior in
detail. Section 5 briefly describes the extension to the posterior case developed in
[7]. In Section 6 the proofs of our results are provided and further useful techniques
described. Section 7 contains some concluding remarks together with possible ex-
tensions and an outline of future work.

2. Basic concepts and notation. We start by introducing the main concepts
and notation employed throughout the paper. Consider a measure space (X,X ),
where X is a complete and separable metric space and X is the usual Borel
σ -field. Introduce a Poisson random measure Ñ , defined on some probability
space (�,F ,P) and taking values in the set of nonnegative counting measures
on (R+ × X,B(R+) ⊗ X ), with nonatomic intensity measure ν, that is,

E[Ñ(dv, dx)] = ν(dv, dx)

and, for any A ∈ B(R+) ⊗ X such that ν(A) < ∞, Ñ(A) is a Poisson random
variable of parameter ν(A). Moreover, given any finite collection of pairwise dis-
joint sets, A1, . . . ,Ak , in B(R+) ⊗ X , the random variables Ñ(A1), . . . , Ñ(Ak)
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are mutually independent. Throughout the paper, E[·] will denote expectation with
respect to P. Moreover, the intensity measure ν must satisfy∫

R+
(v ∧ 1)ν(dv,X) < ∞

where a ∧ b = min{a, b}. See [8] for an exhaustive account on Poisson random
measures.

Recall that, according to, for example, [8], a Borel measure μ on some Polish
space endowed with the Borel σ -algebra is said to be boundedly finite if μ(A) <

+∞ for every bounded measurable set A. Let now (M,B(M)) be the space of
boundedly finite measures on (X,B(X)). We suppose that M is equipped with the
topology of vague convergence and that B(M) is the corresponding Borel σ -field.
Let μ̃ be a random element, defined on (�,F ,P) and with values in (M,B(M)),
which can be represented as a linear functional of the Poisson random measure Ñ

(with intensity ν) as follows:

μ̃(B) =
∫

R+×B
sÑ(ds, dx) ∀B ∈ B(X).

It can be easily deduced from the properties of Ñ that μ̃ is, in the terminology of
[27], a completely random measure (CRM) on X, that is:

(i) μ̃(∅) = 0 a.s.-P;
(ii) for any collection of disjoint sets in B(X), denoted as B1,B2, . . . , the

random variables μ̃(B1), μ̃(B2), . . . are mutually independent and μ̃(
⋃

j≥1 Bj) =∑
j≥1 μ̃(Bj ) holds true a.s.-P.

Now let Gν be the space of functions g : X → R+ such that
∫
R+×X[1 −

e−sg(x)]ν(ds, dx) < ∞. Then, the law of μ̃ is uniquely characterized by its
Laplace functional which, for any g in Gν , is given by

E
[
e− ∫

X
g(x)μ̃(dx)] = exp

{
−

∫
R+×X

[
1 − e−sg(x)]ν(ds, dx)

}
.(5)

For details and further references on CRMs see [28]. From (5) it is apparent that
the law of the CRM μ̃ is completely determined by the corresponding intensity
measure ν. This suggests a simple and useful distinction of the random measures
we deal with, according to the decomposition of ν. Letting λ be a nonatomic and
σ -finite measure on X, we have:

(a) if ν(dv, dx) = ρ(dv)λ(dx), for some measure ρ on R+, we say that the
corresponding Ñ and μ̃ are homogeneous;

(b) if ν(dv, dx) = ρ(dv|x)λ(dx), where ρ :B(R+)×X → R+ is a kernel [i.e.,
x �→ ρ(C|x) is B(X)-measurable for any C ∈ B(R+) and ρ(·|x) is a σ -finite
measure on B(R+) for any x in X], we say that the corresponding random mea-
sures Ñ and μ̃ are nonhomogeneous.
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In the sequel we consider CRM μ̃ whose intensity measures satisfy∫
R+×X

ρ(dv|x)λ(dx) = +∞.(H1)

In the homogeneous case, (H1) reduces to max{ρ(R+); λ(X)} = +∞, which is
tantamount to requiring either infinite activity of μ̃, that is, μ̃ jumping infinitely
often on any bounded A ∈ X , or to considering μ̃ with unbounded support S such
that λ(S) = +∞. In the nonhomogeneous case, for (H1) to hold it is enough that
μ̃ jumps infinitely often on some bounded set of positive λ-measure. It is clear that
(H1) is met by the CRM usually considered in the literature. In the subsequent sec-
tions, as illustrations of our general results, we will consider the following CRMs:

1. Generalized gamma CRM: its intensity measure is homogeneous and given by

ν(dv, dx) = 1

	(1 − σ)

e−γ v

v1+σ
dv λ(dx)(6)

where σ ∈ (0,1) and γ > 0. This class, studied in [3], can be characterized as
the tilted exponential family generated by the positive stable laws. It includes
the inverse Gaussian CRM for σ = 1/2 and the gamma CRM as σ → 0. The
case σ < 0, corresponding to the so-called compound gamma CRM, is dis-
cussed in [33].

2. Extended gamma CRM: its nonhomogeneous intensity measure is of the form

ν(dv, dx) = e−β(x)v

v
dv λ(dx)(7)

where β is a strictly positive function on X. This class dates back to [12, 32].
See also [31]. The gamma CRM arises if β is constant.

3. Beta CRM: its nonhomogeneous intensity measure is given by

ν(dv, dx) = I(0,1)(v)c(x)
(1 − v)c(x)−1

v
dv λ(dx)(8)

where c is some strictly positive function on X and IA stands for the indicator
function of set A. Note that the class of beta CRM, which is due to [17], has the
particularity of allowing only jumps of sizes less than 1.

Having settled the basics regarding the background driving CRM in (1), we
now have to define the kernel: k is a jointly measurable application from R+ × X

to R+, such that
∫
X k(t, x)λ(dx) < +∞ and

∫
· k(t, x) dt is a σ -finite measure on

B(R+) for any x in X. Given these two ingredients, the random hazard rate in (1)
is properly defined.

A further technical assumption we will make throughout the paper is repre-
sented by the following conditions:∫

R+×X

k(t, x)j vjρ(dv|x)λ(dx) < +∞ ∀t, j = 1,2,4;
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[0,T ]

∫
R+×X

k(t, x)jvjρ(dv|x)λ(dx)dt < +∞ ∀T > 0, j = 1,2,4.(H2)

If, for j = 1,2,4, the application x �→ ∫
R+ vjρ(dv|x) is bounded by some finite

constant (which is typically the case), then the first condition in (H2) reduces to
requiring that the function x �→ k(t, x)j is integrable with respect to λ for every t ,
whereas the second line of (H2) boils down to the assumption that the applica-
tion (t, x) �→ k(t, x) is an element of

⋂
j=1,2,4 Lj([0, T ] × X, dt λ(dx)) for every

T > 0. Hence, in the uniformly bounded case (H2) is a condition not involv-
ing the CRM, but just the kernel. Moreover, it is easy to see that the quantity∫
R+ vjρ(dv|x), j = 1,2,4, is bounded in x whenever ρ(dv|x) is associated to

one of the three classes of CRMs defined above [see (6), (7) and (8)]. We shall
also note that, in the homogeneous case, (H2) implies that

∫
R+ vjρ(dv) < +∞,

j = 1,2,4. An example of a homogeneous CRM which does not meet (H2) is
the stable CRM for which ρ(dv) = v−1−σ dv and σ ∈ (0,1). Note that the stable
CRM can be recovered from the generalized gamma class by allowing γ = 0 in
(6); we have excluded this possibility since it does not meet (H2).

REMARK 2.1. We conjecture that the results proved in this paper could be
further generalized, in order to accommodate the analysis of the stable case [corre-
sponding to the choice of γ = 0 in (6)]. One possible direction is indicated in [22],
page 1785. In such a reference it is indeed shown that every random hazard rate h̃

of the type (1) can be coupled with an ancillary random hazard h∗, verifying the
relation: for every t ,

L (h∗(t)) = L
(
h̃(t)|U ≥ t

)
,

where L indicates the law of a given random variable. A remarkable feature of
the random hazard rate h∗ is that it displays the same kernel k as h̃, integrated
with respect to a CRM with time-dependent intensity, obtained via an “exponential
correction” of the intensity associated with h̃. In the particular case of a stable
background driving measure, the time-dependent intensity associated with h∗(t)
takes the form

νt (dv, dx) = C × exp (−vk∗
t (x))v−σ−1 dv λ(dx),

where C is a suitable constant, and

k∗
t (x) =

∫ t

0
k(s, x) ds.

