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CLUSTERING IN A STOCHASTIC MODEL OF
ONE-DIMENSIONAL GAS

BY VLADISLAV V. VYSOTSKY1

St. Petersburg State University

We give a quantitative analysis of clustering in a stochastic model of
one-dimensional gas. At time zero, the gas consists of n identical particles
that are randomly distributed on the real line and have zero initial speeds.
Particles begin to move under the forces of mutual attraction. When particles
collide, they stick together forming a new particle, called cluster, whose mass
and speed are defined by the laws of conservation.

We are interested in the asymptotic behavior of Kn(t) as n → ∞, where
Kn(t) denotes the number of clusters at time t in the system with n initial
particles. Our main result is a functional limit theorem for Kn(t). Its proof
is based on the discovered localization property of the aggregation process,
which states that the behavior of each particle is essentially defined by the
motion of neighbor particles.

1. Introduction.

1.1. Description of the model. We give a quantitative analysis of clustering
in a stochastic model of one-dimensional gas. At time zero, the gas consists of n

point particles, each one of mass 1
n

. These particles are randomly distributed on the
real line and have zero initial speeds. Particles begin to move under the forces of
mutual attraction. When two or more particles collide, they stick together forming
a new particle, called cluster, whose mass and speed are defined by the laws of
mass and momentum conservation. Between collisions, particles move according
to the laws of Newtonian mechanics.

We suppose that the force of mutual attraction does not depend on distance and
equals the product of masses. This assumption is natural for one-dimensional mod-
els because, by the Gauss law applied to flux of the gravitational field, gravitation
is proportional to the distance to the power one minus dimension of the space. At
any moment, the acceleration of a particle is thus equal to difference of masses
located to the right and to the left of the particle.

Random initial positions of particles are usually described (see [8, 16, 25])
by the following natural models: in the uniform model, n particles are indepen-
dently and uniformly spread on [0,1]; in the Poisson model, particles are located
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at points 1
n
S1,

1
n
S2, . . . ,

1
n
Sn, where Si is a standard exponential random walk. In

other words, particles are located at points of first n jumps of a Poisson process
with intensity n.

These two models are the most natural and interesting; let us call them the
main models of initial positions. However, we will see that behavior of the Poisson
model is essentially defined by independence of initial distances between particles
rather than by the particular type of the distances’ distribution. Therefore, it is of a
great mathematical interest to generalize the Poisson model by introducing the i.d.
model, where “i.d.” stands for “independent distances,” as follows. Particles are
initially located at 1

n
S1,

1
n
S2, . . . ,

1
n
Sn, where Si is a positive random walk whose

nonnegative i.i.d. increments Xi satisfy the normalization condition EXi = 1. Note
that if we proceed to the limit as n → ∞, we consider a system of total mass one,
which consists of, roughly speaking, infinitesimal particles homogeneously spread
on [0,1]; this is true for all the mentioned models of initial positions.

The mathematical interest in sticky particles systems arises mainly from rela-
tions between these systems and some nonlinear partial differential equations orig-
inating from fluid mechanics, for example, the Burgers equation. These equations
admit interpretation in terms of sticky particles; see Gurbatov et al. [10], Brenier
and Grenier [4] or E, Rykov and Sinai [6]. Sticky particles models are also used
for numerical solving of other partial differential equations; see Chertock et al. [5]
for explanations and further references.

As time goes, particles aggregate in clusters. Clusters become larger and larger
while the number of clusters decreases until they merge into a single cluster con-
taining all initial particles. This process of mass aggregation is strongly connected
with additive coalescence; see Bertoin [2] and Giraud [9] for the most recent re-
sults and references.

The aggregation process resembles formation of a star from dispersed space
dust and sticky particles models indeed have relations to astrophysics. It is ap-
propriate to clarify these relations since they are not so direct and cause a lot of
misunderstanding.

It is known that the distribution of galaxies in the universe is very inhomoge-
neous and the regions of high density form a peculiar cellular structure. The first
attempt to understand the formation of such structures was made in 1970 by Zel-
dovich. Most of the mass in the universe is believed to exist in the form of particles
that practically do not collide with each other and interact only gravitationally, for
example, neutrinos. In his model, Zeldovich considered an initially homogeneous
collisionless medium of particles moving by pure inertia; the gravitational interac-
tion was taken away by an appropriate time change. He showed that singularities,
that is, the thin regions of very high density of particles, so called “pancakes,”
appear even if initial speeds of particles form a smooth velocity field.

Zeldovich’s approximate model, however, does not explain formation of the
cellular structure of matter. His approximation does not take into account that par-
ticles hitting a “pancake” are hampered by its strong gravitational field and start
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oscillating inside the “pancake” instead of flying away. Although this gravitational
adhesion of collisionless particles is not precisely the same as the real sticking, the
model of sticky particles serves as a reasonable approximation. The effect of grav-
itational adhesion was then analyzed by the use of the Burgers equation; Gurbatov,
Saichev and Shandarin proposed it in 1984 to extend Zeldovich’s approximation,
which is invalid after formation of “pancakes.”

The model of sticky particles is directly mentioned in Gurbatov et al. [11];
a comprehensive survey of the formation of the Universe’s large-scale structure
could be found in Shandarin and Zeldovich [23].

1.2. Statement of the problem and the results. In general, the problem is to
describe the process of mass aggregation. How fast is it? How large the clusters
are? Where do clusters appear most intensively, and so forth? Numerous papers
on the model (e.g., [8, 14, 16, 20, 25]) are dedicated to probabilistic description
of various properties of the aggregation process as the number of initial particles
n tends to infinity. Thus, the behavior of a typical system consisting of a large
number of particles is studied.

In this paper, we are interested in the asymptotic behavior of Kn(t), which de-
notes the number of clusters at time t in the system with n initial particles. This
variable is a decreasing random step function satisfying Kn(0) = n and Kn(t) = 1
for t ≥ T last

n , where T last
n denotes the moment of the last collision. While calculat-

ing Kn(t), we also count initial particles that have not experienced any collisions;
in other words, Kn(t) is the total number of particles existing at time t .

It is very important to know the behavior of Kn(t). This gives us a deep under-
standing of the aggregation process since the average size of a cluster at time t is

n
Kn(t)

.
At first we give a short deterministic example. Suppose that particles are lo-

cated at points 1
n
, 2

n
, . . . , n

n
, that is, Si = i. By simple calculations, we find that

there would not be any collisions before t = 1. At the moment t = 1, all particles
simultaneously stick together, hence Kn(t) = n for 0 ≤ t < 1 and Kn(t) = 1 for
t ≥ 1.

However, when the initial positions are random, the aggregation process be-
haves entirely differently. In [25], the author proved the following statement.

FACT 1. There exists a deterministic function a(t) such that both in the Pois-
son and the uniform models of initial positions, for any t ≥ 0, we have

Kn(t)

n

P−→ a(t), n → ∞.(1)

The function a(t) is continuous, a(0) = 1, and a(t) = 0 for t ≥ 1. We conjecture,
on the basis of numerical simulations, that a(t) = 1 − t2 for 0 ≤ t ≤ 1.
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The relation a(t) = 0 for t > 1 is not of a surprise because we know from Gi-

raud [8] that both in the Poisson and the uniform models, T last
n

P−→ 1 (the limit
constant is so “fine” due to the proper scaling of the model). Therefore, we say
that the moment t = 1 is critical; note that this moment coincides with the mo-
ment of the total collision in the deterministic model.

The aim of this paper is to strengthen the result of [25]. We first generalize
Fact 1 and prove it for the i.d. model. We will see [relations (19) and (27) below]
that a(t) is equal to the probability of a certain event that is expressed in terms of
Xi . Also, we will prove that a(t) depends on the common distribution of Xi as
follows: a(t) = 1 on [0,

√
μ), where

μ := sup
{
y : P{Xi < y} = 0

};
a(t) ∈ (0,1) on (

√
μ,1); and a(t) = 0 on (1,∞).

Furthermore, the recent results of the author [26] allow us to prove the con-
jecture from Fact 1 that aPoiss(t) = aUnif(t) = 1 − t2 for 0 ≤ t ≤ 1. There is an
amazing contrast between the simplicity of this formula and the hard calculations
one needs to obtain it. It is remarkable that now we know the limit function a(t)

for the main models of initial positions.
Our main goal is to improve (1) by finding the next term in the asymptotics

of Kn(t). The result is the following statement, where the standard symbol
D−→

denotes weak convergence and D denotes the Skorohod space.

THEOREM 1. In the i.d. model with continuous Xi satisfying EX
γ
i < ∞ for

some γ > 4, there exists a centered Gaussian process K(·) on [0,1) such that

Kn(·) − na(·)√
n

D−→ K(·) in D[0,1 − ε] for all ε ∈ (0,1)(2)

as n → ∞. The process K(·) depends on the distribution of Xi . This process
satisfies K(0) = 0 and has a.s. continuous trajectories. The covariance function
R(s, t) of K(·) is continuous on [0,1)2, R(s, t) > 0 on (

√
μ,1)2, and R(s, t) = 0

on [0,1)2 \ (
√

μ,1)2.
In the uniform model, (2) holds for some centered Gaussian process KUnif(·)

on [0,1). This process satisfies KUnif(0) = 0 and has a.s. continuous trajecto-
ries. The covariance function RUnif(s, t) of KUnif(·) is continuous on [0,1)2, and
RUnif(s, t) = RPoiss(s, t) − s2t2.

Thus, the Poisson and the uniform models lead to different limit processes
KPoiss(·) and KUnif(·), although aPoiss(·) = aUnif(·).

