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Let M be a compact Riemannian manifold. A self-interacting diffusion
on M is a stochastic process solution to

dXt = dWt (Xt ) − 1

t

(∫ t

0
∇VXs

(Xt ) ds

)
dt,

where {Wt } is a Brownian vector field on M and Vx(y) = V (x, y) a smooth
function. Let µt = 1

t

∫ t
0 δXs

ds denote the normalized occupation measure
of Xt . We prove that, when V is symmetric, µt converges almost surely to
the critical set of a certain nonlinear free energy functional J . Furthermore,
J has generically finitely many critical points and µt converges almost surely
toward a local minimum of J . Each local minimum has a positive probability
to be selected.

1. Introduction. Let M be a C∞ d-dimensional, compact connected Rie-
mannian manifold without boundary and V :M × M → R be a smooth function
called a potential. For every Borel probability measure µ on M , let V µ :M → R

denote the smooth function defined by

V µ(x) =
∫
M

V (x,u)µ(du),(1)

and let ∇(V µ) denote its gradient (computed with respect to the Riemannian
metric on M).

A self-interacting diffusion process associated to V is a continuous time
stochastic process living on M solution to the stochastic differential equation
(SDE)

dXt =
N∑

i=1

Fi(Xt) ◦ dBi
t − 1

2∇(V µt)(Xt) dt, X0 = x ∈ M,(2)

where (B1, . . . ,BN) is a standard Brownian motion on R
N , {Fi} is a family of

smooth vector fields on M such that
N∑

i=1

Fi(Fif ) = �f(3)
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SELF-INTERACTING DIFFUSIONS 1717

[for f ∈ C∞(M)], where � denotes the Laplacian on M ; and

µt = 1

t

∫ t

0
δXs ds(4)

is the empirical occupation measure of {Xt }.
In absence of drift [i.e., V (x, y) = 0], {Xt } is just a Brownian motion on M.

If V (x, y) = V (x), then it is a diffusion process on M. However, for a general
function V, such a process is characterized by the fact that the drift term in
equation (2) depends both on the position of the process and its empirical
occupation measure up to time t .

Self-interacting diffusions (as defined here) were introduced in [3], and we refer
the reader to this paper for a more detailed definition and basic properties.

It is worth pointing out that equation (2) presents some strong similarities with
the following class of SDE:

dYt = dBt −
(∫ t

0
v′(Ys − Yt ) ds

)
dt,(5)

whose behavior has been the focus of much attention in the recent years (see, e.g.,
[9, 10, 12, 14, 21, 24] or [22] for a recent overview and further references about
reinforced random processes). The main differences being the following:

(i) The SDE (2) lives on an arbitrary but compact manifold, while (5) lives
on R or R

d .
(ii) The drift term in (5) depends on the nonnormalized occupation measure

tµt =
∫ t

0
δXs ds.

A major goal in understanding (2) is

(a) to provide tools allowing to analyze the long term behavior of {µt }; and,
using these tools,

(b) to identify (at least partially) general classes of potential leading to certain
types of behaviors.

A first step in this direction has been achieved in [3], where it is shown that
the asymptotic behavior of {µt } can be precisely described in terms of a certain
deterministic semi-flow � = {�t }t≥0 defined on the space of Borel probability
measures on M. For instance, there are situations (depending on the shape of V )
in which {µt } converges almost surely to an equilibrium point µ∞ of � (µ∞ is
random) and other situations where the limit set of {µt } coincides almost surely
with a periodic orbit for � (see the examples in Section 4 of [3]).

The present paper adresses the second part of this program. The main result here
is that

Symmetric interactions (i.e., symmetric potentials) force {µt } to converge
almost surely toward the critical set of a certain nonlinear free-energy functional.
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This result encompasses most of the examples considered in [3] and enlightens the
results of [3] and [4]. It also allows to give a sensible definition of self-attracting
or repelling diffusions.

The organization of the paper is as follows. Section 2 defines the class of
potentials considered here, gives some examples and states the main results.
Section 3 reviews some material from [3] on which rely the analysis. Sections
4, 5, 6 and the Appendix are devoted to the proofs.

2. Hypotheses and main results. We assume throughout that V is a C3 map
(this regularity condition can be slightly weakened (see Hypothesis 1.4 in [3])) and
that

HYPOTHESIS 2.1 (Standing assumption). V is symmetric:

V (x, y) = V (y, x).

Recall that λ denotes the Riemannian probability on M. We will sometime use
the following additional hypothesis:

HYPOTHESIS 2.2 (Occasional assumption 1). The mapping

V λ :x �→ V λ(x) =
∫
M

V (x, y)λ(dy)(6)

is constant.

This later condition has the interpretation that if the empirical occupation
measure of Xt is (close to) λ, then the drift term ∇(V µt)(Xt) is (close to) zero. In
other words, if the process has visited M “uniformly” between times 0 and t , then
it has no preferred directions and behaves like a Brownian motion.

Notation. Throughout we let C0(M) denote the Banach space of real-valued
continuous functions f :M → R, equipped with the supremum norm

‖f ‖∞ = sup
x∈M

|f (x)|.

Given a positive function g ∈ C0(M), we let 〈·, ·〉g denote the inner product on
C0(M) defined by

〈u, v〉g =
∫
M

u(x)v(x)g(x)λ(dx).

When g = 1, we usually write 〈·, ·〉λ (instead of 〈·, ·〉1) and ‖f ‖λ for
√〈f,f 〉λ.

The completion of C0(M) for the norm ‖f ‖λ is the Hilbert space L2(λ).

We sometimes use the notation 1 to denote the function on M taking value one
everywhere; and

L2
0(λ) = 1⊥ = {h ∈ L2(λ) : 〈h,1〉λ = 0}.



SELF-INTERACTING DIFFUSIONS 1719

We let M(M) denote the space of Borel bounded measures on M and P (M) the
subset of Borel probabilities. For µ ∈ M(M) and f ∈ C0(M), we set

µf =
∫
M

f (x)µ(dx)(7)

and

|µ| = sup{|µf | :f ∈ C0(M), ‖f ‖∞ = 1}.(8)

We let Ms(M) denote the Banach space (M(M), | · |) [i.e., the dual of C0(M)]
and Mw(M) [resp. Pw(M)] the metric space obtained by equipping M(M) [resp.
P (M)] with the narrow (or weak*) topology. In particular, Pw(M) is a compact
subspace of Mw(M). Recall that the narrow topology is the topology induced by
the family of semi-norms {µ �→ |µf | :f ∈ C0(M)}. Hence, µn → µ in Mw(M) if
and only if µnf → µf for all f ∈ C0(M).

Everywhere in the paper a subset of a topological space inherits the induced
topology.

The operator V . The function V induces an operator

V :Ms(M) → C0(M),

defined by

V µ(x) =
∫
M

V (x, y)µ(dy).(9)

If g ∈ L2(λ), we write Vg for V (gλ), where gλ stands for the measure whose
Radon–Nikodym derivative with respect to λ is g.

The following basic lemma will be used in several places:

LEMMA 2.3. (i) The operator V :Ms(M) → C0(M) and its restriction to
L2(λ) [defined by g �→ V (gλ)] are compact operators.

(ii) V maps continuously Pw(M) into C0(M).

PROOF. (i) Let µ ∈ Ms(M). Then ‖V µ‖∞ ≤ ‖V ‖∞|µ| and |V µ(u) −
V µ(v))| ≤ (supz∈M |V (u, z) − V (v, z)|)|µ|. Therefore, the set {V µ : |µ| ≤ 1} is
bounded and equicontinuous, hence, relatively compact in C0(M) by Ascoli’s
theorem. This proves that V is compact.

By definition, V |L2(λ) is the composition of V with the bounded operator
g ∈ L2(λ) → gλ ∈ Ms(M). It is then compact.

(ii) Let {µn} be a converging sequence in Pw(M) and µ = limn→∞ µn. Narrow
convergence implies that V µn(u) → V µ(u) for all u ∈ M. Since, by (i), {V µn} is
relatively compact in C0(M), it follows that V µn → V µ in C0(M). �
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2.1. The global convergence theorem. Let � = �V :Pw(M) → Pw(M) be
the map (we use the notation �V for � when we want to emphasize the
dependency on V ) defined by

�(µ)(dx) = ξ(V µ)(x)λ(dx),(10)

where ξ :C0(M) → C0(M) is the function defined by

ξ(f )(x) = e−f (x)∫
M e−f (y)λ(dy)

.(11)

The limit set of {µt } denoted L({µt }) is the set of limits [in Pw(M)] of convergent
sequences {µtk }, tk → ∞.

The following theorem describes L({µt }) in terms of �. It is proved in
Section 4.

THEOREM 2.4. With probability 1, L({µt }) is a compact connected subset of

Fix(�) = {µ ∈ Pw(M) :µ = �(µ)}.(12)

This clearly implies the following:

COROLLARY 2.5. Assume � has isolated fixed points. Then {µt } converges
almost surely to a fixed point of �.

REMARK 2.6. By Theorem 2.10 below, � has generically isolated fixed
points. Hence, the generic behavior of {µt } is convergence toward one of those
fixed points.

2.2. Fixed points of �. With Theorem 2.4 in hand, it is clear that our
description of self-interacting diffusions (satisfying Hypothesis 2.1) on M relies
on our understanding of the fixed points structure of �.

Let

B1 = {f ∈ C0(M) : 〈f,1〉λ = 1}
and

B0 = {f ∈ C0(M) : 〈f,1〉λ = 0}.
Spaces B0 and B1 are, respectively, a Banach space and a Banach affine space
parallel to B0.

Let

X = XV :B1 → B0

be the C∞ vector field defined by

X(f ) = −f + ξ(Vf ).(13)

The following lemma relates fixed points of � to the zeroes of X.
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LEMMA 2.7. Let µ ∈ P (M). Then, µ is a fixed point of � if and only if µ is
absolutely continuous with respect to λ and dµ

dλ
is a zero of X. Furthermore, the

map

j : Fix(�) → X−1(0),

µ �→ dµ

dλ

(14)

is a homeomorphism. In particular, X−1(0) is compact.

PROOF. The first assertion is immediate from the definitions. Continuity
of j follows from the continuity of ξ and Lemma 2.3(ii). Continuity of j−1 is
immediate since uniform convergence of {fn} ⊂ C0(M) clearly implies the narrow
convergence of {fnλ} to f λ. �

We shall now prove that the zeroes of X are the critical points of a certain
functional. Let B+

1 be the open subset of B1 defined by

B+
1 =

{
f ∈ B1 : inf

x∈M
f (x) > 0

}

and let J = JV :B+
1 → R be the C∞ free energy function defined by

J (f ) = 1
2〈Vf,f 〉λ + 〈f, log(f )〉λ.(15)

REMARK 2.8. It has been pointed out to us by Malrieu [20] that the free
energy J occurs naturally in the analysis of certain nonlinear diffusions used in
the modeling of granular flows (see [6, 20]); and by Hofbauer [16] that a finite-
dimensional version of J appears in the analysis of some ordinary differential
equations in evolutionary game theory.

The following proposition shows that the zeroes of X are exactly the critical
points of J and have the same type (i.e., sinks or saddles).