Observe that, for fixed t , this corresponds to a gamma-type intensity of the kind
considered in (6), where γ = k∗

t (x) > 0. The idea would be therefore to study
linear and quadratic functionals of h̃, by first resorting to those of the associ-
ated rate h∗. An additional difficulty would be of course the presence of time-
dependency into the background driving CRM. This topic will be the object of a
separate research.
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2.1. Further notation. For q,p ≥ 1, we note

Lp(νq) = Lp((R+ × X)q, (B(R+) ⊗ X )q, νq)

the Banach space of real-valued functions f on (R+ × X)q , such that |f |p is inte-
grable with respect to νq := ν⊗q . We will systematically write Lp(ν1) = Lp(ν) for
p ≥ 1. The symbol L2

s (ν
2) is used to denote the subspace of L2(ν2) composed of

symmetric functions on (R+ ×X)2. By symmetric, we mean that every f ∈ L2
s (ν

2)

is such that f (s, x; t, y) = f (t, y; s, x) for every (s, x), (t, y) ∈ R+ ×X. As an ex-
ample of function in L2(ν2), one can take

f (s, x; t, y) = IA(s, x)IB(t, y),

where A,B ∈ B(R+) ⊗ X are such that ν(A) < ∞ and ν(B) < ∞, whereas a
symmetric function in L2

s (ν
2) is, for instance,

f (s, x; t, y) = IA(s, x)IB(t, y) + IA(t, y)IB(s, x),

where the sets A and B are as above. We also write L2
s,0(ν

2) to indicate the subset
of L2

s (ν
2) composed of symmetric functions vanishing on diagonals, that is, such

that their support is contained in the purely nondiagonal set D2
0 = {(s, x; t, y) :

(s, x) �= (t, y)}.
We now turn to the definition of three basic auxiliary kernels which are associ-

ated to a given f ∈ Ls(ν
2):

(i) the kernel f �0
1 f is defined on (R+ × X)3 and is given by

f �0
1 f (t1, x1; t2, x2; t3, x3) = f (t1, x1; t2, x2)f (t2, x2; t3, x3);(9)

(ii) f �1
1 f is defined on (R+ × X)2 and is actually a contraction equal to

f �1
1 f (t1, x1; t2, x2) =

∫
R+×X

f (t1, x1; s, y)f (s, y; t2, x2)ν(ds, dy);(10)

(iii) f �1
2 f is defined on (R+ × X) and is given by

f �1
2 f (t, x) =

∫
R+×X

f (t, x; s, y)2ν(ds, dy).(11)

Note that, by the Cauchy–Schwarz inequality and by the symmetry and square-
integrability of f , the kernel f �1

1 f is necessarily an element of L2
s (ν

2). The
three kernels defined above are the fundamental building blocks to obtain explicit
expressions for the moments and the cumulants of the linear and quadratic func-
tionals associated with random hazard rates (when they exist). Such expressions
enter implicitly in the statements of the subsequent results, and are mainly of a
combinatorial nature. We refer the reader to [43] for an exhaustive analysis of the
combinatorial machinery underlying the construction of stochastic integrals with
respect to completely random measures.
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In the subsequent sections it will be often convenient to work with the com-
pensated Poisson random measure canonically associated to Ñ . Such an object is
indicated by

Ñc = {Ñc(A) :A ∈ B(R+) ⊗ X },(12)

and is formally defined as the unique CRM on (R+ × X,B(R+) ⊗ X ) such that

Ñc(A) = Ñ(A) − ν(A)(13)

for every set A of finite ν-measure. For every g ∈ L2(ν), we denote by

Ñc(g) =
∫

R+×X

g(s, x)Ñc(ds, dx)

the Wiener–Itô integral of g with respect to Ñc. We recall that, for every g ∈ L2(ν),
Ñc(g) is a centered and square-integrable random variable with an infinitely divis-
ible law, such that, for every λ ∈ R,

E
[
eiλÑc(g)] = exp

{∫
R+×X

[
eiλg(s,x) − 1 − iλg(s, x)

]
ν(ds, dx)

}
(14)

[compare with (5)]. Moreover, for every f,g ∈ L2(ν), one has the isometric prop-
erty

E[Ñc(f )Ñc(g)] =
∫

R+×X

f (s, x)g(s, x)ν(ds, dx) := (f, g)L2(ν).(15)

Note that (5), (14) and the isometric property (15) imply that, for every g ∈ L2(ν)∩
L1(ν),

E[Ñ(g)] =
∫

R+×X

g(s, x)ν(ds, dx),(16)

Var[Ñ(g)] = Var[Ñc(g)] =
∫

R+×X

g(s, x)2ν(ds, dx).(17)

3. Main results: CLTs for linear and quadratic functionals. In what fol-
lows, we shall develop several techniques, allowing to study the asymptotic be-
havior of linear and quadratic functionals associated to the random hazard rate
h̃(t) appearing in (1). Concerning quadratic functionals, we will be mainly inter-
ested in the path-variance and the path-second moment of h̃(t). As will be clarified
in Section 6, our approach exploits the fact that any quadratic functional of h̃ can
be (uniquely) represented as a linear combination of its expectation and of the
following two random elements: (i) the stochastic integral of a deterministic ker-
nel with respect to Ñc, and (ii) the double Wiener–Itô integral of a deterministic
bivariate kernel with respect to the stochastic product measure associated to Ñc.
According to the results proved in [38] (see Section 6.1), the joint (weak) conver-
gence of single and double Poisson integrals can be characterized in terms of the
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asymptotic negligibility of deterministic contraction kernels. We will show that
such contractions are indeed explicit functionals of the kernel k defining h̃. We
shall first state the main general results of the paper, and then describe in detail
several applications. The proofs are deferred to Section 6.

Consider the random hazard rate h̃ defined in formula (1), and assume that the
intensity of the underlying Poisson CRM Ñ verifies (H1), and that the positive
kernel k satisfies (H2). Moreover, for every T > 0 define the kernel

k
(0)
T (s, x) = s

∫ T

0
k(t, x) dt, (s, x) ∈ R

+ × X.(18)

Our first result concerns the asymptotic behavior of the cumulative hazard rate
H̃ (T ) = ∫ T

0 h̃(t) dt .

THEOREM 1. Suppose that: (i) k
(0)
T ∈ L3(ν) for every T , and (ii) there exists

a strictly positive function T �→ C0(k, T ), such that, as T → +∞,

C2
0(k, T ) ×

∫
R+×X

[
k
(0)
T (s, x)

]2
ν(ds, dx) → σ 2

0 (k) > 0,(19)

C3
0(k, T ) ×

∫
R+×X

[
k
(0)
T (s, x)

]3
ν(ds, dx) → 0.(20)

Then,

C0(k, T ) × [
H̃ (T ) − E[H̃ (T )]] law−→X,(21)

where X ∼ N (0, σ 2
0 (k)).

Note that conditions (19)–(20) only involve the analytic form of the kernel k,
and do not make any use of the asymptotic properties of the law of the process
h̃(t), such as, for example, mixing. We now focus on the limiting behavior of
the quadratic functionals associated to the random hazard rate h̃. To this end, we
associate to k(·, ·), and to each T > 0, the three auxiliary kernels:

k
(1)
T (s, x; t, y) = st

T

∫ T

0
k(u, x)k(u, y) du,(22)

k
(2)
T (s, x) = s2

T

∫ T

0
k(u, x)2 du,(23)

k
(3)
T (s, x) =

∫
R+×X

k
(1)
T (s, x;u,w)ν(du, dw).(24)

The kernel k
(2)
T can be obtained by restricting k

(1)
T to the diagonal set {(s, x; t, y) :

(s, x) = (t, y)}. We will see in Section 6 that the kernels k
(·)
T are intimately related

to the objects defined in formulas (9)–(11). Note that, due to assumption (H2) and
the Jensen and Cauchy–Schwarz inequalities, k

(1)
T ∈ L2

s (ν
2) ∩ L4(ν2), and also
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k
(2)
T ∈ L2(ν). The following theorem provides a CLT for the path-second moment

of random hazard rates.

THEOREM 2. Suppose that k
(3)
T ∈ L2(ν) ∩ L1(ν), k

(2)
T ∈ L3(ν) and that there

exists a strictly positive function C1(k, T ) such that the following asymptotic con-
ditions are satisfied as T → +∞:

1. 2C2
1(k, T )

∥∥k(1)
T

∥∥2
L2(ν2) → σ 2

1 (k) > 0;
2. C4

1(k, T )
∥∥k(1)

T

∥∥4
L4(ν2) → 0;

3. C4
1(k, T )

∥∥k(1)
T �1

1 k
(1)
T

∥∥2
L2(ν2) → 0;

4. C4
1(k, T )

∥∥k(1)
T �1

2 k
(1)
T

∥∥2
L2(ν) → 0;

5. C2
1(k, T )

∥∥k(2)
T + 2k

(3)
T

∥∥2
L2(ν) → σ 2

2 (k) > 0;
6. C3

1(k, T )
∥∥k(2)

T + 2k
(3)
T

∥∥3
L3(ν) → 0.

Then,

C1(k, T ) ×
{

1

T

∫ T

0
h̃(t)2 dt − 1

T

∫ T

0
E[h̃(t)2]dt

}
law−→X,(25)

where X ∼ N (0, σ 2
1 (k) + σ 2

2 (k)).

Note that∥∥k(3)
T

∥∥
L1(ν) =

∫
R+×X

∫
R+×X

k
(1)
T (s, x;u,w)ν(du, dw)ν(ds, dx)

= 1

T

∫ T

0

(∫
R+×X

sk(t, x)ν(ds, dx)

)2

dt.

Also, by applying formulas (16) and (17) (for every t > 0) in the case h(s, x) =
sk(t, x), one obtains that

1

T

∫ T

0
E[h̃(t)2]dt = 1

T

∫ T

0

(∫
R+×X

sk(t, x)ν(ds, dx)

)2

dt

(26)

+ 1

T

∫ T

0

∫
R+×X

s2k(t, x)2ν(ds, dx) dt.

