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RANDOM WALKS ON SUPERCRITICAL
PERCOLATION CLUSTERS1

BY MARTIN T. BARLOW

University of British Columbia

We obtain Gaussian upper and lower bounds on the transition den-
sity qt (x, y) of the continuous time simple random walk on a supercritical
percolation clusterC∞ in the Euclidean lattice. The bounds, analogous to
Aronsen’s bounds for uniformly elliptic divergence form diffusions, hold with
constantsci depending only onp (the percolation probability) andd. The ir-
regular nature of the medium means that the bound forqt (x, ·) holds only for
t ≥ Sx(ω), where the constantSx(ω) depends on the percolation configura-
tion ω.

0. Introduction. In this paper we study the simple random walk on the
infinite component of supercritical bond percolation in the latticeZd . We recall
the definition of percolation [see Grimmett (1999)]: For edgese = {x, y} ∈ Ed =
{{x, y} : |x −y| = 1}, we have i.i.d. Bernoulli r.v.ηe, with Pp(ηe = 1) = p ∈ [0,1],
defined on a probability space(�,F ,Pp). Edgese with ηe = 1 are calledopen and
the open clusterC(x) that containsx is the set ofy such thatx andy are connected
by an open path. It is well known that there existspc ∈ (0,1) such that when
p > pc there is a unique infinite open cluster, which we denoteC∞ = C∞(ω).

For eachω let Y = (Yt , t ≥ 0,P x
ω, x ∈ C∞) be the continuous time simple

random walk (CTSRW) onC∞; Y is the process that waits an exponential mean 1
time at each vertexx and then jumps along one of the open edgese that containsx,
with each edge chosen with equal probability. If we writeνxy(ω) = 1 if {x, y} is an
open edge and 0 otherwise, and setµ(x) = ∑

y νxy , thenY is the Markov process
with generator

Lωf (x) = µ(x)−1
∑
y

νxy

(
f (y) − f (x)

)
, x ∈ C∞.(0.1)

A number of papers have studied this process or the closely related discrete
time random walkX = (Xn,n ≥ 0, P̂ x

ω , x ∈ C∞). De Gennes (1976) discussed
the link between the behavior ofX and resistance properties ofC∞, and coined
the term “the ant in the labyrinth” to describe its motion. It is believed that, in
all dimensions, there is no infinite cluster ifp = pc (this is known to be true if
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d = 2 ord ≥ 19). Kesten (1986a) defined theincipient infinite cluster whend = 2,
and proved [Kesten (1986b)] that the random walk on this set has subdiffusive
behavior.

For the supercritical casep > pc, Y is expected to have long time behavior
similar to the random walk onZd , and this has been confirmed in several ways. De
Masi, Ferrari, Goldstein and Wick (1989) proved an invariance principle (d = 2),
while Grimmett, Kesten and Zhang (1993) proved thatY is recurrent ifd = 2 and
transient whend ≥ 3.

More recent papers have studied the transition density ofY with respect toµ:

qt(x, y) = qω
t (x, y) = P x

ω(Yt = y)µ(y)−1.(0.2)

Theorem 1.2 of Mathieu and Remy (2004) gives the (quenched) bound

qω
t (0, y) ≤ c1(p, d)t−d/2, t ≥ T0(ω), y ∈ C∞,

Pp-a.s. on the set{ω : 0 ∈ C∞}, while a similar (annealed) estimate was given by
Heicklen and Hoffman (2000), but with an extra logarithmic factor.

The main result of this paper is the following two-sided bound onqt .

THEOREM 1. Let p > pc. There exists �1 ⊆ � with Pp(�1) = 1 and r.v.
Sx, x ∈ Zd , such that Sx(ω) < ∞ for each ω ∈ �1, x ∈ C∞(ω). There exist
constants ci = ci(d,p) such that for x, y ∈ C∞(ω), t ≥ 1 with

Sx(ω) ∨ |x − y|1 ≤ t,(0.3)

the transition density qω
t (x, y) of Y satisfies

c1t
−d/2 exp(−c2|x − y|21/t) ≤ qω

t (x, y) ≤ c3t
−d/2 exp(−c4|x − y|21/t).(0.4)

REMARKS. 1. The usual graph distance onZd is denoted|x − y|1 =∑d
i=1 |xi − yi |.
2. The CTSRW onZd (i.e., p = 1) satisfies these bounds withSx ≡ 1. For

|x −y|1 > t , we have bounds which, up to constants, depend only on the tail of the
Poisson distribution and not on the geometry ofC∞; see Lemma 1.1.

3. If G is any finite graph which can be embedded inZd , thenC∞ contains
infinitely many copies ofG (attached at one point to the rest ofC∞). Since (0.4)
does not hold uniformly for all such graphs, it is clear that we cannot expect (0.4)
for all x, y, t with |x − y|1 ≤ t . This irregularity ofC∞ is taken care of by the
random variableSx ; after an initial period of possible bad behavior,qt(x, ·) settles
down to a distribution with Gaussian tails.

4. In (0.4) we can replace|x − y|1 by the graph distance inC∞ and, in fact,
this is the result that we prove first (Proposition 6.1).
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FIG. 1. Bond percolation with p = 0.53. The vertices in the largest open cluster are marked with
black circles.

5. The constantsci are nonrandom, and depend only onp and d . For p

sufficiently close to 1 it would, in principle, be possible to estimate them by careful
tracking of the various constants in this paper. However, for generalp ∈ (pc,1)

the constants arise in a noneffective fashion—ifp > pc, then we know that certain
kinds of good behavior occur in cubes of sidek ≥ k0(p, d), but have no control
on k0. The constantsci then depend onk0.

6. The tail of the random variableSx satisfies

Pp(x ∈ C∞, Sx ≥ n) ≤ c exp(−c′nεd );(0.5)

see Lemma 2.24 and Section 6.
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7. Similar bounds hold for the discrete time r.w.X. The proofs (which are
not given here) run along the same lines, but with some extra (mainly minor)
difficulties due to the discrete time. WhereasZd andC∞ are bipartite we need
to replaceqt (x, y) in (0.4) withpn−1(x, y) + pn(x, y).

8. It seems very likely that this theorem holds for other lattices inZd and that
the “random walk” part of the proofs below transfers easily to other situations,
but many of the percolation estimates that we use have been proved only for the
Euclidean lattice.

Similar estimates hold in the annealed case.

THEOREM 2. Let p > pc. There exist constants ci = ci(d,p) such that for
x, y ∈ Zd , t ≥ 1 with |x − y|1 ≤ t ,

c1t
−d/2 exp(−c2|x − y|21/t) ≤ Ep

(
qω
t (x, y)|x, y ∈ C∞

)
≤ c3t

−d/2 exp(−c4|x − y|21/t).
(0.6)

An immediate consequence of Theorem 1 is thatY is transient if and only
if d ≥ 3, but of course this was already known from Grimmett, Kesten and
Zhang (1993). As an example of a new application, the off-diagonal bounds in
Theorem 1 enable us to control harmonic functions onC∞. Write dω(x, y) for the
graph distance onC∞ and letBω(x,R) = {y :dω(x, y) < R} for balls. A function
h :Bω(x0,R +1) → R is harmonic onBω(x,R) if Lh(x′) = 0,x′ ∈ Bω(x,R). We
have the following Harnack inequality.

THEOREM 3. Let p > pc. There exists c1 = c1(p, d), �1 ⊆ � with
Pp(�1) = 1 and R0(x,ω) such that R0(x,ω) < ∞ for each ω ∈ �1, x ∈ C∞.
If R ≥ R0(x,ω) and h :Bω(x,2R + 1) → (0,∞) is a positive harmonic function
on Bω(x,2R), then writing B = Bω(x,R),

sup
B

h ≤ c1 inf
B

h.(0.7)

This leads immediately to the Liouville property for positive harmonic func-
tions.

THEOREM 4. (a)Let h :C∞ → R be positive and harmonic on C∞. Then h is
constant.

(b) Let T denote the tail σ -field of Y . There exists �2 with Pp(�2) = 1 such
that for each ω ∈ �2 and for each F ∈ T , either P x

ω(F ) = 0 for all x ∈ C∞(ω) or
else P x

ω(F ) = 1 for all x ∈ C∞(ω).

REMARK. The Liouville property forbounded harmonic functions onC∞ is
already known; see Kaimanovitch (1990) and Lemma 4.6 of Benjamini, Lyons and
Schramm (1999).
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We can also use Theorem 1 to estimateEx
ω|Yt − x|2.

THEOREM 5. Let p > pc. There exists �1 ⊆ � with Pp(�1) = 1 and r.v.
S′

x, x ∈ Zd , such that S′
x(ω) < ∞ for each ω ∈ �1, x ∈ C∞(ω). There exist

constants 0 < c5 ≤ c6 such that for x ∈ C∞(ω), t ≥ S′
x ,

c5t ≤ Ex
ω|Yt − x|2 ≤ c6t.(0.8)

This result implies that the (annealed) invariance principle, proved in De Masi,
Ferrari, Goldstein and Wick (1989) ford = 2, can be extended tod ≥ 3. See
Sidoravicius and Sznitman (2003) for a discussion of this and for a much more
delicate quenched invariance principle whend ≥ 4.

The proof of Theorem 1 breaks into two fairly distinct parts. First (Section 2)
we prove suitable geometric and analytic properties ofC∞. Then (Sections 3–5)
we use “heat kernel” techniques to obtain the estimate (0.4). These techniques
originate in the work of De Giorgi, Moser and Nash on divergence form elliptic
equations; more recently they have been employed to study random walks on
graphs. While they have been very successful in a wide variety of algebraic and
geometric contexts, this has almost always been in circumstances in which the
same regularity condition holds for all balls of a given sizer .

A guide to the kind of properties we need is given by the following theorem
from Delmotte, which is a translation to graphs of results from Grigor’yan (1992)
and Saloff-Coste (1992) on manifolds. (The version given here has been adapted
to the CTSRW on a positive density subgraphG of Zd .)

THEOREM A [see Delmotte (1999)]. Let G = (G,E) be a subgraph of Zd with
graph distance d . Let c0, c1 and c2 be positive constants. Suppose that G satisfies
the following two conditions.

(a) For all balls B(x,R) in G,

c0R
d ≤ µ

(
B(x,R)

) ≤ c1R
d.(Vd)

(b) For any ball B = B(x,R) and function f :B → R, writing f̄B =∑
x∈B f (x)µ(x)/µ(B),∑

x∈B

(
f (x) − f̄B

)2
µ(x) ≤ c2R

2
∑
x∈B

∑
y∈B
y∼x

(
f (x) − f (y)

)2
.(PI)

Then the transition density qt(x, y) of Y satisfies, for t ≥ d(x, y) ∨ 1,

c3t
−d/2 exp

(−c4d(x, y)2/t
) ≤ qt(x, y) ≤ c5t

−d/2 exp
(−c6d(x, y)2/t

)
.(0.9)

The first condition is of regular volume growth of balls inG, and can be
replaced by a more general “volume doubling” condition. The second is a family
of Poincaré or spectral gap inequalities forG.
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This theorem suggests that to prove Theorem 1, we should obtain volume
growth and Poincaré inequalities forC∞. Some results of this kind are in the
literature; see Pisztora (1996) and Deuschel and Pisztora (1996) for volume growth
estimates, and Benjamini and Mossel (2003) for a Poincaré inequality. These
results show that for fixedx ∈ C∞ the probability that (Vd) and (PI) hold for a
ball Bω(x,R) increases to 1 asR → ∞.

However, on its own this is not enough to give Theorem 1. There are now several
proofs of Theorem A [Delmotte (1999) used Moser iteration to prove a parabolic
Harnack inequality], but all involve iterative methods or differential inequalities
which use (Vd) and (PI) for many balls of different sizes. The exact definition of
“good” and “very good” balls is given in Section 1.7, but roughly speaking we say
a ball Bω(y, r) is good if (Vd) and (PI) hold, and a ballBω(x,R) is very good
if all subballsBω(y, r) ⊆ Bω(x,R) are good forr ≥ R1/(d+2). We need to prove
that all sufficiently large ballsBω(x0,R) (centered at a fixedx0) are very good,
and to do this we have to extend some of the estimates in the literature. This is
done in Section 2. The estimates in Pisztora (1996) and Deuschel and Pisztora
(1996) are enough for the volume growth bounds, but more work is needed for
the Poincaré inequality. As in Benjamini and Mossel (2003), we prove this from
an isoperimetric inequality, which was obtained by Benjamini and Mossel (2003)
and Mathieu and Remy (2004). We use the methods of those papers, but the need
for better control of the probabilities means that we have to rework some of these
arguments to identify more precisely the set of percolation configurationsω for
which a ball is good or very good. Ifp is sufficiently close to 1, then a fairly
direct counting argument [see Benjamini and Mossel (2003) and Mathieu and
Remy (2004)] is all that is needed, but for generalp > pc, we have to use a
renormalization argument, as in Antal and Pisztora (1996). In this paper we follow
quite closely the approach of Mathieu and Remy (2004); there is a gap in the
renormalization argument of Benjamini and Mossel (2003).

While percolation arguments generally use cubes inZd , the heat kernel
estimates work most naturally if we use the “chemical” or graph distancedω(x, y)

on C∞. We can compare these two metrics using the main theorem of Antal and
Pisztora (1996).

Many of the methods used to derive (0.9) from (Vd) and (PI) are not suitable
for the percolation context. For example, Saloff-Coste (1992) proved in that
(PI) and (Vd) imply a Nash estimate: forf :G → R,∫

|∇f |2 ≥ c‖f ‖2+4/d
2 ‖f ‖−4/d

1 ,(N)

and Carlen, Kusuoka and Stroock (1987) proved that (N) is equivalent to

qt (x, y) ≤ c′t−d/2 for all x, y ∈ G, t ≥ 1.(0.10)

However, sinceC∞ contains copies of{0, . . . , n} for all n, (0.10) is clearly false
for C∞. More generally, we cannot use any method which relies on global Sobolev
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inequalities; it isnecessary to use local methods. [One approach here might be
that of rooted or anchored isoperimetric inequalities as in Thomassen (1992) or
Benjamini, Lyons and Schramm (1999). However, the correct extension to Nash
or Sobolev inequalities has not yet been made.]

In Section 3 we obtain an initial global upper bound onqt using the Poincaré
inequality directly, following the approach of Kusuoka and Zhou (1992). We can
then obtain the off-diagonal upper bound in (0.4) using a method of Nash (1958),
Bass (2002) and Barlow and Bass (1989).

We use the method of Fabes and Stroock (1986), also based on ideas of Nash,
to obtain a local lower bound; that is, forqt(x, y) if d(x, y) ≤ t1/2. However,
a difficulty arises in extending this to prove (0.4) for pointsx, y with dω(x, y) ≈
t1−ε . The standard technique is chaining: using a sequence of small ballsB(zi, r)

that connectx and y, and the Chapman–Kolmogorov equations. It turns out
that we need to taker ≈ t/dω(x, y), so we may need balls so small that we
cannot be sure that they are very good. This problem is resolved by an additional
percolation argument: for some fixedr1 = r1(p, d) � 1, we can show that the
collection of good balls of sizer ≥ r1 is large enough so that a suitable chain
[B(zi, r),0≤ i ≤ m] of very good balls exists withz0 close tox andzm close toy.
(see Theorems 2.23 and 5.4). This argument needs renormalization techniques,
even ifp is close to 1.

Section 1 contains a brief account of various known facts on random walks
on graphs which are used in the rest of the paper. The percolation arguments
are given in Section 2. Sections 3–5 were written for a general graphG that
satisfies appropriate volume growth and Poincaré inequalities, and can be read
independently of Section 2. Upper bounds onqt are obtained in Section 3.
Section 4 proves a weighted Poincaré inequality from the unweighted (weak)
Poincaré inequalities derived in Section 2, using methods of Saloff-Coste and
Stroock (1991) and Jerison (1986). This is then used in Section 5 to obtain lower
bounds onqt . Section 6 then ties these results together and gives the proofs of
Theorems 1–4.

We useci to denote constants whose values are fixed within each argument and
useC· to denote constants fixed within each section;c2.3.1 denotes the constantc1
of Lemma 2.3, andc and c′ are constants whose values may change on each
appearance. The constantsCi , ci , c andc′ are always strictly positive. The notation
k = k(p, d) means that the constantk depends only onp andd .

1. Graphs and random walks. In this section we review some well-known
facts concerning graphs, random walks, and isoperimetric Cheeger and Poincaré
inequalities. LetG = (G,E) be an infinite, locally finite, connected graph. We
define weightsνxy by

νxy =
{

1, if {x, y} ∈ E,
0, otherwise,
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and setµ(x) = ∑
y νxy . We extendµ to a measure onG and extendν to a

measure onE. Given a functionf :G → R, we define|∇f | :E → R by |∇f |(e) =
|f (x) − f (y)| if e = {x, y}. We write∫

f =
∫

f dµ = ∑
x∈V

f (x)µ(x),

∫
|∇f |p =

∫
|∇f |p dν = ∑

e∈E

(|∇f |(e))pνe.

Let d(x, y) be the graph distance onG and defineB(x, r) = {y :d(x, y) < r}. We
assume we have a global upper bound on the size of balls: for anyx ∈ G, r ≥ 1,

µ
(
B(x, r)

) ≤ C0r
d .(1.1)

Note that this implies that for eachx ∈ G,

1 ≤ µ(x) ≤ C0.(1.2)

Let Y = (Yt , t ≥ 0,P x, x ∈ G) be the continuous time random walk onG; this
is the Markov process with generator

Lf (x) = µ(x)−1
∑
y

νxy

(
f (y) − f (x)

)
.(1.3)

ThusY waits atx for an exponential mean 1 random time and then moves to a
neighbor ofx at random. We define the transition density ofY with respect toµ
(or heat kernel density) by

qt (x, y) = µ(y)−1P x(Yt = y).