PROPOSITION 2.9. Given f ∈ B+
1 , let T(f ) :C0(M) → B0 be the operator

defined by

T(f )h = f h − 〈f,h〉λf.(16)

One has:

(i) ∀u, v ∈ B0,

D2J (f )(u, v) = 〈u, v〉1/f + 〈V u,v〉λ = 〈(
Id + T(f ) ◦ V

)
u, v

〉
1/f .
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(ii) B0 admits a direct sum decomposition

B0 = Bu
0 (f ) ⊕ Bc

0(f ) ⊕ Bs
0(f ),

where:

(a) Bu
0 (f ),Bc

0(f ),Bs
0(f ) are closed subspaces invariant under (Id +

T(f ) ◦ V );
(b) Bc

0(f ) = {u ∈ B0 : (Id +T(f )◦V )u = 0} and Id +T(f )◦V restricted
to Bu

0 (f ) or Bs
0(f ) is an isomorphism;

(c) Both Bu
0 (f ) and Bc

0(f ) have finite dimension;
(d) The bilinear form D2J (f ) restricted to Bu

0 (f ) [resp. Bc
0(f ), resp.

Bs
0(f )] is definite negative (resp. null, resp. definite positive).

(iii) We have

DJ(f ) = 0 ⇐⇒ X(f ) = 0,

and in this case, for all u ∈ B0,

DX(f )u = −(
Id + T(f ) ◦ V

)
u.

PROOF. (i) For all u ∈ B0,

DJ(f )u = 〈Vf + log(f ) + 1, u〉λ = 〈Vf + log(f ), u〉λ.(17)

Therefore,

D2J (f )(u, v) =
〈
V u + 1

f
u, v

〉
λ

= 〈V u,v〉λ + 〈u, v〉1/f ,

which gives the first expression for D2J (f ). Since, for all u, v ∈ B0,

〈T(f )V u, v〉1/f = 〈V u,v〉λ − 〈f,V u〉λ〈1, v〉λ = 〈V u,v〉λ,(18)

we get the second expression for D2J (f ).
(ii) Let K denote the operator T(f ) ◦ V restricted to L2

0(λ). Then K is
compact (by Lemma 2.3) and self-adjoint with respect to the inner product
〈·, ·〉1/f [by (18)]. It then follows, from the spectral theory of compact self-adjoint
operators (see [19], Chapters XVII and XVIII), that:

(a) K has at most countably many real eigenvalues.
(b) The set of nonzero eigenvalues is either finite or can be ordered as |c1| >

|c2| > · · · > 0 with limi→∞ ci = 0.

(c) The family {Hc} of eigenspaces, where c ranges over all the eigenvalues
(including 0), forms an orthogonal decomposition of L2

0(λ).
(d) Each Hc has finite dimension provided c �= 0.
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We now set Bc
0(f ) = H1, Bu

0 (f ) = ⊕Hd , where d ranges over all eigenvalues
>1 and Bs

0(f ) = (Bc
0(f ) ⊕ Bu

0 (f ))⊥ ∩ B0.
(iii) From (17), and by density of B0 in L2

0(λ), DJ (f ) = 0 if and only if
Vf + log(f ) ∈ R1. Since f ∈ B1, this is equivalent to f = ξ(Vf ). Now,

DX(f ) = −Id − T(ξ(Vf )) ◦ V.(19)

Hence, DX(f ) = −Id − T(f ) ◦ V when X(f ) = 0. �

Let f ∈ X−1(0) or, equivalently, µ = f λ ∈ Fix(�). We say that f (resp. µ) is
a nondegenerate zero or equilibrium of X (resp. a nongenerate fixed point of �)
if the space Bc

0(f ) in the above decomposition reduces to zero. The index of f

(resp. µ) is defined to be the dimension of Bu
0 (f ).

A nondegenerate zero of X (fixed point of �) is called a sink if it has zero index
and a saddle otherwise.

Let Ck
sym(M × M), k ≥ 0, denote the Banach space of Ck symmetric functions

V :M × M → R, endowed with the topology of Ck convergence. The following
theorem gives some sense to the hypothesis (made in Theorems 2.12, 2.24 and 2.27
below) that fixed points of � are nondegenerate. However, we will not make any
other use of this theorem. The proof is given in the Appendix.

THEOREM 2.10. Let G denote the set of V ∈ Ck
sym(M ×M) such that �V has

nondegenerate fixed points. Then G is open and dense.

REMARK 2.11. The key argument that will be used in the proof of the
genericity Theorem 2.10 is Smale’s infinite-dimensional version of Sard’s theorem
for Fredholm maps. This result by Smale is also at the origin of the Brouwer degree
theory for Fredholm maps initially developed by Elworthy and Tromba [13].
A consequence of this degree theory (applied to X) is the following result:

THEOREM 2.12. Suppose that every µ∗ ∈ Fix(�) is nondegenerate. Let Ck ,
k ≥ 0, denote the number of fixed point for � having index k. Then∑

k≥0

(−1)kCk = 1.

2.3. Self-repelling diffusions. A function K :M × M → R is called a Mercer
kernel, if K is continuous, symmetric and defines a positive operator in the sense
that

〈Kf,f 〉λ ≥ 0

for all f ∈ L2(λ).

If, up to an additive constant [the dynamics (2) are unchanged if one replaces
V (x, y) by V (x, y) + β], V (resp. −V ) is a Mercer kernel, we call {Xt } [given
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by (2)] a self-repelling (resp. self-attracting process). The following result and the
examples below give some sense to this terminology (see, e.g., Examples 2.15,
2.16 and 2.19).

THEOREM 2.13. Suppose that, up to an additive constant, V is a Mercer
kernel. Then:

(i) J = JV is strictly convex.
(ii) Fix(�) reduces to a singleton {µ∗} and limt→∞ µt = µ∗ almost surely. If

we, furthermore, assume that Hypothesis 2.2 holds, then µ∗ = λ.

PROOF. It follows from the definition of J , Proposition 2.9 and Theorem 2.4.
�

EXAMPLE 2.14. Let C be a metric space, ν a probability over C and
G :M × C → R a continuous bounded function. Then

K(x, y) =
∫
C

G(x,u)G(y,u)ν(du)

is a Mercer kernel. Indeed, K is clearly continuous, symmetric and

〈Kf,f 〉λ =
∫
C

(∫
M

G(x,u)f (x)λ(dx)

)2

ν(du) ≥ 0.

Note that when C = M and ν = λ, then K = G2 as an operator on L2(λ).

EXAMPLE 2.15. (i) Let M = Sd ⊂ R
d+1 be the unit sphere of R

d+1 and
let K(x, y) = 〈x, y〉 = ∑d+1

i=1 xiyi . Then K is a Mercer kernel [take C = {1, . . . ,

d + 1}, ν the uniform measure on C, and G(i, x) = √
d + 1 × xi ].

EXAMPLE 2.16. Let � denote the Laplacian on M and {Kt(x, y)} the Heat
kernel of e�t . Fix τ > 0 and let K = Kτ . The function G(x,y) = Kτ/2(x, y)

is a symmetric C∞ Markov kernel so that K is a Mercer kernel in view of the
Example 2.14 (take C = M and ν = λ).

EXAMPLE 2.17. The example above can be generalized as follows. Let
{Pt }t≥0 be a continuous time Markov semigroup reversible with respect to some
probability measure ν on M. Assume that Pt(x, dy) is absolutely continuous with
respect to ν with smooth density Kt(x, y). Then for all positive τ , Kτ is a Mercer
kernel.

EXAMPLE 2.18. (i) Let M = T d = R
d/(2πZ)d be the flat d-dimensional

torus, and let κ :T d → R be an even [i.e., κ(x) = κ(−x)] continuous function.
Set

K(x, y) = κ(x − y).(20)
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Given k ∈ Z
d, let

κk =
∫
T d

κ(x)e−ik·xλ(dx)(21)

be the kth Fourier coefficient of κ . Here k · x = ∑d
i=1 kixi and λ is the normalized

Lebesgue measure on T d ∼ [0,2π[d . Since v is real and even, κ−k = κk = κ̄k. If
we furthermore assume that

∀ k ∈ Z
d κk ≥ 0,

then K is a Mercer kernel, since

〈Kf,f 〉λ = ∑
k

κk|fk|2

for all f ∈ L2(λ) and fk the kth Fourier coefficient of f .

EXAMPLE 2.19. A function f : [0,∞[ → R is said to be completely
monotonic if it is C∞ and, for all t > 0 and k ≥ 0,

(−1)k
dkf

dxk
(t) ≥ 0.

Examples of such functions are f (t) = βe−t/σ 2
and f (t) = β(σ 2 + t)−α for

σ �= 0, α,β > 0.
Suppose M ⊂ R

n, and K(x, y) = f (‖x − y‖2), where f is completely
monotonic and ‖ · ‖ is the Euclidean norm on R

n. Then it was proved by
Schoenberg [25] that K is a Mercer kernel.

Weakly self-repelling diffusions. When V is not a Mercer kernel but can be
written as the difference of two Mercer kernels, it is still possible to give a
condition ensuring strict convexity of J .

We will need the following consequence of Mercer’s theorem:

LEMMA 2.20. Let K be a Mercer kernel. Then there exists continuous
symmetric functions Gn :M × M → R, n ≥ 1, such that

K(x, y) = lim
n→∞〈Gn

x,G
n
y〉λ

uniformly on M × M. Here Gn
x stands for the function u �→ Gn(x,u).

PROOF. The kernel K defines a compact positive and self-adjoint operator
on L2(λ). Hence, by the spectral theorem, K has countably (or finitely) many
nonnegative eigenvalues (c2

k)k≥1 and the corresponding eigenfunctions (ek) can
be chosen to form an orthonormal system. Furthermore, by Mercer’s theorem
(see Chapter XI-6 in [11]), K(x, y) = ∑

i c
2
i ei(x)ei(y), where the convergence

is absolute and uniform. Now set Gn
x(y) = Gn(x, y) = ∑n

i=1 ciei(x)ei(y). �
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To a Mercer kernel K , we associate the function DK :M × M → R
+ given by

D2
K(x, y) =

[
K(x, x) + K(y, y)

2
− K(x, y)

]

= lim
n→∞

1

2
‖Gn

x − Gn
y‖2

λ,

(22)

where the (Gn) are like in Lemma 2.20.
Note that DK is a semi-distance on M (i.e., DK is nonnegative, symmetric,

verifies the triangle inequality and vanishes on the diagonal). We let

diamK(M) = sup
x,y∈M

DK(x, y)

denote the diameter of M for DK .
Another useful quantity is

K(x, x) = lim
n→∞‖Gn

x‖2
λ.

We let

diagK(M) = sup
x∈M

K(x, x).

REMARK 2.21. Note that diamK(M) ≤ 2 diagK(M). But there is no obvious
way to compare diamK(M) and diagK(M). For instance, if K is the kernel given
in Example 2.19, then

diamK(M) = f (0) − f

(
sup
x,y

‖x − y‖2
)

≤ diagK(M) = f (0),

while

diamK(M) = 2 > diagK(M) = 1,

with K the kernel given in Example 2.15.

THEOREM 2.22. Suppose that, up to an additive constant,

V = V + − V −,(23)

where V + and V − are Mercer kernels.
If diamV −(M) < 1, or diagV −(M) < 1, then the conclusions of Theorem 2.13

hold.

PROOF. First note that JV (f ) = 1
2〈V +f,f 〉 + J−V −(f ), and since f �→

〈V +f,f 〉λ is convex, it suffices to prove that J−V − is strictly convex. We can
therefore assume, without loss of generality, that V + = 0. Or, in other words, that
−V is a Mercer kernel. We proceed in two steps.
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Step 1. We suppose here that V (x, y) = −〈Gx,Gy〉λ for some continuous sym-
metric function G : (x,u) �→ Gx(u). By Proposition 2.9, proving that D2JV (f ) is
definite positive reduces to show that Id +T(f )V = Id −T(f )G2 has eigenvalues
>0, or, equivalently, that T(f )G2 has eigenvalues <1.

Let λ be an eigenvalue for T(f )G2 and u ∈ B0 a corresponding eigenvector. Set
v = Gu. Then

T(f )Gv = λu.