As an immediate corollary of Theorem 1 (see Billingsley [3], Section 15), we
get

Kn(t) − na(t)√
n

D−→ N (0, σ 2(t)), n → ∞(3)
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for any t < 1, where σ 2(t) := R(t, t). It is possible to show that in the i.d. model,
(3) holds for all t �= 1 under the less restrictive condition EX2

i < ∞, with σ 2(t) = 0
for t > 1; continuity of Xi is not required.

We also study convergence of the left-hand side of (3) at the critical moment
t = 1. Apparently, the limit is not Gaussian, but this complicated problem is re-
lated to a curious, but hardly provable conjecture on integrated random walks. In
view of this non-Gaussianity, it seems impossible to prove any extended version
of Theorem 1 that describes the weak convergence of trajectories on the whole
interval [0,1]; we refer to Section 7 for further discussion.

We finish this subsection with a note on scaling. In our model, the masses of
particles are equal to 1

n
and the distances between them are of the order 1

n
. Let

us rescale the i.d. model by multiplying all masses and distances by n: the sys-
tem of particles of mass one each, initially located at points S1 − S[n/2], S2 −
S[n/2], . . . , Sn − S[n/2], is called the expanding model. The particles are shifted
by S[n/2] because we want the system to expand “filling” the whole line as n → ∞
rather than only the positive half-line.

All results of our paper hold true for the expanding model. This is not unex-
pected because the shift does not produce any changes and the rescaling of masses
is equivalent to the time contraction by n times while the rescaling of distances is
equivalent to the time expansion by n times. We refer the reader to Section 2 below
or to Lifshits and Shi [16] for rigorous arguments.

1.3. Organization of the paper. In Section 2 we describe a general method
which is used to study systems of sticky particles. This method is applied for
studying the i.d. model in Section 3, where we investigate some properties of the
aggregation process. We will show that the aggregation process is highly local,
that is, the behavior of a particle is essentially defined by the motion of neighbor
particles. This localization property suggests that we could use limit theorems for
weakly dependent variables to prove both Fact 1 and Theorem 1 for the i.d. model;
this will be done in Section 4. Then we will prove Theorem 1 for the uniform
model in Section 5. In Section 6 we study the number of clusters at the critical
moment t = 1. Some open questions are discussed in Section 7.

2. Method of barycenters. In this section we briefly describe the method
of barycenters, which is the main tool used to study systems of sticky particles;
it is also applicable to more general models where particles could have nonzero
initial speeds and different masses. The method of barycenters was independently
introduced by E, Rykov and Sinai [6] and Martin and Piasecki [20].

Let us start with several definitions. We always numerate particles from left to
right and identify particles with their numbers. A block of particles is a nonempty
set J ⊂ [1, n] consisting of consecutive numbers. For example, the block (i, i + k]
consists of particles i + 1, . . . , i + k. Note that there are not any relations between
blocks and clusters: for example, a block’s particles could be contained in different
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clusters and these clusters could even contain particles that do not belong to the
block.

It is convenient to assume that initial particles do not vanish at collisions but
continue to exist in created clusters. Then the coordinate xi,n(t) of a particle i

could be defined as the coordinate of a cluster that contains the particle at time t .
The second subscript n always indicates the number of initial particles; we will
omit this subscript as often as possible.

By xJ (t) := |J |−1 ∑
i∈J xi(t) denote the position of the barycenter of a block

J at time t . Further, define

x∗
J (t) := xJ (0) + 1

2

(
M

(R)
J − M

(L)
J

)
t2,

where M
(R)
J := n−1(n − maxj∈J ) and M

(L)
J := n−1(minj∈J −1) are the total

masses of particles located to the right and to the left of the block J , respectively.
A block is free from the right up to time t if, up to this time, the block’s particles

did not collide with particles initially located to the right of the block. We similarly
define blocks that are free from the left and say that a block is free up to time t if it
is both free from the right and from the left.

The next statement plays the key role in the analysis of sticky particles systems.
The barycenter of a free block moves as an imaginary particle consisting of all
particles of the block put together at the initial barycenter. In a more precise and
general way, we state the following.

PROPOSITION 1. If a block J is free from the right (resp. left) up to time t ,
then xJ (s) ≥ x∗

J (s) for s ∈ [0, t] [resp. xJ (s) ≤ x∗
J (s)]. If a block J is free up to

time t , then xJ (s) = x∗
J (s) for s ∈ [0, t].

This statement could be found, for example, in Lifshits and Shi [16], Proposi-
tion 4.1. The easy proof is based on the property of conservation of momentum.

The moment when a particle j sticks with its right-hand side neighbor j + 1
is called the merging time Tj,n of the particle j . In other words, Tj,n is the first
moment when particles j and j + 1 are contained in a common cluster; here j ∈
[1, n − 1]. Proposition 4.3 from Lifshits and Shi [16], which is stated below, gives
us a way to calculate Tj,n.

PROPOSITION 2. For every j ∈ [1, n − 1], we have

Tj,n = min
j<k≤n

0≤l<j

{
s ≥ 0 :x∗

(j,k](s) = x∗
(l,j ](s)

}
.(4)

Thus, Tj,n is expressed by means of barycenters. Note that since

x∗
(j,k](s) − x∗

(l,j ](s) = x(j,k](0) − x(l,j ](0) − k − l

2n
s2,(5)
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each of the equations x∗
(j,k](s) = x∗

(l,j ](s) has a unique nonnegative solution. We
also mention that at the moment Tj,n appears a cluster that consists of the particles
l + 1, . . . , k, where k and l are minimizers of the right-hand side of (4).

We will prove Proposition 2 since the proof is simple and perfectly illustrates
the sense of the method of barycenters.

PROOF OF PROPOSITION 2. For any u < Tj,n, the particles j and j + 1 are
contained in different clusters. Therefore, for every l < j , the block [l, j ] is free
from the right up to time u, and for every k > j , the block [j + 1, k] is free from
the left. By Proposition 1,

x∗
(l,j ](u) ≤ x(l,j ](u) ≤ xj (u) < xj+1(u)

≤ x(j,k](u) ≤ x∗
(j,k](u),

and since, by (5), the function x∗
(j,k](s) − x∗

(l,j ](s) is decreasing for s ≥ 0, we
conclude that

u <
{
s ≥ 0 :x∗

(j,k](s) = x∗
(l,j ](s)

}
.

Taking minimum over k, l and taking supremum over u, we get Tj,n ≤ min{· · ·}.
Let us prove the last inequality in the other direction. By the definition of Tj,n,

there exist an l < j and a k > j such that the blocks (l, j ] and (j, k] are free up
to time Tj,n (clusters containing particles from these blocks collide exactly at time
Tj,n). In view of Proposition 1,

x∗
(l,j ](Tj,n) = x(l,j ](Tj,n) = x(j,k](Tj,n) = x∗

(j,k](Tj,n);
hence Tj,n = {s ≥ 0 :x∗

(j,k](s) = x∗
(l,j ](s)} and Tj,n ≥ min{· · ·}. �

3. Study of the i.d. model. The localization property. At first, note that

Kn(t) = 1 +
n−1∑
i=1

1{t<Ti,n}(6)

because the total number of clusters decreases by one at each moment Ti,n. This
representation plays the key role in the investigation of Kn(t). Clearly, we need to
study properties of the r.v.’s Ti,n to prove limit theorems for Kn(t); such study will
be done in this section.

3.1. The initial study. Let us simplify the representation for Tj,n from Propo-
sition 2. In this section we consider the i.d. model of initial positions, where
xj,n(0) = 1

n
Sj . Recall that Sj is a random walk with i.i.d. increments {Xj }j∈Z

(we will need the variables {Xj }j≤0 later).
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Rewrite the initial distance between barycenters as

x(j,k](0) − x(l,j ](0)

= 1

k − j

k∑
i=j+1

1

n
Si − 1

j − l

j∑
i=l+1

1

n
Si

= 1

n

(
1

k − j

k∑
i=j+1

(Si − Sj+1) + 1

j − l

j∑
i=l+1

(Sj − Si) + (Sj+1 − Sj )

)

= 1

n

(
1

k − j

k−j−1∑
i=1

(Sj+i+1 − Sj+1) + 1

j − l

j−l−1∑
i=1

(Sj − Sj−i ) + Xj+1

)
;

let us agree that
∑

∅ := 0. Further, by

x(j,k](0) − x(l,j ](0)

= 1

n

(
1

k − j

k−j−1∑
i=1

j+i+1∑
m=j+2

Xm + 1

j − l

j−l−1∑
i=1

j∑
m=j−i+1

Xm + Xj+1

)

= 1

n

(
1

k − j

k−j−1∑
i=1

(k − j − i)Xj+i+1

+ 1

j − l

j−l−1∑
i=1

(j − l − i)Xj−i+1 + Xj+1

)
,

and (5), we have

x∗
(j,k](s) − x∗

(l,j ](s) = 1

n
Fk−j,j,j−l(s),

where

Fp,j,q(s) := 1

p

p−1∑
i=1

(p − i)Xj+i+1

(7)

+ 1

q

q−1∑
i=1

(q − i)Xj−i+1 + Xj+1 − p + q

2
s2

(for p,q ≥ 1 and j ∈ Z). Now, by Proposition 2, we get

Tj,n = min
j<k≤n

0≤l<j

{s ≥ 0 :Fk−j,j,j−l(s) = 0}

= min
1≤k≤n−j

1≤l≤j

{s ≥ 0 :Fk,j,l(s) = 0}.(8)
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Note that Fp,j,q(0) ≥ 0 for all p, j, q and Fp,j,q(s) is decreasing for s ≥ 0. This
function could be also written in the more convenient form:

Fp,j,q(s) = 1

p

p−1∑
i=1

(p − i)(Xj+i+1 − s2)

(9)

+ 1

q

q−1∑
i=1

(q − i)(Xj−i+1 − s2) + (Xj+1 − s2).