Note that by (1.2) we haveqt (x, y) ≤ 1 for all x, y, t . Given any pointsx0, . . . ,

xk ∈ G and timest1, . . . , tk , then by the Markov property, ift = ∑
k tk ,

qt (x0, xk) ≥ µ(xk)
−1

k∏
i=1

P xi−1
(
Yti = xi

)

= µ(xk)
−1

k∏
i=1

qti (xi−1, xi)µ(xi) ≥
k∏

i=1

qti (xi−1, xi).

(1.4)

We begin by recalling some general bounds onqt . These are not given in full
generality, but just as they apply to the situation here.

LEMMA 1.1. Let G satisfy (1.1).
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(a) There exist constants ci = ci(d,C0) such that, writing D = d(x, y),

qt (x, y) ≤ c1 exp
(−c2D

2

t

)
, D ≤ t,(1.5)

c exp
(
−c3D

(
1+ log

D

t

))
≤ qt(x, y)

(1.6)

≤ c′ exp
(
−c4D

(
1+ log

D

t

))
, D ≥ t ≥ 1

and
c3

(t logt)d/2
≤ qt (x, x) ≤ c4

t1/2
, t ≥ 1.(1.7)

(b) If d(x, y) ≥ R ≥ 2 and t ≤ c5R
2/ logR, then

qt(x, y) ≤ c6t
−d .(1.8)

PROOF. (a) See Corollaries 11 and 12 of Davies (1993) for (1.5) and (1.6).
For the discrete time random walkX on G, the lower bound in (1.7) is immediate
from Theorem 2.2 of Coulhon and Grigor’yan (2003) and (1.1), while the upper
bound follows from Theorem 2.3 of Coulhon and Grigor’yan (2003) and the fact
thatµ(B(x, r)) ≥ r for all r ≥ 1. These bounds then transfer toqt by integration.

(b) If t < c5R
2/ logR, then t log t ≤ 2c5R

2 providedR ≥ c7. Hencet−d ≥
exp(−2dc5R

2/t) and, takingc5 sufficiently small, the bound (1.8) is an easy
consequence of (1.5). IfR < c8, then t ≤ c9 and (1.8) still holds on adjusting
the constantc6. �

We now review some geometric and analytic inequalities onG. Let H ⊆ G be
finite, write

E(H) = {
e = {x, y} :x, y ∈ H

}
and callH = (H,E(H)) theinduced subgraph onH . We define the measuresµ0
on H andν0 on E(H) in the same way asµ andν are defined forG. Note that
while ν0 andν agree onE(H), we have only

µ0(A) ≤ µ(A) ≤ C0µ0(A), A ⊆ H.(1.9)

We now assume thatH is connected. ForA1,A2 ⊆ H let

∂E(A1,A2) = {
e = {x, y} :x ∈ A1, y ∈ A2

}
.(1.10)

Let

i(A) = ν(∂E(A,H − A))

µ0(A)
, A ⊆ H,
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and define the isoperimetric constant

IH = min
0<µ0(A)≤µ0/2(H)

i(A).

Closely related is the Cheeger constant: Let

χ(A) = µ0(H)ν(∂E(A,H − A))

µ0(A)µ0(H − A)

and define

JH = min
A �=∅,H

χ(A).(1.11)

LEMMA 1.2. The minimum in (1.11) is attained by a set A such that A and
H − A are connected.

This is quite well known. For a proof, see, for example, Section 3.1 of Mathieu
and Remy (2004).

LEMMA 1.3 [see Mathieu and Remy (2004), Section 3.1, and Benjamini and
Mossel (2003)]. Let H be finite and connected.

(a) There exists IH ≥ 2/µ0(H).
(b) If I ∗

H = min{i(A) : 0< µ(A) ≤ 1
2µ(H), A and H − A are connected}, then

IH ≤ I ∗
H ≤ 2IH .(1.12)

PROOF. (a) Let 0< µ0(A) ≤ 1
2µ0(H). Then sinceH is connected,∂E(A,

H − A) is nonempty, soi(A) ≥ 1/µ0(A) ≥ 2/µ0(H).
(b) The left-hand bound in (1.12) is obvious. If 0< µ0(A) ≤ 1

2µ0(H),
then since 1≤ µ0(H)/µ0(H − A) ≤ 2 we havei(A) ≤ χ(A) ≤ 2i(A). This
immediately implies thatIH ≤ JH ≤ 2IH . Let A be a minimal set forJH . By
Lemma 1.2 we can assume thatA andH − A are connected. We can also take
µ0(A) ≤ 1

2µ0(H). ThenI ∗
H ≤ i(A) ≤ χ(A) = JH ≤ 2IH , proving the right-hand

bound in (1.12). �

PROPOSITION1.4. Let H ⊆ G be finite. Suppose that IH ≥ α−1.

(a) If f :H → R, then

min
a

∫
H

|f − a|2 dµ0 ≤ c1α
2
∫
E(H)

|∇f |2dν.

(b) If f :H → R, then

min
a

∫
H

|f − a|2dµ ≤ c1C0α
2
∫
E(H)

|∇f |2 dν.(1.13)
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PROOF. (a) This result is well known. For a recent proof, see Lemma 3.3.7 of
Saloff-Coste (1997).

(b) Since (1.9) can be used to replaceµ0 with µ, this follows immediately
from (a). �

Inequality (1.13) is aPoincaré or spectral gap inequality forH . The minimum
in (1.13) is of course attained by the valuea = f̄H = ∫

H f dµ/µ(H). The
following result is immediate from Lemma 1.3 and Proposition 1.4.

COROLLARY 1.5. Let H ⊆ G be finite and connected, and let PH be the best
constant in the Poincaré inequality (1.13).

(a) There exists PH ≤ cµ(H)2.
(b) If i(A) ≥ α−1 for all A ⊆ H such that A and H − A are connected, then

PH ≤ cα2.

We note the following discrete version of the Gauss–Green lemma.

LEMMA 1.6. Let f,g ∈ L2(G,µ). Then∑
x∈G

g(x)Lf (x)µ(x) = 1
2

∑
x

∑
y

(
f (x) − f (y)

)(
g(x) − g(y)

)
νxy.(1.14)

In the sequel we need the following definitions.

DEFINITION 1.7. LetCV , CP andCW ≥ 1 be fixed constants. We sayB(x, r)

is (CV ,CP ,CW)-good if

CV rd ≤ µ
(
B(x, r)

)
(1.15)

and the weak Poincaré inequality∫
B(x,r)

(
f − f̄B(x,r)

)2
dµ ≤ CP r2

∫
E(B(CW x,r))

|∇f |2dν(1.16)

holds for everyf :B(x,CWr) → R.

We sayB(x,R) is (CV ,CP ,CW)-very good if there existsNB = NB(x,R) ≤
R1/(d+2) such thatB(y, r) is good wheneverB(y, r) ⊆ B(x,R), andNB ≤ r ≤ R.
We can always assume thatNB ≥ 1. Usually the values ofCV ,CP andCW are
clear from the context and we just use the terms “good” and “very good.”
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2. Percolation estimates. We work with both bond and site percolation inZd .
We regardZd as a graph, with edge setEd = {{x, y} : |x − y| = 1} and writex ∼ y

to mean{x, y} ∈ Ed . GivenQ ⊆ Zd , define the internal and external boundaries of
A ⊆ Q by

∂i(A|Q) = {y ∈ A :y ∼ x for somex ∈ Ac ∩ Q},
∂e(A|Q) = {y ∈ Ac ∩ Q :y ∼ x for somex ∈ A} = ∂i(Q − A|Q).

We begin with the notation for site percolation. Letq ∈ (0,1) and�s = {0,1}Zd
,

and define the coordinate mapsζx(ω) = ω(x). Let Qq be the probability measure
on�s which makes theζx i.i.d. Bernoulli r.v. withQq(ζx = 1) = q. We call thosex
such thatζx = 1 theopen sites and writeO = O(ω) = {x : ζx = 1}.

ForA ⊆ Zd we define the graph distancedA(x, y) to be the smallestk such that
there exists a pathγ = {x0, x1, . . . , xk} ⊆ A with x = x0, xk = y andxi−1 ∼ xi ,
1 ≤ i ≤ k. If there is no suchk, thendA(x, y) = ∞. [We havedA(x, x) = ∞ if
x /∈ A.] We writedω(x, y) = dO(ω)(x, y) and refer to a pathx = x0, x1, . . . , xk = y

such that eachxi is open as anopen path. We sayA is connected if dA(x, y) < ∞
for all x, y ∈ A.

Now write

C(x) = {y :dω(x, y) < ∞}
for the connected open cluster that containsx. Write also, givenQ ⊆ Zd ,

CQ(x) = {
y :dQ∩O(ω)(x, y) < ∞}

.

This is the set of points connected tox by an open path withinQ. We call sets
of the formC(x) open clusters and call the setsCQ(x) open Q clusters. It is well
known that there existsqc = qc(d) ∈ (0,1) such that ifq > qc, thenQq -a.s. there is
a unique infinite open clusterC∞. However, for site percolation we are interested
only in the case whenq is either close to 1 or close to 0. Given a cubeQ ⊆ Zd , the
setQ ∩ C∞ in general is not connected. We write

C∨(Q) for the largest openQ cluster.

(We adopt some procedures for breaking ties.)
Write |x −y|∞ = maxi |xi −yi |, letE∗

d = {{x, y} : |x −y|∞ = 1} and writex
∗∼y

if {x, y} ∈ E∗
d . We also need to consider site percolation in the graph(Zd,E∗

d). We
say thatA ⊆ Zd is ∗-connected if A is connected in the graph(Zd,E∗

d) and we
define the clustersC∗(x) analogously.

DEFINITION 2.1. 1. LetQ be a cube of siden in Zd . We writes(Q) = n for
the side length ofQ. LetQ+ = A1 ∩Zd andQ⊕ = A2 ∩Zd , whereA1 andA2 are
the cubes inRd with the same center asQ and with sides32n and6

5n, respectively.
2. A clusterC in a cubeQ is crossing for a cubeQ′ ⊆ Q if for all d directions

there exists an open path inC ∩ Q′ that connects the two opposing faces ofQ′.



3036 M. T. BARLOW

3. Thediameter of a setA is defined by diam(A) = max{|x − y|∞ :x, y ∈ A}.
4. Given a setA, we write|A| for the number of elements inA.

REMARK. In the arguments in this section, we frequently need to assume that
a cubeQ is sufficiently large. More precisely, we need thats(Q) ≥ n1, where
n1 = n1(d,p) is a constant that depends only ond andp. We make this assumption
in our proofs whenever necessary without stating it explicitly each time. Unless
otherwise indicated, the statements of the results are true for alln; this can be
ensured by adjusting the constants so that the result is automatic for small cubes.

Let Q be a cube inZd . Define the event

K(Q,λ) =
{
ω :C∨(Q) is crossing forQ and

|C∨(Q)|
|Q| > λ

}
.(2.1)

The following estimate was proved in Theorem 1.1 of Deuschel and Pisztora
(1996).

LEMMA 2.2. Let Q be a cube of side n and λ < 1. Then there exists q0 =
q0(d, λ) < 1 and ci = ci(λ, d) such that if q ∈ [q0,1), then

Qq

(
K(Q,λ)c

) ≤ c1 exp(−c2n
d−1).

Let 
 = {x ∈ Zd :x ∼ 0} ∪ {0}. For σ ∈ 
 define the shifted set of open sites
Oσ = {x − σ : x ∈ O}. Let

β = 1− 2(1+ d)−1 < (d − 1)/d.(2.2)

Set forr ∈ N andε > 0,

F(Q, r, σ, ε) = {any∗-connected setA ⊆ Q with |A| = r

satisfies|A ∩ Oσ | ≥ (1− ε)|A|},
F (Q,ε) = ⋂

r≥s(Q)β

⋂
σ∈


F(Q, r, σ, ε).

Note that the eventF(Q, r, σ, ε) is increasing and that althoughK(Q,λ) is not in
general increasing, it is ifλ > 1

2.
Recall the following bounds on the tail of the binomial.

LEMMA 2.3. Let X ∼ Binomial(n,p) and λ ∈ (0,1). Then

P(X < λn) ≤ e−nb(λ,p),

where b(λ,p) → ∞ as p → 1 for each fixed λ ∈ (0,1).

LEMMA 2.4 [see Grimmett (1999), Section 4.2].The number of ∗-connected
sets A with |A| = r containing a fixed point x0 ∈ Zd is bounded by exp(c1r).
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LEMMA 2.5. Let ε ∈ (0,1) and let Q be a cube of side n. There exists
q1 = q1(ε, d) > qc such that if q ≥ q1, then

Qq

(
F(Q,ε)c

) ≤ c exp(−nβ).

PROOF. If A is a fixed connected set inQ with |A| = r , then by Lemma 2.3,

Qq

(|A ∩ Oσ | < (1− ε)|A|) ≤ e−rb(1−ε,q).

Givenε, chooseq1 large enough so thatb(λ,p) > 2+ c2.4.1 for λ ≥ 1− ε, q ≥ q1.
Then since there are at most(n + 1)d exp(c2.4.1r) ∗-connected sets inQ of sizer ,

Qq

(
F(Q, r, σ, ε)c

) ≤ (n + 1)d exp
(
c2.4.1r − rb(1− ε, q)

) ≤ nde−2r

and, as|
| = 2d + 1,

Qq

(
F(Q,ε)c

) ≤
∞∑

r=n0

(2d + 1)(n + 1)de−2r

≤ cnd exp(−2nβ) ≤ c′ exp(−nβ). �

We collect from Deuschel and Pisztora (1996) the following results on the
boundaries of discrete sets contained in cubes.

LEMMA 2.6. Let Q be a cube in Zd .

(a) Let A � Q be ∗-connected. Let �j , 1 ≤ j ≤ k, be the connected
components of Q−A. Then ∂i(�j |Q) and ∂e(�j |Q), 1≤ j ≤ k, are ∗-connected.

(b) Let A ⊆ Q with |A| ≤ (15/16)|Q|. Then

|A| ≤ c1|∂i(A|Q)|d/(d−1) and |A| ≤ c1|∂e(A|Q)|d/(d−1).(2.3)

PROOF. Part (a) is Lemma 2.1(ii) of Deuschel and Pisztora (1996), while the
discrete isoperimetric inequality (2.3) is assertion (A.3) on page 480 of Deuschel
and Pisztora (1996).�

The following result is based on ideas in Mathieu and Remy (2004). Recall
from (1.10) the definition of∂E(A1,A2).

PROPOSITION2.7. Let ε < 1/(4d +2) and λ ≥ 7
8. Suppose that both F(Q,ε)

and K(Q,λ) occur for a cube Q with side n. Let A ⊆ Q be connected.

(a) If A ∩ C∨(Q) = ∅, then |A| < cnβd/(d−1) < n.
(b) If |A| ≤ 3

4|Q| and A ∩ C∨(Q) �= ∅, then there exists c1 such that∣∣∂E

(
A ∩ C∨(Q), (Q − A) ∩ C∨(Q)

)∣∣ ≥ c1n
−1|A|.(2.4)

PROOF. We writeC∨ = C∨(Q).
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(a) Let A0 be the connected component ofQ − C∨ that containsA.
By Lemma 2.6,∂i(A0|Q) is ∗-connected. The definition ofA0 implies that
∂i(A0|Q) ∩ O = ∅. SinceF(Q,ε) occurs, this implies that|∂i(A0|Q)| < nβ

[since otherwise|∂i(A0|Q) ∩ O| > 0]. Hence by the discrete isoperimetric
inequality (2.3),

|A| ≤ |A0| ≤ c|∂i(A0|Q)| ≤ cnβd/(d−1) < n.

(b) Now let A ∩ C∨ �= ∅ and |A| ≤ n. So there existsx ∈ A ∩ C∨. Since
|C∨| ≥ 7

8nd , there existsy ∈ (Q − A) ∩ C∨ and whereasC∨ is connected, there
therefore exists{x′, y′} ∈ ∂E(A ∩ C∨(Q), (Q − A) ∩ C∨(Q)). So∣∣∂E

(
A ∩ C∨(Q), (Q − A) ∩ C∨(Q)

)∣∣ ≥ 1≥ n−1|A|.
It remains to consider the caseA ∩ C∨ �= ∅, |A| > n. Let

�1 = ⋃{CQ(y) :y ∈ ∂e(A|Q) ∩ O − C∨}, A1 = A ∪ �1.

Let Ci , 1≤ i ≤ k, be the connected components ofQ − A1 and let

�2 = ⋃{Ci :Ci ∩ C∨ = ∅}, A2 = A1 ∪ �2.

It is clear from the construction ofA1 andA2 as a union of connected sets each
connected toA or A1 thatA2 is connected. Note that since�1 ∪ �2 ⊆ Q − C∨
andK(Q,λ) holds, we have|A2| ≤ |A| + |Q − C∨| ≤ 7

8|Q|.
We now show that

∂e(A|Q) ∩ C∨ = ∂e(A2|Q) ∩ O.(2.5)

First lety ∈ ∂e(A|Q) ∩ C∨, so thaty ∼ x with x ∈ A. Whereasy ∈ C∨, we cannot
havey ∈ �1 ∪ �2, soy /∈ A2 and thusy ∈ ∂e(A2|Q) ∩ O.