The next theorem combines Theorems 1 and 2 to deal with path-variances of
random hazard rates.

THEOREM 3. Suppose that h̃ is such that assumptions (19)–(20) are verified,
and conditions 1–6 of Theorem 2 are satisfied. If there exists a constant δ(k) ≥ 0
such that, as T → +∞:

1. C1(k, T )/(T C0(k, T ))2 → 0;
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2. 2C1(k, T )E[H̃ (T )]/(T 2C0(k, T )) → δ(k);
3.

∥∥C1(k, T )
(
k
(2)
T + 2k

(3)
T

) − δ(k)C0(k, T )k
(0)
T

∥∥2
L2(ν) → σ 2

3 (k) ≥ 0,

then,

C1(k, T ) ×
{

1

T

∫ T

0

[
h̃(t) − H̃ (T )

T

]2
dt − 1

T

∫ T

0
E[h̃(t)2]dt + E[H̃ (T )]2

T 2

}

= C1(k, T ) ×
{

1

T

∫ T

0

[
h̃(t) − H̃ (T )

T

]2

dt(27)

− 1

T

∫ T

0
E

[
h̃(t) − E(H̃ (T ))

T

]2

dt

}
law−→X,

where X ∼ N (0, σ 2
1 (k) + σ 2

3 (k)).

In view of (17), one also has that

1

T

∫ T

0
Var(h̃(t)) dt = 1

T

∫ T

0

∫
R+×X

s2k(t, x)2ν(ds, dx) dt.

To conclude this subsection, we state a useful comparison theorem for random
hazard rates. To this end, consider two completely random Poisson measures (on
R+ ×X) N and N , as well as positive kernels k and k. The σ -finite and nonatomic
intensity measures of N and N are denoted by ν and ν, respectively. We assume
that ν and ν both verify (H1), and that k and k satisfy (H2). Finally, we suppose
that, for every B ∈ (B(R+) ⊗ X ),

ν(B) ≤ ν(B),

and, for every (t, x) ∈ R+ × X,

k(t, x) ≤ k(t, x).

Throughout the paper, for strictly positive sequences {an} and {bn}, we write an ∼
bn if there exists c ∈ (0,+∞) such that an/bn → c, as n → ∞.

THEOREM 4. Suppose that the pair (ν, k) entering the definition of the ran-
dom hazard h̃ in (1) is such that, for every B ∈ (B(R+) ⊗ X ), ν(B) ≤ ν(B) ≤
ν(B) and, for every (t, x) ∈ R+ × X, k(t, x) ≤ k(t, x) ≤ k(t, x). Then, the follow-
ing three comparison criteria hold.

(A) Assume that the two kernels k and k, with ν and ν substituting ν, sat-
isfy the conditions (19)–(20) for some appropriate positive functions C0(k, T ) and

C0(k, T ) and constants σ 2
0 (k) and σ 2

0 (k). Suppose also that C0(k, T ) ∼ C0(k, T ),
and consider a positive function C0(k, T ) such that C0(k, T ) ∼ C0(k, T ). Then,
for every diverging sequence Tn → +∞, there exists a subsequence Tn′ such that
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the CLT (21) holds as n′ → +∞, with Tn′ substituting T , where X is a centered
Gaussian random variable whose variance depends on the choice of C0(k, T ) and
on n′.

(B) Assume that k and k, with ν and ν substituting ν, satisfy conditions 1–6
of Theorem 2 for some positive functions C1(k, T ) and C1(k, T ) and constants

σ 2
j (k) and σ 2

j (k), j = 1,2. Assume, moreover, that C1(k, T ) ∼ C1(k, T ), and se-

lect a positive function C1(k, T ) such that C1(k, T ) ∼ C1(k, T ). Then, for every
sequence Tn → +∞, there exists a subsequence Tn′ such that the CLT (25) is ver-
ified (for n′ → +∞ and with Tn′ substituting T ), where X is a centered Gaussian
random variable whose variance depends on C1(k, T ) and n′.

(C) Suppose that k, k, Cj(k, T ), Cj (k, T ) and Cj(k, T ) (j = 0,1) satisfy the
assumptions pinpointed in parts (A) and (B), and suppose that they also meet the
conditions 1–3 of Theorem 3. Then, for every sequence Tn → +∞, there exists a
subsequence Tn′ such that the CLT (27) holds, for n′ → +∞ and with Tn′ substi-
tuting T .

REMARK 3.1. The conclusions of Theorem 4 are less precise than those of
Theorems 1–3, in the sense that they only apply to subsequences Tn′ . Of course,
this is due to the fact that, in the statement of Theorem 4, we do not make any
assumption on the analytic properties of k and ν, besides the conditions k ≤ k ≤
k and ν ≤ ν ≤ ν. As will become clear in the subsequent sections, more exact
information can be deduced by adding some specific requirements to the structure
of k and ν.

4. Applications. We will now consider noteworthy examples of random haz-
ard rates by specifying suitable kernels and the form of the background driving
CRM. In the following we will always consider CRMs with λ being the Lebesgue
measure on R+, which appears a natural choice in our context. This implies that
assumption (H1) is met. Section 4.1 is devoted to the study of the asymptotic be-
havior of the cumulative hazard H̃ , whereas in Section 4.2 we deal with quadratical
functionals of the hazard rate.

4.1. Asymptotics for the cumulative hazard. As an illustration of Theorem 1,
we consider different kernels and show how they are responsible for the rate of
divergence of the cumulative hazard and how they influence the variance of the
limiting Gaussian random variable in the CLT (21). We first consider general ho-
mogeneous CRM such that

∫
[1,∞) v

4ρ(dv) < ∞, which is tantamount to requiring
the part of condition (H2) involving the jump component of the Poisson inten-
sity to be satisfied. Moreover, set, for notational convenience, K

(i)
ρ = ∫ ∞

0 s2ρ(ds),

i = 1,2, and Ii = Ii(T ) = ∫
R+×X[k(0)

T (s, x)]iν(ds, dx) for i = 1,2,3. Note that
I1(T ) = E[H̃ (T )].
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(i) Rectangular kernel. The kernel k(t, x) = I(|t−x|≤τ) where τ > 0 represents
a bandwidth, is known as a uniform rectangular kernel. Such a kernel represents
a sensible choice when no prior information on the shape of the hazard rate is
available. See, for example, [20]. In this setup (H2) is clearly met,

k
(0)
T (s, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(x + τ), 0 < x < τ ,
s2τ, τ ≤ x < T − τ ,
s[T + τ − x], T − τ ≤ x < T + τ ,
0, elsewhere,

and k
(0)
T (s, x) ∈ L3(ν) for all T > 0. We also have, as T → ∞, I1(T ) =

K
(1)
ρ {2T τ − 1

2τ 2} = 2τK
(1)
ρ T + o(T 1/2), I2(T ) ∼ 4K

(2)
ρ τ 2T and I3(T ) ∼ cT for

some c > 0. Hence, (19) and (20) are satisfied with C0(k, T ) = T −1/2 and, by
Theorem 1, we obtain

1√
T

[
H̃ (T ) − 2τK(1)

ρ T
] law−→X,(28)

where X ∼ N (0,4K
(2)
ρ τ 2).

(ii) Dykstra–Laud kernel. If k(t, x) = I(0≤x≤t), then the random hazard rate is
monotone increasing. Such a kernel, which is widely exploited in practice, was
first proposed in [12]. It is easy to see that (H2) is satisfied and that k

(0)
T (s, x) =

s(T − x)I(0≤x≤T ) ∈ L3(ν) for all T > 0. Moreover, one obtains I1 = K
(1)
ρ

2 T 2, I2 =
K

(2)
ρ

3 T 3 and I3 = K
(2)
ρ

4 T 4, so that (19) and (20) are met with C0(k, T ) = T −3/2.
Hence, by Theorem 1, we have

1

T 3/2

[
H̃ (T ) − K

(1)
ρ

2
T 2

]
law−→X,(29)

where X ∼ N (0,
K

(2)
ρ

3 ). Note that the Dykstra–Laud cumulative hazard has a
quadratic asymptotic trend, whereas the trend obtained from a rectangular kernel is
linear. Moreover, the speed at which the Dykstra–Laud cumulative hazard diverges
from its trend is significantly faster than in the rectangular case. The reason may
be that the former produces monotone increasing hazard rates whereas the latter
does not. This phenomenon, well exemplified by our result, should be taken into
account when deciding which kernel to adopt.

(iii) Ornstein–Uhlenbeck kernel. If k(t, x) = √
2κ exp(−κ(t −x))I(0≤x≤t), then

the random hazard rate is an Ornstein–Uhlenbeck-type process. Such models for
the hazard rate are employed in [33, 34]. In this case, (H2) is met, k

(0)
T (s, x) =

s
√

2/κ(1 − e−κ(T −x))I(0≤x≤T ) ∈ L3(ν) for all T > 0, and we have that, as T

diverges to infinity, I1(T ) = K
(1)
ρ

√
2/κ{T + e−T /κ − κ−1} = K

(1)
ρ

√
2/κT +

o(T 1/2), I2(T ) ∼ 2K
(2)
ρ

κ
T and I3(T ) ∼ cT for some constant c > 0. Hence,
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(19) and (20) are satisfied with C0(k, T ) = T −1/2. From Theorem 1 it follows
that

1√
T

[
H̃ (T ) − K(1)

ρ

√
2

κ
T

]
law−→X,(30)

where X ∼ N (0,
2K

(2)
ρ

κ
). One may note that the trend and the rate of diver-

gence from the trend associated with the Ornstein–Uhlenbeck kernel coincide with
those arising from the rectangular kernel. Moreover, given the same background
driving CRM, the variances of the limiting Gaussian random variables appearing in
(28) and (30) coincide if the parameters are chosen in such a way that κ = 1/(2τ 2).