3.2. Localization property of the aggregation process. We see that Tj,n is a
function of X2, . . . ,Xn; in other words, it is necessary to know the distances be-
tween all n particles to find Tj,n. The aggregation process is actually highly local,
that is, the value of Tj,n is essentially defined by the initial distances between
neighbor particles {i} of j for which |j − i| is small enough.

To make this statement rigorous, we need to introduce the following notation.
Let us put

T
(M)
j := min

1≤k,l≤M
{s ≥ 0 :Fk,j,l(s) = 0}, j ∈ Z,M ∈ N,

which is expressed in terms of the variables {Xi}|j−i|≤M only. Also, define

Tj := inf
k,l≥1

{s ≥ 0 :Fk,j,l(s) = 0}, j ∈ Z,

which is, in some sense, the merging time in an appropriate infinite system of
particles. The reader could construct such system by considering the limit of the
expanding model, see Section 1.

It is clear that

Tj ≤ Tj,n ≤ T
(j∧n−j)
j , j, n ∈ N, j ≤ n,(10)

where by ∧ and ∨ we denote minimum and maximum, respectively, and

Tj ≤ T
(M)
j , j ∈ Z,M ∈ N.(11)

Let us estimate the rate of the convergence of P{Tj �= T
(M)
j } to zero as the

“radius of the neighborhood” M tends to infinity. We thus could “measure” the
above-mentioned locality of the aggregation process. In fact, by (10), we have
P{Tj,n �= T

(M)
j } ≤ P{Tj �= T

(M)
j } for any n ∈ N, j ≤ n, and M ≤ j ∧ n − j .

LEMMA 1. Suppose EX
γ
i < ∞ for some γ ≥ 1. Then there exists a nonde-

creasing function ρ(t) such that

max
(
P

{
1{t≤Tj } �= 1{t≤T

(M)
j }

}
,P

{
Tj �= T

(M)
j , T

(M)
j ≤ t

}) ≤ ρ(t)M1−γ(12)

for any t ∈ (0,1), j ∈ Z, and M ∈ N. Moreover, for any t < 1, the left-hand side of
(12) is o(M1−γ ).
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PROOF. Let us estimate the first probability in the left-hand side of (12). By
properties of Fk,j,l(·) and definitions of T

(M)
j and of Tj ,

P
{
1{t≤Tj } �= 1{t≤T

(M)
j }

} = P
{
Tj < t ≤ T

(M)
j

}

= P

{
inf

k,l≥1
Fk,j,l(t) < 0, min

1≤k,l≤M
Fk,j,l(t) ≥ 0

}
.

By (9), this expression does not depend on j , and putting j := −1,

P
{
1{t≤Tj } �= 1{t≤T

(M)
j }

}

= P

{
inf
k≥1

1

k

k−1∑
i=1

(k − i)(Xi − t2)

+ inf
l≥1

1

l

l−1∑
i=1

(l − i)(X−i − t2) + (X0 − t2) < 0,

min
1≤k≤M

1

k

k−1∑
i=1

(k − i)(Xi − t2)

+ min
1≤l≤M

1

l

l−1∑
i=1

(l − i)(X−i − t2) + (X0 − t2) ≥ 0

}
.

We then compare the inequalities in the braces and obtain

P
{
1{t≤Tj } �= 1{t≤T

(M)
j }

}

≤ 2P

{
inf

k>M

1

k

k−1∑
i=1

(k − i)(Xi − t2) < min
1≤k≤M

1

k

k−1∑
i=1

(k − i)(Xi − t2)

}

= 2P

{
inf

k>M

1

k

k−1∑
i=1

(Si − it2) < min
1≤k≤M

1

k

k−1∑
i=1

(Si − it2)

}

≤ 2P

{
inf

k>M

1

k

k−1∑
i=1

(Si − it2) < min
k∈{1,M}

1

k

k−1∑
i=1

(Si − it2)

}
.

Now rewrite the event in the last line as{
∃k > M :

1

k

k−1∑
i=1

(Si − it2) < min

(
0,

1

M

M−1∑
i=1

(Si − it2)

)}

=
{
∃k > M :

1

k

M−1∑
i=1

(Si − it2)
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+ 1

k

k−1∑
i=M

(Si − it2) < min

(
0,

1

M

M−1∑
i=1

(Si − it2)

)}
.

Analyzing both cases 0 ≤ 1
M

∑M−1
i=1 (Si − it2) and 0 > 1

M

∑M−1
i=1 (Si − it2), we

conclude that the considered event implies{
∃k > M :

1

k

k−1∑
i=M

(Si − it2) < 0

}
=

{
∃k > M :

k−1∑
i=M

(Si − it2) < 0

}
.

Clearly, the latter implies

{∃i ≥ M :Si − it2 < 0} =
{

inf
i≥M

Si

i
< t2

}
;

hence, combining all the estimates together, we get

P
{
1{t≤Tj } �= 1{t≤T

(M)
j }

} ≤ 2P

{
inf
i≥M

Si

i
< t2

}
.(13)

Note that we obtained (13) without any assumptions on the moments of Xi .
We now estimate the right-hand side of (13); recall that EXi = 1. Then the first

part of (12) immediately follows from the classical result of Baum and Katz [1]
(see their Theorem 3 and Lemma):

FACT 2. If EXi = a and E|Xi |γ < ∞ for some γ ≥ 1, then

P

{
sup
i≥k

∣∣∣∣Si

i
− a

∣∣∣∣ > ε

}
= o(k1−γ ), k → ∞

for any ε > 0. In addition, the series
∑∞

k=1 P{supi≥k |Si

i
− a| > ε} converges for

all ε > 0 if γ = 2.

The estimation of the second probability in the left-hand side of (12) is com-
pletely analogous, since{

Tj �= T
(M)
j , T

(M)
j ≤ t

}
= {

Tj < T
(M)
j ≤ t

}
=

{
inf

1≤k,l
Fk,j,l

(
T

(M)
j

)
< 0, min

1≤k,l≤M
Fk,j,l

(
T

(M)
j

) = 0, T
(M)
j ≤ t

}
.

We put j := −1, repeat the estimates, and get

P
{
Tj �= T

(M)
j , T

(M)
j ≤ t

} ≤ 2P
{∃i ≥ M :Si − i

[
T

(M)
−1

]2
< 0, T

(M)
−1 ≤ t

}
instead of (13). The right-hand side does not exceed 2P{∃i ≥ M : Si − it2 < 0},
hence

P
{
Tj �= T

(M)
j , T

(M)
j ≤ t

} ≤ 2P

{
inf
i≥M

Si

i
< t2

}
.(14) �



CLUSTERING IN A STOCHASTIC MODEL OF ONE-DIMENSIONAL GAS 1037

3.3. The distribution function of T0 in the Poisson model. It is amazing that in
the Poisson model, the distribution function of T0 could be found explicitly. This is
important because by (27) below, the limit function a(t) equals P{T0 > t} for the
i.d. model. Also, in the proof of Theorem 1 for the uniform model, we will need
aPoiss(t) = P{T Poiss

0 ≥ t} to be twice differentiable and have a continuous second
derivative.

LEMMA 2. In the Poisson model, for 0 ≤ t ≤ 1, we have

P{T0 ≥ t} = 1 − t2.(15)

In addition, for t ≥ 0, n ≥ 2, and 1 ≤ j ≤ n − 1, we have

P{Tj,n ≥ t} = et2
P

{
min

1≤k≤j

k∑
i=1

(Si − it2) ≥ 0

}

(16)

× P

{
min

1≤k≤n−j

k∑
i=1

(Si − it2) ≥ 0

}
,

where Si is a standard exponential random walk.

PROOF. We start with (16). By (8), (9) and properties of Fk,j,l(·),

P{Tj,n ≥ t} = P

{
min

1≤k≤n−j

1≤l≤j

Fk,j,l(t) ≥ 0
}

= P

{
min

1≤k≤n−j

1

k

k−1∑
i=1

(k − i)(Xj+i+1 − t2)(17)

+ min
1≤l≤j

1

l

l−1∑
i=1

(l − i)(Xj−i+1 − t2) + Xj+1 − t2 ≥ 0

}
.

In the right-hand side of the last equality, by Y denote the first minimum and by Ỹ

denote the second one.
Suppose X is a standard exponential r.v., Z is a nonnegative r.v., and that X and

Z are independent; then

P{Z ≤ X} =
∫ ∞

0
P{Z ≤ x}e−x dx

=
∫ ∞

0
E1{Z≤x}e−x dx = E

∫ ∞
0

1{Z≤x}e−x dx = Ee−Z.

Hence in view of independence of Y , Ỹ , Xj+1 we get

P{Y + Ỹ + Xj+1 − t2 ≥ 0} = EeY+Ỹ−t2 = et2
EeY−t2

EeỸ−t2;
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and therefore,

P{Tj,n ≥ t} = et2
P{Y + Xj+1 − t2 ≥ 0} · P{Ỹ + Xj+1 − t2 ≥ 0}.

Now, by

P{Ỹ + Xj+1 − t2 ≥ 0}

= P

{
min

1≤l≤j

1

l

l−1∑
i=1

(l − i)(Xj−i+1 − t2) + Xj+1 − t2 ≥ 0

}

(18)

= P

{
min

1≤l≤j

(
l−1∑
i=1

(l − i)(Xi+1 − t2) + l(X1 − t2)

)
≥ 0

}

= P

{
min

1≤l≤j

l∑
i=1

(l − i + 1)(Xi − t2) ≥ 0

}
,

we conclude the proof of (16). Indeed, the expression in the last line equals the
first probability in the right-hand side of (16).