Now lety ∈ ∂e(A2|Q)∩O, so thaty ∼ z for somez ∈ A2. If z ∈ �2, thenz ∈ Ci

for somei. Hewever, becausey /∈ A1 andy ∼ z, we havey ∈ Ci , a contradiction,
so z ∈ A1. If z ∈ �1, then z ∈ C(x) for somex ∈ ∂e(A|Q) ∩ O − C∨. Again
we havey ∈ C(x), a contradiction, so we must havez ∈ A and, therefore,y ∈
∂e(A|Q). If y /∈ C∨, then becausey ∈ O, C(y) is included in�1 andy is in A1.
Hence we havey ∈ C∨. This completes the proof of (2.5).

Let �1, . . . ,�l be the connected components ofQ−A2, arranged in decreasing
order of size.

CASE 1. Suppose that|�1| > 1
2|Q|. LetA3 = A2∪(

⋃l
i=2 �j ). By Lemma 2.6,

∂e(A3|Q) = ∂i(�1|Q) is ∗-connected. We also have∂e(A3|Q) ⊆ ∂e(A2|Q). Note
that sincen < |A| ≤ |A3| ≤ 1

2|Q|, by the isoperimetric inequality,

|∂e(A3|Q)| ≥ c2|A3|1−1/d ≥ c2n
1−1/d > nβ.

SinceF(Q,ε) holds, writingO′ = ⋂
σ∈
 Oσ ,

|∂e(A3|Q) ∩ (O′)c| ≤ ∑
σ

|∂e(A3|Q) ∩ (Oσ )c| ≤ (2d + 1)ε|∂e(A3|Q)|.



RANDOM WALKS AND PERCOLATION 3039

We deduce

|∂e(A3|Q) ∩ O′| ≥ (
1− (2d + 1)ε

)|∂e(A3|Q)| ≥ 1
2|∂e(A3|Q)|.

If y ∈ ∂e(A3|Q) ∩ O′, then y ∈ ∂e(A2|Q) ∩ O and therefore, by (2.5),y ∈
∂e(A|Q) ∩ C∨. So there existsx ∈ A with y ∼ x. Whereasy ∈ O′, we havex ∈ O
and thusx ∈ C∨. Hence{x, y} ∈ ∂E(A ∩ C∨, (Q − A) ∩ C∨). Thus

∂E

(
A ∩ C∨, (Q − A) ∩ C∨) ≥ |∂e(A3|Q) ∩ O′|

≥ 1
2|∂e(A3|Q)|

≥ 1
2c2|A3|1−1/d ≥ 1

2c2n
−1|A3| ≥ 1

2c2n
−1|A|,

proving (2.4) in this case.

CASE 2. Suppose|�1| ≤ 1
2|Q|. Note that∣∣∂E

(
A ∩ C∨, (Q − A) ∩ C∨)∣∣ = ∑

j

∣∣∂E

(
�j ∩ C∨, (Q − �j) ∩ C∨)∣∣.

We have

|∂i(�j |Q) ∩ O′| ≤ ∣∣∂E

(
�j ∩ C∨, (Q − �j ) ∩ C∨)∣∣.(2.6)

For if y ∈ ∂i(�j |Q) ∩ O′, theny ∈ �j and there existsx ∈ A2 with x ∼ y. So
y ∈ ∂e(A2|Q) ∩ O and hencey ∈ ∂e(A|Q) ∩ C∨ by (2.5). Whereasy ∈ O′, then
x ∈ O, so thatx ∈ C∨ and hencex ∈ A sincex cannot be in�1 ∪ �2. Therefore
{y, x} ∈ ∂E(�j ∩ C∨, (Q − �j) ∩ C∨).

Next, each�j intersectsC∨ by the construction ofA2. If |∂i(�j |Q)| ≥ nβ , then

|∂i(�j |Q) ∩ O′| ≥ 1
2|∂i(�j |Q)| ≥ c|�j |1−1/d ≥ c′n−1|�j |.

If |∂i(�j |Q)| < nβ , then|�j | ≤ cnβd/(d−1) < n and∣∣∂E

(
�j ∩ C∨, (Q − �j) ∩ C∨)∣∣ ≥ 1≥ n−1|�j |.

Combining these estimates we obtain∣∣∂E

(
A ∩ C∨, (Q − A) ∩ C∨)∣∣ = ∑

j

∣∣∂E

(
�j ∩ C∨, (Q − �j) ∩ C∨)∣∣

≥ cn−1
∑
j

|�j | ≥ cn−1(|Q − A2|).

Whereas|Q − A2| ≥ 1
8nd ≥ c|A|, this proves (2.4). �

We now follow the renormalization argument of Mathieu and Remy (2004),
which uses techniques introduced by Antal and Pisztora (1996). We introduce a
second percolation process, which is bond percolation on(Zd,Ed). Letp ∈ (0,1):
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We set�b = {0,1}Ed , let ηe, e ∈ Ed , be the coordinate maps and letPp on �b be
the probability measure which makesηe i.i.d. Bernoulli r.v. withPp(ηe = 1) = p.
We call the edgese such thatηe = 1 open edges and we writeOE = {e :ηe = 1}.
An open path is any pathγ = {x0, . . . , xk} such that each{xi−1, xi} ∈ OE . As
for site percolation, we writedω(x, y) for the length of the shortest open path
connectingx andy, and setdω(x, y) = ∞ if there is no such open path. For a
setA we write dA(x, y) for the length of the shortest open path contained inA

connectingx andy. SetC(x) = {y :dω(x, y) < ∞}. Let θ(p) = Pp(|C(0)| = ∞)

andpc = inf{p : θ(p) > 0}. Then if p > pc, there existsPp-a.s. a unique infinite
cluster. We always assume thatp > pc. We defineC∞, CQ(x) andC∨(Q) in the
same way as for site percolation.

Let n ≥ 16 be fixed and letQ be a cube of siden. Recall the definition ofQ+
and crossing clusters from Definition 2.1. We define the eventR0(Q) in a similar
fashion to the eventR(n)

i in Antal and Pisztora (1996) and we set

R0(Q) = {
there exists a unique crossing clusterC in Q+ for Q+, all open paths

contained inQ+ of diameter greater than18n are connected toC

in Q+ andC is crossing for each cubeQ′ ⊆ Q with s(Q′) ≥ n/8
}
,

R(Q) = R0(Q) ∩ {C∨(Q) is crossing forQ} ∩ {C∨(Q+) is crossing forQ+}.
Note that ifω ∈ R(Q), then this forcesC∨(Q) ⊂ C∨(Q+) and thatC∨(Q+) is the
unique crossing cluster given by the eventR0(Q).

Now let k ≥ 17 and consider a tiling ofZd by disjoint cubes

T (x) = {y ∈ Zd :xi ≤ yi < xi + k,1≤ i ≤ d}(2.7)

with sidek − 1. Let

ϕ(x) = 1R(T (x)).(2.8)

LEMMA 2.8. (a)Let Q be a cube of side k − 1 and let p > pc. There exists
c1 = c1(p, d) such that

Pp

(
R(Q)c

) ≤ c exp(−c1k).(2.9)

(b) The process (ϕx, x ∈ Zd) dominates Bernoulli site percolation with para-
meter q∗(k), where q∗(k) → 1 as k → ∞.

PROOF. (a) The boundPp(R0(Q)c) ≤ c exp(−c′n) follows from Theorem 3.1
of Pisztora (1996) (d ≥ 3) and Theorem 5 of Penrose and Pisztora (1996) ford = 2.
The estimate

Pp

(
C∨(Q) is not crossing forQ

) ≤ c exp(−c′nd−1)

follows from Theorem 1.2 of Pisztora (1996) (d ≥ 3) and Theorem 1 of Couronné
and Messikh (2003) (d = 2).
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(b) By (a) we havePp(ϕ(x) = 1) → 1 ask → ∞. The r.v. ϕ(x) and ϕ(y)

are independent if|x − y|∞ ≥ 3, so the result is immediate from Theorem 0.0
of Liggett, Schonmann and Stacey (1997). [We remark that using this theorem
means that the eventsS(N)

i defined in (2.5) of Antal and Pisztora (1996) are no
longer needed.] �

Recall the definition ofq1(ε, d) from Lemma 2.5 and choosek0 = k0(p, d)

large enough so thatq∗(k) ≥ q1(ε, d) for all k ≥ k0. We fix k = k0 and refer to the
processϕ as themacroscopic percolation process. We writẽO, C̃(x), to denote the
open sites, open clusters for the macroscopic process andF̃ for associated events.

Let Q̃ be a macroscopic cube of sidem and associate with̃Q the microscopic
cubeQ = ⋃{T +(x), x ∈ Q̃}. Any (microscopic) cube which can be obtained in
this way is called aspecial cube. DefineT ′(x) to beT (x) if x is in the interior
of Q̃ [so thatT +(x) is in the interior ofQ]. Otherwise, ifx ∈ ∂i(Q̃|Zd), let T ′(x)

beT (x) together with all points inT +(x) which are closer toT (x) than anyT (y),
y �= x, y ∈ Q̃. ThusT ′(x) is ad-dimensional rectangle andQ is the disjoint union
of theT ′(x), x ∈ Q̃. Note that each side ofT ′(x) (x ∈ Q̃) is less than3

2(k0 − 1).
Fix ε0 = (4d + 2)−1.

LEMMA 2.9. Let Q be a special cube with s(Q) = n and let Q̃ be the
associated macroscopic cube. Suppose that m = s(Q̃) ≥ m0(k0) and that the event
K̃(Q̃, 7

8) ∩ F̃ (Q̃, ε0) holds for (ϕx, x ∈ Zd). Then the cluster C∨(Q) satisfies

|C∨(Q)| ≥ c1n
d, diam

(
C∨(Q)

) = n.

PROOF. Write Cx = C∨(T +(x)). If x, y ∈ Õ ∩ Q̃ andx ∼ y, then the events
R(T (x)) andR(T (y)) force the clustersCx andCy to be connected. Thus there
exists aQ-clusterC ′ with

⋃{Cx, x ∈ C̃∨(Q̃)} ⊆ C ′. It follows immediately that

|C ′| ≥ |C̃∨(Q̃)| ≥ 7
8md ≥ c1n

d.

Also, sinceC̃∨ is crossing forQ̃, we deduce thatC ′ is crossing forQ and
diam(C ′) = n.

It remains to prove thatC ′ = C∨(Q). Suppose not. Choosem0 so that(3
2k0)

d <
7
8md and therefore the clusterC∨(Q) is not contained in any one cubeT +(x). Let
x ∈ C̃∨(Q̃). ThenC∨(Q) ∩ Cx = ∅ and soC∨(Q) ∩ T +(x) consists of clusters
which have diameter less thank0/8. SinceC∨(Q) contains points outsideT +(x),
it follows thatC∨(Q) ∩ T (x) = ∅.

So, if �1, . . . ,�k are the connected components ofQ̃ − C̃∨(Q̃), we deduce that
for somej , C∨(Q) ⊆ ⋃{T ′(x), x ∈ �j }. By Proposition 2.7(a) we deduce that
|�j | ≤ c2m

dβ/(d−1) and so ifm0 is large enough,

|C∨| ≤ c2
(3

2k0
)d

mdβ/(d−1) < 7
8md,
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giving a contradiction. ThusC ′ = C∨(Q). �

Let Q be a special cube withs(Q) = n and letQ̃ be the associated macroscopic
cube. For setsA1, A2 ⊆ Q, let

∂E(A1,A2|OE) = {{x, y} : {x, y} ∈ OE,x ∈ A1, y ∈ A2
}
.

Let A ⊆ C∨ = C∨(Q) and let� = C∨ − A both be connected. Set

Ã = {x ∈ Q̃ :A ∩ T ′(x) �= ∅},
�̃ = {x ∈ Q̃ :� ∩ T ′(x) �= ∅}.

Note that

|A| ≥ |Ã| ≥ (3
2k

)−d |A|.(2.10)

WhereasA and � are connected, it is clear that̃A and �̃ are connected. Let
C̃∨ = C̃∨(Q̃) be the largest open (macroscopic) cluster inQ̃.

LEMMA 2.10. Let Q be a special cube with s(Q) = n and let Q̃ be the
associated macroscopic cube. Suppose that m = s(Q̃) ≥ m0(k0) and that the event
K̃(Q̃, 7

8) ∩ F̃ (Q̃, ε0) holds for (ϕx, x ∈ Zd). Let A ⊆ C∨ and � = C∨ − A be
connected.

(a) Let x ∼ y, x ∈ Ã and y ∈ Q̃ − Ã with x, y ∈ Õ. Then the set T +(x) ∩ Q

contains at least one edge in ∂E(A,�|OE).
(b) Suppose x ∈ Ã ∩ �̃ ∩ Õ. Then the set T +(x)∩Q contains at least one edge

in ∂E(A,�|OE).

PROOF. As in Lemma 2.9 we have thatC∨ is not contained in any oneT +(x).
Let Cx = C∨(T +(x)) be as in Lemma 2.9.

(a) Sincex ∈ Ã there existsx′ ∈ T (x) ∩ A, so sinceC∨ is connected there
exists an open pathγ ⊆ Q from x′ to Q ∩ T +(x)c. This path must have diameter
greater thank0/3, so it is connected withinT +(x) to Cx . Hencex′ is connected
within T +(x) to Cy . Choosey′ ∈ Cy ∩ T (y); theny′ /∈ A buty ∈ C∨. There exists
an open pathγ ′ from x′ to y′ that must contain at least one edge in∂E(A,�|OE).

(b) Letx′ ∈ A∩T ′(x) andy′ ∈ �∩T ′(x). Sincex ∈ Õ, bothx′ andy′ are inCx

and there therefore exists an open path inT +(x) betweenx′ andy′. As in (a) this
path must contain at least one edge in∂E(A,�|OE). �

PROPOSITION2.11. Let Q and Q̃ be as above with m = s(Q̃) ≥ m0. Suppose
that the event K̃(Q̃, 7

8) ∩ F̃ (Q̃, ε0) holds for (ϕx, x ∈ Zd). Let A be a connected

open subset of C∨(Q) with |A| ≤ 1
2|C∨(Q)| and such that � = C∨(Q)−A is also

connected. Then

|∂E(A,�|OE)| ≥ c1n
−1|A|.(2.11)
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PROOF. We write C∨ = C∨(Q), C̃∨ = C̃∨(Q̃). SinceA �= C∨(Q) andC∨
is connected, we have|∂E(A,�|OE)| ≥ 1, so (2.11) is immediate if|A| ≤ c−1

1 n.
Also, using Lemma 2.10(a) we have

|∂E(A,�|OE)| ≥ c2
∣∣∂E

(
Ã ∩ Õ, (Q̃ − Ã) ∩ Õ

)∣∣.(2.12)

We consider four cases.

CASE 1. Ã ∩ C̃∨ = ∅. Let �̃ be the connected component ofQ̃ − C̃∨ which
containsÃ. By Proposition 2.7(a),|�̃| ≤ cmdβ/(d−1), so that

|A| ≤ (3
2k0

)d |�̃| ≤ ckd
0mdβ/(d−1) ≤ n,

providedm0 is large enough. Hence (2.11) holds forA.

CASE 2. Ã∩ C̃∨ �= ∅ and|Ã| ≤ 3
4|Q̃|. We apply Proposition 2.7(b) to see that∣∣∂E

(
Ã ∩ C̃∨, (Q̃ − Ã) ∩ C̃∨)∣∣ ≥ cm−1|Ã| ≥ cn−1|A|,

and combining this with (2.12) proves (2.11).

CASE 3. Ã∩ C̃∨ �= ∅, |Ã| ≥ 3
4|Q̃| and|�̃| ≤ 3

4|Q̃|. Using Lemma 2.9 we have
|�̃| ≥ (3

2k0)
−d |�| ≥ 1

2(3
2k0)

−d |C∨| ≥ cnd . So by Proposition 2.7(a),̃� ∩ C̃∨ �= ∅
and we can therefore apply Proposition 2.7(b) to�̃ to deduce∣∣∂E

(
�̃ ∩ C̃∨, (Q̃ − �̃) ∩ C̃∨)∣∣ ≥ cm−1|�̃| ≥ cm−1nd ≥ cn−1|A|.

Using (2.12) (withA and� interchanged) we deduce that

|∂E(�,A|OE)| ≥ c2
∣∣∂E

(
�̃ ∩ Õ, (Q̃ − �̃) ∩ Õ

)∣∣
≥ c2

∣∣∂E

(
�̃ ∩ C̃∨, (Q̃ − �̃) ∩ C̃∨)∣∣ ≥ n−1|A|.

CASE 4. Ã ∩ C̃∨ �= ∅, |Ã| ≥ 3
4|Q̃| and |�̃| ≥ 3

4|Q̃|. SinceÃ and�̃ are both
connected and̃F(Q̃, ε0) holds, we have

|Ã ∩ Õ| ≥ (1− ε0)|Ã| > 2
3|Q̃|,

|�̃ ∩ Õ| ≥ (1− ε0)|�̃| > 2
3|Q̃|.

Hence|Ã ∩ �̃ ∩ Õ| ≥ 1
3|Q̃|. So by Lemma 2.10(b),

|∂E(A,�|OE)| ≥ c|Ã ∩ �̃ ∩ Õ| ≥ c′md ≥ c′′|A|,
which implies (2.11). �
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As in Section 1 we define

νxy = νxy(ω) =
{

1, if {x, y} is an open edge,
0, otherwise,

µ(x) = µ(x)(ω) = ∑
y νxy , x ∈ Zd , and we extendν and µ to measures. If

f :A → R, we write

f̄A = µ(A)−1
∫
A

f dµ.

Let Q be a special cube and let̃Q be the associated macroscopic cube. Define

H0(Q) = K̃
(
Q̃, 7

8

) ∩ F̃ (Q̃, ε0)

and extend the definition ofH0(Q) to all cubesQ by takingH0(Q) = H0(Q
′),

whereQ′ is the largest special cube contained inQ. [We setH0(Q) = � if there
is no such special cube.]

Recall the definition ofβ from (2.2).