(iv) U-shaped or bathtub kernel. If k(t, x) = I(|t−β|≥x) with β > 0, then the
corresponding hazard rates are U-shaped with minimum at β . Such a kernel is
suggested by [32]. See also [20, 21]. It is easy to check that (H2) is met,

k
(0)
T (s, x) =

⎧⎨⎩
s(T − 2x), 0 < x < β,
s[T − (β + x)], β ≤ x < T − β,
0, elsewhere,

and k
(0)
T (s, x) ∈ L3(ν) for all T > 0. Moreover, as T → +∞, I1(T ) = 1

2K
(1)
ρ T 2 +

o(T 3/2), I2 ∼ K
(2)
ρ

3 T 3 and I3 ∼ cT 4 for some constant c > 0. Choosing C0(k, T ) =
T −3/2, (19) and (20) are satisfied and from Theorem 1 we deduce

1

T 3/2

[
H̃ (T ) − 1

2
K(1)

ρ T 2
]

law−→X,(31)

where X ∼ N (0,
K

(2)
ρ

3 ). Note that the bathtub kernel produces the same asymp-
totic behavior as the Dykstra–Laud kernel; this fact is not surprising since after
reaching its minimum in β , also the bathtub kernel is monotone increasing. Of
course, one can regard the Dykstra and Laud kernel as a degenerate bathtub ker-
nel, corresponding to the case β = 0.

As apparent from the statement of Theorem 1 and from the discussion provided
above, the variances of the limiting Gaussian random variables appearing in (21),
(28), (29), (30) and (31) always depend on the jump part of the Poisson intensity.
For instance, if μ̃ is the generalized gamma CRM with intensity (6), then K

(2)
ρ =

(1−σ)

γ 2−σ . This confirms the empirical finding, used in tuning the prior parameters,
that a small γ induces a large variance. To avoid confusion, note that in the setting
of, for example, [20] β = 1/γ and, hence, their claim that a large β induces a
noninformative prior is coherent with our result. As for σ , the variance is maximal
in σ = 0 if γ ≤ e, whereas it is maximized in σ = (log(γ ) − 1)/ log(γ ) if γ ≥ e.

Let us now turn attention to hazards based on nonhomogeneous CRM, specif-
ically the extended gamma and beta CRMs presented in Section 2. From (7) and
(8) one can see that their nonhomogeneity is due to the strictly positive functions
β and c, respectively. According to their structure we distinguish three cases:
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Case a. If β(x) = β̄ in (7) and c(x) = c̄ in (8), the CRMs become homogeneous
and the previous results hold with K

(2)
ρ equal to 1/β̄2 and 1/(1 + c̄), respectively.

Case b. If β (or c) are bounded by some finite constant M , then one can apply
Theorem 4 to conclude that C0(k, T ) has the same order as in the examples above,
thus depending on the choice of the kernel. Moreover, if β (or c) are eventually
nondecreasing (nonincreasing), the convergence holds for any diverging sequence
Tn with the variance of the limiting Gaussian random variable depending on the
choice of β (or c) taking value in the range [σ 2

0 (k), σ 2
0 (k)].

Case c. If β (or c) diverge to +∞ as x → +∞, quite interesting phenomena
appear, which shed some light on the possible use of the factor of nonhomogeneity
represented by the functions β (or c). Set, for i = 1,2,3, K

(i)
ρ (x) = ∫ ∞

0 siρ(ds|x),

so that Ii becomes
∫
X K

(i)
ρ (x)[∫ T

0 k(t, x) dt]i dx. For both CRMs, a diverging β

(or c) implies that K
(2)
ρ (x) → 0; this, indeed, affects the asymptotic behavior of

the cumulative hazard H̃ . We shall now present some more specific estimates.
(c1) Consider the Dykstra and Laud kernel combined with an extended gamma

CRM such that β(x) ∼ √
x as x → ∞: it follows that I2 ∼ log(T )T 2 and I3 ∼

dT 3 for some constant d > 0. Hence, (19) and (20) are satisfied with C0(k, T ) =
(
√

log(T )T )−1 and, by Theorem 1, we have

1√
log(T )T

[
H̃ (T ) − E[H̃ (T )]] law−→X,(32)

where X ∼ N (0,1). Comparing (32) with (29) one notes that the rate of di-
vergence from the trend E[H̃ (T )] is reduced from T 3/2 to

√
log(T )T . As for

E[H̃ (T )], it is important to remark that the overall growth (though not the dom-
inating term which is 4/3T 3/2) depends on the particular form of β . Still as-
suming β(x) ∼ √

x and letting b be a positive constant, we obtain, for instance,
E[H̃ (T )] = 4/3T 3/2 + o(T

√
log(T )) when β(x) = I(0,b](x) + x1/2I(b,∞)(x), and

E[H̃ (T )] = 4/3T 3/2 − log(T )T +o(T
√

log(T )) if β(x) = (1+x1/2). Again, com-
paring these findings with (29) it is apparent that the trend has been reduced from
T 2 to T 3/2 + o(T 3/2).

(c2) On the other hand, with the beta CRM, we have K
(1)
ρ (x) = 1 and, conse-

quently, I1(T ) = E[H̃ (T )] = 1/2T 2 whatever the choice of c. Selecting c(x) ∼√
x as x → ∞, we obtain I2 ∼ 16/15T 5/2 and I3 ∼ d log(T )T 3 for some constant

d > 0. Thus, with C0(k, T ) = T −5/4, (19) and (20) are met and Theorem 1 yields

1

T 5/4

[
H̃ (T ) − 1

2
T 2

]
law−→X,

where X ∼ N (0,16/15). Hence, compared with the homogeneous case in (29),
the beta CRM does not affect the trend but still decreases the rate of divergence
from T 2 to T 5/4.

(c3) If, instead, we consider the rectangular kernel with τ = 1 combined with an
extended gamma CRM such that again β(x) ∼ √

x as x → ∞, it follows that I2 ∼
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4 log(T ) and I3 → d for some constant d > 0. Hence, (19) and (20) are satisfied
with C0(k, T ) = (

√
log(T ))−1 and, by Theorem 1, we have

1√
log(T )

[
H̃ (T ) − E[H̃ (T )]] law−→X,

where X ∼ N (0,4). Hence, we see that the rate of divergence from E[H̃ (T )]
has been reduced with respect to the homogeneous case in (28) decreasing from
T 1/2 to

√
log(T ). As before, I1(T ) = E[H̃ (T )] depends on the particular form

of β . With β(x) ∼ √
x, b being a positive constant, we have I1(T ) = 4T 1/2 +

o(
√

log(T )) if β(x) = I(0,b](x) + x1/2I(b,∞)(x) and I1(T ) = 4T 1/2 − 2 log(T ) +
o(

√
log(T )) if β(x) = (1 + x1/2). By comparing these trends with the one in (28)

one can appreciate its reduction from T to T 1/2 + o(T 1/2).
(c4) Replacing the extended gamma CRM with a beta process we have I1(T ) =

2T − 1/2 whatever the choice of c. Moreover, if c(x) ∼ √
x as x → ∞, we obtain

I2 ∼ 8T 1/2 and I3 ∼ d log(T ) for some d > 0. By setting C0(k, T ) = T −1/4, (19)
and (20) are met and Theorem 1 leads to

1

T 1/4 [H̃ (T ) − 2T ] law−→X,

where X ∼ N (0,8). Hence, with respect to (28), the trend is unchanged and the
rate of divergence halved.

By means of the previous examples the impact of a nonhomogeneous CRM
becomes apparent: a nonhomogeneous CRM allows to reduce both the trend of the
cumulative hazard and the rate at which it diverges from its trend. An extended
gamma CRM is able to reduce both, whereas a beta CRM affects only the rate of
divergence from the trend. Overall, by studying also other examples, not reported
here, of functions β and c with the four different kernels considered above, some
interesting indications can be drawn. For instance, denote by T η the rate at which
the cumulative hazard based on the homogeneous version of an extended gamma
(or beta) CRM diverges from its trend (e.g., η = 3/2 in the Dykstra–Laud case).
Then, by choosing a suitable diverging β (or c) the rate can be tuned at any order in
the range (T η−1/2, T η]. Analogous conclusions can be derived for the trend when
using a hazard based on an extended gamma CRM: the trend corresponding to the
homogeneous case T α (e.g., α = 2 for the Dykstra–Laud kernel) can be tuned by
the choice of β at any rate in the range (T α−1, T α].

4.2. Asymptotics for quadratic functionals. In this section we consider qua-
dratic functionals of the random hazard rate. We derive central limit theorems for
the path-second moments and the path-variances of hazard rates with specific ker-
nels and driving CRM. Our results will be mainly based on Theorems 2 and 3. As
in the previous section, we first deal with general homogeneous CRM such that∫
[1,∞) v

4ρ(dv) < ∞; this requirement combined with the structure of kernels we
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consider ensures that (H2) is satisfied. Finally set, as before, K
(i)
ρ = ∫ ∞

0 siρ(ds),
for i = 1,2,3,4.