Now let us prove (15). From the definition of T0 and T
(k)
0 we see that

1{t≤T
(k)
0 } → 1{t≤T0} a.s. as k → ∞; then by (16),

P{T0 ≥ t} = et2
P

2

{
inf
k≥1

k∑
i=1

(Si − it2) ≥ 0

}
.

Then we need to check that

P

{
inf
k≥1

k∑
i=1

(Si − it) ≥ 0

}
= √

1 − te−t/2

for 0 ≤ t ≤ 1. The complicated calculations of this probability take more then ten
pages. Therefore, they were separated into independent paper [26]. Although these
calculations seem to be technical, they are based on quite original ideas. �

3.4. Some properties of the variables Ti . In this subsection we prove several
important properties of the r.v.’s Ti .

1. The sequence Ti is stationary.
Proof. This statement immediately follows from the definition of Ti and station-

arity of Xi , which are i.i.d.
2. The common distribution function of Ti is defined by

P{Ti ≥ t} = P

{
inf
k≥1

1

k

k−1∑
i=1

(k − i)(Xi − t2)

(19)

+ inf
l≥1

1

l

l−1∑
i=1

(l − i)(X−i − t2) + (X0 − t2) ≥ 0

}
.
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Proof. This formula follows from (9).
3. We have P{√μ ≤ Ti ≤ 1} = 1 while sup{y : P{Ti < y} = 0} = √

μ and
inf{y : P{Ti < y} = 1} = 1; recall that μ = sup{y : P{Xi < y} = 0}. In addition,
if 0 < DXi < ∞, then P{Ti = 1} = 0.

Proof. First, P{√μ ≤ Ti} = 1 is trivial, because both infima in (19) are nonpos-
itive.

Second, fix a t ≥ 1 and consider P{Ti ≥ t}. Taking into account that infima in
(19) are nonpositive, we obtain

P{Ti ≥ t} ≤ P

{
inf
k≥1

1

k

k−1∑
i=1

(k − i)(Xi − t2) + (X0 − t2) ≥ 0

}
.

Then by the same arguments as in (18),

P{Ti ≥ t} ≤ P

{
inf
k≥1

k∑
i=1

(k − i + 1)(Xi − t2) ≥ 0

}
= P

{
inf
k≥1

k∑
i=1

(Si − it2) ≥ 0

}
.

By the strong law of large numbers, this probability is zero for all t > 1.
If t = 1 and 0 < DXi < ∞, then

P

{
inf
k≥1

k∑
i=1

(Si − i) ≥ 0

}
= lim

n→∞ P

{
min

1≤k≤n

k∑
i=1

(Si − i) ≥ 0

}

= lim
n→∞ P

{
min

1≤k≤n

1

n

k∑
i=1

Si − i√
nDXi

≥ 0

}
,

and from the invariance principle, we get

P{Ti ≥ 1} ≤ P

{
min

0≤s≤1

∫ s

0
W(u)du ≥ 0

}
.

It follows from the asymptotics of unilateral small deviation probabilities of an
integrated Wiener process, see (43) and (44) below, that the last expression equals
zero.

Third, sup{y : P{Ti < y} = 0} = √
μ and inf{y : P{Ti < y} = 1} = 1 follow if we

prove that for any t < EXi = 1, the common distribution of the i.i.d. infima in (19)
has an atom at zero. But we have

P

{
inf
k≥1

1

k

k−1∑
i=1

(k − i)(Xi − t2) = 0

}
= P

{
inf
k≥1

1

k

k−1∑
i=1

(Si − it2) = 0

}

≥ P

{
inf
i≥1

Si

i
≥ t2

}
,

and it could be shown via the strong law of large numbers that the last probability
is strictly positive for all t < 1.
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4. Suppose Xi is continuous. Then T
(k)
j and Tj,n are continuous for any j, k, n

and the common distribution of Tj could have an atom only at 1. In addition, if
EX2

i < ∞, then Tj are continuous.
Proof. By (7) and (8),

Tj,n = min
1≤k≤n−j

1≤l≤j

√
H(k, j, l),(20)

where

H(p, j, q) := 2

p + q

(
1

p

p−1∑
i=1

(p − i)Xj+i+1 + 1

q

q−1∑
i=1

(q − i)Xj−i+1 + Xj+1

)
.

Hence Tj,n is continuous as a minimum of a finite number of continuous r.v.’s. The

T
(k)
j are also continuous because T

(k)
j

D= Tk,2k .
Now we prove the continuity of Tj . By Property 3, it only remains to verify

that P{Tj ≥ t} is continuous on [0,1). But P{T (k)
j ≥ t} − P{Tj ≥ t} = P{1{t≤Tj } �=

1{t≤T
(k)
j }}, and in view of (13),

sup
0≤t≤s

∣∣P{
T

(k)
j ≥ t

} − P
{
Tj ≥ t

}∣∣ ≤ sup
0≤t≤s

2P

{
inf
m≥k

Sm

m
< t2

}
= 2P

{
inf
m≥k

Sm

m
< s2

}

for every s < 1 = EXi . The last expression tends to zero by the strong law of large
numbers; then P{Tj ≥ t} is continuous on [0, s] as a uniform limit of continuous

functions P{T (k)
j ≥ t}. Since s < 1 is arbitrary, P{Tj ≥ t} is continuous on [0,1).

5. The cov(1{s≤T0},1{t≤Tk}) tends to zero as k → ∞ for all s, t ∈ [0,1). If, in
addition, EX

γ
i < ∞ for some γ > 1, then for any s, t ∈ [0,1) and k ∈ N, we have∣∣cov

(
1{s≤T0},1{t≤Tk}

)∣∣ ≤ 2γ (
ρ(s) + ρ(t)

)
k1−γ .(21)

Proof. The idea is to approximate 1{s≤T0} and 1{t≤Tk} by 1{s≤T
(k/2)
0 } and

1{t≤T
(k/2)
k }, respectively; here by k/2 we mean �k/2�, where �x� = min{m ∈

Z :m ≥ x}. Note that 1{s≤T
(k/2)
0 } and 1{t≤T

(k/2)
k } are independent because the first

is a function of {Xi}i≤k/2 while the second is a function of {Xi}i≥k/2+1. We then
have ∣∣cov

(
1{s≤T0},1{t≤Tk}

)∣∣
= ∣∣cov

(
1{s≤T0},1{t≤Tk}

) − cov
(
1{s≤T

(k/2)
0 },1{t≤T

(k/2)
k }

)∣∣
≤ ∣∣E(

1{s≤T0}1{t≤Tk} − 1{s≤T
(k/2)
0 }1{t≤T

(k/2)
k }

)∣∣
+ ∣∣E(

1{s≤T0} − 1{s≤T
(k/2)
0 }

)∣∣ + ∣∣E(
1{t≤Tk} − 1{t≤T

(k/2)
k }

)∣∣(22)

= P
{
1{s≤T0}1{t≤Tk} �= 1{s≤T

(k/2)
0 }1{t≤T

(k/2)
k }

}
+ P

{
1{s≤T0} �= 1{s≤T

(k/2)
0 }

} + P
{
1{t≤Tk} �= 1{t≤T

(k/2)
k }

}
.
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But

P
{
1{s≤T0}1{t≤Tk} �= 1{s≤T

(k/2)
0 }1{t≤T

(k/2)
k }

}
≤ P

{
1{s≤T0} �= 1{s≤T

(k/2)
0 } ∪ 1{t≤Tk} �= 1{t≤T

(k/2)
k }

}
,

therefore the result follows from Lemma 1.
6. The r.v.’s {Ti}i∈Z, {T (k)

i }i∈Z, and {Ti,n}n−1
i=1 are associated; the author owes

this observation to M. A. Lifshits.
Proof. Let us first recall the definition and some basic properties of associated

variables. R.v.’s ξ1, . . . , ξm are associated if for any coordinate-wise nondecreasing
functions f,g : Rm → R, it is true that

cov(f (ξ1, . . . , ξm), g(ξ1, . . . , ξm)) ≥ 0

(assuming that the left-hand side is well defined). An infinite set of r.v.’s is associ-
ated if any finite subset of its variables is associated.

The following sufficient conditions of association are well known; see [7].

(a) Independent variables are associated.
(b) Coordinate-wise nondecreasing functions (of finite number of arguments)

of associated r.v.’s are associated.
(c) If the variables ξ1,k, . . . , ξm,k are associated for every k and (ξ1,k, . . . ,

ξm,k)
D−→ (ξ1, . . . , ξm) as k → ∞, then ξ1, . . . , ξm are associated.

(d) If two sets of associated variables are independent, then the union of these
sets is also associated.

Then {Ti,n}n−1
i=1 are associated for every n by (a), (b) and (20). Analogously,

{T (k)
i }i∈Z are associated for every k. Finally, since T

(k)
i → Ti a.s. as k → ∞ for

every i, (c) ensures the association of {Ti}i∈Z.
7. For any s, t ∈ R and k ∈ Z,

cov
(
1{T0≤s},1{Tk≤t}

) ≥ 0.(23)

Proof. This inequality follows from cov(1{T0≤s},1{Tk≤t}) = cov(1{s<T0},1{t<Tk}),
the association of T0, Tk and (b).

8. If EX
γ
i < ∞ for some γ ≥ 2, then the stationary sequence min{Ti, t} is

strongly mixing for any t < 1 and its coefficients of strong mixing α(k) satisfy
α(k) = o(k2−γ ).

Proof. Recall that stationary r.v.’s ξi are strongly mixing if α(k) → 0 as k → ∞,
where α(k) are the coefficients of strong mixing defined as

α(k) := sup
A∈F 0−∞,B∈F ∞

k

|P(AB) − P(A)P(B)|;

here F 0−∞ := σ(ξ0, ξ−1, . . .) and F ∞
k := σ(ξk, ξk+1, . . .) are the σ -algebras of

“past” and “future,” respectively. It is readily seen that

α(k) ≤ sup
0≤f,g≤1

| cov(f (ξ0, ξ−1, . . .), g(ξk, ξk+1, . . .))|,(24)
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where the supremum is taken over Borel functions f,g : R∞ → [0,1].
Let us estimate α(k) in the same way we estimated the left-hand side of (21).