PROPOSITION2.12. Consider bond percolation ηe on (Zd,Ed) with p > pc.
Let Q be a special cube of side n.

(a) There exists

Pp

(
H0(Q)c

) ≤ c1 exp(−c2n
β).(2.13)

(b) If ω ∈ H0(Q) and f :C∨(Q)(ω) → R, then∫
C∨(Q)

(
f (y) − f̄C∨(Q)

)2
dµ ≤ c3n

2
∫
E(C∨(Q))

|∇f |2dν.

PROOF. (a) To prove (2.13) note that

Pp

(
H0(Q)c

) ≤ Pp

(
K̃

(
Q̃, 7

8

)c) + Pp

(
F̃ (Q̃, ε0)

c).(2.14)

As the eventsK(·, 7
8) andF(·, ·) are increasing, the two probabilities on the right-

hand side of (2.14) are bounded by the probabilities of these events with respect to
a Bernoulli site percolation process with probabilityq∗ = q∗(k0). Using Lemmas
2.2 and 2.5,

Pp

(
K̃

(
Q̃, 7

8

)c) + Pp

(
F̃ (Q̃, ε0)

c) ≤ Qq∗
(
K

(
Q̃, 7

8

)c) + Qq∗
(
F(Q̃, ε0)

c)
≤ c exp(−cmd−1) + c′ exp(−c′mβ)

≤ c exp(−c′nβ).

(b) This is immediate from Propositions 1.4 and 2.11.�
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REMARK. See Section 3.2 of Mathieu and Remy (2004) for similar bounds in
the case whenp is close to 1.

Recall from Definition 2.1 thatQ ⊆ Q⊕ ⊆ Q+. Let α ∈ (0, 1
2), let Q be a cube

with s(Q) = n and set

H(Q,α) = R(Q) ∩ {R(Q′) ∩ H0(Q
′) occurs for every cubeQ′

with (Q′)+ ⊆ Q+, Q′ ∩ Q⊕ �= ∅

andnα ≤ s(Q′) ≤ n}.
(2.15)

LEMMA 2.13. (a)For p > pc,

Pp

(
H(Q,α)c

) ≤ c exp(−c1n
αβ).

(b) If ω ∈ H(Q,α) and Q0 ⊂ Q satisfies the condition (2.15),then C∨(Q0) ⊂
C∨(Q+).

PROOF. (a) By (2.9) and (2.13),

Pp

(
H(Q,α)c

) ≤
n∑

r=nα

cnd exp(−c1r
β) ≤ c′ exp(−c2n

αβ),(2.16)

proving (a).
(b) Define a sequence of cubesQi , 0 ≤ i ≤ k, by Qi+1 = Q∗

i and where we
stop at the last cubeQk with Q+

k ⊂ Q+. The eventsR(Qi) then forceC∨(Qi) ⊂
C∨(Qi+1), so thatC∨(Q0) ⊂ C∨(Q+

k ). Since diamC∨(Q+
k ) = diam(Q+

k ) > n/8,
the eventR(Q) implies thatC∨(Q+

k ) ⊂ C∨(Q+). �

Proposition 2.12 and Lemma 2.13 complete our results on the Poincaré
inequality in sets of the formC∨(Q). However, to be able to obtain bounds
(particularly lower bounds) on transition densities onC∞, we need to relate
|x − y|1 to the shortest path (or chemical) metricdω on C∞. This was done in
Theorem 1.1 of Antal and Pisztora (1996), but we need some minor extensions of
their results and it is desired to make this paper as self-contained as possible, so
we repeat some of their constructions.

Let k ≥ 17 and recall the site processϕ(x) = 1R(T (x)) introduced in (2.8). Set
ϕ′(x) = 1−ϕ(x); since, by Lemma 2.8(b),ϕ dominates Bernoulli site percolation
with parameterq∗(k), ϕ is dominated by Bernoulli site percolation with parameter
q ′(k) = 1−q∗(k). We consider the clusters of the processϕ′ on the graph(Zd,E∗

d).
Given a functionϕ′ :Zd → {0,1}, we writeO(ϕ′) = {x :ϕ′(x) = 1}. If ϕ′(x) = 0,
we setC∗(ϕ′, x) = ∅, and if ϕ′(x) = 1, we let C∗(ϕ′, x) be the∗-connected
component ofO(ϕ′) that containsx. Let

D(ϕ′, x) =
{

∂e

(
C∗(ϕ′, x)|Zd

)
, if ϕ′(x) = 1,

{x}, if ϕ′(x) = 0.
(2.17)
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For x, y ∈ Zd let γ (x, y) be a shortest path [in(Zd,Ed)] that connectsx andy.
Note that ifx andy are contained in a cubeQ, thenγ (x, y) ⊆ Q. Set

W(ϕ′, x, y) = ⋃
z∈γ (x,y)

D(ϕ′, z).(2.18)

The importance ofW comes from the following result, which is Proposition 3.1 of
Antal and Pisztora (1996).

PROPOSITION 2.14. Let k ≥ 17, x, y ∈ Zd and x̃, ỹ ∈ Zd be such that
x ∈ T (x̃) and y ∈ T (ỹ). Suppose that [ for the bond percolation process ηe on
(�b,Pp)] dω(x, y) < ∞. Then there exists an open path γ ′(x, y) that connects x

and y contained in

W ′(x, y) = ⋃
z̃∈W(ϕ′,x̃,ỹ)

T +(z̃).

In particular, dω(x, y) ≤ |W ′(x, y)| ≤ (3k)d |W(ϕ′, x̃, ỹ)|.

PROPOSITION 2.15. Let p > pc. There exists k1 = k1(p, d) and CAP such
that if k ≥ k1, then the following hold.

(a) If x̃, ỹ ∈ Zd , x ∈ T (x̃) and y ∈ T (ỹ), then

Pp

(|W(ϕ′, x, y)| ≥ CAP|x̃ − ỹ|1) ≤ c2 exp(−c3|x̃ − ỹ|1).
(b) If x̃ and ỹ ∈ Zd , λ ≥ 0, then

Pp

(
max

z̃∈γ (x̃,ỹ)
diam

(
D(ϕ′, z̃)

)
> λ

)
≤ c4|x̃ − ỹ|1 exp(−c5λ).

PROOF. (a) This is proved on page 1047 of Antal and Pisztora (1996).
(b) We choosek1 large enough so thatq ′(k) < qc for all k ≥ k1. Sinceϕ′ is

dominated by Bernoulli site percolation with parameterq ′, we have

Pp

(
diam

(
D(ϕ′, z̃)

)
> λ

) ≤ Qq ′
(
2+ diam

(
C∗(0)

)
> λ

) ≤ c exp(−c′λ).

[For the second estimate above, see Theorem 5.4 of Grimmett (1999).] The bound
in (b) is now immediate. �

Now fix k1 as in Proposition 2.15 and set

CH = dCAP(3k1)
d .(2.19)

Let Q be a cube with siden. Forx, y ∈ Q let

E(Q,x, y) = {
x, y ∈ C∨(Q+) :dC∨(Q+)(x, y) > CH |x − y|∞}

.
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LEMMA 2.16. Let p > pc, let Q be a cube with side n and let x, y ∈ Q. Then

Pp

(
E(Q,x, y)

) ≤ c exp(−c5|x − y|∞).

PROOF. Let x ∈ T (x̃) and y ∈ T (ỹ). Supposex, y ∈ C∨(Q+). Then by
Proposition 2.14 there exists a open pathγ ′ that connectsx andy contained in
W ′(ϕ′, x, y). So if E(Q,x, y) holds, then eitherW ′(ϕ′, x, y) is not contained
in Q+ or

CH |x − y|∞ < dC∨(Q+)(x, y) ≤ (3k1)
d |W(ϕ′, x̃, ỹ)|.

Thus

Pp

(
E(Q,x, y)

) ≤ Pp

(|W(ϕ′, x̃, ỹ)| ≥ CAP|x̃ − ỹ|1)
+ Pp

(
max

z̃∈γ (x̃,ỹ)
diam

(
D(ϕ′, z̃)

)
>

n

8k1

)

≤ c exp(−c|x̃ − ỹ|1) + c|x̃ − ỹ|1 exp
(
−cn

k1

)
≤ c exp(−c|x − y|∞). �

Let Q be a cube with siden. Set

D0(Q) = R(Q) ∩ {
dC∨(Q+)(x, y) ≤ CH |x − y|∞
if x, y ∈ C∨(Q+) ∩ Q, |x − y|∞ ≥ n/12

}(2.20)

and

D(Q,α) = {D0(Q
′) occurs for every cubeQ′ with (Q′)+ ⊆ Q+,

Q′ ∩ Q⊕ �= ∅ andnα ≤ s(Q′) ≤ n}.(2.21)

Let also

Bω(y, r) = {x :dω(x, y) < r}.
SinceC∞ is embedded inZd we haveµ(Bω(y, r)) ≤ C0r

d for someC0 = C0(d).

PROPOSITION2.17. Let p > pc.

(a) There exists Pp(D0(Q)c) ≤ c1 exp(−c2n).
(b) There exists Pp(D(Q,α)c) ≤ c3 exp(−c4n

α).
(c) Let ω ∈ D0(Q) and x, y ∈ Q ∩ C∨(Q+). Then dω(x, y) ≤ CHn.
(d) Let ω ∈ D(Q,α) and x, y ∈ Q⊕ ∩ C∨(Q+). Then

|x − y|∞ ≤ dω(x, y) ≤ CH

(
(1+ nα) ∨ |x − y|∞)

.

(e) Let ω ∈ D(Q,α), let x ∈ Q⊕ and let Q′ satisfy the conditions in (2.21)with
s(Q′) = r . Then Q′ ∩ C∨(Q+) ⊂ Bω(x,CHr).
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PROOF. (a) By Lemma 2.16,

Pp

(
D0(Q)c

) ≤ Pp

(
R(Q)c

) + ∑
x′,y′

c exp(−c5|x′ − y′|∞),

where the sum is overx′, y′ ∈ Q with |x′ − y′|∞ ≥ n/12. Hence, using (2.9),

Pp

(
D0(Q)c

) ≤ c(n + 1)2d exp(−c5n/8) ≤ c1 exp(−c2n).(2.22)

(b) This is immediate from (a), since

Pp

(
D(Q,α)c

) ≤
n∑

r=nα

(3
2n + 1

)d
c1 exp(−c2r) ≤ c exp(−c′nα).

(c) This is immediate if|x − y|∞ ≥ n/12. If |x − y|∞ < n/8, then choose
z′ ∈ C∨(Q+) ∩ Q with n/12 ≤ |z − x|∞ ≤ n/4 andn/12 ≤ |z − y|∞ ≤ n/4.
SinceC∨(Q+) is crossing forQ, such a choice ofz is possible. Thendω(x, y) ≤
dω(x, z) + dω(z, y) ≤ 2CH(n/4) ≤ CHn.

(d) SinceD(Q,α) ⊆ D0(Q), this is immediate from (b) if|x − y|∞ ≥ n/12.
Otherwise choose the smallest possible cubeQ′ such thats(Q′) ≥ nα ∨ |x − y|∞
andx, y ∈ Q′. We have(Q′)+ ⊂ Q+. As in Lemma 2.13(b), we haveC∨(Q′) ⊂
C∨(Q+) and, by (c),dC∨(Q+)(x, y) ≤ CH s(Q′) ≤ CH(|x − y|∞ ∨ (1+ nα)).

(e) SinceD0(Q
′) occurs, this is immediate from (c).�

Recall from Definition 1.7 the definition of good and very good balls.

THEOREM 2.18. Let α ∈ (0, 1
2), let Q be a cube of side n, let ω ∈ H(Q,α) ∩

D(Q,α) and let CHnα ≤ r ≤ n. Write Q(y, s) = {z ∈ Zd : |z − y|∞ ≤ s}. Let
y ∈ C∨(Q+) ∩ Q⊕ with Q(y, r + k0)

+ ⊆ Q+.
(a) There exists CV = CV (p,d) such that

CV rd ≤ |Bω(y, r)| ≤ C0r
d .(2.23)

(b) There exist constants CP (p,d) and CW(p,d) such that if f :Bω(y,

CWr) → R and writing f̄B = f̄Bω(y,r), then∫
Bω(y,r)

(
f − f̄Bω(y,r)

)2
dµ ≤ CP r2

∫
E(Bω(y,CWr))

|∇f |2dν.(2.24)

(c) If (CHnα)d+2 ≤ R ≤ n and Bω(y, 3
2R) ⊆ Q⊕, then Bω(y,R) is (CV ,

CP ,CW)-very good with NBω(y,R) ≤ CHnα.

PROOF. Recall from Lemma 2.13(b) thatω ∈ H(Q,α) implies thatC∨(Q′) ⊆
C∨(Q+) for everyQ′ satisfying (2.15).
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(a) SinceBω(y, r) ⊆ Q(y, r), the upper bound in (2.23) is clear. Lets =
r/(2CH), so that 2s ≥ nα . By Proposition 2.17(e),C∨(Q(y, s)) ⊂ Bω(y,CHs),
so that by Lemma 2.9,

|Bω(y, r)| ≥ ∣∣C∨(
Q(y, s)

)∣∣ ≥ c1s
d ≥ c2r

d .

(b) Let Q1 be the smallest special cube that containsQ(y, r); we have
Q+

1 ⊆ Q+. Let r1 = s(Q1). By Proposition 2.17(e),C∨(Q1) ⊂ Bω(y,CHr1) and
so takingCW = 2CH , C∨(Q1) ⊆ Bω(y,CWr). By Proposition 2.12(b),∫

Bω(y,r)
(f − f̄B)2 dµ ≤

∫
Bω(y,r)

(f − f̄C∨)2 dµ

≤
∫
C∨(Q1)

(f − f̄C∨)2 dµ

≤ c3r
2
1

∫
E(C∨(Q1))

|∇f |2 dν ≤ c4r
2
∫
E(Bω(y,CW r))

|∇f |2dν.

(c) This is immediate from (a), (b) and the definition of very good balls.�

Using the estimates in Lemma 2.13(a), Proposition 2.17(b) and and Borel–
Cantelli lemma, we obtain the following lemma.

LEMMA 2.19. Let p > pc. For each x ∈ Zd there exists Mx(ω) with Pp(Mx ≥
n) ≤ c1 exp(−c2n

αβ) such that whenever n ≥ Mx , then H(Q,α) ∩ D(Q,α) holds
for all cubes Q of side n with x ∈ Q.

REMARKS. 1. An inequality of the form (2.24) is called aweak Poincaré
inequality. In many situations (including this one) it is possible to derive a
strong Poincaré inequality (i.e., withCW = 1) from a family of weak ones; see
Lemma 4.9.

2. Note that ifx ∈ Q ands(Q) ≥ Mx , thenC∨(Q) ⊆ C∞.

Theorem 2.18 and Lemma 2.19 are suitable for most of our needs, but they
have the defect that the minimum size of ball inside a cubeQ of siden for which
the Poincaré inequality is certain to hold increases withn. Since (for a fixedCP )
the clusterC∞ contains arbitrarily large balls in which the Poincaré inequality
fails, we cannot do better than this as long as we require it for all balls of some
size. However, we can improve Theorem 2.18 if we relax this condition, and in
Section 5 we want to connect points by a chain of very good balls of some fixed
size. To do this we need an additional percolation argument.
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We consider again Bernoulli site percolationζx on (Zd,Ed) with parameterq,
whereq > qc is close to 1. LetQ be a cube of siden. Forx, y ∈ Q, λ > 1, let

S(ζ,Q,λ, x, y)

= K
(
Q, 7

8

) ∩ {
there existx′, y′ ∈ C∨(Q+)

with |x − x′|∞ ≤ n1/9, |y − y′|∞ ≤ n1/9,

such thatdC∨(Q+)(x
′, y′) ≤ λ|x − y|∞}

.

(2.25)

Note that this event is increasing.

LEMMA 2.20. Let Q be a cube of side n and let x, y ∈ Q. There exists
q2 = q2(d) ∈ (qc,1) and λ0 ≥ 1 so that if q > q2, then

Qq

(
S(ζ,Q,λ0, x, y)c

) ≤ c1 exp(−c2n
1/9).(2.26)

PROOF. We follow the proof of Theorem 1.1 of Antal and Pisztora (1996) and
consider the dual process toζ given byζ ′

x = 1− ζx . We viewζ ′ as site percolation
(with parameterq ′ = 1 − q) on the lattice(Zd,E∗

d) and writeC∗(ζ ′, z) for the
∗-connected cluster of the processζ ′ that containsz. Then by Theorem 5.4 of
Grimmett (1999) we can chooseq2 large enough so that ifq ≥ q2, then

Qq

(|C∗(ζ ′, z)| ≥ k
) ≤ exp(−c3k), k ≥ 1.

So, if

G = {|C∗(ζ ′, x)| ≤ n1/9 for all x ∈ Q},
then (using Lemma 2.2)

Qq

(
K

(
Q, 7

8

)c ∪ Gc
) ≤ exp(−c4n

1/9).(2.27)

If |x − y|∞ ≤ n1/9 andω ∈ G, there existsx′ ∈ C∨(Q+) with |x − x′|∞ ≤ n1/9.
In this case we can takey′ = x′.

So supposeω ∈ G and |x − y|∞ > n1/9. Let l = |x − y|1 and γ = {x =
x0, x1, . . . , xl = y} be a path in(Zd,Ed) of lengthl that connectsx andy—note
thatγ ⊂ Q. Whereas each clusterC∗(ζ ′, y), y ∈ Q, has diameter less thann1/9,
the pathγ must intersectC∨(Q+). LetVx andVy be the first and last (resp.) points
in γ ∩ C∨(Q+); we have|x − Vx | ≤ n1/9 and|y − Vy | ≤ n1/9.