(i) Rectangular kernel. We start by considering the rectangular kernel and derive
CLTs for the path-second moment and for the path-variance of hazard rates. Some
simple calculations lead to write, for T > 2τ ,

k
(1)
T (s, x; t, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

st

T
(x ∧ y + τ), x, y < τ ,

st

T
(x ∧ y + 2τ − x ∨ y), τ ≤ x, y < T − τ, |x − y| ≤ 2τ ,

st

T
[T + τ − x ∨ y], T − τ ≤ x, y < T + τ ,

0, elsewhere.

Moreover, k
(2)
T (s, x) = sT −1k

(0)
T (s, x) and for T > 2τ , one has

k
(3)
T (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sK
(1)
ρ

T

[
2τx + 3

2
τ 2

]
, 0 < x < τ ,

sK
(1)
ρ

T

[
−1

2
x2 + 2τ(x + τ)

]
, τ ≤ x < 2τ ,

sK
(1)
ρ

T
4τ 2, 2τ ≤ x < T − τ ,

sK
(1)
ρ

T
[2τ(T + τ − x)] T − τ ≤ x < T + τ ,

0, elsewhere.

In order to apply Theorem 2 let us first consider Condition 1, which allows us to
determine the rate function; it turns out that C1(k, T ) = √

T since

2T
∥∥k(1)

T

∥∥2
L2(ν2) → σ 2

1 (k) = 32τ 3(K
(2)
ρ )2

3
.(33)

The verification of conditions 2–6 can be achieved by simple though quite lengthy
calculations.

Indeed, letting, for i = 1, . . . ,4, di be a positive constant, one obtains:

2. T 2
∥∥k(1)

T

∥∥4
L4(ν2) ∼ d1

T
→ 0,

3. T 2
∥∥k(1)

T �1
1 k

(1)
T

∥∥2
L2(ν2) ∼ d2

T
→ 0,

4. T 2
∥∥k(1)

T �1
2 k

(1)
T

∥∥2
L2(ν) ∼ d3

T
→ 0,

5. T
∥∥k(2)

T +2k
(3)
T

∥∥2
L2(ν) → σ 2

2 (k) = 16τ 2
[
K

(4)
ρ

4
+2τK

(3)
ρ K

(1)
ρ +4τ 2K

(2)
ρ

(
K

(1)
ρ

)2
]
,

6. T
3/2∥∥k(2)

T + 2k
(3)
T

∥∥3
L3(ν) ∼ d4

T 1/2 → 0.
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Since

1

T

∫ T

0
E(h̃(t)2) dt = 2τK(2)

ρ + 4τ 2(
K(1)

ρ

)2 + o(T −1/2),(34)

we deduce from Theorem 2 the following asymptotic result, concerning the path-
second moment of h̃(t):

T 1/2
{

1

T

∫ T

0
h̃(t)2 dt − (

2τK(2)
ρ + 4τ 2(

K(1)
ρ

)2)} law−→X,

where X ∼ N (0, σ 2
1 (k) + σ 2

2 (k)) with

σ 2
1 (k) + σ 2

2 (k) = 16τ 2
[
K

(4)
ρ

4
+ τK(3)

ρ K(1)
ρ + 2τ(K

(2)
ρ )2

3
+ τ 2K(2)

ρ

(
K(1)

ρ

)2
]
.

Now we concentrate on a CLT involving the path-variance of h̃(t), that we shall
obtain as an application of Theorem 3. In particular, we must verify that Condi-
tions 1, 2 and 3 in the statement of such result are verified, for some appropriate
positive constants δ(k) and σ 2

3 (k). Indeed, one has that, as T → +∞,

C1(k, T )

(T C0(k, T ))2 = T −1/2 → 0,(35)

2C1(k, T )

T 2C0(k, T )
E[H̃ (T )] = 2

T

{
2τK(1)

ρ T + o(T )
} → 4τK(1)

ρ := δ(k),(36)

and also ∥∥C1(k, T )
(
k
(2)
T + 2k

(3)
T

) − δ(k)C0(k, T )k
(0)
T

∥∥2
L2(ν) → 4τ 2K(4)

ρ .(37)

The fact that E[H̃ (T )] = K
(1)
ρ {2T τ − 1

2τ 2} combined with (34) yields

1

T

∫ T

0
E

[
h̃(t) − E[H̃ (T )]

T

]2

dt = 2τK(2)
ρ + o(T −1/2).

Hence, by using (35)–(37), we deduce from Theorem 3 that

√
T ×

{
1

T

∫ T

0

[
h̃(t) − 1

T
H̃ (T )

]2

dt − 2τK(2)
ρ

}
law−→X,

where X ∼ N (0,4τ 2[8τ(K
(2)
ρ )2

3 + K
(4)
ρ ]).

(ii) Ornstein–Uhlenbeck kernel. Let us now derive the CLT for the path-second
moment and the path-variance of hazards based on the Ornstein–Uhlenbeck kernel.
For this case we easily obtain

k
(1)
T (s, x; t, y) = st

T
eκ(x+y)(e−2κ(x∨y) − e−2κT )

I(0≤x,y≤T ),

k
(2)
T (s, x) = s2

T
e2κx(e−2κx − e−2κT )I(0≤x≤T ),
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k
(3)
T (s, x) = sK

(1)
ρ

κT

[
(e−2κT − e−2κx)(eκx − e2κx)

+ (
1 − e−κ(T −x))2]

I(0≤x≤T ),

and some tedious algebra allows to derive also k
(1)
T �1

1 k
(1)
T and k

(1)
T �1

2 k
(1)
T . Condi-

tion 1 in Theorem 2 is verified by choosing C1(k, T ) = √
T ; indeed,

2T
∥∥k(1)

T

∥∥2
L2(ν2) → σ 2

1 (k) = 2(K
(2)
ρ )2

κ
.(38)

Standard calculations allow to verify the validity of the other conditions in the
statement of Theorem 2. In particular, by letting di (i = 1, . . . ,4) be a positive
constant, one obtains:

2. T 2
∥∥k(1)

T

∥∥4
L4(ν2) ∼ d1

T
→ 0,

3. T 2
∥∥k(1)

T �1
1 k

(1)
T

∥∥2
L2(ν2) ∼ d2

T
→ 0,

4. T 2
∥∥k(1)

T �1
2 k

(1)
T

∥∥2
L2(ν) ∼ d3

T
→ 0,

5. T
∥∥k(2)

T + 2k
(3)
T

∥∥2
L2(ν) → σ 2

2 (k) = K
(4)
ρ + 8

κ
K

(3)
ρ K

(1)
ρ + 16

κ2 K
(2)
ρ

(
K

(1)
ρ

)2,

6. T
3/2∥∥k(2)

T + 2k
(3)
T

∥∥3
L3(ν) ∼ d4

T 1/2 → 0.

Since, as T → +∞,

1

T

∫ T

0
E(h̃(t)2) dt = K(2)

ρ + 2(K
(1)
ρ )2

κ
+ o(T −1/2),(39)

we deduce from Theorem 2 the following result for the path-second moment:

T 1/2
{

1

T

∫ T

0
h̃(t)2 dt −

[
K(2)

ρ + 2(K
(1)
ρ )2

κ

]}
law−→X,

where X ∼ N (0,K
(4)
ρ + 8

κ
K

(3)
ρ K

(1)
ρ + 2(K

(2)
ρ )2

κ
+ 16

k2 K
(2)
ρ (K

(1)
ρ )2). As far as the

path-variance is concerned, one verifies easily that the conditions of Theorem 3
are verified, with δ(k) = 23/2√

κ
K

(1)
ρ and σ 2

3 (k) := K
(4)
ρ .

Using (39), it is straightforward to see that

1

T

∫ T

0
E

[
h̃(t) − E[H̃ (T )]

T

]2

dt = K(2)
ρ + o(T −1/2).

As a consequence, we deduce from Theorem 3 that

√
T ×

{
1

T

∫ T

0

[
h̃(t) − 1

T
H̃ (T )

]2

dt − K(2)
ρ

}
law−→X,
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with X ∼ N (0,
2(K

(2)
ρ )2

κ
+ K

(4)
ρ ).