Fix some Borel functions f,g : R
∞ → [0,1]. We approximate the variables from

the “past” T0 ∧ t , T−1 ∧ t , T−2 ∧ t , . . . by T
(k/2)
0 ∧ t , T

(k/2+1)
−1 ∧ t , T

(k/2+2)
−2 ∧ t ,

. . . , respectively; and for the variables from the “future,” we use the analogous
approximation. Now, f (T

(k/2)
0 ∧ t, T

(k/2+1)
−1 ∧ t, . . .) and g(T

(k/2)
k ∧ t, T

(k/2+1)
k+1 ∧

t, . . .) are independent because the first is a function of {Xi}i≤k/2 and the second
is a function of {Xi}i≥k/2+1. We then argue in the same way as in (22) to get∣∣ cov

(
f (T0 ∧ t, T−1 ∧ t, . . .), g(Tk ∧ t, Tk+1 ∧ t, . . .)

)∣∣
≤ 2P

{ ∞⋃
i=0

(T−i ∧ t) �= (
T

(k/2+i)
−i ∧ t

)}

+ 2P

{ ∞⋃
i=0

(Tk+i ∧ t) �= (
T

(k/2+i)
k+i ∧ t

)}

≤ 4
∞∑

i=k/2

P
{
(T0 ∧ t) �= (

T
(i)

0 ∧ t
)}

.

Now, by the formula of total probability, we have

P
{
(T0 ∧ t) �= (

T
(i)

0 ∧ t
)}

= P
{
(T0 ∧ t) �= (

T
(i)
0 ∧ t

)
, T

(i)
0 ≥ t

} + P
{
(T0 ∧ t) �= (

T
(i)
0 ∧ t

)
, T

(i)
0 < t

}
≤ P

{
1{t≤T0} �= 1{t≤T

(i)
0 }

} + P
{
T0 �= T

(i)
0 , T

(i)
0 ≤ t

}
and combining all the estimates together, by Lemma 1 (24) and arbitrariness of
f and g, we get α(k) ≤ 8

∑∞
i=k/2 o(i1−γ ) = o(k2−γ ) if γ > 2. For γ = 2, we get

α(k) ≤ 16
∑∞

i=k/2 P{infi≥M
Si

i
< t2} = o(1) using the same argument and applying

(13), (14), and Fact 2 instead of Lemma 1.

3.5. The last collision. We finish this section with a statement on the conver-
gence of the moments of the last collision.

PROPOSITION 3. In the i.d. model, T last
n

P−→ 1 as n → ∞ if EX2
i < ∞.

This result is well known for the Poisson model; see Giraud [8].

PROOF OF PROPOSITION 3. Let us first prove that P{T last
n ≥ t} → 0 as n →

∞ for all t > 1. Since T last
n = max1≤j≤n−1 Tj,n, we have

P{T last
n ≥ t} ≤

n−1∑
j=1

P{Tj,n ≥ t}.(25)
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By taking into account that the minima in (17) are nonpositive and by arguing as
in (18),

P{Tj,n ≥ t} ≤ P

{
min

1≤k≤j∨n−j

1

k

k−1∑
i=1

(k − i)(Xj+i+1 − t2) + Xj+1 − t2 ≥ 0

}

= P

{
min

1≤k≤j∨n−j

k∑
i=1

(k − i + 1)(Xi − t2) ≥ 0

}

≤ P

{
min

1≤k≤n/2

k∑
i=1

(Si − it2) ≥ 0

}
.

We claim that (without any assumptions on the moments of Xi)

P{Tj,n ≥ t} ≤ P

{
sup

i≥(t−1)/4tn

Si

i
>

1 + t2

2

}
;(26)

recall that t > 1. Clearly, (26) follows if we check that{
min

1≤k≤n/2

k∑
i=1

(Si − it2) ≥ 0

}
⊂

{
sup

i≥(t−1)/4tn

Si

i
>

1 + t2

2

}
.

Assume the converse; then, by the nonnegativity of Si ,

0 ≤
n/2∑
i=1

(Si − it2) =
cn∑
i=1

(Si − it2) +
n/2∑

i=cn+1

(Si − it2)

≤
cn∑
i=1

(Scn − it2) +
n/2∑

i=cn+1

(
i
1 + t2

2
− it2

)
,

where c := t−1
4t

. We estimate the last expression with

cnScn − (cn)2

2
t2 − (n/2)2 − (cn)2

2
· t2 − 1

2
≤ c2

2
n2 − 1/4 − c2

2
· t2 − 1

2
n2.

It is simple to check that the right-hand side is negative, thus we have a contradic-
tion.

Then from (25), (26) and Fact 2 it follows that P{T last
n ≥ t} =∑n−1

i=1 o((cn)−1) = o(1) for all t > 1.
Now let us prove that P{T last

n < t} → 0 as n → ∞ for all t < 1. Since T last
n =

max1≤j≤n−1 Tj,n, we estimate

P{T last
n < t} ≤ P

{
max

1≤j≤√
n−1

Tj
√

n,n < t

}

= P

{
max

1≤j≤√
n−1

T
(
√

n/2)

j
√

n
< t

}
+

√
n−1∑

j=1

P
{
1{t≤Tj

√
n,n} �= 1{t≤T

(
√

n/2)

j
√

n
}
}
.
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In view of (10) and Lemma 1, the sum is
∑√

n−1
j=1 o(n−1/2) = o(1), hence it remains

to check that the first probability in the last line tends to zero. For a fixed n, all

T
(
√

n/2)

j
√

n
are independent because each one is a function of {Xi}|j√

n−i|≤√
n/2 (to be

precise, of Xj
√

n−√
n/2+2, . . . ,Xj

√
n+√

n/2). Thus,

P

{
max

1≤j≤√
n−1

T
(
√

n/2)

j
√

n
< t

}
= P

√
n−1{

T
(
√

n/2)√
n

< t
} ≤ P

√
n−1{T0 < t},

which tends to zero; indeed, P{T0 < t} < 1 by Property 3, Section 3.4. �

4. Proofs of Fact 1 and Theorem 1 for the i.d. model. Recall that the num-
ber of clusters Kn(t) is given by (6). Our idea is to study

∑n−1
i=1 1{t<Ti} instead of∑n−1

i=1 1{t<Ti,n}: We thus deal with a single sequence Ti and avoid considering the
triangular array Ti,n.

Let us now prove Fact 1 for the i.d. model. We prove (1) for t �= 1 without any
additional assumptions on Xi ; for t = 1, we require EX2

i < ∞. The properties of
the limit function a(t) were studied in Section 3.4, Properties 3 and 4.

PROOF OF FACT 1. We put

a(t) := P{T0 > t}.(27)

Let us first prove (1) for all t < 1. It is sufficient to check that

Kn(t)

n
− 1

n

n∑
i=1

1{t<Ti}
P−→ 0, n → ∞.(28)

Indeed, the stationary sequence 1{t<Ti} satisfies the law of large numbers by Prop-
erty 5, Section 3.4, and the well-known result of S. N. Bernstein:

FACT 3. The law of large numbers holds for r.v.’s ξi if there exists a sequence
r(k) → 0 such that cov(ξi, ξj ) ≤ r(|i − j |) for all i, j ∈ N.

By (6), ∣∣∣∣∣Kn(t)

n
− 1

n

n∑
i=1

1{t<Ti}
∣∣∣∣∣ ≤ 1

n
+ 1

n

n−1∑
i=1

(
1{t<Ti,n} − 1{t<Ti}

)
,

where we used (10) to get the nonnegativity of the right-hand side. Then (28)
immediately follows from the Chebyshev inequality provided that the expectation
of the right-hand side tends to zero. By using (10), we obtain

1

n

n−1∑
i=1

E
(
1{t<Ti,n} − 1{t<Ti}

) ≤ 1

n

n−1∑
i=1

(
E1{t<T

(i∧n−i)
i } − E1{t<Ti}

)

= 1

n

n−1∑
i=1

P
{
1{t<Ti} �= 1{t<T

(i∧n−i)
i }

}
,
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which is 2
n

∑n/2
i=1 o(1) = o(1) by Lemma 1. To be very precise, Lemma 1 deals

with slightly different indicators, but we can estimate the considered probability by
repeating the proof of Lemma 1 word for word (or just use Property 4, Section 3.4).

We now check that (1) holds for all t > 1. Using (26) gives E
Kn(t)

n
=

1
n

∑n−1
i=1 P{Ti,n > t} → 0 as n → ∞ and Kn(t)

n

P−→ a(t) = 0 follows from the
Chebyshev inequality.

It remains to check that (1) holds for t = 1 if EX2
i < ∞ to conclude the proof.

If DXi = 0, then the situation is deterministic, this case was described in Intro-
duction. Here we always have Kn(1) = 1 and (1) is true. If 0 < DXi < ∞, then
by Property 3 from Section 3.4, we have a(1) = 0 and P{T0 = 1} = 0; conse-
quently, a(t) = P{T0 > t} is continuous at t = 1. Then (1) is true for t = 1 since

0 < Kn(1)
n

≤ Kn(t)
n

P−→ a(t) for any t ∈ (0,1) and a(t) → a(1) = 0 as t ↗ 1. �

Now we prove Theorem 1 for the i.d. model. We think of D[0,1] as of a sepa-
rable metric space equipped with the Skorohod metric d , which induces the Sko-
rohod topology.