This implies that v �= 0 (because u �= 0) and that

GT(f )Gv = λv.(24)

Thus, using the fact that G is symmetric,

〈T(f )Gv,Gv〉λ = λ‖v‖2
λ.

That is,

Varf (Gv) = λ‖v‖2
λ,(25)

where

Varf (u) = 〈T(f )u,u〉λ
=

∫
M

u2(x)f (x)λ(dx) −
(∫

M
u(x)f (x)λ(dx)

)2

.
(26)

Now

Varf (Gv) = 1
2

∫
M×M

(
Gv(x) − Gv(y)

)2
f (x)f (y)λ(dx)λ(dy).(27)

On the other hand, (
Gv(x) − Gv(y)

)2 = 〈Gx − Gy,v〉2
λ

≤ ‖Gx − Gy‖2‖v‖2

= 2
(
D−V (x, y)

)2‖v‖2
λ.

Thus,

Varf (Gv) ≤ (diam−V )2‖v‖2
λ.(28)

Combining (25) and (28) leads to λ ≤ (diam−V )2 < 1.

To obtain the second estimate, observe that [by (26)]

Varf (Gv) ≤
∫
M

(〈Gx,v〉)2f (x)λ(dx)

≤ ‖v‖2
λ

∫
‖Gx‖2f (x)λ(dx) ≤ diag−V (M)‖v‖2

λ.
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Step 2. In the general case, by Lemma 2.20, we have V (x, y) =
limn→∞ V n(x, y) uniformly on M × M , where V n(x, y) = −〈Gn

x,G
n
y〉λ.

Hence, assuming diam−V (M) < 1, we get that diam−V n(M) < 1 for n ≥ n0
large enough. Then, by step 1, there exists α > 0 such that, for all n ≥ n0,

D2JV n(u,u) = 〈u + T(f )V nu,u〉1/f ≥ α‖u‖2
1/f

for all u ∈ B0. Passing to the limit when n → ∞ leads to

D2JV (u,u) ≥ α‖u‖2
1/f .

The proof of the second estimate is similar. �

EXAMPLE 2.15 (ii), (continued). Suppose M = Sd ⊂ R
d+1 and

V (x, y) = a × 〈x, y〉 = a ×
d+1∑
i=1

xiyi

for some a ∈ R. The kernel K = sign(a)V is a Mercer kernel, and diagK(M) = |a|.
Hence, by Theorem 2.22, µt → λ a.s. for a > −1.

This condition is far from being sharp since it actually follows from Theo-
rem 4.5 in [3] that

a ≥ −(d + 1) ⇐⇒ µt → λ a.s.

EXAMPLE 2.18 (ii), (continued). Let v be an even C3 real-valued function
defined on the flat d-dimensional torus (see Example 2.18) and

V (x, y) = v(x − y).

As a consequence of Theorem 2.22, we get the following result which
generalizes largely Theorem 4.14 of [3]. It also corrects a mistake in the proof
of this theorem.

PROPOSITION 2.23. Let (vk)k∈Zd denote the Fourier coefficients of v as
defined by (21). Assume that ∑

k∈Zd\{0}
inf(vk,0) > −1.

Then µt → λ almost surely.

PROOF. Integrating by part 3 times, and using the fact that v ∈ C3, proves that,
for all k ∈ Z

d , |vk| ≤ C
‖k‖3 , where ‖k‖ = supi |ki | and C is some positive constant.

Hence, the Fourier series

vn(x) = ∑
{k∈Zd : ‖k‖≤n}

vke
ik·x
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converges uniformly to v. Set

v−(x) = − ∑
{k∈Zd\{0} : vk<0}

vke
ik·x.

Then v(x) = v+(x) − v−(x) + v0, V = V + − V − + v0, where V +(x, y) =
v+(x − y) and V −(x, y) = v−(x − y) are Mercer kernels. Clearly,

diagV −(T d) = v−(0) = − ∑
{k �=0 : vk<0}

vk

and the result follows from Theorem 2.22. �

2.4. Self-attracting diffusions. The results of this section are motivated by the
analysis of self-attracting diffusions (i.e., −V is a Mercer kernel), but apply to a
more general setting.

Recall that µ∗ ∈ Fix(�) is a sink if µ∗ is nondegenerate and has zero index
(thus, it corresponds to a nondegenerate local minimum of J ). We denote by
Sink(�) the set of sinks.

The following result is proved in Section 5.

THEOREM 2.24. Let µ∗ ∈ Sink(�). Then

P
[

lim
t→∞µt = µ∗

]
> 0.

The next theorem is a converse to Theorem 2.24 under a supplementary
condition on V that we now explain.

From the spectral theory of compact self-adjoint operators (see, e.g., [19],
Chapters XVII and XVIII), L2(λ) admits an orthogonal decomposition invariant
under V ,

L2(λ) = E0
V ⊕ E+

V ⊕ E−
V ,

where E0
V stands for the kernel of V and the restriction of V to E+

V (resp. the
restriction of −V to E−

V ) is a positive operator.
Let π+ and π− be, respectively, the orthogonal projections from L2(λ) onto E+

V

and E−
V . Set

V+ = V ◦ π+ and V− = −V ◦ π−(29)

so that V = V+ − V−.

HYPOTHESIS 2.25 (Occasional assumption 2). V+ and V− are Mercer
kernels.

Recall that µ∗ ∈ Fix(�) is a saddle if µ∗ is nondegenerate and has positive
index. The following theorem is proved in Section 6.
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THEOREM 2.26. Assume that Hypothesis 2.25 holds. Let µ∗ ∈ Fix(�) be a
saddle. Then

P
[

lim
t→∞µt = µ∗

]
= 0.

COROLLARY 2.27. Suppose that Hypothesis 2.25 holds and that every µ∗ ∈
Fix(�) is nondegenerate. Then there exists a random variable µ∞ such that:

(i) limt→∞ µt = µ∞ a.s.,
(ii) P[µ∞ ∈ Sink(�)] = 1 and

(iii) for all µ∗ ∈ Sink(�),

P[µ∞ = µ∗] > 0.

PROOF. It follows from Theorems 2.4, 2.24 and 2.26. �

2.5. Localization. In this section we assume that Hypothesis 2.2 holds. In this
case, λ is always a fixed point for �, hence, a possible limit point for {µt }. We
will say that the self-interacting diffusion “localizes” provided P[µt → λ] = 0.
We have already seen (see Theorems 2.13 and 2.22) that self-repelling diffusions
and weakly self-attracting diffusions never localize.

THEOREM 2.28. Suppose that Hypothesis 2.2 holds. Let

ρ(V ) = inf{〈V u,u〉λ :u ∈ L2
0(λ),‖u‖λ = 1}.(30)

Assume that ρ(V ) > −1, then

P
[

lim
t→∞µt = λ

]
> 0.(31)

Assume that ρ(V ) < −1 and that Hypothesis 2.25 holds, then

P
[

lim
t→∞µt = λ

]
= 0.(32)

PROOF. Under Hypothesis 2.2, ξ(V λ) = 1. Then, by Proposition 2.9,

D2J (1)(u, v) = −〈DX(1)u, v〉λ = 〈u + V u,v〉λ.
The result then follows from Theorems 2.24 and 2.26. �

EXAMPLE 2.18 (iii), (continued). With V as in Example 2.18(ii),

ρ(V ) = inf
k∈Zd\{0}

vk.

EXAMPLE 2.16 (ii), (continued). Suppose V (x, y) = aKτ (x, y) for some
a ≤ 0 and τ > 0, where {Kt }t>0 is the Heat kernel of e�t . Then ρ(V ) = ae−λτ ,
where λ is the smallest nonzero eigenvalue of �. Note that there exist numerous
estimates of λ in terms of the geometry of M .
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3. Review of former results. We recall here some notation and results
from [3] on which rely our analysis. There is no assumption in this section that
V satisfies one of the Hypotheses 2.1 or 2.2. The only required assumption is that
V is smooth enough, say C3 (see [3] for a more precise assumption).

The map � defined by (10) extends to a map � :M(M) → P (M) given by the
same formulae. Let F :Ms(M) → Ms(M) be the vector field defined by

F(µ) = −µ + �(µ).(33)

Then (see [3], Lemma 3.2) F induces a C∞ flow {�t }t∈R on Ms(M).

The limiting dynamical system associated to V is the mapping

� : R × Pw(M) → Mw(M),

(t,µ) �→ �t(µ) = �t(µ).
(34)

Because � is a flow, � satisfies the flow property

�t+s(µ) = �t ◦ �s(µ)(35)

for all t, s ∈ R and µ ∈ P (M) ∩ �−s(P (M)). Furthermore (see Lemmas
3.2 and 3.3 of [3]), � is continuous and leaves P (M) positively invariant:

�t(P (M)) ⊂ P (M) for all t ≥ 0.(36)

The key tool for analyzing self-interacting diffusion is Theorem 3.2 below
(Theorem 3.8 of [3]), according to which the long term behavior of the sequence
{µt } can be described in terms of certain invariant sets for � . Before stating this
theorem, we first recall some definitions from dynamical systems theory.

Attractor free sets and the limit set theorem. A subset A ⊂ Pw(M) is said to
be invariant for � if �t(A) ⊂ A for all t ∈ R. Let A be an invariant set for � .
Then � induces a flow on A ,�|A defined by taking the restriction of � to A.
That is, (�|A)t = �t |A.

Given an invariant set A, a set K ⊂ A is called an attractor (in the sense of [7])
for �|A, if it is compact, invariant and has a neighborhood W in A such that

lim
t→∞ distw

(
�t(µ),K

) = 0(37)

uniformly in µ ∈ W . Here distw is any metric on Pw(M) compatible with the
narrow convergence.

An attractor K ⊂ A for �|A which is different from ∅ and A is called proper.
An attractor free set for � is a nonempty compact invariant set A ⊂ Pw(M)

with the property that �|A has no proper attractor. Equivalently, A is a nonempty
compact connected invariant set such that �|A is a chain-recurrent flow [7].

REMARK 3.1. The definitions (invariant sets, attractors, attractor free sets)
given here for � extend obviously to any (local) flow on a metric space. This will
be used below.
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The limit set of {µt } denoted L({µt }) is the set of limits of convergent sequences
{µtk }, tk → ∞. That is,

L({µt }) = ⋂
t≥0

{µs : s ≥ t},(38)

where Ā stands for the closure of A in Pw(M).

THEOREM 3.2 ([3], Theorem 3.8). With probability 1, L({µt }) is an attractor
free set of �.

This result allows, in various situations, to characterize exactly the asymptotic
of {µt } in term of the potential V and the geometry of M . We refer the reader
to [3] for several examples and further results. Among the general consequences
of Theorem 3.2, the two following corollaries will be useful here.

COROLLARY 3.3. Let A ⊂ Pw(M) be an attractor and

B(A) =
{
µ ∈ Pw(M) : lim

t→∞ distw
(
�t(µ),A

) = 0
}

(39)

its basin of attraction. Then the events{
L({µt }) ∩ B(A) �= ∅

}
and

{
L({µt }) ⊂ A

}
(40)

coincide almost surely.

For a proof, see [3], Proposition 3.9.

COROLLARY 3.4. With probability 1, every point µ∗ ∈ L({µt }) can be written
as

µ∗ =
∫
Pw(M)

�(µ)ρ(dµ),(41)

where ρ is a Borel probability measure over Pw(M). In particular, if V is Ck , then
µ∗ has a Ck density with respect to λ.