We takex′ = Vx , y′ = Vy and construct a path� from x′ to y′ in C∨(Q+). This
path followsγ whenever possible, and when it encounters a sitez with ζz = 0 it
“walks around”C∗(ζ ′, z)—this requires at most 3d |C∗(ζ ′, z)| steps. Sinceω ∈ G

this path does not leaveQ+. Hence, recalling from (2.18) the definition ofW(·),

|�| ≤ l + 3d
l∑

i=0

|C∗(ζ ′, z)| ≤ 3d |W(ζ ′, x′, y′)| ≤ 3d |W(ζ ′, x, y)|.(2.28)
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By Proposition 2.15(a) we have

Qq

(|W(ζ ′, x, y)| ≥ c5|x − y|1) ≤ c6 exp(−c7|x − y|1)
≤ c6 exp(−c8n

1/9).
(2.29)

Taking λ0 = dc5 and combining the bounds (2.27)–(2.29) completes the proof.
�

Let m ≥ k0 ∨ k1 and let{T m(x̃), x̃ ∈ Zd} be the tiling ofZd by disjoint cubes
of sidem − 1 given by (2.7). Letα1 = 1/(4+ d) and define [on the space(�,Pp)

carrying the bond percolation processηe]

ψ
(m)
x̃

= 1H(T m(x̃),α1)∩D(T m(x̃),α1), x̃ ∈ Zd .(2.30)

LEMMA 2.21. There exists CE = CE(d,p) ≥ 1 such that for any k ≥ CE the
process ψ(m), x̃ ∈ Zd , under Pp dominates Bernoulli site percolation on Zd with
parameter q2.

PROOF. Note thatψ(m)
x̃

andψ
(m)
ỹ

are independent if|x̃ − ỹ|∞ ≥ 3. Using this
and the fact thatPp(H(Q,α1) ∩ D(Q,α1)) → 1 asp ↑ 1, this is an immediate
consequence of Theorem 0.0 of Liggett, Schonmann and Stacey (1997).�

Let λ0 be as in Lemma 2.20 and letQ be a cube of siden. Forx0, x1 ∈ Q and
CE ≤ m ≤ n1/9 set

L(Q,m,x0, x1)

= {
there existx′

0, x
′
1 ∈ C∨(Q+) with |xj − x′

j | ≤ n2/9, j = 0,1,

k with mk < 2λ0|x0 − x1|∞ and a path{ỹ0, . . . , ỹk} in (Zd,Ed)

such thatT m(ỹi) ⊆ Q+, 0≤ i ≤ k, x′
0 ∈ T m(ỹ0), x′

1 ∈ T m(ỹk)

andH
(
T m(ỹi), α1

) ∩ D
(
T m(ỹi), α1

)
holds for eachi

}
.

(2.31)

LEMMA 2.22. Let Q be a cube of side n and let CE ≤ m ≤ n1/9. Then if
|x0 − x1|∞ ≥ n2/9

Pp

(
L(Q,m,x0, x1)

c) ≤ c exp(−c1n
1/11).(2.32)

PROOF. Whereasm is fixed in this argument, we writeT (x̃) for T m(x̃).
Let n′ be such thatmn′ ≥ n ≥ m(n′ − 1). Let Q̃ be a (macroscopic) cube of
side n′ such thatQ ⊂ ⋃{T (x̃), x̃ ∈ Q̃}. Let x̃i be such thatxi ∈ T (x̃i) and let
s = |x̃0 − x̃1|1, so thatm(s − 1) ≤ |x0 − x1|∞ ≤ m(s + 1) and s ≥ n1/9. Let
S̃ = S̃(ψ(m), Q̃, λ0, x̃0, x̃1) be the event defined from the processψ(m) in the same
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way asS(·) in (2.25) is for ζ . Then, asS is an increasing event, by Lemmas
2.20 and 2.21,

Pp(S̃) ≤ c exp
(−c′(n′)1/9) ≤ c exp(−c2n

1/11).(2.33)

Let ω ∈ S̃ and letx̃′
0 = ỹ0, . . . , ỹk = x̃′

1 be the open path (with respect toψ(m))
given by the event̃S. SinceS̃ occurs we have|x̃i − x̃′

i|∞ ≤ (n′)1/9 for i = 0,1 and
k ≤ λ|x̃0 − x̃1|∞. Choosex′

i ∈ T (x̃′
i) ∩ C∨(Q+); then

|xi − x′
i|∞ ≤ m(1+ |x̃i − x̃′

i|∞) ≤ m
(
1+ (n′)1/9) < n2/9.

Also, sincek ≤ λ0s, mk ≤ msλ0 ≤ λ0(m + |x0 − x1|∞) ≤ 2λ0|x0 − x1|∞. Thus
ω ∈ L(Q,m,x0, x1) and using (2.33), this proves the lemma.�

Now letα2 = (11(d + 2))−1 and let

L(Q) = H(Q,α2) ∩ D(Q,α2) ∩ {L(Q,m,x, y) holds for everyx, y ∈ Q,

with |x − y|∞ ≥ n2/9 andCE ≤ m ≤ n1/9}.
THEOREM 2.23. Let Q be a cube of side n and let p > pc.
(a) There exists Pp(L(Q)c) ≤ c1 exp(−c2n

α2β).
(b) Let ω ∈ L(Q) and CE ≤ m ≤ n1/9. Then if x0, x1 ∈ Q ∩ C∨(Q+) with

dω(x0, x1) ≥ 1
3n1/4 there exist x′

i ∈ C∨(Q+) with dω(xi, x
′
i) ≤ 1

3n1/4 and a path
γ = (z0, . . . , zj ) in C∨(Q+) that connects x′

0 and x′
1 such that:

(i) For each 0 ≤ l ≤ j , the ball Bl = Bω(zl,m/16) is very good, with
NBl

≤ CHmα1.
(ii) There exists j ≤ c3|x0 − x1|∞ ≤ CF |x0 − x1|1.

PROOF. (a) This is immediate from the bounds in Lemma 2.13, Proposi-
tion 2.17 and Lemma 2.22.

(b) Since D(Q,α2) occurs, |x0 − x1|∞ ≥ cdω(x0, x1) ≥ n2/9 and soω ∈
L(Q,m,x0, x1). Let x′

i , ỹ0, . . . , ỹk be as in (2.31). Note that we can choosex′
i

to be within a distancem/8 of the center of the cubesT (ỹ0) andT (ỹk). Then, by
Proposition 2.17(d),dω(xi, x

′
i) ≤ CH((1+ nα2) ∨ |xi − x′

i|∞) ≤ cn2/9 ≤ 1
3n1/4.

We now show that the clustersC∨(Qi) are all inC∨(Q+). Consider first two
adjacent cubesT (yi) andT (yi+1). Since the eventR(T (yi))∩R(T (yi+1)) occurs,
the clustersC∨(T (y+

i )) andC∨(T (y+
i+1)) are connected. Thus there exists aQ+

clusterC which contains eachC∨(T (y+
i )), and so has diameterD with D ≥

|x′
0 − x′

1|∞ ≥ |x0 − x1|∞ − 2n1/9 ≥ 1
2n1/4. It now follows, as in Lemma 2.13(b),

thatC ⊂ C∨(Q+).
Since each eventD(Qi,α1) holds, we can find a pathγ = {z0, . . . , zj } ⊆⋃
T (yi) that connectsx′

0 andx′
1 with length j ≤ 2CHmk ≤ c|x0 − x1|∞. Each

point zi is in a cubeQi for which H(Qi,α1) ∩ D(Qi,α1) occurs, so using
Theorem 2.18(c),Bi = Bω(zi,m/16) is very good withNBi

≤ CHmα1. �
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LEMMA 2.24. Let p > pc and, for each x ∈ Zd , let Nx be the largest n such
that L(Q) fails for some Q with s(Q) = n and x ∈ Q. Then

Pp(Nx ≥ n) ≤ c1 exp(−c2n
α2β).(2.34)

PROOF. This is immediate from Theorem 2.23(a).�

3. Upper bounds. We now consider a connected graphG = (G,E) that
satisfies the conditions (1.1) and (1.2). We use the notation of Section 1, and study
the transition densityqt (x, y) of the continuous time r.w.Yt on G. Fix constants
CV , CP andCW , and recall from Definition 1.7 the definition of good and very
good balls, and ofNB . In this section the constantsci depend on the constantsd ,
C0, CV , CP andCW in (1.1), (1.15) and (1.16).

As in Section 2, we assume without alwaysstating it explicitlythat the radiusR
of a ball B(x,R) is sufficiently large; that is, thatR ≥ c0 = c0(d,C0,CP ,CW).
All the bounds in this section hold for ballsB(x,R) with R ≤ c0, with a suitable
choice of the constantsci in the bounds, by elementary arguments.

We begin by investigating the on-diagonal decay ofqt (x, x). We remark that
a similar result was proved in Mathieu and Remy (2004), using an isoperimetric
inequality directly. We give another proof here because it is quite short and also
allows us to estimate the “initial time”TB directly in terms ofNB .

PROPOSITION3.1 [see Mathieu and Remy (2004), Theorem 1.2].Let x0 ∈ G

and let B = B(x0,R) be very good, so that N2+d
B ≤ R. Then

qt (x1, x1) ≤ c2

td/2
for c1N

2d
B ≤ t ≤ R2

logR
and x1 ∈ B

(
x0,

8
9R

)
.(3.1)

PROOF. Let c3 < c1.1.5, let t2 = c3R
2/ logR and suppose thatt ≤ t2. Then

providedR ≥ c, we havet log t ≤ c3R
2 and hence thatt ≤ exp(c3R

2/t). Fix x1 ∈
B(x0,

8
9R), write ft(x) = qt (x1, x) and letψ(t) = ∫

qt(x1, y)2dµ = q2t (x1, x1).
Note that by (1.7),

c4

(t logt)d/2
≤ ψ(t) = q2t (x1, x1) ≤ 1

c5t1/2
, t ≥ 1.(3.2)

Using the discrete Gauss–Green formula,

ψ ′(t) = 2
∑
x

ft (x)
∂ft (x)

∂t
= 2

∑
x

ft (x)Lft (x) = −∑
x,y

axy

(
ft (x) − ft (y)

)2

and, in particular,ψ(t) is decreasing (and continuous).
Definet1 so thatt1/2

1 = c6N
d
B , wherec6 is chosen later, and chooser(t) so that

2

c5c6
≥ r(t)dψ(t) ≥ 1

c5c6
.(3.3)
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Then, if t ≥ t1, by (3.2),ψ(t)−1 ≥ c5c6N
d
B and sor(t) ≥ NB . If t ≤ t2, then by

(3.2) and (3.3),r(t)d ≤ c(t logt)d/2 ≤ cc
d/2
3 R2, so if the constantc3 is chosen

small enough, we haver(t) ≤ R/18.
Write B ′ = B(x0,17R/18). Let t ∈ [t1, t2], so thatr = r(t) ∈ [r0,R/18], and

let B(yi, r/2), i = 1, . . . ,m, be a maximal collection of disjoint balls with centers
in B ′. SetBi = B(yi, r) and B∗

i = B(yi,CWr). Note thatB ′ ⊆ ⋃
i Bi ⊆ B. If

x ∈ B ∩ B∗
i , we haveB(yi, r/2) ⊆ B(x, r(1+ CW)), and so

C0(1+ CW)drd ≥ µ
(
B

(
x, r(1+ CW)

))
≥ ∑

i

1{x∈B∗
i }µ

(
B(yi, r/2)

) ≥ |{i :x ∈ B∗
i }|CV 2−drd .

Thus anyx ∈ B is in at mostc7 of theB∗
i .

The bounds onr above imply that eachB(yi, r) is good. So, applying the
Poincaré inequality (1.16) to eachBi and writingf̄t,i = µ(Bi)

−1 ∫
Bi

ft , we have

−c7ψ
′(t) ≥ ∑

i

∫
E(B∗

i )
|∇ft |2

≥ C−1
P r−2

∑
i

∫
Bi

|ft − f̄t,i|2(3.4)

= C−1
P r−2

∑
i

∫
Bi

f 2
t − C−1

P r−2
∑
i

µ(Bi)
−1

(∫
Bi

ft

)2

.

By Lemma 1.1(b), ∫
G−B ′

f 2
t ≤

(
sup

G−B ′
ft

)∫
G−B ′

ft ≤ ct−d,

while, by (3.2),ψ(t) ≥ c4(t log t)−d/2. So ast ≥ c1,∑
i

∫
Bi

f 2
t ≥

∫
B ′

f 2
t = ψ(t) −

∫
G−B ′

f 2
t ≥ 1

2ψ(t).

Also, sinceft has total mass 1,

∑
i

µ(Bi)
−1

(∫
Bi

ft

)2

≤ (CV rd)−1

(∑
i

∫
Bi

ft

)2

≤ c7(CV rd)−1 = c8r(t)
−d .

Combining these estimates, we obtain

−c7ψ
′(t) ≥ C−1

P r(t)−2(1
2ψ(t) − c8r(t)

−d
)
.(3.5)

Now let c6 = (4c5c8)
−1 so that by the choice ofr = r(t) in (3.3),

−ψ ′(t) ≥ c9r(t)
−2ψ(t) ≥ c10ψ(t)1+2/d .
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Settingϕ(t) = ψ(t)−2/d we haveϕ′(t) ≥ 2c10/d , from which it follows that

ϕ(t) ≥ ϕ(t1) + (2c10/d)(t − t1) ≥ c11t, 2t1 ≤ t ≤ t2.

Rearranging, this givesψ(t) ≤ ct−d/2 for 2t1 ≤ t ≤ t2. Sinceψ is decreasing
it follows, by adjusting the constantc, that qt(x1, x1) = ψ(t/2) ≤ c11t

−d/2 for
4t1 ≤ t ≤ R2/ logR. �

We need a bound fory outsideB(x0,R).

COROLLARY 3.2. Let x0 ∈ G and let B = B(x0,R) be very good. Then

qt (x1, y) ≤ c1

td/2
for c2N

2d
B ≤ t ≤ c3R

2

logR
,x1 ∈ B

(
x0,

7
9R

)
and y ∈ G.(3.6)

PROOF. If y ∈ B(x0,
8
9R), thenqt (x1, y) ≤ qt(x1, x1)

1/2qt (y, y)1/2 ≤ ct−d/2

by Proposition 3.1. If y /∈ B(x1,
8
9R), then d(x, y) ≥ R/9 and we use

Lemma 1.1(a). �

For a very good ballB, let TB = c3.2.2N
2d
B andT ′

B = c3.2.3R
2/ logR.

REMARK. It is natural to ask if the bounds in (3.1) and (3.6) hold fort ≤ cR2

rather than justt ≤ cR2/ logR. However, in this paper this restriction ont does
not matter, since we ultimately apply (3.6) in the situation whereB(x0,R) is very
good for all sufficiently largeR.

We now use the method of Bass (2002) to obtain off-diagonal upper bounds.
Following Nash (1958) and Bass (2002), we introduce the functions, forx1 ∈ G,
t > 0,

M(t) = M(x1, t) = ∑
y

d(x1, y)qt (x1, y)µ(y),

Q(t) = Q(x1, t) = −∑
y

qt (x1, y) logqt (x1, y)µ(y).

We can extendM and Q to t = 0 by continuity: M(0) = 0, while since
qt(x1, x1) → µ(x1)

−1 ast ↓ 0, Q(0) = logµ(x1) ≥ 0.

LEMMA 3.3. Let B(x0,R) be very good and let x1 ∈ B(x0,
7
9R).

(a) We have

Q(x1, t) ≥ c1 + 1
2d logt, TB ≤ t ≤ T ′

B.

(b) We have

M(x1, t) ≥ c2 exp
(
Q(x1, t)/d

)
, t ≥ c3.



3056 M. T. BARLOW

PROOF. Fix x1 ∈ B(x0,
7
9R). Part (a) follows directly from the upper

bound (3.6).
The proof of (b) is similar to that in Nash (1958) or Bass (2002). Let 0< a < 1,

and setD0 = {x0} andDn = B(x0,2n) − B(x0,2n−1) for n ≥ 1. Then using (1.1)
to boundµ(Dn), we have, fora ≤ 2,

∑
y∈G

exp
(−ad(x1, y)

)
µ(y) ≤

∞∑
n=0

∑
y∈Dn

exp(−a2n)µ(y)

≤
∞∑

n=0

C02nd exp(−a2n) ≤ c4a
−d .

Now note thatu(logu + λ) ≥ −e−1−λ for u > 0. So, settingλ = ad(x0, y) + b,
wherea ≤ 2,

−Q(x1, t) + aM(x1, t) + b = ∑
y

qt (x1, y)
(
logqt(x1, y) + ad(x1, y) + b

)
µ(y)

≥ −∑
y

exp
(−1− ad(x1, y) − b

)
µ(y)

≥ −e−1−b
∑
y

exp
(−ad(x1, y)

)
µ(y) ≥ −c5e

−ba−d .

SinceM(x1, t) ≥ P x1(Yt �= x1), using (1.7) we haveM(x1, t) ≥ 1
2 when t ≥ c5.