PROOF OF THEOREM 1. At first, we prove (2). In view of representation (6)
for Kn(t), relation (2) follows from the relation

sup
0≤t≤1−ε

∣∣∣∣∣ 1√
n

n−1∑
i=1

1{t<Ti,n} − 1√
n

n∑
i=1

1{t<Ti}
∣∣∣∣∣ P−→ 0 for all ε ∈ (0,1)(29)

and the existence of a centered Gaussian process K(·) on [0,1) such that

1√
n

{
n∑

i=1

1{t<Ti} − na(t)

}
D−→ K(·) in D[0,1 − ε] for all ε ∈ (0,1).(30)

Indeed, if Yn
D−→ Y and d(Yn,Y

′
n)

P−→ 0 for some random elements Yn,Y
′
n, Y of

the separable metric space D[0,1 − ε], then Y ′
n

D−→ Y ; recall that d(Yn,Y
′
n) ≤

supt∈[0,1−ε] |Yn(t) − Y ′
n(t)|.

We start with (29). It is sufficient to prove that the expectation of the left-hand
side tends to zero. Since the supremum of a sum does not exceed the sum of
suprema, let us check that

1√
n

n−1∑
i=1

E sup
0≤t≤1−ε

∣∣1{t<Ti,n} − 1{t<Ti}
∣∣ −→ 0 for all ε ∈ (0,1).(31)

By (10), we have

E sup
0≤t≤1−ε

∣∣1{t<Ti,n} − 1{t<Ti}
∣∣ ≤ E sup

0≤t≤1−ε

(
1{t<T

(i∧n−i)
i } − 1{t<Ti}

)

= P
{
Ti �= T

(i∧n−i)
i , Ti ≤ 1 − ε

}
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= P
{
Ti �= T

(i∧n−i)
i , T

(i∧n−i)
i < 1 − ε

}
+ P

{
1{1−ε≤Ti} �= 1{1−ε≤T

(i∧n−i)
i }

}
,

where the last equality was obtained via the formula of total probability. Combin-
ing the estimates together and using Lemma 1,

1√
n

n−1∑
i=1

E sup
0≤t≤1−ε

∣∣1{t<Ti,n} − 1{t<Ti}
∣∣

≤ 2ρ(1 − ε)√
n

n−1∑
i=1

(i ∧ n − i)1−γ = 4ρ(1 − ε)√
n

n/2∑
i=1

i1−γ .

The last expression is O(n3/2−γ ) and (31), which implies (29), follows.
Now let us prove (30). As long as

Un(t) := − 1√
n

{
n∑

i=1

1{t<Ti} − na(t)

}
= √

n

{
1

n

n∑
i=1

1{Ti≤t} − (
1 − a(t)

)}
,

the Un(·) is the empirical process of stationary r.v.’s Ti with the continuous com-

mon distribution function 1 − a(t). By K(·) D= −K(·), (30) is equivalent to the
existence of a centered Gaussian process K(·) on [0,1) such that

Un(·) D−→ K(·) in D[0,1 − ε] for all ε ∈ (0,1).(32)

We will use the following result from Lin and Lu [17], Section 12 on conver-
gence of empirical processes. They attribute this statement to Q.-M. Shao, who
published it in 1986, in Chinese.

FACT 4. Let ξi be a sequence of stationary strongly mixing r.v.’s distributed
on [0,1], and let F be the common distribution function of ξi . Suppose F(x) = x

on [0,1] (i.e., ξi are uniformly distributed) and the coefficients of strong mixing
of the sequence F(ξi) decrease as O(k−(2+δ)) as k → ∞ for some δ > 0. Then
the empirical processes of ξi weakly converge in D[0,1] to a centered Gaussian
process with the covariance function

∑
i∈Z cov(1{ξ0≤s},1{ξi≤t}).

REMARK. The limit Gaussian process is a.s. continuous on [0,1]. Fact 4 also
holds true if F is an arbitrary continuous distribution function.

The a.s. continuity of the limit process could be concluded by a comparison of
the proof from Lin and Lu [17] with the proof of Theorem 22.1 from Billings-
ley [3]. The statements and the proofs of these theorems are identical, but Lin
and Lu do not state the continuity while Billingsley does. Further, since F(ξi)

is uniformly distributed on [0,1] if F is continuous, Fact 4 holds true for every
continuous F ; see the proof of Theorem 22.1 by Billingsley [3] for explanations.
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Recall that we need to prove the convergence of the empirical process of Ti .
It seems that the r.v.’s Ti are not strongly mixing; but min{Ti,1 − ε} are strongly
mixing because of Property 8, Section 3.4. These variables are not continuous and
so we need to fix them. Let us fix an ε ∈ (0,1), and let αi be i.i.d. r.v.’s independent
of all Ti and, say, uniformly distributed on [0, ε]; we define T̃i := min{Ti,1 − ε}+
1{Ti≥1−ε}αi .

The stationary variables T̃i are distributed on [0,1], their common distribution
function G is continuous, and the coefficients of strong mixing of G(T̃i) decrease
as o(k2−γ ). The proof of the last statement is the same as the proof of Prop-
erty 8 from Section 3.4. Indeed, approximate the variables G(T̃0),G(T̃−1), . . .

from the “past” by G(T̃
(k/2)
0 ),G(T̃

(k/2+1)
−1 ), . . . where T̃

(m)
i := min{T (m)

i ,1 − ε}+
1{T (m)

i ≥1−ε}αi ; use the analogous approximation for the variables from the “fu-

ture”; and then repeat word for word the arguments of the previous proof.
Now, recalling that γ > 4, we see that T̃i satisfy the assumptions of Fact 4,

with the only difference that their distribution is not uniform. By Ũn(·) denote the
empirical process of T̃i ; clearly, Ũn(·) coincides with the empirical process Un(·)
of Ti on [0,1 − ε]. By the remark to Fact 4, we conclude that first,

Ũn(·) D−→ K̃(·) in D[0,1],(33)

where K̃(·) is a centered Gaussian process with the covariance function

R̃(s, t) := ∑
i∈Z

cov
(
1{T̃0≤s},1{T̃i≤t}

)

and, second, trajectories of K̃(·) are a.s. continuous on [0,1].
[There exists a simpler and more elegant proof of (33). Note that {T̃i}i∈Z

are associated as coordinate-wise nondecreasing functions of associated r.v.’s
{Ti, αi}i∈Z, see (a), (b) and (d) from Property 6, Section 3.4. Then we can obtain
(33) applying the result of Louhichi [18] on convergence of empirical processes of
stationary associated r.v.’s ξi instead of using Fact 4. This theorem requires only
cov

(
F(ξ0),F (ξk)

) = O(k−(4+δ)), which could be proved analogously to Prop-
erty 5, Section 3.4. Thus we avoid the complicated estimations of the strong mixing
coefficients, and the proof of (33) is becomes much simpler. The only problem is
that this proof requires γ > 5.

We also note that the a.s. continuity of K̃(·) could be proved directly, without
referring to the proof of Fact 4. The arguments should be the same as in the proof
of the continuity of KUnif(·) in Section 5.]

Define

R(s, t) := ∑
i∈Z

cov
(
1{T0≤s},1{Ti≤t}

)
,(34)

which is, evidently, equal to R̃(s, t) on [0,1−ε]2. Since R̃(s, t) is positive definite
and ε > 0 is arbitrary, the function R(s, t) is positive definite on [0,1)2. Therefore,
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by Lifshits [15], Section 4, there exists a centered Gaussian process K(·) on [0,1)

with the covariance function R(s, t). The trajectories of K(·) are a.s. continuous on

[0,1) by K(·) D= K̃(·) on [0,1 − ε], arbitrariness of ε > 0, and the a.s. continuity
of K̃(·) on [0,1].

Finally, by (33), Ũn(·) = Un(·) on [0,1 − ε], K̃(·) D= K(·) on [0,1 − ε], and the
a.s. continuity of K̃(·), we get (32). Since (32) implies (30), we conclude the proof
of (2).

Only the stated properties of R(s, t) remain to be proven. The continuity of
the joint distribution function of continuous variables T0 and Ti implies that
cov(1{T0≤s},1{Ti≤t}) is continuous on [0,1)2 for every i ≥ 0. Then, in view of
(21), R(s, t) is continuous on [0,1)2 as a sum of uniformly converging series of
continuous functions.

The strict positivity of R(s, t) on (
√

μ,1)2 trivially follows from (34), (23)
and cov(1{T0≤s},1{T0≤t}) = a(s ∨ t)(1 − a(s ∧ t)) > 0; the last inequality holds
by Property 3, Section 3.4. The R(s, t) = 0 on [0,1)2 \ (

√
μ,1)2 follows from

P{Ti ≤ √
μ} = 0, which holds by Properties 3 and 4 from Section 3.4. �

We note that (3) holds for t �= 1 under the less restrictive condition EX2
i < ∞.

For t < 1, the proof is almost the same: By (29), which is true for γ > 3/2, we
conclude that (3) holds if the stationary associated sequence 1{t<Ti} satisfies the
central limit theorem. Then we refer to the central limit theorem for stationary
associated sequences from Newman [21]; his theorem requires only R(t, t) < ∞,
that is, the convergence of the right-hand side of (34). This condition holds by (13)
and Fact 2. For t > 1, relation (3) holds true with σ 2(t) = 0 because of Proposi-
tion 3.

Finally, note that the process K(·) is associated, that is, the r.v.’s {K(t)}t∈[0,1)

are associated. In fact, by (6), Property 6 from Section 3.4, and Condition (b) from
the same Property 6, the processes Kn(·)−na(·)√

n
are associated for every n. Then

K(·) is associated by (2) and (c), Property 6.

5. Proof of Theorem 1 for the uniform model. There exists a simple method
that allows to extend results from the Poisson model to the uniform model and vise
versa. The method is based on the next statement (see Karlin [13], Section 9.1).