This last result follows from Corollary 3.3 as follows: Let

C�(Pw(M)) =
{∫

P (M)
�(µ)ρ(dµ) :ρ ∈ P (Pw(M))

}
,(42)

where P (Pw(M)) is the set of Borel probability measures over Pw(M). It is
not hard to prove that C�(Pw(M)) contains a global attractor for �; that is, an
attractor whose basin is Pw(M). Hence, L({µt }) ⊂ C�(Pw(M)) by Corollary 3.3.
For details, see [3], Theorem 4.1.
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4. Convergence of {µt } toward Fix(�). This section is devoted to the proof
of Theorem 2.4. Hypothesis 2.1 is implicitly assumed.

4.1. The flow induced by X. Recall that B+
1 = {f ∈ B1 :f > 0}, where

B1 = {f ∈ C0(M) :
∫

f dλ = 1}.

PROPOSITION 4.1. The vector field X given by (13) induces a global smooth
flow �X = {�X

t } on B1. Furthermore:

(i) �X
t (f ) ∈ B+

1 for all t ≥ 0 and f ∈ B+
1 .

(ii) For all f ∈ B+
1 and t > 0, J (�X

t (f )) < J (f ) if f is not an equilibrium.

PROOF. The vector field X being smooth, it induces a smooth local flow �X

on B1. To check that this flow is global observe that

‖−f + ξ(Vf )‖L1(λ) ≤ ‖f ‖L1(λ) + 1.

Hence, by standard results, the differential equation

df

dt
= −f + ξ(Vf )

generates a smooth global flow on L1(λ) whose restriction to B1 is exactly �.

(i) For f ∈ B+
1 , ‖Vf ‖∞ ≤ ‖V ‖∞. Thus, X(f )(x) ≥ −f (x) + δ for all

x ∈ M, where δ = e−2‖V ‖∞ . It follows that �X
t (f )(x) ≥ e−t (f (x) − δ) + δ ≥

δ(1 − e−t ) > 0 for all t > 0.

(ii) For f ∈ B+
1 , let Kf :B+

1 → R be the “free energy” function associated to
the potential Vf

Kf (g) = 〈Vf,g〉λ + 〈g, log(g)〉λ.
The function Kf is a C∞, strictly convex function and reaches its global minimum
at the “Gibbs” measure ξ(Vf ). Indeed, a direct computation shows that, for
h ∈ B0,

DKf (g) · h = 〈log(g) + Vf,h〉λ
and for h and k in B0,

D2Kf (g)(h, k) = 〈h, k〉1/g.

Thus, DKf (g) = 0 if and only if g = ξ(Vf ) and D2Kf (g) is positive definite for
all g. Then, since

DKf (g) · [g − ξ(Vf )] = [DKf (g) − DKf (ξ(Vf ))] · [g − ξ(Vf )],(43)

by strict convexity, we then deduce that

DKf (g) · [g − ξ(Vf )] ≥ 0,(44)
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with equality if and only if g = ξ(Vf ).

Now observe that DJ(f ) = DKf (f ). Hence, by (44),

DJ(f ) · X(f ) ≤ 0

with equality if and only if X(f ) = 0. This proves (ii). �

4.2. Proof of Theorem 2.4.

LEMMA 4.2. The map i :C�(Pw(M)) → B+
1 ⊂ C0(M) defined by i(µ) =

dµ
dλ

is continuous.

PROOF. Let µn = ∫
P (M) �(ν)ρn(dν) ∈ C�(Pw(M)) be such that µn → µ

(for the narrow topology). By the Lipschitz continuity of V , the family {ξ(V ν) :ν ∈
P (M)} is uniformly bounded and equicontinuous. Hence, the sequence of densi-
ties fn = ∫

P (M) ξ(V ν)ρn(dν), n ≥ 0, is uniformly bounded and equicontinuous.
By the Ascoli theorem, it is relatively compact in C0(M). It easily follows that
fn → f = dµ

dλ
in C0(M). �

LEMMA 4.3. Let K ⊂ Pw(M) be a compact invariant set for �. Then for all
µ ∈ K and t ∈ R,

�X
t ◦ i(µ) = i ◦ �t(µ).

PROOF. Note that for all µ ∈ C�(P (M)), X ◦ i(µ) = i ◦ F(µ) from which
the result follows since K ⊂ C�(P (M)) is invariant. �

To shorten notation, we set here L = L({µt }). Recall that L ⊂ C�(P (M))

(Corollary 3.4) and that L is attractor free for � (Theorem 3.2).

LEMMA 4.4. i(L) is an attractor free set for �.

PROOF. This easily follows from the continuity of i (Lemma 4.2), compact-
ness of L and the conjugacy property (Lemma 4.3) (cf. to Corollary 3.10 in [3]).

�

COROLLARY 4.5. i(L) is a connected subset of X−1(0).

Before proving this corollary, remark that it implies Theorem 2.4 since
i−1(X−1(0)) = Fix(�).

PROOF OF COROLLARY 4.5. The proof of this corollary relies on the
following result ([2], Proposition 6.4).
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PROPOSITION 4.6. Let � be a compact invariant set for a flow � = {�t }t∈R

on a metric space E. Assume there exists a continuous function V :E → R such
that:

(a) V(�t(x)) < V(x) for x ∈ E \ � and t > 0.
(b) V(�t(x)) = V(x) for x ∈ � and t ∈ R.

Such a V is called a Lyapounov function for (�,�). If V(�) has empty interior,
then every attractor free set K for � is contained in �. Furthermore, V|K
(V restricted to K) is constant.

Set E = i(L),� = �X|i(L), � = X−1(0) ∩ i(L) and V = J |i(L). Then �

is a compact set (Lemma 2.7), and V is a Lyapounov function for (�,�) by
Proposition 4.1. By Lemma 4.4, i(L) is an attractor free set. Therefore, to apply
Proposition 4.6, it suffices to check that J (X−1(0)) has an empty interior. This
is a consequence of the infinite-dimensional version of Sard’s theorem for C∞
functionals proved by Tromba (see Theorem 1 and Remark 7 of [29]). Thus,
Proposition 4.6 proves that i(L) ⊂ X−1(0).

THEOREM 4.7 (Tromba [29]). Let B be a C∞ Banach manifold, X a C∞
vector field on B and J : B → R a C∞ function. Assume the following:

(a) DJ(f ) = 0 if and only if X(f ) = 0.
(b) X−1(0) is compact.
(c) For each f ∈ X−1(0), DX(f ) :Tf B → Tf B is a Fredholm operator.

Then J (X−1(0)) has an empty interior.

The verification that Tromba’s theorem applies to the present setting is
immediate. Indeed, assertion (a) follows from Proposition 2.9 and assertion (b)
from Lemma 2.7. Recall that a bounded operaror T from one Banach space E1 to a
Banach space E2 is Fredholm if its kernel Ker(T ) has finite dimension and its range
Im(T ) has finite codimension. Hence, assertion (c) follows from Proposition 2.9.
This concludes the proof of Corollary 4.5. �

5. Convergence toward sinks. The purpose of this section is to prove
Theorem 2.24.

5.1. The vector field Y = YV . In order to prove Theorem 2.24, it is convenient
to introduce a new vector field

Y = YV :C0(M) → C0(M),

f �→ −f + V ξ(f ),
(45)

as well as the stochastic process {Vt }t≥0 defined by

Vt = V µet .(46)
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The reason for this is, roughly speaking, the following. The measure µt is singular
with respect to λ, while �X is defined on a space of continuous densities. This
is not a problem if we are dealing with qualitative properties of L({µt }) (like in
Theorem 2.4) since we know (by Corollary 3.4) that L({µt }) consists of measures
having smooth densities.

Proving Theorem 2.24 requires quantitative estimates on the way {µt } ap-
proaches its limit set. We shall do this by showing that {Vt+s}s≥0 “shadows” at
a certain rate the deterministic solution to the Cauchy problem

ḟ = Y(f )

with initial condition f0 = Vt .

LEMMA 5.1. The vector field Y induces a global smooth flow �Y = {�Y
t } on

C0(M). Furthermore:

(i) V �X
t (f ) = �Y

t (Vf ) for all f ∈ B1 and t ∈ R.
(ii) V maps homeomorphically X−1(0) to Y−1(0), sinks to sinks and saddles

to saddles.

PROOF. The vector field Y is C∞ and sublinear because ‖Y(f )‖∞ ≤ ‖f ‖∞ +
‖V ‖∞. It then induces a global smooth flow.

(i) Follows from the conjugacy V ◦ X = Y ◦ V.

(ii) It is easy to verify that V induces a homeomorphism from X−1(0) to
Y−1(0) whose inverse is ξ. Let f ∈ X−1(0) and g = Vf. Then with the notation of
Proposition 2.9, DX(f ) = −(Id +T(f )◦V ) and DY(g) = −(Id +V ◦T(ξ(g)) =
−(Id + V ◦ T(f )).

For all α ∈ R, let

Eα = {u ∈ L2(λ),T(f )V u = αu},
Hα = {u ∈ L2(λ),V T(f )u = αu}.

The operators T(f )V and V T(f ) are compact operators acting on L2(λ). The
adjoint of T(f )V is V T(f ). This implies that, for α �= 0, Eα and Hα are
isomorphic, with V :Eα → Hα having for inverse function 1

α
T(f ). Therefore, if

f is nondegenerate (resp. a sink, resp. a saddle) for X, then Vf is nondegenerate
(resp. a sink, resp. a saddle) for Y. �

5.2. Proof of Theorem 2.24. We now follow the line of the proof of
Theorem 4.12(b) in [3]. We let Ft denote the sigma field generated by the random
variables (Bi

s : s ≤ et , i = 1, . . . ,N).

LEMMA 5.2. There exists a constant K (depending on V ) such that, for all
T > 0 and δ > 0,

P
[

sup
0≤s≤T

‖Vt+s − �Y
s (Vt )‖∞ ≥ δ|Ft

]
≤ K

δd+2 e−t .(47)
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PROOF. Given t ≥ 0 and s ≥ 0, let εt (s) ∈ M(M) be the measure defined by

εt (s) =
∫ t+s

t

(
δXer

− �(µer )
)
dr.(48)

Let us first show the following:

LEMMA 5.3. There exists a constant K (depending on V ) such that, for all
T > 0 and δ > 0,

P
[

sup
0≤s≤T

‖V εt (s)‖∞ ≥ δ|Ft

]
≤ K

δd+2 e−t .(49)

PROOF. According to Theorem 3.6(i)(a) in [3], there exists a constant K such
that, for all δ > 0 and f ∈ C∞(M),

P
[

sup
0≤s≤T

|εt (s)f | ≥ δ|Ft

]
≤ K

δ2 ‖f ‖2∞e−t .(50)

Note that this also holds for all f ∈ C0(M) (for a larger constant K) since f can be
uniformly approximated by smooth functions. By compactness of M and Lipschitz
continuity of V, there exists a finite set {x1, . . . , xm} ∈ M such that, for all x ∈ M ,

|V (x, y) − V (xi, y)| ≤ δ

4T

for some i ∈ {1, . . . ,m}. Therefore,

sup
0≤s≤T

‖V εt (s)‖∞ ≤ sup
i=1,...,m

sup
0≤s≤T

‖V εt (s)(xi)‖ + δ/2.

Hence,

P
[

sup
0≤s≤T

‖V εt (s)‖∞ ≥ δ|Ft

]

≤ P
[

sup
i=1,...,m

sup
0≤s≤T

|εt (s)Vxi
| ≥ δ

2

∣∣∣Ft

]

≤ 4mK‖V ‖2∞
δ2 × e−t .