Before considering the Dykstra and Laud kernel and the U-shaped kernel, let
us make the previous results completely explicit by specifying the background
driving CRM. For both the rectangular and the Ornstein–Uhlenbeck kernel the rate
function is the same and the CRM affects the variance of the limiting Gaussian
random variable for both path-second moment and path-variance of the hazard
rate. Take, as before, the generalized gamma CRM with Poisson intensity (6) and
denote the Pochhammer symbol by (a)n := 	(a + n)/	(a). For this choice we
have K

(c)
ρ = [(1 − σ)c−1](γ c−σ )−1 for any c > 0. For the Ornstein–Uhlenbeck

kernel the variance is then given by

σ 2
1 (k) + σ 2

2 (k) = (1 − σ)(16κ−1γ 2σ + 2(9 − 5σ)γ σ + κ(2 − σ)2)

κγ 4−σ
(40)

which decreases as κ and γ increase for any given (γ, σ ) and (κ, σ ), respectively.
Moreover, it is maximized by σ = 0 for low values of κ and γ , whereas, for mod-
erately large values of κ and γ , the maximizing σ increases as κ and γ increase.
For instance, if κ = 0.5 and γ = 2, the maximizing σ is approximately equal to
0.4 and the overall variance is 7.55. To highlight the incidence of the prior para-
meters note that with κ = 1 and γ = 5, the maximizing σ and the variance are
approximately equal to 0.77 and 0.29, respectively. Using the asymptotic variance
as a guideline for fixing the prior parameters seems a sensible and straightforward
choice since it summarizes in a single expression the various effects of the parame-
ters. Turning to the path-variance, a hazard based on a generalized gamma CRM
with Ornstein–Uhlenbeck kernel will have variance given by

σ 2
1 (k) + σ 2

3 (k) = (1 − σ)(2(1 − σ)γ σ + κ(2 − σ)2)

κγ 4−σ
,(41)

which behaves similarly to (40) but, obviously, leads to smaller values. Consid-
ering the same set of parameters as above we have: if κ = 0.5 and γ = 2, σ = 0
maximizes (41) and its value is 0.625; if κ = 1 and γ = 5, (41) is maximized by
σ ≈ 0.1 leading to a variance of 0.01. Similar considerations hold also for the as-
ymptotic variance of a hazard based on the rectangular kernel combined with a
generalized gamma CRM.

Turning attention to quadratic functionals of hazards based on nonhomogeneous
CRM, the importance of our Theorem 4 becomes apparent: the verification of the
conditions of Theorems 2 and 3 becomes extremely difficult if not impossible.
Hence, when it is possible to bound above and below the Poisson intensity of a non-
homogeneous CRM so as to meet the conditions of Theorem 4, we are still able to
state that the rate function is C1(k, T ) = T 1/2 for hazards based on rectangular and
Ornstein–Uhlenbeck kernels. Moreover, we can deduce the convergence, along
some subsequence Tn′ of every diverging sequence Tn, of the path-second moment
and of the path-variance to a Gaussian random variable with variance taking value



ASYMPTOTIC HAZARD RATES 1931

in the range [σ 2
1 (k) + σ 2

2 (k), σ 2
1 (k) + σ 2

2 (k)] and [σ 2
1 (k) + σ 2

3 (k), σ 2
1 (k) + σ 2

3 (k)],
respectively. In order to deduce convergence for every diverging sequence, the
structure of the Poisson intensity has to be specified as well. Thus, let us con-
sider again the extended gamma and beta CRMs. As noted in Section 4.1, sup-
posing β(x) = β̄ in (7) and c(x) = c̄ in (8), the CRMs become homogeneous
and the previous results hold with the same rate functions. Note that, for a > 0,
K

(a)
ρ = 	(a)β̄−a in the extended gamma case and K

(a)
ρ = 	(a)[(1 + c̄)a−1]−1 in

the beta case. Hence, with an Ornstein–Uhlenbeck kernel the asymptotic variance
of the path-second moment is equal to (β̄4κ2)−12(3κ2 + 9κ + 8) for the former
and equal to [κ2(1+ c̄)(1+ c̄)3]−12(9κc̄2 +37κc̄+30κ +3κ2(1+ c̄)+8(1+ c̄)3)

for the latter. For the path-variance similar expressions are obtained. If β (or c)
are functions bounded by some finite constant M , then we are in the genuinely
nonhomogeneous case and, as mentioned above, by Theorem 4 CLTs along sub-
sequences of diverging sequences are granted. To achieve convergence along any
sequence, it is enough to suppose that β (or c) are eventually nondecreasing (or
nonincreasing), which represents a sensible choice in any application. For instance,
considering an extended gamma CRM with nondecreasing β taking values in
[L,M] combined with an Ornstein–Uhlenbeck kernel, the path-second moment
will converge, along any sequence, to a Gaussian random variable with variance
σ 2

1 (k) + σ 2
2 (k) = (M4κ2)−12(3κ2 + 9κ + 8). Analogous considerations hold for

the path-variance.
(iii) Dykstra–Laud and U-shaped kernels. Our results for quadratic functionals

do not apply when choosing the kernel k to be the Dykstra–Laud or U-shaped
kernel. Indeed, for both kernels conditions 3, 5 and 6 in Theorem 2 are not
met. Moreover, also the additional conditions 1–3 in Theorem 3 are not satis-
fied. Note that condition 3 represents the most delicate since it involves a contrac-
tion. Consider first the Dykstra–Laud kernel. It is easy to see that k

(1)
T (s, x; t, y) =

st
T

(T − (x ∨ y))I(0≤x,y≤T ) and that k
(1)
T �1

1 k
(1)
T (s, x; t, y) = stKρ(T −(x∨y))

T 2 [T 2 −
(x ∧ y)2 − (T −(x∨y))2

3 ]I(0≤x,y≤T ). As for condition 1 we obtain with the choice
C1 = T −1

2

T 2

∥∥k(1)
T

∥∥2
L2(ν2) → K2

ρ

3
.

This, however, implies that the quantity in condition 3 converges to a positive
constant and the ones in conditions 5 and 6 diverge. In Theorem 3 we obtain that
the quantity in condition 1 is equal to 1 and the one in condition 2 diverges. Finally,
condition 3 cannot be satisfied since condition 5 in Theorem 2 is violated. For the
U-shaped kernel we obtain again C1(k, T ) = T −1 and the asymptotic behavior
of the various quantities involved in the conditions is the same as the one of the
Dykstra and Laud kernel. We have also tried with nonhomogeneous CRM; indeed,
it seems possible to obtain C1(k, T ) = T −η with any η ∈ (0,1], but the conditions
are nonetheless violated.
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The fact that our results do not work for the Dykstra–Laud and U-shaped ker-
nels seems to suggest that kernels yielding monotone increasing hazards (at least
from some point onward as is the case for the U-shaped kernel) exhibit a too strong
growth to be compatible with our conditions. Future research will focus, on one
side, on the translation of the conditions into simple and intuitive sufficient ones re-
garding the behavior of the hazard rate induced by different classes of kernels and,
on the other side, to relax the conditions in order to cover models for monotone
increasing hazards.

5. From prior to posterior central limit theorems. For the reader interested
in Bayesian applications, a natural question is whether our results can be extended
in order to study the posterior asymptotic behavior of linear and quadratic func-
tionals of random hazard rates, conditionally on an arbitrarily large number of ob-
servations. At a first look, the question seems arduous, since the models we have
considered so far are, in general, not conjugate. However, the problem can be com-
pletely overcome by using the powerful (and general) theory for posterior models
developed in James [22]. Indeed, James proves that the law of the random hazard
rate (1), conditionally on X and on a suitable set of latent variables Y, coincides
with the distribution of the random object

h̃X,Y(t) =
∫

X

k(t, x)μ̃∗(dx) +
k∑

i=1

Jik(t, Y ∗
i ),(42)

where μ∗ is a nonhomogeneous CRM with updated intensity measure and the latent
variable Y ∗

i is the location of a random jump Ji for i = 1, . . . , k. It follows that one
can render the posterior behavior of any functional of h amenable to asymptotic
analysis, by first conditioning on X and Y, and then by separating the roles of μ∗
and of the fixed jumps Ji . In [7], which, in Bayesian terms, represents a logical
continuation of the present paper, this idea is exploited and asymptotic results for
(42) derived. From a technical point of view, the techniques require an average
over the distribution of Y|X, which can be decomposed into the distribution of Y
given a certain random partition p and the sample X, and the partition distribution
given X. As anticipated in the Introduction, one of the main findings of [7] is that
the posterior behavior of linear and quadratic functionals of random hazard rates
coincides in most cases with the prior one. This phenomenon is also compared with
another asymptotic study of Bayesian nonparametric models, which is customarily
referred to as Bayesian consistency (see, e.g., [11, 16]).

6. Proofs and further techniques. In this section we collect the proofs of
the main results of the paper. As anticipated, we shall make a substantial use of the
CLTs, for sequences of single and double Poisson integrals, recently established
by [38]. In the next subsection we present some preliminary results concerning
double Wiener–Itô integrals, with special attention devoted to weak convergence
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and central limit theorems. Virtually all of the needed background material, about
stochastic integrals of any order with respect to Poisson measures, can be found
in [45] and in Chapter 10 of [29]. A different approach, based on Hilbert space
techniques, is described in [35]. The reader is also referred to [46] for an updated
review of related convergence results.

6.1. Double integrals and CLTs. Throughout this section we consider a Pois-
son CRM Ñ such that (H1) is verified. Recall that Ñc is the compensated Pois-
son measure defined in formulas (12) and (13). For every f ∈ L2

s,0(ν
2), we de-

note by I Ñc

2 (f ) the double Wiener–Itô integral of f with respect to Ñc. The
reader is referred to [45] for precise definitions. Here, we shall recall that, if
f ∈ L2

s,0(ν
2) is a piecewise constant function with support contained in a prod-

uct set S × S ⊂ (R+ × X)2 such that ν(S) < +∞, then the variable I Ñc

2 (f ) is
a genuine (“pathwise”) double integral with respect to the restriction to S × S of
the (signed) product measure Ñc(ds, dx)Ñc(dt, dy). The very nature of f implies
that the integration is performed on the intersection between S × S and the non-

diagonal set D2
0 . For a general f ∈ L2

s,0(ν
2), I Ñc

2 (f ) is simply the limit in L2(P)

of random variables of the kind I Ñc

2 (fk) where each fk ∈ L2
s,0(ν

2) is a piecewise
constant function with support in a product set Sk ×Sk with ν2-finite measure. The
following isometric relation is well known: ∀f1, f2 ∈ L2

s,0(ν
2)

E[I Ñc

2 (f1)I
Ñc

2 (f2)]
(43)

= 2
∫

R+×X

∫
R+×X

f1(s, x; t, y)f2(s, x; t, y)ν(ds, dx)ν(dt, dy).