FACT 5. Let Si be an exponential random walk. Then for any k ≥ 1, we have(
S1

Sk+1
,

S2

Sk+1
, . . . ,

Sk

Sk+1

)
D= (U1,k,U2,k, . . . ,Uk,k),(35)

where Ui,k are the order statistics of k i.i.d. r.v.’s uniformly distributed on [0,1].
Moreover, the random vector in the left-hand side of (35) is independent of Sk+1.
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Therefore, if xPoiss
j,n (0) = 1

n
Sj are the initial positions of particles in the Poisson

model, then for the initial positions of particles in the uniform model, we have
xUnif
j,n (0) = n

Sn+1
· xPoiss

j,n (0). By Proposition 2 and (5), we conclude that

T Unif
j,n = β−1

n T Poiss
j,n , βn :=

√
Sn+1

n
,(36)

and hence, using (6), we get

KUnif
n (t) = KPoiss

n (βnt).(37)

Note that the process KUnif
n (·) and the r.v. βn are independent since values of the

process are defined by xUnif
1,n (0), . . . , xUnif

n,n (0), which are mutually independent of
βn by Fact 5.

Now we prove Theorem 1 for the uniform model.

PROOF OF THEOREM 1. Denote

Yn(t) := KUnif
n (t) − na(t)√

n
, Zn(t) := √

n
(
a(t) − a(βnt)

);
we stress that Yn(·) and Zn(·) are independent.

Fix an ε ∈ (0,1). First, it follows from (2) for the Poisson model and (37) that

Yn(·) + Zn(·) D−→ KPoiss(·) in D[0,1 − ε].(38)

Indeed, the process Yn(·) + Zn(·) is obtained from 1√
n
(KPoiss

n (·) − na(·)) by the

random time change t �→ βnt ; and since ‖βnt − t‖C[0,1−ε]
P−→ 0, we have

d

(
Yn(·) + Zn(·), KPoiss

n (·) − na(·)√
n

)
P−→ 0

by the definition of the Skorohod metric d .
Second, from Fact 1, (15), and (27) it follows that aUnif(t) = aPoiss(t) =

P{T Poiss
0 ≥ t} = 1 − t2 for 0 ≤ t ≤ 1, and by the central limit theorem,

Zn(t)
D−→ t2η in D[0,1 − ε],(39)

where η is a standard Gaussian r.v.
We claim that (38), the independence of Yn(·) and Zn(·), and (39) yield the

weak convergence of Yn(·) in D[0,1 − ε]. Let us check the tightness of Yn(·) and
the convergence of their finite-dimensional distributions.

The tightness of Yn(·) in D[0,1 − ε] follows from Yn(·) = (Yn(·) + Zn(·)) −
Zn(·), (38), and (39). Indeed, by the Prokhorov theorem, (38) and (39) yield that
both sequences Yn(·) + Zn(·) and −Zn(·) are tight. But trajectories of −Zn(·) are
a.s. continuous because of the continuity of a(·), and the tightness follows from
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the continuity of addition + :D × C → D and the fact that under any continuous
mapping, the image of a compact set is also a compact set.

Now we study convergence of finite dimensional distributions of Yn(·). Recall
that the characteristic function of a centered Gaussian vector in R

m is e−1/2(Ru,u),
where u ∈ R

m and R is the covariance matrix of the vector. Then (38), the inde-
pendence of Yn(·) and Zn(·), and (39) yield that for the characteristic functions of
all finite-dimensional distributions of Yn(·), we have

Eei(Yn(t),u) −→ e
−1/2({RPoiss(tj ,tk)−t2

j t2
k }mj,k=1u,u)

,(40)

where u ∈ R
m, t = (t1, . . . , tm) ∈ [0,1 − ε]m, and Yn(t) := (Yn(t1), . . . , Yn(tm)).

We stress that (40) is true for every t ∈ [0,1 − ε]m since the limit processes in (38)
and (39) have continuous trajectories.

We see that the matrix {RPoiss(tj , tk) − t2
j t2

k }mj,k=1 is positive definite for any
t = (t1, . . . , tm) ∈ [0,1 − ε]m and m ≥ 1 since the absolute value of the left-hand
side of (40) does not exceed one. Putting

RUnif(s, t) := RPoiss(s, t) − s2t2,

we have {RPoiss(tj , tk) − t2
j t2

k }mj,k=1 = {RUnif(tj , tk)}mj,k=1; then the function

RUnif(s, t) is positive definite on [0,1)2 since ε > 0 is arbitrary. Thus, by Lif-
shits [15], Section 4, RUnif(s, t) is the covariance function of some centered
Gaussian process KUnif(·) on [0,1).

Relation (2) is thus proved. Now check that KUnif(·) ∈ C[0,1 − ε] a.s. to con-
clude the proof of Theorem 1 for the uniform model.

For this purpose, let us prove that a.s., trajectories of Yn(·) have jumps of size
1√
n

only. In fact, the jumps of Yn(·) coincide with the jumps of 1√
n
KUnif

n (·), whose

jumps are of size 1√
n

if and only if T Unif
j1,n

�= T Unif
j2,n

for 1 ≤ j1 �= j2 ≤ n− 1. By (36),

we need to verify that T Poiss
j1,n

�= T Poiss
j2,n

a.s. for 1 ≤ j1 �= j2 ≤ n−1. This relation fol-

lows from (20) if H(k1, j1, l1) �= H(k2, j2, l2) a.s. for j1 �= j2 and k1, k2, l1, l2 ≥ 1.
The last a.s. nonequality is obvious because if the equality holds true, then a certain
nontrivial linear combination of i.i.d. exponential Xi equals zero.

Then there exist a.s. continuous Ỹn(·) such that supt∈[0,1−ε] |Ỹn(t) − Yn(t)| ≤
1√
n

a.s.; consequently, d(Ỹn, Yn) ≤ 1√
n

a.s. Then by Yn(·) D−→ KUnif(·), we also

have Ỹn(·) D−→ KUnif(·). But 1 = lim inf P{Ỹn(·) ∈ C} ≤ P{KUnif(·) ∈ C} since
C ⊂ D is closed in the Skorohod topology, therefore, a.s., KUnif(·) is continuous
on [0,1 − ε].

Since ε ∈ (0,1) is arbitrary, a.s., KUnif(·) is continuous on the whole inter-
val [0,1). The RUnif(s, t) = RPoiss(s, t) − s2t2 is continuous on [0,1)2 because
RPoiss(s, t) is. �
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6. The number of clusters at the critical moment. Now we turn our atten-
tion to the number of clusters at the critical moment t = 1. We are interested in the
behavior of

Kn(1) − na(1)√
n

= Kn(1)√
n

,

which is the left-hand side of (3) at t = 1; here we have a(1) = 0 under EX2
i < ∞,

see Property 3, Section 3.4.
We do not know if this sequence is weakly convergent, but we hope that it is. We

also have a naive guess that its limit is Gaussian because the limit in Theorem 1 is
Gaussian. In view of Kn(1) ≥ 1, this conjectured weak limit is nonnegative, hence
it is Gaussian if and only if it is identically equal to zero. However, the results of
this section show that the limit is nonzero, thus our guess on Gaussianity fails.

The study of convergence of Kn(1)√
n

is quite complicated. Therefore, in this sec-
tion, we consider only the Poisson model. First, let us prove the following state-
ment.

PROPOSITION 4. In the Poisson model, we have limn→∞ P{Kn(1) = 1} > 0.

PROOF. On the one hand, Kn(1) = 1 is equivalent to T last
n;Poiss ≤ 1, where

T last
n;Poiss denotes the moment of the last collision in the Poisson model. On the

other hand, a result by Giraud [8] states that in the uniform model,
√

n(T last
n;Unif − 1)

D−→ sup
0≤x≤1

(
1

1 − x

∫ 1

x

◦
W (y)dy − 1

x

∫ x

0

◦
W (y)dy

)
=: τ,

where
◦

W (·) is a Brownian bridge. Now, by (36), we have T last
n;Unif = β−1

n T last
n;Poiss,

hence √
n(β−1

n T last
n;Poiss − 1)

D−→ τ.(41)

But from the central limit theorem and the law of large numbers,
√

n(β−1
n − 1) = −Sn+1 − n√

n
· n√

Sn+1(
√

Sn+1 + √
n)

D−→ η

2
,(42)

where η is a standard Gaussian r.v. and Si is a standard exponential random
walk that defines initial positions of particles. Since, in view of Fact 5, T last

n;Unif =
β−1

n T last
n;Poiss and βn are independent, from (41), (42), and the law of large numbers

it follows that √
n(T last

n;Poiss − 1)
D−→ τ − η

2
D= τ + η

2
,

where τ and η are independent. Thus,

lim
n→∞P{Kn(1) = 1} = lim

n→∞ P{T last
n;Poiss ≤ 1} = P

{
τ + η

2
≤ 0

}
> 0. �

The main advantage of the Poisson model is that, by Lemma 2 and Property 4,
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Section 3.4 we have P{Tj,n > 1} = epjpn−j , where

pk := P

{
min

1≤m≤k

m∑
i=1

(Si − ESi) ≥ 0

}

and Si is a standard exponential random walk. We say that the sequence of r.v.’s∑m
i=1(Si − ESi) is an integrated random walk. In the proof of Property 3, Sec-

tion 3.4, we showed that pk → 0 as k → ∞. Therefore, it is reasonable to say
that pk are the unilateral small deviation probabilities of an integrated centered
random walk.

We need to obtain the asymptotics of pk → 0 to continue the study of conver-
gence of Kn(1)√

n
. Unfortunately, the results of the rest of this section are completely

dependent on the correctness of the following conjecture.