Since M has dimension d, m can be chosen to be m = O(δ−d) and the result
follows. �

Note that for all u ∈ M ,

dVt (u)

dt
= −Vt(u) + V (u,Xet )

= [
V F(µet ) + V

(
δXet

− �(µet )
)]

(u).
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Thus, using the fact that V F(µ) = Y(V µ), we obtain

Vt+s(u) − Vt(u) =
∫ t+s

t
V F (µer )(u) dr + V εt (s)(u)

=
∫ t+s

t
Y (Vr)(u) dr + V εt (s)(u)

=
∫ s

0
Y(Vt+r )(u) dr + V εt (s)(u)

for all u ∈ M. In short,

Vt+s − Vt =
∫ s

0
Y(Vt+r ) dr + V εt (s).(51)

Let v(s) = ‖Vt+s − �Y
s (Vt )‖∞. Then for 0 ≤ s ≤ T ,

v(s) ≤
∫ s

0
‖Y(Vt+r ) − Y(�Y

r (Vt ))‖∞ dr + sup
0≤s≤T

‖V εt (s)‖∞.(52)

Now, for t , r ≥ 0, both Vt+r and �Y
r (Vt ) lie in V Pw(M), which is a compact

subset of C0(M) (by Lemma 2.3). Therefore, by Gronwall’s lemma,

sup
0≤s≤T

v(s) ≤ eLT sup
0≤s≤T

‖V εt (s)‖∞,(53)

where L is the Lipschitz constant of Y restricted to V Pw(M).
Then, with the estimate (53), Lemma 5.2 follows from Lemma 5.3. �

The following lemma is Theorem 7.3 of [2] (see also Proposition 4.13 of [3])
restated in the present context.

LEMMA 5.4. Let A ⊂ C0(M) be an attractor for �Y with basin of attrac-
tion B(A). Let U ⊂ B(A) be an open set with closure Ū ⊂ B(A). Then there exist
positive numbers δ and T (depending on U and {�Y }) such that

P
[

lim
t→∞ dist(Vt ,A) = 0

]
≥

(
1 − K

δd+2 e−t

)
× P[∃ s ≥ t :Vs ∈ U ],(54)

where K is given by Lemma 5.2 and dist(·, ·) is the distance associated to ‖ · ‖∞.

LEMMA 5.5. Let µ ∈ P (M), f = V µ and U a neighborhood of f in C0(M).
Then for all t > 0,

P[Vt ∈ U ] > 0.(55)

PROOF. Let �M (resp. �RN ) denote the space of continous paths from R
+

to M (resp. R
N ), equipped with the topology of uniform convergence on compact

intervals and the associated Borel σ -field.
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Let Bt = (B1
t , . . . ,BN

t ) be a standard Brownian motion on R
N. We let P denote

the law of (Bt : t ≥ 0) ∈ �RN and E the associated expectation.
Let {Wx

t } be the solution to the SDE

dWx
t =

N∑
i=1

Fi(W
x
t ) ◦ dBi

t :Wx
0 = X0 = x ∈ M.(56)

Then Wx ∈ � is a Brownian motion on M starting at x. Let

M(t) = exp

(∫ t

0

∑
i

〈∇Vµs(W)(Ws),Fi(Ws)
〉
dBi

s

− 1
2

∫ t

0

∥∥∇Vµs(W)(Ws)
∥∥2

ds

)
,

(57)

where, for all path ω ∈ �,

µt(ω) = 1

t

∫ t

0
δωs ds.(58)

Then, {Mt } is a martingale with respect to (�RN , {σ(Bs, s ≤ t)}t≥0,P), and by
the transformation of drift formula (Girsanov’s theorem) (see Section IV 4.1 and
Theorem IV 4.2 of [17]),

P[Vt ∈ U ] = P[V µet ∈ U ] = E
[
M(et )1{V µet (W)∈U }

]
.(59)

By continuity of the maps V :Pw(M) → C0(M) (Lemma 2.3) and ω ∈ �M �→
µt(ω) ∈ Pw(M), the set U = {ω ∈ � :V µet (ω) ∈ U} is an open subset of �M . Its
Wiener measure P[W ∈ U] = P[V µet (W) ∈ U ] is then positive. This implies that
E[M(et )1{V µet (W)∈U }] > 0. �

The proof of Theorem 2.24 is now clear. Let µ∗ be a sink for �. Then
V ∗ = V µ∗ is a sink for Y according to Lemma 5.1, and Lemmas 5.4 and 5.5
imply that

P[Vt → V ∗] > 0.

On the event {Vt → V ∗},
L({µt }) ⊂ {µ ∈ Fix(�) :V µ = V ∗}.

Note that µ ∈ Fix(�) with V µ = V ∗ implying that µ = µ∗. Therefore, on the
event {Vt → V ∗}, we have limt→∞ µt = µ∗. This proves Theorem 2.24.
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6. Nonconvergence toward unstable equilibria. The purpose of this section
is to prove Theorem 2.26. That is,

P[µt → µ∗] = 0,(60)

provided µ∗ ∈ Fix(�) is a nondegenerate unstable equilibrium and Hypothe-
sis 2.25 holds.

The proof of this result is somewhat long and technical. For the reader’s
convenenience, we first briefly explain our strategy.

• Set ht = V µt . To prove that µt �→ µ∗, we will prove that ht �→ h∗. We see ht as
a random perturbation of a deterministic dynamical system induced by a vector
field Ỹ . The vector field Ỹ is introduced in Section 6.2. It is defined like the
vector field Y (see Section 5) but on a subset HK of C0(M) equipped with a
convenient Hilbert space structure (Section 6.1).

• The fact that µ∗ is a saddle makes h∗ a saddle for Ỹ . According to the stable
manifold theorem, the set of points whose forward trajectory (under Ỹ ) remains
close to h∗ is a smooth submanifold Ws

loc(h
∗) of nonzero finite codimension.

We construct in Section 6.3 a “Lyapounov function” η which increases strictly
along forward trajectory of Ỹ off Ws

loc(h
∗) and vanishes on Ws

loc(h
∗).

• The strategy of the proof now consists to show that η(ht ) �→ 0 [since µt → µ∗
implies η(ht ) → 0]. Using stochastic calculus (in HK ), we derive the stochastic
evolution of η(ht ) (Section 6.5) and then prove the theorem in Sections
6.6 and 6.7.

In the different (but related) context of urn processes and stochastic approxima-
tions, the idea of using the stable manifold theorem to prove the nonconvergence
toward unstable equilibria is due to Pemantle [23]. Pemantle’s probabilistic esti-
mates have been revisited and improved by Tarrès in his Ph.D. thesis [27, 28].

The present section is clearly inspired by the work of these authors.

6.1. Mercer kernels. Recall that a Mercer kernel is a continuous symmetric
function K : M × M → R inducing a positive operator on L2(λ) (i.e., 〈Kf,

f 〉λ ≥ 0). The following theorem is a fairly standard result in the theory of
reproducing kernel Hilbert spaces (see, e.g., [1] or [8], Chapter III, 3).

THEOREM 6.1. Let K be a Mercer kernel. Then there exists a unique Hilbert
space HK ⊂ C0(M), the self-reproducing space, such that:

(i) For all µ ∈ M(M), Kµ ∈ HK .
(ii) For all µ and ν in M(M),

〈Kµ,Kν〉K =
∫ ∫

K(x, y)µ(dx)ν(dy).(61)

(iii) K(L2(λ)), {Kx, x ∈ M} and K(M(M)) are dense in HK .
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(iv) For all h ∈ HK and µ ∈ M(M),

µh = 〈Kµ,h〉K.(62)

Moreover, the mappings K :Ms(M) → HK and K :C0(M) → HK are linear
continuous and for all h ∈ HK ,

‖h‖∞ ≤ ‖K‖1/2∞ ‖h‖K.(63)

Hence, the mapping iK :HK → C0(M) defined by iK(h) = h is continuous.

From now on and throughout the remainder of the section, we assume that
Hypothesis 2.25 holds and we set

K = V+ + V−,(64)

where V+ and V− have been defined by (29). According to Hypothesis 2.25,
V+ and V−, hence, K are Mercer kernels.

PROPOSITION 6.2. (i) One has the orthogonal decomposition (in HK )

HK = HV+ ⊕ HV− .

(ii) Let π+ and π− be the orthogonal projections onto HV+ and onto HV−

(note that π± = π± restricted to HK ). Then for all h ∈ HK ,

‖h‖2
K = ‖π+h‖2

V+ + ‖π−h‖2
V− .(65)

(iii) V (M(M)) = K(M(M)) and for all µ ∈ M(M) and h ∈ HK ,

〈V µ,h〉K = µπ+h − µπ−h.(66)

PROOF. We have the orthogonal decomposition (in HK ) K(L2(λ)) =
V+(L2(λ)) ⊕ V−(L2(λ)) (since 〈V+f,V−g〉K = 〈Kπ+f,Kπ−g〉K = 〈Kπ+f,

π−g〉λ = 0). This implies the orthogonal decomposition HK = HV+ ⊕ HV−,

because HV+ and HV− are, respectively, the closures of V+(L2(λ)) and of
V−(L2(λ)) in HK (since 〈V+f,V+g〉V+ = 〈V+f,g〉λ = 〈Kπ+f,π+g〉λ = 〈V+f,

V+g〉K). Assertions (ii) and (iii) easily follow. �

REMARK 6.3. Let (ei)i be an orthonormal basis of HK such that, for all i,
ei belongs to HV+ or to HV− and we set εi = ±1 when ei ∈ HV± . Then we have

V±(x, y) = ∑
i

1εi=±1ei(x)ei(y),

K(x, y) = ∑
i

ei(x)ei(y),

V (x, y) = ∑
i

εiei(x)ei(y),
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the convergence being uniform by Mercer theorem (see, e.g., Chapter XI-6 in [11]
or [8]).

LEMMA 6.4. The mappings V :Ms(M) → HK and V :C0(M) → HK are
bounded operators.

PROOF. This follows from the fact that, for every µ ∈ M(M) and every
f ∈ C0(M),

‖V µ‖2
K = µ⊗2K ≤ ‖K‖∞ × |µ|2;

‖Vf ‖2
K ≤ ‖K‖∞ × ‖f ‖2∞. �

6.2. The vector field Ỹ = ỸV . We denote by HK
0 the closure in HK

of V (M0(M)) = K(M0(M)) and we set HK
1 = V 1 + HK

0 , the closure of
V (M1(M)) = K(M1(M)). Equipped with the scalar product 〈·, ·〉K , HK

0 and HK
1

are, respectively, a Hilbert space and an affine Hilbert space.
We let Ỹ = ỸV :HK

1 → HK
0 be the vector field defined by

Ỹ (h) = −h + V ξ(h).(67)

Observe that Ỹ is exactly defined like the vector field Y (introduced in the
Section 5.1) but for the fact that Ỹ is a vector field on HK

1 [rather than on C0(M)].
Recall that we let � denote the smooth flow on Ms(M) induced by the vector

field F defined in Section 3 [equation (33)]. The proof of the following lemma is
similar to the proof of Lemma 5.1.

LEMMA 6.5. The vector field Ỹ induces a global smooth flow �̃ on HK
1 (M).

Furthermore:

(i) V �t(µ) = �̃t (V µ) for all µ ∈ Ms(M) and t ∈ R.

(ii) V maps homeomorphically Fix(�) to Ỹ−1(0), sinks to sinks and saddles to
saddles.

6.3. The stable manifold theorem and the function η. Let µ∗ be a nondegen-
erate unstable fixed point of � and let

h∗ = V µ∗.(68)

By Lemma 6.5, h∗ is a saddle for Ỹ . Therefore, there exists constants C, λ > 0 and
a splitting

HK
0 = Hs ⊕ Hu,(69)

with Hu �= {0}, invariant under D�̃ such that, for all t ≥ 0 and v ∈ Hu,

‖D�̃t(h
∗)v‖K ≥ Ceλt‖v‖K(70)
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and

‖D�̃−t (h
∗)v‖K ≥ Ceλt‖v‖K.(71)

REMARK 6.6. Let, for α ∈ R, Hα = {u ∈ L2(λ),V T(h∗)u = αu}, where
T(f ) is the operator defined in Proposition 2.9. From the proof of Lemma 5.1,
it is easy to see that

Hu = ⊕
α<−1

Hα

and

Hs = ⊕
α>−1

Hα.