When f ∈ L2
s (ν

2) (hence f does not necessarily vanish on diagonals), we set

I Ñc

2 (f ) = I Ñc

2 (f ID2
0
), and we observe that the isometry property (43) still holds.

Indeed, ν is nonatomic, and therefore ν2 does not charge diagonals [even though
Ñc(ds, dx)Ñc(dt, dy) does]. We also recall the product formula

Ñc(g)Ñc(h)
(44)

= (g,h)L2(ν) +
∫

R+×X

g(s, x)h(s, x)Ñc(ds, dx) + I Ñc

2 (h̃ ⊗ g),

where h ⊗ g(s, x; t, y) = h(s, x)g(t, y) ∈ L2(ν2) and (̃ ) stands for a symmetriza-
tion, which holds for every f,g ∈ L2(ν) such that g(s, x)h(s, x) ∈ L2(ν).

Finally, we state the main results proved in [38]. We consider a sequence of
double integrals

Fn = I Ñc

2 (fn), n ≥ 1,(45)
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where fn ∈ L2
s,0(ν

2). We will suppose that the following technical assumptions are
satisfied: the sequence fn, n ≥ 1, in (45) is such that, for every n ≥ 1,

‖fn‖L2(ν2) > 0 and fn �1
2 fn ∈ L2(ν),(1) {∫

R+×X

fn(s, y; ·)4ν(ds, dy)

}1/2

∈ L1(ν),(2)

where we use the notation introduced in (9)–(11), and moreover, as n → +∞,∫
R+×X

∫
R+×X

fn(s, y; t, x)4ν(ds, dy)ν(dt, dx) → 0.(3)

Note that (3) implies, in particular, that fn ∈ L4(ν2) for every n. See [38] for a
discussion of the role of (1)–(3). In the subsequent sections, we will see how such
assumptions restrict the set of the random hazard rates that can be studied by our
techniques. The next result is a CLT involving sequences of double integrals.

THEOREM 5 [37]. Define the sequence Fn = I Ñc

2 (fn) and fn ∈ L2
s,0(ν

2),

n ≥ 1, as in (45), and suppose (1)–(3) hold. Then, fn �0
1 fn ∈ L2(ν3) for every

n ≥ 1, and moreover:

1. if

‖fn‖−2
L2(ν2)

× (fn �1
1 fn) → 0 in L2(ν2) and

(46)
‖fn‖−2

L2(ν2)
× (fn �1

2 fn) → 0 in L2(ν),

then

2−1/2‖fn‖−1
L2(ν2)

× Fn
law−→X,(47)

where X ∼ N (0,1) is a standard Gaussian random variable;
2. if Fn ∈ L4(P) for every n, then a sufficient condition to have (46) is that(

2‖fn‖2
L2(ν2)

)−2
E(F 4

n ) → 3;(48)

3. if the sequence {(2‖fn‖2
L2(ν2)

)−2F 4
n :n ≥ 1} is uniformly integrable, then

conditions (46), (47) and (48) are equivalent.

Theorem 5 is proved by using a decoupling technique, known as the principle
of conditioning, which has been adapted to the framework of CRM by means of
the general theory of stable convergence developed in [39]. The next result gives
sufficient conditions to have that the law of a random vector, composed of a single
and of a double integral, converges weakly to a bivariate Gaussian law. The proof
is essentially based on an appropriate version of the product formulas for multiple
stochastic integrals, proved, for example, in [45].
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THEOREM 6 [37]. (A) Consider a sequence

Gn = Ñc(gn), n ≥ 1,

where gn ∈ L2(ν) ∩ L3(ν) and ‖gn‖L2(ν) > 0, and suppose that, as n → +∞,

‖gn‖−3
L2(ν)

∫
R+×X

|gn(s, y)|3ν(ds, dy) → 0.(49)

Then, ‖gn‖−1
L2(ν)

×Gn
law−→X, where X ∼ N (0,1) is a centered standard Gaussian

random variable.
(B) Consider a sequence Fn = I Ñc

2 (fn), n ≥ 1, with fn ∈ L2
s,0(ν

2) as in (45),

and a sequence Gn = Ñc(gn), n ≥ 1, as at point (A). Suppose moreover that:

(i) The sequence (fn) verifies assumptions (1)–(3), and satisfies condition (46).
(ii) The sequence (gn) satisfies (49).

Then, as n → +∞,(
2−1/2‖fn‖−1

L2(ν2)
× Fn,‖gn‖−1

L2(ν)
× Gn

) law−→(X,X′),(50)

where X,X′ ∼ N (0,1) are two independent, centered standard Gaussian random
variables.

Part (B) of Theorem 6 implies in particular that, whenever conditions (46)
and (50) are met, the (componentwise) convergence of ‖fn‖−1 ×Fn and ‖gn‖−1 ×
Gn, toward a Gaussian distribution, implies necessarily the joint convergence of
the vector (‖fn‖−1Fn,‖gn‖−1Gn). This conclusion echoes results already estab-
lished in the framework of Gaussian CRM (see [40]).

Now consider the positive kernel k, which defines h̃ via (1), and suppose (here
and for the remainder of the section) that k satisfies assumption (H2). In the next
two lemmas we collect some straightforward facts which will be used throughout
the sequel.

LEMMA 7. The two processes h̃(t), t ≥ 0, and

h̃∗(t) := Ñc((·)k(t, ·)) +
∫

R+×X

sk(t, x)ν(ds, dx), t ≥ 0,

where

Ñc((·)k(t, ·)) :=
∫

R+×X

sk(t, x)Ñc(ds, dx),(51)

have the same law.

PROOF. Use (5) and (14) to compute the two transforms

E
[
e
i
∑n

j=1 λj h̃(tj )] and E
[
e
i
∑n

j=1 λj h̃∗(tj )]
,

for every n ≥ 1, every (λ1, . . . , λn) ∈ Rn and every t1, . . . , tn ≥ 0. �
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LEMMA 8. For every T > 0,∫ T

0

∫
R+×X

sk(t, x)Ñc(ds, dx) dt = Ñc(k(0)
T

)
,(52)

1

T

∫ T

0

∫
R+×X

s2k(t, x)2Ñc(ds, dx) dt = Ñc(k(2)
T

)
,(53)

where k
(0)
T and k

(2)
T are given, respectively, by (18) and (23). If k

(3)
T ∈ L2(ν) ∩

L1(ν),

1

T

∫ T

0
Ñc((·)k(t, ·))

(∫
R+×X

sk(t, x)ν(ds, dx)

)
dt = Ñc(k(3)

T

)
.(54)

Analogously, for every T > 0,

1

T

∫ T

0
I Ñc

2
([(·)k(t, ·)] ⊗ [(·)k(t, ·)])dt = I Ñc

2
(
k
(1)
T

)
,(55)

where [(·)k(t, ·)] ⊗ [(·)k(t, ·)](u, x;v, y) := uvk(t, x)k(t, y), and k
(1)
T is defined

according to (22).

The proof of Lemma 8 is trivial when the map (t, x) �→ k(t, x) is piecewise con-
stant; indeed, in this case (52)–(55) follow immediately from the application of a
standard Fubini theorem. The general statement is obtained by a density argument;
we omit the details here (one can, e.g., mimic the proof of Lemma 13 in [36]).

Finally note that, given two sequences of random variables {An} and {Bn} such
that An − Bn → 0 in probability, we will sometimes write

An

P≈Bn.

6.2. Proof of Theorem 1. Use Lemma 7 and relations (51) and (52) to write

H̃ (T )
law=

∫ T

0
h̃∗(t) dt

=
∫ T

0
Ñc((·)k(t, ·)) dt +

∫ T

0

∫
R+×X

sk(t, x)ν(ds, dx) dt

=
∫ T

0

∫
R+×X

sk(t, x)Ñc(ds, dx) dt +
∫ T

0

∫
R+×X

sk(t, x)ν(ds, dx) dt

= Ñc(k(0)
T

) +
∫ T

0

∫
R+×X

sk(t, x)ν(ds, dx) dt,

which yields, via the relation E(H̃ (T )) = ∫ T
0

∫
R+×X sk(t, x)ν(ds, dx) dt ,

C0(k, T ) × [H̃ (T ) − E(H̃ (T ))] law= Ñc(C0(k, T ) × k
(0)
T

)
.
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Since the isometry property (15) and the assumption (19) yield

E
[
Ñc(C0(k, T ) × k

(0)
T

)2] = C2
0(k, T )

∫
R+×X

[
k
(0)
T (s, x)

]2
ν(ds, dx) → σ 2

0 (k),

we deduce from part (A) of Theorem 6 [in the case gn = (C0(k, Tn)/σ0(k))× k
(0)
Tn

,
where Tn is any positive sequence diverging to infinity] that, since (20) holds, the
CLT (21) must also take place.