Settinga = 1/M(x1, t) andeb = M(x1, t)
d = a−d , we obtain

−Q(x1, t) + 1+ d logM(x1, t) ≥ −c4,

and rearranging gives (b).�

PROPOSITION3.4. Let x0 ∈ G and let B(x0,R) be very good. Then

c1t
1/2 ≤ M(x1, t) ≤ c2t

1/2 for x ∈ B
(
x0,

7
9R

)
and TB logTB ≤ t ≤ T ′

B.(3.7)

PROOF. For the moment we just writeQ(t) andM(t). Setft (x) = qt(x1, x)

and letbt(x, y) = ft(x) + ft(y). We have

M ′(t) = ∑
y

d(x1, y)
∂ft(y)

∂t
µ(y) = ∑

y

d(x1, y)Lft (y)µ(y)

= −1

2

∑
x

∑
y

axy

(
d(x1, y) − d(x1, x)

)(
ft(y) − ft (x)

)
(3.8)

≤ 1

2

∑
x

∑
y

axy |ft (y) − ft(x)|
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≤ 1

2

(∑
x

∑
y

axybt (x, y)

)1/2(∑
x

∑
y

axy

(ft (y) − ft (x))2

bt(x, y)

)1/2

≤ c

(∑
x

∑
y

axy

(ft(y) − ft (x))2

ft (x) + ft(y)

)1/2

.(3.9)

In the calculation above the use of the discrete Gauss–Green formula to
obtain (3.8) is valid since, by (1.5),qt(x1, ·) decays exponentially. Since we have,
for u, v > 0,

(u − v)2

u + v
≤ (u − v)(logu − logv),

we deduce

M ′(t)2 ≤ ∑
x

∑
y

axy

(
ft (y) − ft (x)

)(
logft(y) − logft(x)

)
.

On the other hand [again using (1.5) and the discrete Gauss–Green formula],

Q′(t) = −∑
y

(
1+ logft(y)

)
Lft(y)

= 1
2

∑
x

∑
y

axy

(
logft (y) − logft (x)

)(
ft (y) − ft (x)

) ≥ 1
2M ′(t)2.

(3.10)

The remainder of this proof is similar to that in Nash (1958) or Bass (2002),
except that we have to control the growth ofM for smallt . SetR(t) = d−1(Q(t)−
c3.3.1 − 1

2d logt), so thatR(t) ≥ 0 if TB ≤ t ≤ T ′
B . Define

T0 =
{

1, if R(t) ≥ 0 on[1, T ′
B ],

sup{t ≤ T ′
B :R(t) < 0}, otherwise.

If T0 > 1, thenT0 ≤ TB and, by (3.10),

M(T0) =
∫ T0

0
M ′(s) ds ≤ 21/2

∫ T0

0
Q′(s)1/2ds

≤ 21/2
(∫ T0

0
Q′(s) ds

)1/2

T
1/2
0

≤ c3T
1/2
0

(
Q(T0) − Q(0)

)1/2

≤ c3T
1/2
0

(
c3.3.1 + 1

2d logT0
)1/2 ≤ c4(TB logTB)1/2.

If T0 = 1, thenM(T0) = Exd(x,Y1) ≤ c5 by elementary arguments.
By Lemma 3.3(b) and (3.10), ifT0 < t < T ′

B , then

ct1/2eR(t) = eQ(t)/d ≤ M(t) ≤ M(T0) + 21/2
∫ t

T0

Q′(s)1/2ds

≤ M(T0) + (2d)1/2
∫ t

T0

(
R′(s) + 1

2s

)1/2

ds.
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Using the inequality(a + b)1/2 ≤ b1/2 + a/(2b)1/2 gives

ct1/2eR(t) ≤ M(t) ≤ M(T0) + ct1/2 + c

∫ t

T0

s1/2R′(s) ds.(3.11)

Integrating by parts, and using the fact thatR ≥ 0 on [T0, T
′
B], the final term

in (3.11) is bounded byc(1 + R(t)t1/2). Combining these estimates, forTB ≤
t ≤ T ′

B ,

ct1/2eR(t) ≤ M(t) ≤ c
(
1+ R(t)

)
t1/2 + c4(TB logTB)1/2.

So forTB logTB ≤ t ≤ T ′
B ,

ct1/2eR(t) ≤ M(t) ≤ c
(
1+ R(t)

)
t1/2.

ThusR(t) is bounded and this implies (3.7).�

As in Bass (2002) we can use the moment bounds in (3.7) to obtain off-diagonal
upper bounds onqt by the method of Barlow and Bass (1989, 1992). We define

τ (x, r) = inf{t :Yt /∈ B(x, r)}, x ∈ G,r > 0,

and begin by controlling the probability thatτ (x, r) is small.

LEMMA 3.5. Let x0 ∈ G and let B(x0,R) be very good. Let c1N
d
B ×

(logNB)1/2 ≤ r ≤ R. Then

P x
(
τ (x, r) < t

) ≤ 1

2
+ c2t

r2 for x ∈ B
(
x0,

6
9R

)
and 0 ≤ t ≤ 1

2T ′
B.(3.12)

PROOF. Suppose first thatr < R/9. Let x ∈ B(x0,
6
9R), A = B(x, r) ∪

∂B(x, r) andτ = τ (x, r). Then ifTB logTB ≤ t ≤ 1
2T ′

B , sinceA ⊆ B(x0,
7
9R),

c3t
1/2 ≥ Exd(x,Y2t ) ≥ Ex

(
d(x,Yt∧τ ) − d(Yt∧τ , Y2t )

)
≥ Ex1(τ<t) d(x,Yτ ) − Ex

(
EYt∧τ d(Yt∧τ , Y2t−t∧τ )

)
≥ P x(τ < t)r − sup

z∈A,s≤t

Ez d(z,Y2t−s)

≥ P x(τ < t)r − c3t
1/2.

Thus

P x(τ < t) ≤ 2c3t
1/2/r.(3.13)

Sinceλ ≤ 1
2(1+ λ2), (3.12) is immediate. Ift ≤ TB logTB , then

P x
(
τ (x, r) < t

) ≤ P x
(
τ (x, r) < TB logTB

) ≤ 2c3(TB logTB)1/2r−1 ≤ 1
2,

provided r ≥ c(TB logTB)1/2 = c′Nd
B(logNB)1/2. Finally if R/9 ≤ r ≤ R, we

haveτ (x, r) ≥ τ (x,R/9), so (adjusting the constantc2) we deduce (3.12).�
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REMARK. In the end we gain nothing useful by using the stronger
bound (3.13).

We need the following estimate.

LEMMA 3.6 [Barlow and Bass (1989), Lemma 1.1].Let ξ1, ξ2, . . . , ξn, V be
nonnegative r.v. such that V ≥ ∑n

1 ξi . Suppose that for some p ∈ (0,1), a > 0,

P
(
ξi ≤ t|σ(ξ1, . . . , ξi−1)

) ≤ p + at, t > 0.

Then

logP (V ≤ t) ≤ 2
(

ant

p

)1/2

− n log
1

p
.

PROPOSITION 3.7. Let x0 ∈ G and let B(x0,R) be very good. If x ∈
B(x0,

5
9R) and t > 0, ρ > 0 satisfy

ρ ≤ R, c1N
d
B(logNB)1/2ρ ≤ t and t ≤ T ′

B,(3.14)

then

P x(
τ (x,ρ) < t

) ≤ c2 exp(−c3ρ
2/t).(3.15)

PROOF. Let r1 = c3.5.1N
d
B(logNB)1/2. Suppose first that, in addition,

ρ < R/9. Let m ≥ 1 be chosen later, and lets = t/m and r = �ρ/m�. Define
stopping times

S0 = 0, Si = inf
{
t ≥ Si−1 :d

(
YSi−1, Yt

) = r
}
, i ≥ 1.

Set ξi = Si − Si−1 and write Ft = σ(Ys, s ≤ t) for the filtration of Y . By
Lemma 3.5,

P x(
ξi > u|FSi−1

) ≤ 1

2
+ c4u

r2
, u > 0,(3.16)

providedr1 ≤ r ≤ R, u ≤ T ′
B andYSi−1 ∈ B(x0,

6
9R). Whereasd(Y0, YSm) ≤ mr ≤

ρ < R/9, we haveSm ≤ τ (x,ρ) and YSj
∈ B(x0,

6
9R) for 0 ≤ j ≤ m. Using

Lemma 3.6 and writingp = 1
2, a = c4/r2, we deduce that

logP x
(
τ (x,ρ) < t

) ≤ logP x(Sm < t) ≤ 2(amt/p)1/2 − m logp−1.

Simplifying this expression, we obtain

logP x
(
τ (x,ρ) < t

) ≤ −c5m

(
1−

(
c6tm

ρ2

)1/2)
.(3.17)

Let λ = ρ2/(2c6t). If we can choosem ∈ N with 1
2λ ≤ m < λ and so that the

estimate (3.16) is valid, then (3.17) implies (3.15).
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If λ ≤ 1, then, adjusting the constantc2 appropriately, (3.15) is immediate.
If λ > 1, then letm = �1

2λ� + 1. Since thenm ≥ 1, we haves ≤ t ≤ T ′
B and

r ≤ ρ ≤ R, while the conditionρ ≤ c6t/r1 ensures thatr ≥ r1.
Finally let ρ satisfy (3.14) but withρ ≥ R/9. Then (adjustingc1 if necessary)

we can apply the argument above toρ0 = R/9 and adjust the constantc3 to
obtain (3.15). �

THEOREM 3.8. Let x0 ∈ G and let B(x0,R) be very good. Let x ∈ B(x0,
1
2R),

let y ∈ G and assume that

N2d+1
B ∨ d(x, y) ≤ t ≤ c1R

2

logR
.(3.18)

Then

qt(x, y) ≤ c2t
−d/2 exp

(−c3d(x, y)2/t
)
.(3.19)

PROOF. Let D = d(x, y). Using (1.5) we have, sinceD ≤ t ,

qt (x, y) ≤ c5 exp(−2c4D
2/t).

If t logt ≤ 2c4d
−1D2, then exp(−c4D

2/t) ≤ t−d/2 and we deduce that

qt (x, y) ≤ c5t
−d/2 exp(−c4D

2/t).

Suppose therefore thatt logt ≥ 2c4d
−1D2. Note that this implies thaty ∈

B(x, 5
9R), provided R ≥ c and c1 in (3.18) is chosen small enough. Let

Ax = {z :d(x, z) ≤ d(y, z)}, Ay = G − Ax , s = t/2 and ρ = D/2. Note that
B(x,ρ) ⊆ Ax . Then

µ(x)P x(Yt = y)

= µ(x)P x(Yt = y,Ys ∈ Ay) + µ(x)P x(Yt = y,Ys ∈ Ax).
(3.20)

To bound the first term in (3.20) we write

P x(Yt = y,Ys ∈ Ay) = P x(
τ (x,ρ) < s,Ys ∈ Ay,Yt = y

)
≤ Ex

(
1{τ(x,ρ)<s}P Yτ (Yt−τ = y)

)
≤ P x

(
τ (x,ρ) < s

)
sup

z∈∂B(x,ρ),s≤t

q2t−s(z, y)µ(y).

(3.21)

Since 2TB < 1
2N2d+1

B ≤ s < T ′
B , by Corollary 3.2 the second term in (3.21) is

bounded byct−d/2. To control the first term we use Proposition 3.7. We have
ρ < D < R ands < T ′

B , while, sincet ≥ N2d+1
B ,

c3.7.1N
d
B(logNB)1/2ρ ≤ cNd

B(logNB)1/2(t log t)1/2 ≤ 1
2t = s,
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the three conditions in (3.14) are satisfied and, by (3.15),

P x(Yt = y,Ys ∈ Ay) ≤ ct−d/2 exp(−c′D2/s).

By symmetry the second term in (3.20) equals

µ(y)P y(Yt = x,Ys ∈ Ax)(3.22)

and so can be bounded in the same way as the first term. Combining these estimates
completes the proof.�

4. A weighted Poincaré inequality. While the weak Poincaré inequality of
Section 2 is enough for upper bounds on the transition density, to obtain lower
bounds we need a weighted Poincaré inequality, which we derive using the
methods of Jerison (1986) and Saloff-Coste and Stroock (1991).

We continue with the notation and assumptions of the previous section. Fix
x0 ∈ G, fix R ∈ N and let B = B(x0,R) be a very good ball withR0 =
NB ≤ R1/(1+d). For eachx, y ∈ G we write γ (x, y) for a shortest pathx =
z0, . . . , zd(x,y) = y betweenx andy.

We begin with a Whitney decomposition ofB, which we need to adapt to our
situation. We have two differences from Jerison (1986), which both arise on small
length scales. The first—minor—difficulty is that in our discrete setting we cannot
use balls of size smaller than 1. The second difficulty is that we do not have any
volume doubling estimate for balls smaller thanR0.

Let (X,d) be the metric space obtained as the “cable system” ofG. This is the
metric space obtained by replacing each edgee by a copy of(0,1), linked in the
obvious way at the verticesx ∈ G. We define a measurẽµ on X by takingµ̃ to
be Lebesgue measure on each cable. See, for example, Barlow and Bass (2004)
for further details of this construction. We writẽB(x, r) for balls in X. Since
R ∈ N, the boundary of̃B is contained inG. For x ∈ B̃ = B̃(x0,R) we write
ρ(x) = d(x, B̃c). Note that ifx ∈ G, thenρ(x) = d(x,G − B). We frequently use
the inequality

|ρ(x) − ρ(y)| ≤ d(x, y).(4.1)

Let λ ≥ 103 ∨ (21CW) and let 10≤ K ≤ λ/10 be fixed constants. We can assume
thatR0 > λ.

LEMMA 4.1. There exists a sequence of disjoint balls B̃i = B̃(xi, ri), i ≥ 1,
such that r1 ≥ r2 ≥ · · · and:

(a) There exists B̃ = ⋃∞
i=1 B̃(xi,2ri).

(b) For each i, ρ(xi) = λri .
(c) If y ∈ B̃(xi,Kri), then

(λ − K)ri ≤ ρ(y) ≤ (λ + K)ri.(4.2)
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PROOF. This is standard. We start by choosing a ballB̃1 of maximal size that
satisfies (b) and continue, so thatB̃n is chosen to be the largest ball contained
in B̃ − ⋃n−1

1 B̃i that satisfies (b). To prove (a), supposey /∈ ⋃
B̃(xi,2ri). Since

µ̃(B̃) < ∞ and µ̃(B̃i) ≥ ri , we must haveri → 0. Let ti = d(y, xi) ≥ 2ri ,
t = inf ti . Then by (4.1),

ρ(y) ≤ ρ(xi) + ti = λri + ti ≤ (
1+ 1

2λ
)
ti ,

so thatt ≥ cρ(y) = t ′ > 0, contradicting the definition of̃Bi if ri < t .
Part (c) follows immediately from (4.1) and (b).�

We now adapt this construction to our discrete setup. LetN be defined by
rN ≥ R0 + 1 > rN+1. For eachi ≤ N the centerxi of B̃i = B̃(xi, ri) lies on a
cable[yi, y

′
i], whereyi, y

′
i ∈ G. We label these so thatyi is the point inG closest

to xi and we setsi = ri − d(xi, yi). Then we haveB(yi, si) ⊆ B̃(xi, ri) ∩ G and
ri ≥ si ≥ ri − 1

2 > R0.
We setλ1 = λ − 2K andλ2 = λ + 2K .

LEMMA 4.2. The sequence of disjoint balls Bi = B(yi, si), 1≤ i ≤ N , defined
above satisfies the following statements.

(a) For each i ≤ N ,

λsi − 1
2 ≤ ρ(yi) ≤ 1

2(1+ λ) + λsi.(4.3)

(b) If x ∈ B − ⋃N
i=1 B(yi,3si), then ρ(x) < λ2R0. Furthermore,

B(x0,R − λ2R0) ⊆
N⋃

i=1

B(yi,3si − 1) ⊆
N⋃

i=1

B(yi, λ1si) ⊆ B(x0,R).(4.4)

(c) If x ∈ B(yi,Ksi), then

λ1si ≤ (λ − K)si − 1
2 ≤ ρ(x) ≤ (λ + K)si + 1

2(1+ λ) ≤ λ2si.(4.5)

(d) There exists a constant c1 such that

|{i ≤ N :x ∈ B(yi,Ksi)}| ≤ c1.(4.6)

PROOF. Sinceρ(xi) = λri and|ρ(yi) − ρ(xi)| ≤ 1
2, (a) is immediate.

(b) Let x ∈ B. Thenx ∈ B̃(xi,2ri) for somei and soρ(x) ≤ (2 + λ)ri . If
i > N , thenri < 1+R0 and soρ(x) ≤ (2+λ)(1+R0) < λ2R0, which implies that
d(x0, x) > R −λ2R0. So, ifρ(x) ≥ λ2R0, thenx ∈ B̃(xi,2ri) for somei ≤ N . We
then haved(x, yi) ≤ d(x, xi)+ d(xi, yi) < 2si + 3

2. Since eachsi > 3, this implies
thatx ∈ ⋃

B(yi,3si − 1).
The final inclusion in (4.4) is immediate from (a) and the first follows from the

inequalityd(x0, x) + ρ(x) ≥ R.
(c) This is immediate from (a) and (4.1).
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(d) If x ∈ B(yi,Ksi), then by (c),ρ(x) ≥ λ1si andBi ⊆ B(x, (1+ K)c1ρ(x)),
wherec2 = (1 + K)/λ1. Also, µ(Bi) ≥ CV sd

i ≥ CV λ−1
2 ρ(x)d . So writing I =

{i :x ∈ B̃(yi,Ksi)}, we have

C0c
d
2ρ(x)d ≥ µ

(
B

(
y, c2ρ(x)

)) ≥ ∑
i∈I

µ(Bi) ≥ |I |CV λ−d
2 ρ(x)d ,(4.7)

which proves (4.6). �

Let

B ′
i = B(yi,3si), 1 ≤ i ≤ N.

Let η = 2λ2 and set

B ′′
i = B(yi,10si) if si ≥ ηR0.

If si < ηR0, we call Bi a boundary ball and defineB ′′
i to be the connected

component ofB(yi,2λsi) ∩ B which containsyi . (While balls are connected, the
intersection of two balls need not be.) We relabel the ballsBi so thatx0 ∈ B1, and
Bi is a boundary ball if and only ifM + 1 ≤ i ≤ N .