In particular, Hu has finite dimension.

The stable manifold theorem. Let (h∗
s , h

∗
u) ∈ Hs × Hu be such that h∗ =

h∗
s + h∗

u. By the stable manifold theorem (see, e.g., [15] or [18]), there exists a
neighborhood N0 = N s

0 ⊕ N u
0 of h∗, with N s

0 (resp. N u
0 ) a ball around h∗

s in Hs,

(resp. h∗
u in Hu) and a smooth function � :N s

0 → N u
0 such that:

(a) D�(h∗
s ) = 0.

(b) The graph of �:

Graph(�) = {v + �(v) :v ∈ N s
0 },

equals the local stable manifold of h∗:

Ws
loc(h

∗) =
{
h ∈ HK

1 :∀ t ≥ 0, �̃t (h) ∈ N0

and lim
t→∞ �̃t (h) = h∗

}

= {h ∈ HK
1 :∀ t ≥ 0, �̃t (h) ∈ N0}.

(c) Ws
loc(h

∗) is an invariant manifold. That is, for all t ∈ R,

�̃t (W
s
loc(h

∗)) ∩ N0 ⊂ Ws
loc(h

∗).

The function η. Let r :N0 = N s
0 ⊕ N u

0 → Ws
loc(h

∗) and R :N0 → R be the
functions defined by

r(hs + hu) = hs + �(hs)

and

R(h) = ‖h − r(h)‖2
K.

Then r and R are smooth and R vanishes on Ws
loc(h

∗).
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LEMMA 6.7. There exists T > 0 and a neighborhood N1 ⊂ N0 of h∗ in HK
1

such that, for all h ∈ N1, �̃T (h) ∈ N0 and

R(�̃T (h)) ≥ R(h).(72)

PROOF. Using (70), we choose T large enough so that, for all v ∈ Hu,

‖D�̃T (h∗)v‖K ≥ 4‖v‖K.(73)

Hence, there exists a neighborhood N ′
0 ⊂ N0 of h∗ such that, for all h ∈ N ′

0,
�̃T (h) ∈ N0, and for all v ∈ Hu,

‖D�̃T (h)v‖K ≥ 3‖v‖K.(74)

One may furthermore assume that, for all h ∈ N ′
0 (taking N ′

0 small enough),

‖D(r ◦ �̃T )(h) − D(r ◦ �̃T )(h∗)‖K ≤ 1.(75)

Now, one has

�̃T (h) − �̃T (r(h)) − D�̃T (r(h))
(
h − r(h)

) = o
(‖h − r(h)‖K

)
.(76)

Using first the invariance of Ws
loc(h

∗), then (76) with the fact that D(r ◦
�̃T )(h∗)v = Dr(h∗)D�̃T (h∗)v = 0 for all v ∈ Hu, we get

r(�̃T (h)) − �̃T (r(h)) = r(�̃T (h)) − r(�̃T (r(h)))

= D(r ◦ �̃T )(r(h))
(
h − r(h)

) + o
(‖h − r(h)‖K

)
= [D(r ◦ �̃T )(r(h)) − D(r ◦ �̃T )(h∗)](h − r(h)

)
+ o

(‖h − r(h)‖K

)
.

Thus, using (75), (76) and the previous equation, we obtain the upper-estimate∥∥�̃T (h) − r(�̃T (h)) − D�̃T (r(h))
(
h − r(h)

)∥∥
K

≤ ‖h − r(h)‖K + o
(‖h − r(h)‖K

)
.

This yields, using (74),

‖�̃T (h) − r(�̃T (h))‖K ≥ 2‖h − r(h)‖K + o
(‖h − r(h)‖K

)
.

We finish the proof of this lemma by taking N1 ⊂ N0, a neighborhood of h∗, such
that for every h ∈ N1, o(‖h − r(h)‖K) ≥ −‖h − r(h)‖K . �

Let N2 ⊂ N1 be a neighborhood of h∗ such that, for every h ∈ N2 and every
t ∈ [0, T ], �̃−t (h) ∈ N1 (T being the constant given in the previous lemma). For
every h ∈ N2, set

η(h) =
∫ T

0
R(�̃−s(h)) ds.(77)

Then η satisfies the following:
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LEMMA 6.8. (i) η(h) = 0 for every h ∈ N2 ∩ Ws
loc(h

∗).
(ii) η is C2 on N2.

(iii) For every h ∈ N2,

Dη(h)Ỹ (h) ≥ 0.

(iv) For every positive ε, there exists N ε
2 ⊂ N2 and D > 0 such that, for all

h ∈ N ε
2 , u and v in HK

0 ,

|D2
u,vη(h) − D2

u,vη(h∗)| ≤ ε × ‖u‖K × ‖v‖K,

|D2
u,vη(h∗)| ≤ D × ‖u‖K × ‖v‖K.

(v) D2
u,uη(h∗) = 0 implies that u ∈ Hs.

(vi) There exists a constant Cη such that, for all u ∈ HK
0 and h ∈ N2,

|Dη(h)u| ≤ Cη × ‖u‖K × √
η(h),

2η(h)D2
u,uη(h) − (Duη(h))2 ≥ −Cη × ‖u‖2

K × η(h)3/2.

PROOF. (i) and (ii) are clear. We have, for h ∈ N2,

Dη(h)Ỹ (h) = lim
s→0

1

s

(
η(�̃s(h)) − η(h)

)

= lim
s→0

1

s

(∫ s

0
R(�̃t (h)) dt −

∫ T

T −s
R(�̃−t (h)) dt

)

= R(h) − R(�̃−T (h)) ≥ 0 (by Lemma 6.7).

This shows (iii). Assertion (iv) follows from the fact that η is C2.
For h ∈ N2, u ∈ HK

0 and s ∈ [0, t], we set hs = �̃−s(h), us = D�̃−s(h)u and
vs = D2

u,u�̃−s(h). Then hs ∈ N1 ⊂ N0 and

Dη(h)u = 2
∫ T

0

〈
hs − r(hs),

(
Id − Dr(hs)

)
us

〉
K ds(78)

D2
u,uη(h) = 2

∫ T

0

∥∥(
Id − Dr(hs)

)
us

∥∥2
K ds

− 2
∫ T

0

〈
hs − r(hs),D

2
us,us

r(hs)
〉
K ds(79)

+ 2
∫ T

0

〈
hs − r(hs),

(
Id − Dr(hs)

)
vs

〉
K ds.

Using the Cauchy–Schwarz inequality, (78) implies

|Dη(h)u|2 ≤ 4η(h) ×
∫ T

0

∥∥(
Id − Dr(hs)

)
us

∥∥2
K ds,(80)

which implies the first estimate of assertion (vi).
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Since r(h∗) = h∗ and hs = h∗ for all s, (79) implies

D2
u,uη(h∗) = 2

∫ T

0

∥∥(
Id − Dr(h∗)

)
D�̃−s(h

∗)u
∥∥2
K ds.(81)

Since Dr(h∗) is the projection onto Hs parallel to Hu one sees that D2
u,uη(h∗) = 0

if and only if D�̃−s(h
∗)u ∈ Hu for all s. This proves (v) after remarking that, for

s = 0, D�̃−s(h
∗)u = u.

We now prove the last estimate of (vi). Equations (78), (79) and (80) imply the
relation

2η(h)D2
u,uη(h) − (Duη(h))2

≥ −4η(h)

∫ T

0

〈
hs − r(hs),D

2
us,us

r(hs)
〉
K ds

+ 4η(h)

∫ T

0

〈
hs − r(hs),

(
Id − Dr(hs)

)
vs

〉
K ds.

The last estimate of (vi) follows after using the Cauchy–Schwarz inequality. �

6.4. Semigroups estimates. In the following, D2 denotes the L2-domain of the
Laplacian on M . For h ∈ C1(M), set Ah :D2 → L2(λ) defined by

Ahf = −�f + 〈∇h,∇f 〉,(82)

and Qh :L2(λ) → D2 such that

−QhAhf = f − 〈ξ(h), f 〉λ.(83)

Let Ph
t be the Markovian semigroup symmetric with respect to µh = ξ(h)λ and

with generator Ah. Note that Qh can be defined by

Qhf =
∫ ∞

0
(Ph

t f − µhf )dt.(84)

LEMMA 6.9. There exists a constant K1 such that, for all f ∈ C0(M) and
h ∈ HK

1 satisfying ‖h‖∞ ≤ ‖V ‖∞, Qhf ∈ C1(M) ∩ D2 and

‖∇Qhf ‖∞ ≤ K1‖f ‖∞.(85)

PROOF. The proof of Lemma 5.1 in [3] can be easily adapted to prove this
lemma. �

We denote by C1,1(M2) the class of functions f ∈ C0(M2) such that, for all
1 ≤ k, l ≤ n, ∂

∂xk
∂

∂yl f (x, y) exists and belongs to C0(M2), where (xk)k is a system

of local coordinates. For f ∈ C1,1(M2), we define ∇⊗2f ∈ C0(T M × T M) by

∇⊗2f
(
(x,u), (y, v)

) = (∇u ⊗ ∇v)f (x, y)

= ∑
k,l

ukvl ∂

∂xk

∂

∂yl
f (x, y),
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in a system of local coordinates. We also define Tr(∇⊗2f ) ∈ C0(M), the trace of
∇⊗2f , by (d denotes the dimension of M)

Tr(∇⊗2f )(x) =
d∑

k=1

∂

∂xk

∂

∂yk
f (x, x).

This definition is, of course, independent of the chosen system of local coordinates.

REMARK 6.10. Lemma 6.9 implies that, for all f ∈ C0(M2) and h ∈ HK
1

satisfying ‖h‖∞ ≤ ‖V ‖∞, we have Q⊗2
h f ∈ C1,1(M2) and

‖∇⊗2Q⊗2
h f ‖∞ ≤ K2

1‖f ‖∞.(86)

This estimate implies that

‖Tr(∇⊗2Q⊗2
h f )‖∞ ≤ dK2

1‖f ‖∞.(87)

LEMMA 6.11. There exists a constant K2(= K2
1 ) such that, for all f ∈

C0(M), h1 and h2 in HK
1 satisfying ‖h1‖∞ ∨ ‖h2‖∞ ≤ ‖V ‖∞, we have∥∥∇Qh2f − ∇Qh1f

∥∥∞ ≤ K2‖f ‖∞‖∇h2 − ∇h1‖∞.(88)

PROOF. Set u = Qh1f . Then

−Ah1u = f − 〈ξ(h1), f 〉λ
and since Ah2u − Ah1u = 〈∇(h2 − h1),∇u〉,

Qh2f = −Qh2

(
Ah1u − 〈ξ(h1), f 〉λ)

= −Qh2Ah1u

= −Qh2Ah2u + Qh2fh,

where h = h2 − h1 and fh = 〈∇h,∇u〉. Thus,

Qh2f = Qh1f − 〈
ξ(h2),Qh1f

〉
λ + Qh2fh

and

∇Qh2f − ∇Qh1f = ∇Qh2fh.

Lemma 6.9 implies that ∥∥∇Qh2fh

∥∥∞ ≤ K1‖fh‖∞
and ∥∥∇Qh1f

∥∥∞ ≤ K1‖f ‖∞.