CONJECTURE 1. We have pk ∼ c1k
−1/4 as k → ∞ for some c1 ∈ (0,∞).

Simulations show that the conjecture is true and c1 ≈ 0.36. The weaker form
pk � k−1/4 of Conjecture 1 was proved by Sinai [22], but only for integrated sym-
metric Bernoulli random walks. It also interesting to note that, by McKean [19],
the unilateral small deviation probabilities of an integrated Wiener process have
the same order as T → ∞:

P

{
min

0≤s≤T

∫ s

0
W(u)du ≥ −1

}
∼ c2T

−1/4(43)

for some c2 ∈ (0,∞). The left-hand side of (43) is a unilateral small deviation
probability since

P

{
min

0≤s≤T

∫ s

0
W(u)du ≥ −1

}
= P

{
min

0≤s≤1

∫ s

0
W(u)du ≥ −T −3/2

}
.(44)

To be precise, McKean was interested in a more general problem, and some cal-
culations are required to obtain (43) from his results. Therefore, we additionally
refer to Isozaki and Watanabe [12] who state (43) explicitly.

By the results mentioned above, we also suppose that Conjecture 1 is true
for other integrated centered random walks that satisfy some moment condi-
tions.

Now we are able to prove the following result on convergence of Kn(1)√
n

.

PROPOSITION 5. Suppose Conjecture 1 holds true. Then in the Poisson model,
we have

lim
n→∞ E

(
Kn(1)√

n

)
= c3, sup

n≥1
E

(
Kn(1)√

n

)2

< ∞(45)
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FIG. 1. The distribution function of Kn(1)√
n

for n = 10,000.

for some c3 ∈ (0,∞); the sequence Kn(1)√
n

is tight and uniformly integrable; and the

limit of any weakly converging subsequence of Kn(1)√
n

takes value zero with positive

probability, but is not identically equal to zero.

Numerical simulations show that Kn(1)√
n

is weakly convergent and that this con-
vergence is quite fast. In Figure 1 we present the (empirical) distribution function
of Kn(1)√

n
for n = 10,000. Since the simulations performed for n = 40,000 showed

a hardly perceptible difference, this function seems to be a good candidate for the
distribution function of the conjectured limit.

Note that if we weaken Conjecture 1 to pk � k−1/4, then Proposition 5 still
holds true with the only difference that E

Kn(1)√
n

� 1.

PROOF OF PROPOSITION 5. We start with the convergence of the expectation.
On the one hand, by (6) and Lemma 2,

E

(
Kn(1)√

n

)
= 1√

n
+ e√

n

n−1∑
i=1

pipn−i ,
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and on the other hand,

1√
n

n−1∑
i=1

i−1/4(n − i)−1/4 = 1

n

n−1∑
i=1

(
i

n

)−1/4(
1 − i

n

)−1/4

−→ B(3/4,3/4)

as the integral sum of Beta function. Then it follows from Conjecture 1 and stan-
dard arguments that E

Kn(1)√
n

converges to c3 := ec2
1B(3/4,3/4) > 0.

Now we check the uniform boundedness of E(Kn(1)√
n

)2. By (6) it is sufficient to
prove that

sup
n≥1

1

n

n−1∑
i,j=1,i �=j

P{Ti,n > 1, Tj,n > 1} < ∞.(46)

Suppose i < j ; then by using (8) and properties of Fk,j,l(·), we get

P{Ti,n > 1, Tj,n > 1} = P

{
min

1≤k≤n−i

1≤l≤i

Fk,i,l(1) > 0, min
1≤k≤n−j

1≤l≤j

Fk,j,l(1) > 0
}

≤ P

{
min

1≤k≤(j−i)/2
1≤l≤i

Fk,i,l(1) > 0, min
1≤k≤n−j

1≤l≤(j−i)/2

Fk,j,l(1) > 0
}
,

where by (j − i)/2 we mean �(j − i)/2�. The minima in the last expression are
independent as functions of {Xm}m≤(i+j)/2 and {Xm}m≥(i+j)/2+1, respectively;
hence

P{Ti,n > 1, Tj,n > 1} ≤ P

{
min

1≤k≤(j−i)/2
1≤l≤i

Fk,i,l(1) > 0
}

· P

{
min

1≤k≤n−j

1≤l≤(j−i)/2

Fk,j,l(1) > 0
}

= P
{
Ti,i+(j−i)/2 > 1

} · P
{
T(j−i)/2,n−j+(j−i)/2 > 1

}
= e2pip

2�(j−i)/2�pn−j ,

where the first equality follows from (8) and the second follows from Lemma 2.
Recalling Conjecture 1, we get

1

n

n−1∑
i,j=1,i �=j

P{Ti,n > 1, Tj,n > 1} ≤ 1

n

n−1∑
i,j=1,i �=j

e2pip
2�|j−i|/2�pn−j

≤ c

n

n−1∑
i,j=1,i �=j

i−1/4�|j − i|/2�−1/2(n − j)−1/4

≤ c

n2

n−1∑
i,j=1,i �=j

(
i

n

)−1/4∣∣∣∣jn − i

n

∣∣∣∣
−1/2(

1 − j

n

)−1/4
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for some c > 0. The last expression is an integral sum converging to

c

∫ 1

0

∫ 1

0
x−1/4|x − y|−1/2(1 − y)−1/4 dx dy,

and it is a simple exercise to check that the integral is finite. This concludes (46).
The uniform integrability of Kn(1)√

n
follows from the second relation from (45),

see Billingsley [3], Section 5, and the tightness follows from the uniform integra-
bility.

Finally, suppose
Kni

(1)√
ni

D−→ ξ for some subsequence ni → ∞ and some r.v. ξ .
Then Eξ = c3 > 0 by the uniform integrability and (45), and hence ξ is not identi-
cally equal to zero. But the distribution of ξ has an atom at zero since by Proposi-
tion 4 and properties of weak convergence,

P{ξ = 0} = lim
ε↘0

P{ξ ≤ ε}

≥ lim
ε↘0

lim sup
i→∞

P

{
Kni

(1)√
ni

≤ ε

}

≥ lim
ε↘0

lim
i→∞P{Kni

(1) = 1} > 0. �

7. Open questions. 1. The number of clusters at the critical moment t = 1.
Here the main question is if Conjecture 1 holds true. Even by itself, this problem

is worth studying.
But even if Conjecture 1 is true, we still do not have a proof of weak conver-

gence of Kn(1)√
n

, it is only known that this sequence is tight. The author strongly
believes, relying on numerical simulations, that the limit exists. It would be inter-
esting to find this conjectured limit, which should be nontrivial by Proposition 5,
in an explicit form.

2. The weak convergence of Kn(·)−na(·)√
n

on the whole interval [0,1].
It is very natural to ask if it is possible to strengthen Theorem 1 by proving the

weak convergence of Kn(·)−na(·)√
n

in D[0,1]. This complicated problem returns us

again to Question 1 because the weak convergence of Kn(·)−na(·)√
n

in D[0,1] im-

plies the weak convergence of Kn(1)−na(1)√
n

= Kn(1)√
n

, see Billingsley [3], Section 15.

But even if Kn(1)√
n

converges, its weak limit K(1) is not Gaussian, hence the limit
process K(·), which is Gaussian on [0,1), is no more Gaussian on [0,1]. There-
fore, it is doubtful that Theorem 1 is true in D[0,1]; at least, one should provide
a proof completely different from the presented one. Also, it is unclear how to de-
fine the finite-dimensional distributions of the non-Gaussian K(·) on [0,1] because
simulations show that K(1) would not be independent with K(t) for t < 1.

3. The number of clusters in the warm gas.
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In the presented case, initial speeds of particles are zero. This model is often
called the cold gas according to its zero initial temperature. We introduce a new
model stating that initial speeds of particles are anv1, anv2, . . . , anvn, where vi

are some i.i.d. r.v.’s and an is a sequence of normalization constants. This model,
called the warm gas, was studied in many papers, for example, [14, 16, 20, 25].

It is of a great interest to study the behavior of Kn(t) in the warm gas. In [25],
the author proved that in the basic case where an = 1 for all n and Ev2

i < ∞,

we have Kn(t)
n

P−→ 0 for all t > 0. The question is to find a normalization of Kn(t)

leading to some nontrivial limit. Clearly, this normalization depends on an, but it is
very possible that there is an effect of phase transition similar to the one discovered
by Lifshits and Shi [16]: If an are small enough, then the gas has a low temperature
and the normalization is the same as in the cold gas. If an are big enough, as in the
basic case an ≡ 1, then the normalization and the behavior of the gas differ entirely
from the case of the cold gas.

The author believes that the localization property, which is described in Sec-
tion 3, could be helpful in a study of these questions.

It is also interesting to compare the behavior of Kn(1) in the warm and in the
cold gases; in the warm gas, the moment t = 1 plays the same “critical” role as
in the cold gas, see Lifshits and Shi [16]. The variable Kn(1) was studied by
Suidan [24], who considered the warm gas with an ≡ 1 and deterministic initial
positions of particles (his initial positions were 1

n
, 2

n
, . . . , n

n
). For this case, Suidan

found the distribution of Kn(1) and showed that EKn(1) ∼ logn. Recall that in the
presented case, EKn(1) ∼ c3

√
n.

4. The number of clusters in ballistic systems of sticky particles.
A sticky particles model is called ballistic if it evolves according to the laws

introduced in Section 1, but in the absence of gravitation. Such models are, in
some sense, more natural than gravitational ones because the basic assumption
that gravitation does not depend on distance is sometimes confusing. However,
an unpublished paper of Lifshits and Kuoza shows that certain gravitational and
ballistic models are tightly connected.

It seems interesting to study the number of clusters in the ballistic model. The
author does not know any results in this field.
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