LEMMA 4.3. (a)There exists B = (
⋃M

i=1 B ′
i) ∪ (

⋃N
i=M+1 B ′′

i ).
(b) There exists a constant c1 such that for any x ∈ B,

|{i ≤ N :x ∈ B ′′
i }| ≤ c1.(4.8)

PROOF. (a) Supposex ∈ B but x /∈ ⋃
i B

′
i . Then ρ(x) < λ2R0 = t . Now

choosex′ ∈ γ (x, x0) with 1 + t ≥ ρ(x′) > t and choosex′′ ∈ γ (x0, x
′) with

d(x′, x′′) = 1. Thenx′ ∈ B(yi,3si − 1) for somei, soλsi < ρ(x′′) < t < λ2R0.
Hence

R0 < si ≤ λ2R0

λ1
< ηR0,

so thatBi is a boundary ball. Nowd(x, yi) ≤ d(x, x′) + 3si − 1 ≤ t + 3si <

2λsi , which proves thatx ∈ B(yi,2λsi). The same argument proves that each
y ∈ γ (x, x′) is also inB(yi,2λsi). Hencex is connected tox′ (and soyi ) by a
path inB(yi,2λsi) ∩ B, and sox ∈ B ′′

i .
(b) SinceK ≥ 10, we have a bound on|{i :x ∈ B(yi,10si)}|. So it is enough

to control|I ′|, whereI ′ = {i :x ∈ B(yi,2λsi), si < ηR0}. The argument is almost
exactly the same as in Lemma 4.2(d): Ifi ∈ I ′, then si < ηR0 and d(x, yi) ≤
2λ2si < 2λ2ηR0. SoBi ⊆ B(x, cR0) and we use volume bounds as in (4.7).�

For eachi define

F (i) = {j :γ (x0, yi) ∩ B(yj ,Ksj ) �= ∅},
F (i, r) = {j ∈ F (i) : r ≤ sj ≤ 2r}.
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LEMMA 4.4. (a)If j ∈ F (i), then sj ≥ 1
2λ1λ

−1
2 si ≥ 1

4si .
(b) If j ∈ F (i), then d(yi, yj ) ≤ (K + λ2)sj .
(c) There exists |F (i, r)| ≤ c1C0/CV .

PROOF. Let j ∈ F (i), so that there existsx ∈ B(yj ,Ksj ) ∩ γ (x0, yi). Since
x ∈ γ (x0, yi), d(x, yi) = d(x0, yi) − d(x0, x) < R − d(x0, x) ≤ ρ(x). Thus
using (4.5),

λ1si ≤ ρ(yi) ≤ d(x, yi) + ρ(x) ≤ 2ρ(x) ≤ 2λ2sj ,

which proves (a).
For (b) note thatd(yi, yj ) ≤ d(yi, x) + Ksj ≤ ρ(x) + Ksj .
From the estimates above, ifj ∈ F (i, r), thenyj ∈ B(yi,2(K + λ2)r), so that

B(yj , sj ) ⊆ B(yi,3λr). Hence

c2C0r
d ≥ ∑

j∈F (i,r)

µ(Bj ) ≥ |F (i, r)|CV rd,

proving (c). �

COROLLARY 4.5. There exists |F (i)| ≤ c1 log(R/si).

PROOF. The proof follows easily from Lemma 4.4(c).�

Now let

F ∗(j) = {i : j ∈ F (i)},
F ∗(j, r) = {i : j ∈ F (i), r ≤ si ≤ 2r}.

LEMMA 4.6. There exists α = α(d,C0,CV ) > 0 such that for each 1 ≤ j ≤ N

we have, for r > R0, ∑
i∈F ∗(j,r)

µ(B ′
i) ≤ cµ(B ′

j )

(
r

sj

)α

.

PROOF. This argument runs along the same lines as the proof of Lemma 5.9
in Jerison (1986). Note first that we can assume thatr ≤ 4sj , since ifi ∈ F ∗(j, r),
then by Lemma 4.4(a) we havesi ≤ 4sj .

Write ∂B = {y :d(x0, y) = R}. Fix j . Using (4.5) we haveρ(yj ) ≤ λ2sj , so we
can choosez ∈ ∂B with d(yj , z) ≤ λ2sj . Sett = (4 + K + 4λ2)sj and foru > 0,
let

�(u) = B(z, t + 2u) ∩ {x ∈ B :ρ(x) ≤ u}.
Suppose thati ∈ F ∗(j, r). By Lemma 4.4(b),d(yi, yj ) ≤ (K + λ2)sj , so that

d(yi, z) ≤ (K + 2λ2)sj and

B ′
i ⊆ B

(
z, (K + 2λ2 + 4)sj

)
.
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By (4.5),ρ(x) ≤ 2λ2r onB ′
i , soB ′

i ⊆ �(2λ2r). Whereas the ballsB ′
i are disjoint,∑

i∈F ∗(j,r)
µ(B ′

i ) ≤ µ
(
�(2λ2r)

)
.(4.9)

Now fix u > 0 and choose a maximal set of points{z1, . . . , zm} ⊆ ∂B such that
B(zk, u) are disjoint andd(z, zk) ≤ t + u for eachk. We next show that

�(u/4) ⊆
m⋃

k=1

B(zk,3u).(4.10)

Let x ∈ �(u/4), so thatd(x, z) ≤ t + u/2 and there existsz′ ∈ ∂B with d(x, z′) ≤
u/4. Henced(z′, z) ≤ t + 3

4u < t + u. Whereas{z1, . . . , zm} is maximal, we must
haved(z′, zk) < 2u for somek. Thusd(x, zk) < 2u + 1

4u < 3u, proving (4.10).
For eachzj we haved(x0, zj ) = R by construction. Choosewj on γ (x0, zj )

such that
1
2u < d(zj ,wj ) ≤ 2

3u;
this is possible provided 6< u < R. We haved(wk,wl) > d(zk, zl) − 4

3u ≥ 2
3u,

so the ballsB(wk,
1
4u) are disjoint. The choice ofwk implies that ρ(wk) =

d(wk, zk) > 1
2u and therefore

B
(
wk,

1
4u

) ∩ �(u/4) = ∅.(4.11)

We also have

B
(
wk,

1
4u

) ⊆ �(u).(4.12)

To check this, ifx ∈ B(wk,
1
4u), then ρ(x) ≤ d(x, zk) ≤ 3

4u, while d(x, z) ≤
d(x, zk) + d(zk, z) ≤ 3

4u + t + u < t + 2u. By (4.10), we deduce that

µ
(
�(u/4)

) ≤
m∑

k=1

µ
(
B(zk,3u)

) ≤ mC0(3u)d,(4.13)

while by (4.11) and (4.12),

µ(�(u)) ≥ µ
(
�(u/4)

) +
m∑

k=1

µ
(
B

(
wk,

1
4u

))
.(4.14)

So, provided1
4u ≥ R0,

µ(�(u)) ≥ µ
(
�(u/4)

) + mCV

(1
4u

)d ≥ (1+ c1)µ
(
�(u/4)

)
.(4.15)

Note that the constantc1 here depends only onC0, CV andd .
Now let R0 ≤ r ≤ 4sj . Choosen ∈ Z+ as large as possible so that 4nr ≤ 4sj .

Then

µ
(
�(2λ2r)

) ≤ (1+ c1)
−nµ

(
�(2λ24nr)

) ≤ (1+ c1)
−nµ(�(2t)).(4.16)
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Set α = log(1 + c1)/ log4. Then(1 + c1)
n ≥ (sj /r)α. We haveµ(�(2t)) ≤

µ(B(z,5t)) ≤ C0(5t)d and alsoµ(B ′
j ) ≥ CV sd

j ≥ ctd . Combining this with (4.16)
and (4.9) completes the proof of the lemma.�

PROPOSITION4.7. For each 1 ≤ j ≤ N we have∑
i∈F ∗(j )

|F (i)| µ(B ′
i)

µ(B ′
j )

≤ c1 log
(

R

sj

)
.

PROOF. We can write

F ∗(j) =
∞⋃

n=−1

F ∗(j,2−nsj ).

Hence using Corollary 4.5 and Lemma 4.6,∑
i∈F ∗(j )

|F (i)|µ(B ′
i ) ≤

∞∑
n=−1

∑
i∈F ∗(j,2−nsj )

|F (i)|µ(B ′
i )

≤ c

∞∑
n=−1

log(2nR/sj )2
−nαµ(Bj) ≤ cµ(Bj) log(R/sj ). �

Set

ϕ(y) =
(

R ∧ ρ(y)

R

)2

, y ∈ G.(4.17)

For any setA, let µ̂(A) = ∫
A ϕ dµ and f̄A = µ̂(A)−1 ∫

A f ϕ dµ. For an edge
e = {x, y} defineϕ̃(e) = ϕ(x) ∧ ϕ(y). Note that ife ∈ E(B), thenϕ̃(e) ≥ R−2.

THEOREM 4.8. Let B = B(x0,R) be very good and let R0 = NB ≤ R1/(d+2).
Then ∫

B

(
f (x) − f̄B

)2
ϕ(x) dµ ≤ c1R

2
∫
E(B)

|∇f |2ϕ̃ dν.(4.18)

PROOF. We follow the proof in Saloff-Coste and Stroock (1991), but need
some extra care close to the boundary ofB.

For 1≤ i ≤ N set

B∗
i =

{
B(yi,10CWsi), 1 ≤ i ≤ M,
B ′′

i , M + 1≤ i ≤ N .

Whereas 10CWsi ≤ 1
2λsi − 1, we haveB∗

i ⊆ B for eachi ≤ M , while B∗
i ⊆ B by

definition if M + 1 ≤ i ≤ N . Note that for any ballB(yi, csi) with c ≤ 1
2λ, we

have, from (4.17),

ϕ(x) ≤ 3λ2

2λ1
ϕ(y) for all x, y ∈ B(yi, csi).(4.19)
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Let Pj be the best constant in the weighted Poincaré inequality∫
B ′′

j

(
f (x) − f̄Bj

)2
ϕ(x) dµ ≤ Pj

∫
E(B∗

j )
|∇f |2ϕ̃ dν.(4.20)

Then for j ≤ M , as eachB ′′
j is good, we have, using (4.19),Pj ≤ cCP s2

j . If
M < j ≤ N , then, using Corollary 1.5(a),

Pj ≤ 2µ(B ′′
j )2 sup

x,y∈B ′′
j

ϕ(x)

ϕ(y)
≤ c(C0λRd

0)2(λR0)
2 ≤ c′R2d+2

0 .(4.21)

Fix for the moment a ballBn. We define a sequence of ballsDi = B(wi, ti),
1 ≤ i ≤ Ln, with D1 = B1 andDLn = Bn, as follows. SupposeD1, . . . ,Dk−1 have
been defined. Letzk be the point inγ (x0, yn)∩⋃k−1

i=1 D′
i which is furthest fromx0.

(If Di = Bj , thenD′
i = B ′

i andD′′
i = B ′′

j .) If zk = yn, then we letDk = Bn, Ln = k

and stop. Suppose thatzk �= yn. If zk ∈ B(yi,3si − 1) for somei, then we take
Dk = Bi and continue. (We choose the largest suchi if this i is not unique.) Note
thatDk must be distinct fromD1, . . . ,Dk−1.

Finally, supposezk �= yn and zk /∈ ⋃
B(yi,3si − 1). Thenρ(zk) < λ2R0 and

ρ(yn) < d(yn, zk) + ρ(zk) < 2λ2R0. Hencesn < 2λ2λ
−1
1 R0 < ηR0, so thatBn is

a boundary ball. We also haveρ(wk−1) ≤ 3tk−1 + ρ(zk), so thatDk−1 is also a
boundary ball. In this case we takeDk = Bn, Ln = k and stop. Note that eachDk

is a ball in{Bj : j ∈ F (n)}, so thatLn ≤ |F (n)|.
We now show that

D′
k−1 ∪ D′

k ⊆ D′′
k−1 ∩ D′′

k , 2 ≤ k ≤ Ln.(4.22)

First, if zk �= yn andzk /∈ ⋃
B(yi,3si − 1), then bothDk−1 andDk are boundary

balls, andd(wk−1,wk) ≤ 3tk−1 +λ2R0, from which (4.22) follows easily. Now let
zk ∈ B(wk,3tk −1). Thend(wk−1, zk) < 3tk−1 and sod(wk−1,wk) < 3tk−1 +3tk .
Sincezk ∈ B(wj ,4tj ) for j = k − 1, k, by (4.5),

λ2(tk ∨ tk−1) ≥ ρ(zk) ≥ λ1(tk ∧ tk−1).

Sinceλ2/λ1 < 10/9 this implies (4.22).
Let f̄1 = f̄ (B ′

1). Then∫
B ′′

n

(
f (x) − f̄1

)2
ϕ(x) dµ

=
∫
B ′′

n

(
f (x) − f̄1 +

Ln−1∑
k=1

(
f̄ (D′′

k ) − f̄ (D′′
k+1)

))2

ϕ(x) dµ

≤ Ln

∫
B ′′

n

(
f (x) − f̄1

)2
ϕ(x) dµ + Ln

Ln−1∑
i=1

(
f̄ (D′′

k ) − f̄ (D′′
k+1)

)2
µ̂(B ′′

n).

(4.23)
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To control the terms in (4.23) note that

µ̂(B ′′
n )

(
f̄ (D′′

k ) − f̄ (D′′
k+1)

)2

= µ̂(B ′′
n )

µ̂(D′′
k ∩ D′′

k+1)

∫
D′′

k ∩D′′
k+1

(
f̄ (D′′

k ) − f̄ (D′′
k+1)

)2
ϕ dµ

≤ 2
µ̂(B ′′

n)

µ̂(D′′
k ∩ D′′

k+1)

(∫
D′′

k

(
f − f̄ (D′′

k )
)2

ϕ dµ +
∫
D′′

k+1

(
f − f̄ (D′′

k+1)
)2

ϕ dµ

)

≤ 2
µ̂(B ′′

n)

µ̂(D′
k)

(∫
D′′

k

(
f − f̄ (D′′

k )
)2

ϕ dµ + 2
µ̂(B ′′

n)

µ̂(D′
k+1)

∫
D′′

k+1

(
f − f̄ (D′′

k+1)
)2

ϕ dµ

)
.

Using (4.19) and Lemma 4.4(a),

µ̂(B ′′
n)

µ̂(D′
k)

≤ c
ϕ(yn)

2µ(B ′′
n)

ϕ(wk)
2µ(D′

k)
≤ c′ µ(B ′′

n)

µ(D′
k)

≤ c′′ µ(B ′
n)

µ(D′
k)

.

Combining these estimates we obtain, from (4.23),∫
B ′′

i

(
f (x) − f̄1

)2
ϕ(x) dµ ≤ c|F (i)| ∑

j∈F (i)

µ(B ′
i)

µ(B ′
j )

∫
B ′′

j

(
f − f̄ (B ′′

j )
)2

ϕ dµ

≤ c|F (i)| ∑
j∈F (i)

µ(B ′
i)

µ(B ′
j )

Pj

∫
E(B∗

j )
|∇f |2ϕ dµ.

(4.24)

Summing inequalities (4.24) gives∫
B

(
f (x) − f̄1

)2
ϕ(x) dµ

≤ c

N∑
i=1

|F (i)|µ(B ′
i )

∑
j∈F (i)

µ(B ′
j )

−1Pj

∫
E(B∗

j )
|∇f |2ϕ̃ dν

= c

N∑
j=1

( ∑
i∈F ∗(j )

|F (i)| µ(B ′
i)

µ(B ′
j )

)
Pj

∫
E(B∗

j )
|∇f |2ϕ̃ dν

≤ c

N∑
j=1

log
(

R

sj

)
Pj

∫
E(B∗

j )
|∇f |2ϕ̃ dν.

If j ≤ M , thenPj ≤ cs2
jCP and so sincetp log(R/t) ≤ cRp for t > 0 we have

Pj log(R/sj ) ≤ cCPR2. If M +1 ≤ j ≤ N , thenR0 ≤ sj ≤ ηR0 andPj ≤ cR2d+2
0 ,

and so sinceRd+2
0 ≤ R,

log(R/sj )Pj ≤ cR2d+2
0 log(R/R0) ≤ cR2.
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So since any edge inB is contained in at mostc of theB∗
i ,∫

B

(
f (x) − f̄1

)2
ϕ(x) dµ ≤ cCP R2

N∑
j=1

∫
E(B∗

j )
|∇f |2ϕ̃ dν

≤ c′CP R2
∫
E(B)

|∇f |2ϕ̃ dν,

which completes the proof of the theorem.�

We can also takeϕ = 1 in (4.17) and use the same argument to obtain a (strong)
Poincaré inequality from the family of weak ones. The condition onNB is slightly
weaker than in Theorem 4.8, since we havePj ≤ cR2d

0 in (4.21).

LEMMA 4.9. Let B = B(x0,R) be very good and let R0 = NB ≤ R1/(d+2).
Then

min
a

∫
B

(
f (x) − a

)2
dµ ≤ c1R

2
∫
E(B)

|∇f |2dν.

REMARK 4.10. The weight functionϕ in (4.17) is similar to that in Saloff-
Coste and Stroock (1991). Fabes and Stroock (1986) and Stroock and Zheng
(1997) used weight functions which are supported on the whole space. In
particular, Stroock and Zheng (1997) used

ψR(x) = exp
(−d(x0, x)/R

)
, x ∈ Zd,

and proved a weighted Poincaré inequality of the form

min
a

∫
Zd

(f − a)2ψR dµ ≤ c1(d)R2
∫

Ed

|∇f |2ψ̃R dν.(4.25)

It is interesting to note that this fails for percolation clusters whend ≥ 3.