We conclude since ‖fh‖∞ ≤ ‖∇h‖∞‖∇Qh1f ‖∞. �
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REMARK 6.12. Lemma 6.11 implies that, for all f ∈ C0(M2), h1 and h2 in
HK

1 satisfying ‖h1‖∞ ∨ ‖h2‖∞ ≤ ‖V ‖∞, we have∥∥∇⊗2(
Qh2 − Qh1

)⊗2
f

∥∥∞ ≤ K2
2‖f ‖∞‖∇h2 − ∇h1‖2∞.(89)

This implies that∥∥Tr
(∇⊗2(

Qh2 − Qh1

)⊗2
f

)∥∥∞ ≤ dK2
2‖f ‖∞‖∇h2 − ∇h1‖2∞.(90)

6.5. Itô calculus. Set ht = V µt . Given a smooth (at least C2) function

R × M → R,

(t, x) �→ Ft(x),

Itô’s formula reads

dFt(Xt) = ∂tFt (Xt ) dt + Aht Ft (Xt) dt + dMt,(91)

where M is a martingale with (〈·, ·〉t denotes the martingale bracket)

d

dt
〈Mf 〉t = 1

t2 ‖∇Ft(Xt)‖2.

Set Qt = Qht and Ft(x) = 1
t
Qtf (x) for some f ∈ C0(M). Then (91) [note that

Itô’s formula also holds if (t, x) �→ Ft(x) is C1 in t and for all t , Ft ∈ D2, which
holds here] combined with (83) gives

d

(
1

t
Qtf (Xt)

)
= Htf

t2 dt + 〈ξ(ht ), f 〉λ − f (Xt)

t
+ dM

f
t ,(92)

where Ht is the measure defined by

Htf = −Qtf (Xt) + t

(
d

dt
Qt

)
f (Xt),(93)

Mf is a martingale with

d

dt
〈Mf 〉t = 1

t2 ‖∇Qtf (Xt)‖2.(94)

Using the fact that

d

dt
µtf = f (Xt) − µtf

t
,

together with the definition of the vector field F , (92) can be rewritten as [recall
that F(µ) = −µ + �(µ) and that �(µ) = ξ(V µ)λ]

dµtf = F(µt)f

t
dt − d

(
1

t
Qtf (Xt)

)
+ Htf

t2 dt + dM
f
t .(95)
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Note that there exists a constant H such that, for all t ≥ 0 and f ∈ C0(M),
|Htf | ≤ H‖f ‖∞ (see Lemmas 5.1 and 5.6 in [3]).

Let νt be the measure defined by

νtf = µtf + 1

t
Qtf (Xt), f ∈ C0(M).(96)

Then |µt − νt | → 0 and

dνtf = F(νt )f

t
dt + Ntf

t2 dt + dM
f
t ,(97)

with Nt the measure defined by Ntf = Htf + t (F (µt ) − F(νt ))f . Since F is
Lipschitz, there exists a constant N such that, for all t ≥ 0 and f ∈ C0(M),

|Ntf | ≤ N‖f ‖∞.(98)

For every t ≥ 1, set gt = V νt . Then using the fact that V F(µ) = Ỹ (V µ),

dgt (x) = Ỹ (gt )(x)

t
dt + NtVx

t2 dt + dM
Vx
t ,(99)

where Vx(y) = V (x, y).
Note that (gt )t≥1 is a HK

0 -valued continuous semimartingale. We denote its

martingale part Mt , with Mt(x) = M
Vx
t − M

Vx

1 . In the following, (ei) denotes
an orthonormal basis of HK like in Remark 6.3. Then Mt = ∑

i M
i
t ei , with

Mi
t = 〈Mt, ei〉K . Using the fact that, for all µ ∈ M0(M),

〈Mt,Kµ〉K =
∫

Mt(x)µ(dx),

we have

d

ds

〈〈M·,Kµ〉K 〉
s =

∫ ∫
d

ds
〈MVx ,MVy 〉sµ(dx)µ(dy)

=
∫ ∫ 1

s2 × 〈∇QsVx(Xs),∇QsVy(Xs)〉µ(dx)µ(dy)

= 1

s2 × ‖∇Qs(V µ)(Xs)‖2.

This implies that, for h in HV+ or in HV− ,

d

ds

〈〈M·, h〉K 〉
s = 1

s2 × ‖∇Qsh(Xs)‖2(100)

and

d

ds
〈Mi,Mj 〉s = εiεj

s2 × 〈∇Qsei(Xs),∇Qsej (Xs)〉.(101)
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LEMMA 6.13. There exists a constant C1 such that, for every s ≥ 1,

E[‖Ms‖2
K ] ≤ C1.(102)

PROOF. We have

d

ds
E[‖Ms‖2

K ] = ∑
i

d

ds
E[〈Mi,Mi〉s]

= 1

s2 × E

[∑
i

‖∇Qsei(Xs)‖2

]

= 1

s2 × E[Tr(∇⊗2Q⊗2
s K)(Xs,Xs)]

since K = ∑
i ei ⊗ ei . We conclude using Remark 6.10 and taking C1 =

dK2
1‖K‖∞. �

6.6. A first lemma. Let L be a positive constant we will fix later on. Set
ηt = η(gt )1gt∈N2 , where N2 is like in Lemma 6.8. Let N be a neighborhood of
µ∗ (for the narrow topology). For every t ≥ 1, set St = inf{s ≥ t, ηs ≥ L2/s}
and UN

t = inf{s ≥ t,µs /∈ N } (note that for t large enough, {St < UN
t } = {µt ∈

N } ∩ {St < ∞}). The purpose of this section is to prove the following:

LEMMA 6.14. There exist a neighborhood N of µ∗, p ∈]0,1] and T1 > 0
such that, for all t > T1,

P[St ∧ UN
t < ∞|Bt ] ≥ p,(103)

where Bt is the sigma field generated by {Bi
s : i = 1, . . . ,N, s ≤ t}.

PROOF. We fix ε > 0. Since V :Pw(M) → HK is continuous and |νt −
µt | → 0, there exist τ1 large enough and Nε a neighborhood of µ∗ such that,
for all t ≥ τ1, µt ∈ Nε implies that νt ∈ V −1(N ε

2 ), where N ε
2 is the neighborhood

defined in Lemma 6.8. In particular, µt ∈ Nε implies that gt = V νt ∈ N ε
2 .

For every neighborhood N ⊂ Nε of µ∗ and every s ∈ [t,UN
t ], ηs = η(gs). Then

Itô’s formula with formulas (99) and (101) gives

dη(gs) = Dη(gs)Ỹ (gs)

s
ds + Dη(gs)(V Ns)

s2 ds + dMη
s

+ 1

2

∑
i,j

D2
i,j η(gs) × 〈εi∇Qsei(Xs), εj∇Qsej (Xs)〉 × ds

s2 ,

(104)

where V Ns(x) = NsVx and Mη is the martingale defined by

dMη
s = Dη(gs) dMs.(105)
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We now intend to prove that

E
[
η
(
gSt∧UN

t

)|Bt

] − η(gt ) ≥ −Cε/t + (K∗/t)P[St ∧ UN
t = ∞|Bt ],(106)

where C and K∗ are positive constants. In order to do this, we bound from below
the four terms in the right-hand side of (104).

Lemma 6.8(iii) implies that Dη(gs)Ỹ (gs) ≥ 0. Using Lemma 6.8(vi) and
inequality (98), it can be easily seen that there exists a constant Nη such that,
for s ∈ [t,UN

t ],
|Dη(gs)V Ns | ≤ Nη

√
η(gs).

Then ∫ St∧UN
t

t

Dη(gs)V Ns

s2 ds ≥ −LNη

∫ ∞
t

ds

s5/2 .

We choose τ2 ≥ τ1 large enough such that, for all t ≥ τ2,

LNη

∫ ∞
t

ds

s5/2 ≤ ε

t
.(107)

This gives an estimate of the second term. Since the third term is a martingale
increment, after taking the expectation, this term will vanish.

We now estimate the last term. For s > 0, set

�s = ∑
i,j

D2
i,j η(gs) × 〈εi∇Qsei(Xs), εj∇Qsej (Xs)〉(108)

and, for µ ∈ P (M) and x ∈ M , set

�(µ,x) = ∑
i,j

D2
i,j η(h∗) × 〈εi∇QV µei(x), εj∇QV µej (x)〉.(109)

Lemma 6.8(iv) implies that, for s ∈ [t,UN
t ] (to prove this upper-estimate, one can

use a system of local coordinates and use the fact that K = ∑
i ei ⊗ ei ),

|�s − �(µs,Xs)| ≤ ε × ∑
i

‖∇Qsei(Xs)‖2

≤ ε × Tr(∇⊗2Q⊗2
s K)(Xs).

Thus, |�s − �(µs,Xs)| ≤ C1 × ε, where C1 is the same constant as the one given
in Lemma 6.13.

LEMMA 6.15. � :Pw(M) × M → R
+ is continuous.

PROOF. We only prove the continuity in µ. For µ and ν in P (M) and x ∈ M ,

�(µ,x) − �(ν, x) = ∑
i,j

D2
i,j η(h∗)〈ui(µ, x) − ui(ν, x), uj (µ, x) + uj (ν, x)〉,



1752 M. BENAÏM AND O. RAIMOND

where ui(µ, x) = εi∇QV µei(x). Using Lemma 6.8(iv),

|�(µ,x) − �(ν, x)| ≤ D × (
Tr

(∇⊗2(QV µ − QVν )
⊗2K

)
(x)

)1/2

× (
Tr

(∇⊗2(QV µ + QVν)
⊗2K

)
(x)

)1/2
.

Remarks 6.10 and 6.12 imply that

|�(µ,x) − �(ν, x)| ≤ D × 2dK2K1‖K‖∞ × ‖∇V µ − ∇V ν‖∞,

which converges toward 0 as distw(µ, ν) → 0. The proof of the continuity in x is
similar. �

Lemma 6.15 implies that we can choose the neighborhood N ⊂ Nε of µ∗ such
that, for all s ∈ [t,UN

t ],
|�(µs,Xs) − �(µ∗,Xs)| ≤ ε.(110)

We now set �∗(x) = �(µ∗, x). Thus, we now have

�s = (
�s − �(µs,Xs)

) + (
�(µs,Xs) − �∗(Xs)

) + �∗(Xs)

≥ −(C1 + 1) × ε + �∗(Xs).
(111)

Finally, using (107) and (111) (with the convention ηSt∧UN
t

= 0 when St ∧
UN

t = ∞),

E
[
ηSt∧UN

t
|Bt

] − ηt ≥ −(2 + C1)ε

t

+ 1

2
E

[∫ ∞
t

�∗(Xs)
ds

s2 1{St∧UN
t =∞}|Bt

]
.

For all s, set K(s) = µs�
∗. Since �∗(Xs) = K(s) + sK ′(s) (recall that µs =

1
s

∫ s
0 δXu du), integrating by parts, we get∫ ∞

t
�∗(Xs)

ds

s2 = −K(t)

t
+ 2

∫ ∞
t

K(s)

s2 ds.

Since µ �→ µ�∗ is continuous, we can choose the neighborhood N of µ∗ such
that, for all µ ∈ N ,

|µ�∗ − K∗| < ε/3,

where K∗ = µ∗�∗. Then, on the event {St ∧ UN
t = ∞}, for all s ≥ t ,

|K(s) − K∗| < ε/3

and ∫ ∞
t

�∗(Xs)
ds

s2 ≥ K∗ − ε

t
.

Thus,

E
[
ηSt∧UN

t
|Bt

] − ηt ≥ −(3 + C1)ε/t + (K∗/t)P[St ∧ UN
t = ∞|Bt ].(112)
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LEMMA 6.16. The constant K∗ = ∫
�∗(x)µ∗(dx) is positive.