6.3. Proof of Theorem 2. Use Lemma 7 to write [we adopt once again the
notation (51)]

1

T

∫ T

0
h̃(t)2 dt

law= 1

T

∫ T

0
Ñc((·)k(t, ·))2 dt + 1

T

∫ T

0

(∫
R+×X

sk(t, x)ν(ds, dx)

)2

dt

+ 2

T

∫ T

0
Ñc((·)k(t, ·))

(∫
R+×X

sk(t, x)ν(ds, dx)

)
dt.

Now recall that, thanks to (54),

2

T

∫ T

0
Ñc((·)k(t, ·))

(∫
R+×X

sk(t, x)ν(ds, dx)

)
dt = Ñc(2k

(3)
T

)
,

so that, by using (26),

C1(k, T ) ×
{

1

T

∫ T

0
h̃(t)2 dt − 1

T

∫ T

0
E[h̃(t)2]dt

}
law= C1(k, T ) ×

{
1

T

∫ T

0
Ñc((·)k(t, ·))2 dt(56)

+ Ñc(2k
(3)
T

) − 1

T

∫ T

0

∫
R+×X

s2k(t, x)2ν(ds, dx)

}
dt.

By applying the product formula (44) in the case g(s, x) = h(s, x) = sk(t, x), for
every t ≥ 0 we obtain

Ñc((·)k(t, ·))2 =
∫

R+×X

s2k(t, x)2ν(ds, dx)

+
∫

R+×X

s2k(t, x)2Ñc(ds, dx) + I Ñc

2
([(·)k(t, ·)] ⊗ [(·)k(t, ·)]),

from which we deduce that, thanks to formulas (53) and (55), the expression in
(56) is indeed equal to

C1(k, T ) × {
Ñc(k(2)

T + 2k
(3)
T

) + I Ñc

2
(
k
(1)
T

)}
,
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for every T > 0. It follows that Theorem 2 is proved, once it is shown that(
Ñc(C1(k, T ) × (

k
(2)
T + 2k

(3)
T

))
, I Ñc

2
(
C1(k, T ) × k

(1)
T

)) law−→(X,X′),

where X and X′ are independent and such that X ∼ N (0, σ 2
2 (k)) and X′ ∼

N (0, σ 2
1 (k)). To this end, we apply part (B) of Theorem 6: according to such

a result, it is sufficient to check that, for every positive sequence Tn → +∞, the
two sequences

gn = C1(k, Tn)

σ2(k)

(
k
(2)
Tn

+ 2k
(3)
Tn

)
and fn = C1(k, Tn)

σ1(k)
k
(1)
Tn

, n ≥ 1,

satisfy, respectively, condition (49) and conditions (1)–(3) and (46). It is immedi-
ately seen that Assumptions 5 and 6 in the statement imply (49), and we are there-
fore left with the sequence {fn}. Conditions (1) and (2) can be checked by standard
iterations of the Jensen and Cauchy–Schwarz inequalities (see, e.g., Section 5.1 in
[38] for several analogous computations). Finally, (3) is given by Assumption 2
in the statement, whereas Assumptions 3 and 4 give, respectively, the first and the
second line in (46). This concludes the proof of Theorem 2.

6.4. Proof of Theorem 3. Write first

1

T

∫ T

0

[
h̃(t) − 1

T
H̃ (T )

]2

dt = 1

T

∫ T

0
h̃(t)2 dt −

(
1

T
H̃ (T )

)2

,(57)

and observe that

C1(k, T )

(
1

T
H̃ (T )

)2

= C1(k, T )

T 2C0(k, T )2 {C0(k, T )[H̃ (T ) − E(H̃ (T ))]}2

+ C1(k, T )

T 2 E(H̃ (T ))2(58)

+ 2
C1(k, T )

T 2 E(H̃ (T ))[H̃ (T ) − E(H̃ (T ))].
From Assumption 1 in the statement, and since (19) and (20) are in order, we
deduce

C1(k, T )

T 2C0(k, T )2 {C0(k, T )[H̃ (T ) − E(H̃ (T ))]}2 P→0.(59)

Moreover, Assumption 2 in the statement yields that, as T → +∞,

2C1(k, T )

T 2 E(H̃ (T ))[H̃ (T ) − E(H̃ (T ))]
(60)

P≈ δ(k)C0(k, T )[H̃ (T ) − E(H̃ (T ))].
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In view of Lemma 7, and by reasoning as in the proofs of Theorems 1 and 2, we
infer from relations (57)–(60) that

C1(k, T ) ×
{

1

T

∫ T

0

[
h̃(t) − 1

T
H̃ (T )

]2

dt − 1

T

∫ T

0
E[h̃(t)2]dt + E[H̃ (T ))]2

T 2

}
law= Ñc

(
C1(k, T )

(
k
(2)
T + 2k

(3)
T

) − 2C1(k, T )

T 2 E(H̃ (T ))k
(0)
T

)
+ I Ñc

2
(
C1(k, T )k

(1)
T

)
P≈ Ñc(C1(k, T )

(
k
(2)
T + 2k

(3)
T

) − δ(k)C0(k, T )k
(0)
T

) + I Ñc

2
(
C1(k, T )k

(1)
T

)
.

The conclusion is deduced from Assumption 3 in the statement, by applying The-
orem 6 in the case

gn = C1(k, Tn)(k
(2)
Tn

+ 2k
(3)
Tn

) − δ(k)C0(k, Tn)k
(0)
Tn

σ3(k)
,

fn = C1(k, Tn)

σ1(k)
k
(1)
Tn

, n ≥ 1,

where Tn → +∞.

6.5. Proof of Theorem 4. To prove Part (A), observe that the assumptions im-
ply the existence of two constants 0 < D1 < D2 < +∞, such that, for T suffi-
ciently large,

D1 < C2
0(k, T ) ×

∫
R+×X

[
k
(0)
T (s, x)

]2
ν(ds, dx) < D2.

Standard arguments yield therefore that, for every sequence Tn → +∞, there ex-
ists a subsequence Tn′ such that, as n′ → +∞,

C2
0(k, Tn′) ×

∫
R+×X

[
k
(0)
Tn′ (s, x)

]2
ν(ds, dx) → σ 2(k) > 0,

where σ 2(k) is some well-chosen positive constant. Moreover,

C3
0(k, Tn′) ×

∫
R+×X

[
k
(0)
Tn′ (s, x)

]3
ν(ds, dx)

≤ C3
0(k, Tn′)

∫
R+

[
k
(0)

Tn′ (s, x)
]3

ν(ds, dx)

∼ C3
0(k, Tn′)

∫
R+

[
k
(0)

Tn′ (s, x)
]3

ν(ds, dx) → 0.

The proofs of parts (B) and (C) are based on analogous computations, and are
omitted.
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7. Conclusions and future work. (I) Future research will focus on the gen-
eralization of our asymptotic results to general multiplicative intensity models [1],
which include a wide variety of popular models such as Cox proportional haz-
ards regression models, multiple decrement models, birth and death processes and
nonhomogeneous Poisson processes. To fix ideas consider the Cox proportional
hazards regression model, in which Zi is an m-dimensional vector of covariates
recorded for the ith individual and θ is a m-dimensional vector of unknown re-
gression coefficients. Then the proportional hazards model is specified in terms of
the hazard function relationship as

hi(t) = h0(t) exp(θ ′Zi),

where h0 represents the so-called baseline hazard function. A Bayesian treatment
leads to considering h0 and θ to be random and, hence, by choosing h̃0 to be a
mixture as in (1) and π to be a prior for θ̃ , one obtains a semiparametric random
hazard rate function for the ith individual of the form

h̃i(t) = exp(θ̃ ′Zi)

∫
X

k(t, x)μ̃(dx).(61)

Bayesian analysis of the Cox model within this setup has been pursued in [20, 21,
34]. Since (1) still represents the basic building block of (61) and, indeed, also of
other multiplicative intensity models, we aim at extending our results to random
objects such as (61) and expect to obtain CLTs for which the limiting random
variable is a suitable mixture of Gaussian distributions.

(II) The techniques exploited in Section 6, for deriving the main results of this
paper, can be further generalized. As already mentioned, they are indeed based
on a very general decoupling criterion, known as the principle of conditioning.
As shown in [37–39], this principle can be applied to a wide class of stochastic
integrals with respect to completely random measures, including multiple Wiener–
Itô integrals of any order n > 2. In particular, we expect that the results of the
present paper can be suitably extended to accommodate the asymptotic analysis
of nonlinear and nonquadratic functionals, such as, for example, path-moments
of order greater than 2. Note that results of this type are already available in the
Gaussian case. See, for example, [40].

(III) By suitably tailoring the general results proved in [37–39], one could study
the asymptotic behavior of more general linear and quadratic functionals associ-
ated with processes of the type (1), where the parameter t lives in a general space
(e.g., the plane). Some examples of such processes are presented in [20, 49]. In
such a framework, a crucial point is the choice of an appropriate definition of path-
variance. Note that a similar analysis has been already performed for quadratic
functionals of bivariate Gaussian processes (such as the Brownian sheet or the
Kiefer process) in [9], where these results have been applied to the asymptotic
analysis of independence test statistics.
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