PROOF. We first remark that, for all f and g in C0(M),

〈∇Qh∗f,∇Qh∗g〉µ∗ = 〈f − µ∗f,Qh∗g〉µ∗

=
∫ ∞

0

〈
f − µ∗f,Ph∗

t (g − µ∗g)
〉
µ∗ dt

=
∫ ∞

0

〈
Ph∗

t/2(f − µ∗f ),Ph∗
t/2(g − µ∗g)

〉
µ∗ dt.

Using this relation, we get that

K∗ = ∑
i,j

D2
i,j η(h∗) × 〈εi∇Qh∗ei, εj∇Qh∗ej 〉µ∗

=
∫ ∞

0

∑
i,j

D2
i,j η(h∗) × 〈

εi

(
Ph∗

t/2ei − µ∗ei

)
, εj

(
Ph∗

t/2ej − µ∗ej

)〉
µ∗ dt

=
∫ ∞

0

∫
D2η(h∗)(ux

t , u
x
t ) µ∗(dx) × dt,

where

ux
t = ∑

i

εi

(
Ph∗

t/2ei(x) − µ∗ei

)
ei

= V
(
Ph∗

t/2(x)
) − V µ∗

[Ph∗
t/2(x) denotes the measure defined by Ph∗

t/2(x)f = Ph∗
t/2f (x)].

If K∗ = 0, then for all x ∈ M and t ≥ 0, ux
t ∈ Hs since D2

u,uη(h∗) = 0 implies
u ∈ Hs . Thus, for all x ∈ M , Vx − V µ∗ ∈ Hs, and for all x and y in M ,
Vx − Vy ∈ Hs . Therefore, for every µ ∈ M0(M), V µ ∈ Hs. This proves that
HK

0 ⊂ Hs and Hu = {0}. This gives a contradiction since the dimension of Hu

is larger than 1. �

On the other hand,

E
[
ηSt∧UN

t
|Bt

] − ηt ≤ E[L2/St ∧ UN
t |Bt ].

Therefore,

L2E[t/St ∧ UN
t |Bt ] ≥ −(3 + C1)ε + K∗P[St ∧ UN

t = ∞|Bt ],(113)

and, since

P[St ∧ UN
t < ∞|Bt ] ≥ E[t/St ∧ UN

t |Bt ],
we have

P[St ∧ UN
t < ∞|Bt ] ≥ K∗ − (3 + C1)ε

L2 + K∗ .(114)

Choosing ε < K∗/(3 + C1), this proves the lemma. �
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6.7. A second lemma. We choose N , p and T1 like in Lemma 6.14. Set

H = {lim infηt > 0}.(115)

LEMMA 6.17. There exists T2 > 0 such that, for all t > T2, on the event
{St < UN

t },
P

[
H |BSt

] ≥ 1
2 .(116)

PROOF. Fix t > 0. Set

It = inf
s∈[St ,U

N
t ]

(
1

2

∫ s

St

dM
η
s√

ηs

)
(117)

and

Tt = inf{s > St , ηs = 0}.(118)

On the event {St < UN
t } ∩ {It ≥ − L

2
√

St
}, for s ∈ [St , Tt ∧ UN

t ],

√
ηs = √

ηSt +
∫ s

St

Dη(gu)Ỹ (gu)

2u
√

η(gu)
du +

∫ s

St

Dη(gu)(V Nu)

2u2
√

η(gu)
du

+ 1

2

∫ s

St

dM
η
u√

ηu

+ 1

2

∫ s

St

∑
i,j

D2
i,j

√
η(gu) d〈Mi,Mj 〉u.

Using (vi), we have

∑
i,j

D2
i,j

√
η(gu)

d

du
〈Mi,Mj 〉u ≥ − Cη

4u2 × Tr(∇⊗2Q⊗2
u K) ≥ −C′

η

u2

for some constant C′
η. This implies that there exists a constant k such that

√
ηs ≥ L√

St

− k

St

− L

2
√

St

.

Therefore, for t ≥ T2 large enough,
√

ηs ≥ − L

4
√

St
. Thus, for t ≥ T2,

lim inf
s→∞

√
ηs ≥ L

4
√

St

and

{St < UN
t } ∩

{
It ≥ − L

2
√

St

}
⊂ H.



SELF-INTERACTING DIFFUSIONS 1755

Now, on the event {St < UN
t },

P
[
It < − L

2
√

St

∣∣∣BSt

]
= P

[
sup

s∈[St ,U
N
t ]

−
(

1

2

∫ s

St

dM
η
u√

ηu

)
>

L

2
√

St

∣∣∣BSt

]

≤ 4St

L2 × E
[∫ s

St

d〈Mη〉u
4ηu

∣∣∣BSt

]
,

by the Doob inequality. For s ∈ [St ,U
N
t ],

d〈Mη〉s = ∑
i,j

Diη(gs)Djη(gs) d〈Mi,Mj 〉s

= ds

s2

∑
i,j

Diη(gs)Djη(gs)〈εi∇Qsei(Xs), εj∇Qsej (Xs)〉s .

Lemma 6.8(vi) implies that (recall that K = ∑
i ei ⊗ ei)

d

ds
〈Mη〉s ≤ 1

s2 C2
η × ηs × Tr(∇⊗2Q⊗2

s K)(Xs) ≤ Cηs

s2 ,

with C = C1C
2
η . Thus,

∫ s
St

d〈Mη〉u
4ηu

≤ C
4St

and on the event {St < UN
t }, we have

P
[
It < − L

2
√

St

∣∣∣BSt

]
≤ C

L2 .

We choose L such that C/L2 < 1/2. Then for t ≥ T2, on the event {St < UN
t },

P
[
H |BSt

] ≥ P
[
It ≥ − L

2
√

St

∣∣∣BSt

]
≥ 1

2
.

This proves the lemma. �

6.8. Proof of Theorem 2.26. We fix N ,p,T1 and T2 like in Lemmas
6.14 and 6.17. Let A = {∃ t,UN

t = ∞}. Then for t ≥ T = T1 ∨ T2, using Lemmas
6.14 and 6.17,

P[H |Bt ] ≥ E
[
1H1St<UN

t
|Bt

]
≥ E

[
P

[
H |BSt

]
1St<UN

t
|Bt

]
≥ 1

2 × P[St < UN
t |Bt ]

≥ 1
2(p − P[UN

t < ∞|Bt ]).
On one hand,

lim
t→∞ P[H |Bt ] = 1H a.s.
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On the other hand,

lim
t→∞1{UN

t =∞} = 1A a.s.

and

E
[∣∣1A − P[UN

t = ∞|Bt ]
∣∣] ≤ E

[∣∣1A − P[A|Bt ]
∣∣]

+ E
[∣∣P[A|Bt ] − P[UN

t = ∞|Bt ]
∣∣]

≤ E
[∣∣1A − P[A|Bt ]

∣∣] + E
[∣∣1A − 1{UN

t =∞}
∣∣],

which converges toward 0 as t → ∞. Thus, limt→∞ P[UN
t < ∞|Bt ] = 1Ac in L1

and

1H ≥ 1
2(p − 1Ac) a.s.(119)

This implies that a.s., A ⊂ H . But since H ⊂ {µt �→ µ∗} and {µt → µ∗} ⊂ A, we
have {µt → µ∗} ⊂ {µt �→ µ∗} a.s. This implies that P[µt → µ∗] = 0.

APPENDIX

Recall that we let G denote the set of V ∈ Ck
sym(M × M) such that �V has

nondegenerate fixed points. Our purpose here is to prove Theorem 2.10. That is,
that G is open and dense.

Openess. We first prove that G is open. Let V ∗ ∈ G. Then the zeros of XV ∗
are isolated (by the inverse function theorem) and since (XV ∗)−1(0) is compact
(Lemma 2.7), XV ∗−1(0) is a finite set. Say, XV ∗−1(0) = {f1, . . . , fd}.

By the implicit function theorem applied to the map (V ,f ) �→ XV (f ), there
exist open neighborhoods Ui of fi , Wi of V ∗ and smooth maps Ri :Wi → Ui such
that:

(a) XV (f ) = 0 ⇔ f = Ri(V ), for all V ∈ Wi,f ∈ Ui ,
(b) Ri(V

∗) = fi ,
(c) DXV (f ) is invertible at f = Ri(V ).

It remains to show that there exists an open neigborhood of V ∗ W ⊂ ⋂
i Wi such

that, for all V ∈ W , equilibria of XV lie in
⋃

Ui. In view of (a) and (c) above,
this will imply that W ⊂ G, concluding the proof of openess. Assume, to the
contrary, that there is no such neighborhood. Then there exists Vn → V ∗ and
fn ∈ B1 \ ⋃

i Ui such that XVn(fn) = 0. That is,

fn = ξ(Vnfn).(120)

Then by Lemma 2.3, we can extract from {V ∗fn} a subsequence {V ∗fnk
}

converging to some g ∈ C0(M). Now, ‖Vnfn − Vfn‖∞ ≤ ‖Vn − V ∗‖∞. Thus,
Vnk

fnk
→ g. Equation (120) then implies that fnk

→ f = ξ(g) and f = ξ(V ∗f ).

Hence, f ∈ ⋃
i Ui. A contradiction.
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Density. We now pass to the proof of the density. Recall that if Z is a smooth
map from one Banach manifold to another, a point h ∈ B2 is called a regular value
of Z, provided DZ(f ) is subjective for all f ∈ Z−1(h). Here, saying that 0 is a
regular value for XV is equivalent to saying that XV has nondegenerate equilibria.

Let Bk
1 = B1 ∩ Ck(M),Bk

0 = B0 ∩ Ck(M) and B+,k
1 = B+

1 ∩ Ck(M). For all

V ∈ Ck
sym(M × M), let ZV :B+,k

1 → Bk
0 denote the C∞ vector field defined by

ZV (f ) = Vf + log(f ) − 〈Vf + log(f ),1〉.
Remark that, for all h ∈ Bk

0 ,

DJV (f )h = 〈ZV (f ),h〉.
Hence, by Proposition 2.9, XV and ZV have the same set of equilibria and 0 is a
regular value for XV if and only if it is a regular value for ZV .

Given h ∈ Bk
0 , let V [h] be the symmetric function defined by

V [h](x, y) = V (x, y) − h(x) − h(y).

One has

ZV [h](f ) = ZV (f ) − h.

Therefore, h is a regular value of ZV if and only if 0 is a regular value of ZV [h] or,
equivalently, a regular value of XV [h].

We claim that ZV is a Fredholm map. That is, a map whose derivative DZV (f )

is a Fredholm operator for each f ∈ B+,k
1 (see Section 4 for the definition of

a Fredholm operator). Hence, by a theorem of Smale [26], generalyzing Sard’s
theorem to Fredholm maps) RZV

is a residual (i.e., a countable intersection of
open dense sets) set. Being residual, it is dense. Therefore, for any ε > 0, we can
find h ∈ RZV

with ‖h‖Ck ≤ ε. With this choice of h,

‖V − V [h]‖Ck ≤ ε

and XV [h] has nondegenerate equilibria. This concludes the proof of the density.
To see that DZV (f ) is Fredholm, write DZV (f ) = A◦B ◦C, where C :Bk

0 →
Ck(M),B :Ck(M) → Ck(M) and A :Ck(M) → Bk

0 are, respectively, defined by
Ch = f · (V h) + h,Bh = 1

f
h and Ah = h − 〈h,1〉.

The operator C is the sum of a compact operator and identity. Hence, by a clas-
sical result, (see, e.g., [19], Theorem 2.1, Chapter XVII) it is Fredholm. Operators
B and A are clearly Fredholm since Ker(B) = {0}, Im(B) = Ck(M),Ker(A) = R1
and Im(A) = Bk

0 . Since the composition of Fredholm operators is Fredholm ([19],
Corollary 2.6, Chapter XVII), DZV (f ) is Fredholm.
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