To see this, fix a pointx0 ∈ C∞ andR ≥ 1 large enough so thatB(x0,R) is
good. If we look far enough fromx0 we can,Pp-a.s., find a cubeQ of sideR with
Q ⊆ C∞ and such thatQ is only connected to the rest ofC∞ by one edge{x1, x2}.
We takex1 ∈ Qc, x2 ∈ Q and writes = d(x0, x2); we can assumes � R. We have
e−(s+dR)/R ≤ ψ ≤ e−s/R onQ.

Let f = 1Q. Then as
∫

ψR � Rd ,

f̄R =
∫
Q ψR∫
ψR

≤ ce−s/R ≤ 1

4

and

min
a

∫
Zd

(f − a)2ψR dµ =
∫

(f − f̄R)2ψR dµ ≥ 1
2

∫
Q

ψR dµ ≥ 1
2e−dRde−s/R.
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On the other hand,

R2
∫

|∇f |2ψ̃ dν = R2ψ(x2) = R2e−s/R.

Thus (4.25) cannot hold with a constantc1 independent ofR.

5. Lower bounds. In this section we use the weighted Poincaré inequality
and the technique of Fabes and Stroock (1986) to prove lower bounds forqt(x, y).
We continue with the notation and assumptions of Section 3.

PROPOSITION 5.1. Let x0 ∈ G and let B1 = B(x0,R logR) be a very good
ball with NB ≤ R1/(d+2). Then if x1 ∈ B(x0,

1
2R logR),

qt(x1, x2) ≥ c1t
−d/2 for x2 ∈ B(x1,R) and 1

8R2 ≤ t ≤ R2.(5.1)

PROOF. Let x3 be such thatx1, x2 ∈ B(x3,R/2). Write R1 = R logR, let
ρ = R/6 and letT = c2R

2. Let x4 ∈ B(x3,R/2). We apply Proposition 3.7 toB1
with t = T . SinceT ′

B1
= cR2

1 logR1 ≥ c′R2 logR, the third condition in (3.14)
holds, while the other two are evident. So ift ≤ T , then∑

x∈B(x3,2R/3)c

qt (x4, x)µ(x) = P x4
(
Yt /∈ B(x1,2R/3)

)
≤ P x4

(
τ (x4,R/6) < t

)
≤ P x4

(
τ (x4,R/6) < T

)
≤ c exp(c′R2/T ) ≤ 1

2,

(5.2)

providedc2 is chosen small enough. We can assume thatc2 ≤ 1
8.

Let B = B(x3,R), setρ(x) = d(x,Bc) for x ∈ B, and set

ϕ(y) =
(

R ∧ ρ(y)

R

)2

, y ∈ G andV0 = ∑
x∈B

ϕ(x)µ(x).

Then we have

c3R
d ≤ V0 ≤ µ(B) ≤ c4R

d.(5.3)

Write u(s, x) = us(x) = qs(x4, x), s ≥ 0 andx ∈ G. Set

w(s, y) = wt(x) = logV0u(s, y), H(t) = H(x4, t) = V −1
0

∫
B

ϕwt dµ.

Then

V0H
′(t) =

∫
B

ϕ
∂wt

∂t
dµ =

∫
B

ϕ
1

ut

∂ut

∂t
dµ = ∑

x∈B

ϕ(x)

ut(x)
Lut(x)µ(x).
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Hence, writingf = 1Bϕ/ut , we have

V0H
′(t) = −1

2

∑
x∈G

∑
y∈G

axy

(
f (x) − f (y)

)(
ut(x) − ut(u)

)
.

Now we use the elementary inequality [see Stroock and Zheng (1997)]

−
(

d

b
− c

a

)
(b − a) ≥ 1

2
(c ∧ d)(logb − loga)2 − (d − c)2

2(c ∧ d)
,

which holds for any strictly positivea, b, c, d . If f (x) > 0 andf (y) > 0, then
x, y ∈ B and

−(
f (x) − f (y)

)(
ut (x) − ut(u)

)
= −

(
ϕ(x)

ut(x)
− ϕ(y)

ut(y)

)(
ut(x) − ut(u)

)
≥ 1

2

(
ϕ(x) ∧ ϕ(y)

)(
logut(x) − logut(y)

)2 − (ϕ(x) − ϕ(y))2

2(ϕ(x) ∧ ϕ(y))
.

If both x ∈ Bc andy ∈ Bc, thenf (x) = f (y) = 0, while if x ∈ B andy ∈ Bc, then

−(
f (x) − f (y)

)(
ut(x) − ut(u)

) = −ϕ(x)

(
1− ut(y)

ut(x)

)
.

We therefore have

V0H
′(t) ≥ 1

4

∑
x∈B

∑
y∈B

axy

(
ϕ(x) ∧ ϕ(y)

)(
wt(x) − wt(y)

)2(5.4)

− 1

4

∑
x∈B

∑
y∈B

axy

(ϕ(x) − ϕ(y))2

ϕ(x) ∧ ϕ(y)
(5.5)

− 1

2

∑
x∈B

∑
y∈Bc

axyϕ(x)

(
1− ut(y)

ut(x)

)
.(5.6)

The sums in (5.4), (5.5) and (5.6) are calledS1, S2 and S3, respectively. To
boundS2 note that ifx ∼ y with x, y ∈ B andk = ρ(x) ∧ ρ(y), thenk ≥ 1 and

(ϕ(x) − ϕ(y))2

ϕ(x) ∧ ϕ(y)
= R−2 (2k + 1)2

k2 ≤ 9

R2 .

So

S2 ≥ −9
4R−2

∑
x∈B

µ(x) ≥ −9
4R−2µ(B) ≥ −cR−2V0.

Also, if x ∈ ∂i(B), thenϕ(x) = R−2, so that

S3 ≥ − ∑
x∈B

∑
y∈Bc

axyR
−2 ≥ −R−2

∑
x∈B

µ(x) ≥ −cR−2V0.
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So the termsS2 andS3 are controlled by bounds of the same size, and we deduce,
using Theorem 4.8,

H ′(t) ≥ 1
4V −1

0

∑
x∈B

∑
y∈B

axy

(
ϕ(x) ∧ ϕ(y)

)(
wt(x) − wt(y)

)2 − c5R
−2

≥ −c5R
−2 + c6R

−2V −1
0

∑
x∈B

(
wt(x) − H(t)

)2
ϕ(x)µ(x).

(5.7)

Let I = [1
2T,T ]. We use only (5.7) fort ∈ I . Note that by Theorem 3.8 we have

V0ut(x) ≤ c7 for t ∈ I . Sincev → (logv − h)2/v is decreasing on[e2+h,∞), we
have ∑

x∈B

(
wt(x) − H(t)

)2
ϕ(x)µ(x)

= ∑
x∈B

(logV0ut(x) − H(t))2

ut(x)
ϕ(x)ut (x)µ(x)

≥ (logc7 − H(t))2

c7

∑
x∈B : V0ut (x)>e2+H(t)

ϕ(x)V0ut(x)µ(x).

(5.8)

Then sinceϕ(x) ≥ 1
9 onB(x1,2R/3),∑

x∈B : V0ut (x)>e2+H(t)

ϕ(x)ut(x)µ(x)

= ∑
x∈B

ϕ(x)ut(x)µ(x) − ∑
x∈B : V0ut (x)≤e2+H(t)

ϕ(x)ut (x)µ(x)

≥ 1
9

∑
x∈B(x1,2R/3)

ut (x)µ(x) − ∑
x∈B

ϕ(x)V −1
0 e2+H(t)µ(x)

≥ 1
9

(
1− ∑

x∈B(x1,2R/3)c

ut (x)µ(x)

)
− e2+H(t) ≥ 1

18 − e2+H(t),

(5.9)

where we used (5.2) in the final line.
Combining the estimates (5.7), (5.8) and (5.9) we deduce that

T H ′(t) ≥ −c5 + c8
(
logc7 − H(t)

)2( 1
18 − e2+H(t)

)
.

Since(a − h)2 ≥ 1
2h2 if h < −a, this implies that there existsc9 such that

T H ′(t) ≥ c10H(t)2 providedH(t) < −c9, t ∈ I.(5.10)

If supt∈I H(t) < −c9, then (5.10) implies thatH(T ) ≥ −c11, while sinceH(t) +
c5T

−1t is increasing, if supt∈I H(t) ≥ −c9, then H(T ) ≥ −c9 − c2c5. We
therefore deduce thatH(T ) ≥ −c12 and it follows that

H(t) = H(x4, t) ≥ −c13, T ≤ t ≤ R2.(5.11)
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To conclude the argument, we have, forx1, x2 ∈ B(x3,R/2), t ∈ [T,R2],
V0q2t (x1, x2) = V −1

0

∑
y

V0qt(x1, y)V0qt (x2, y)µ(dy)

≥ V −1
0

∑
y∈B

V0qt(x1, y)V0qt(x2, y)ϕ(y)µ(dy).

So, using Jensen’s inequality,

log
(
V0q2t (x1, x2)

) ≥ V −1
0

∑
y∈B

(
log

(
V0qt (x1, y)

) + log
(
V0qt(x2, y)

))
ϕ(y)µ(dy)

= H(x1, t) + H(x2, t) ≥ −2c13.

Using (5.3) completes the proof of (5.1).�

LEMMA 5.2. Let x, y ∈ G. Suppose there exist r ≥ 1 and a path x =
z0, . . . , zm = y such that for each i = 0, . . . ,m, B(zi, r logr) is very good with
Nd+2

B(zi,r logr) ≤ r . Then

qmr(x, y) ≥ c(mr)−d/2 exp(−c1m/r).(5.12)

PROOF. This uses a chaining argument similar to that in Proposition 3.7.
Choose pointsx = w0,w1, . . . ,wk = y along the path{z0, . . . , zm}, such that
d(wi−1,wi) < r/3 and 3m/r ≤ k ≤ 4m/r . Let s = mr/k, so that14r2 ≤ s ≤ 1

3r2.
Let Bj = B(wj , r/3). We haved(x′, y′) < r wheneverx′ ∈ Bj−1 andy′ ∈ Bj . So
by Proposition 5.1,

qs(x
′, y′) ≥ c2s

−d/2 ≥ c3µ(Bj )
−1, x′ ∈ Bj−1, y

′ ∈ Bj .

SoP x′
(Ys ∈ Bj ) ≥ c3 and therefore

P x(Yks = y) ≥ P x(Yjs ∈ Bj ,1 ≤ j ≤ k − 1, Yks = y) ≥
(

k−1∏
j=1

c3

)
c3s

−d/2. �

THEOREM 5.3. Let B = B(x0,R logR) be a very good ball with NB ≤
R1/(d+2). Let d(x0, x1) ≤ 1

2R logR and x, y ∈ B(x1,R). Then

qt(x, y) ≥ c1t
−d/2 exp

(−c2d(x, y)2/t
)
,(5.13)

provided

N
2(2+d)
B ≤ t ≤ R2(5.14)

and

N2+d
B d(x, y) ≤ t.(5.15)
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PROOF. Let D = d(x, y). If D2/t ≤ 1, then setr = t1/2 and apply Propo-
sition 5.1 toB1 = B(x, r logr). SinceD ≤ r ≤ R, B1 ⊆ B andNB1 ≤ NB . So
Nd+2

B1
≤ Nd+2

B ≤ t1/2 = r , the hypotheses of Proposition 5.1 hold and we deduce

thatqt(x, y) ≥ ct−d/2.
For the caseD2/t > 1 we use Lemma 5.2. Letx = z0, . . . , zD = y be a shortest

path betweenx andy, and letr = t/D. By (5.15),r ≥ Nd+2
B , while r ≤ t1/2 ≤ R,

so thatBi = B(zi, r logr) ⊆ B and henceNd+2
Bi

≤ Nd+2
B ≤ r . So the hypotheses

of Lemma 5.2 are satisfied and we obtain (5.13).�

REMARK. The restriction in (5.15) is weaker than the hypotheses in the upper
bound of Theorem 3.8, where we were able to use global upper bounds onqt

to restrict to the case whent was close toD1/2. The lower bound argument for
cD ≤ t ≤ cDN2+d

B requires the existence of a chain of small balls (of size roughly
r = t/D) on which the lower bounds of Proposition 5.1 are valid. Ifr = O(1)

so thatt � D, then we can just use a path in the graph and (1.4) to deduce that
qt (x, y) ≥ e−ct � exp(−c′D2/t). However, ifD = t1−ε , then we needr � tε � 1
and elementary bounds are not enough.

For a very good ballB, the volume condition or the Poincaré inequality fails for
some subballs of sizer < NB . However, these may hold for enough small subballs
so that we can still use Lemma 5.2, and in Section 2 it is proved, in the percolation
context, that it is possible to find such a chain. FixCE ≥ 1 andCF > 1.

DEFINITION 5.4. A ballB = B(x0,R1) is exceedingly good if:

1. We haveB is very good withN10(d+2)
B ≤ R1.

2. For eachx1, x2 ∈ B(x0,R1) with d(x1, x2) ≥ R
1/4
1 andCE ≤ r ≤ N2+d

B there
exists a pathy1 = z0, . . . , zk = y2 with the following properties:

(a) Bi = B(zi, r logr) is very good withN2+d
Bi

≤ r ;
(b) k ≤ CF d(x, y);
(c) d(xj , yj ) ≤ R

1/4
1 , j = 1,2.

REMARK 5.5. If B is very good andN2+d
B ≤ r ≤ R/ logR, then taking

m = d(x, y) and z0, . . . , zm to be a shortest path betweenx1 and x2, we get a
path satisfying 2(a)–(c) above, withyj = xj .

THEOREM 5.6. Let B = B(x0,R logR) be exceedingly good and let x1, x2 ∈
B(x0,R). Then there exist constants ci (depending on CE and CF ) such that

qt (x1, x2) ≥ c1t
−d/2 exp

(−c2d(x1, x2)
2/t

)
,

(5.16)
R1/2 ∨ d(x, y) ≤ t ≤ R2.
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PROOF. Let R1 = R logR andD = d(x1, x2). By Theorem 5.3 it is enough to
consider the case whent satisfies the condition in (5.16) but fails (5.14) or (5.15).
Sincet ≥ R1/2 ≥ R

1/3
1 ≥ N

3(d+2)
B , (5.14) must hold. So we just need to consider

the case whenD ≤ t ≤ N2+d
B D. Note that this implies that

D ≥ D2

t
≥ t

N
2(d+2)
B

≥ R1/2

R
1/5
1

≥ R
1/4
1 .(5.17)

In particular, D2/t � logt so that, for this range oft and D, terms of the
ordert−d/2 can be absorbed into the constantc2 in (5.16).

Let r = t/(2CF D), so that(2CF )−1 ≤ r ≤ (2CF )−1N2+d
B . We have to consider

two cases. If 1≤ r ≤ CE , then we use (1.4) directly. Sets = t/D, so that
c3 ≤ s ≤ c4, and we obtainqDs ≥ e−cD ≥ exp(−cD2/t).

If CE ≤ r , then we use the fact thatB is exceedingly good so that there
exists a pathz0, . . . , zk that satisfies conditions 2(a)–(c) of Definition 5.4. We
haveD ≤ k ≤ CF D, so that(2CF )−1t ≤ kr ≤ 1

2t andk/r ≤ 2C2
F D2/t . Applying

Lemma 5.2,

qkr(z0, zk) ≥ c(kr)−d/2 exp(−c5k/r) ≥ ct−d/2 exp(−cD2/t).(5.18)

By (5.17),D2/t ≥ R
1/4
1 ≥ d(x1, y1) ∨ d(x2, y2). Let Di = d(xi, zi). By (5.17),

Di ≤ R
1/4
1 ≤ t/8. Using (1.4),

qmj
(xj , zj ) ≥ exp(−c6mj) ≥ exp(−c6D

2/t).(5.19)

Let u = D1 + D2 + kr . Then1
2t ≤ u ≤ 3

4t . By (1.4),

qt(x0, x1) ≥ qu(x0, x1)qt−u(x1, x1)

≥ qD0(x0, z0)qkr(z0, zk)qD1(zk, x1)qt−u(x1, x1).

Using the bounds (5.18) and (5.19), and Proposition 5.1 to control the final term,
we obtain (5.16). �

THEOREM 5.7. Let d ≥ 2, and let C0, CV , CP and CW be constants. Let
G = (G,E) be an infinite graph that satisfies (1.1)and let x ∈ G.

(a) Suppose that there exists R0 = R0(x) such that B(x,R) is very good with
N

3(d+2)
B(x,R) ≤ R for each R ≥ R0. There exist constants ci = ci(d,C0,CV ,CP ,CW)

such that if t satisfies

t ≥ R
2/3
0 ,(5.20)

then

qt(x, y) ≤ c1t
−d/2 exp

(−c2d(x, y)2/t
)
, d(x, y) ≤ t,(5.21)

and

qt(x, y) ≥ c3t
−d/2 exp

(−c4d(x, y)2/t
)
, d(x, y)3/2 ≤ t.(5.22)
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(b) If in addition there exists RE = RE(x) such that B(x,R) is exceedingly
good for each R ≥ RE , then the lower bound (5.22) holds (with constants
depending in addition on CE and CF ) whenever t ≥ RE and t ≥ d(x, y).

PROOF. Fix y ∈ G and letD = d(x, y). We need to check that we can findR

so that we can apply Theorems 3.8, 5.3 and 5.6. We begin with (a). LetR = t2/3,
so thatR ≥ D; by (5.20) we haveR ≥ R0. Let B = B(x,R); thenN

2(2+d)
B ≤ R.

To apply Theorem 3.8 and obtain (5.21) we need (3.18) to hold, but this is clear
sincet ≥ D3/2 ≥ D and

N2d+1
B ≤ N

2(d+2)
B ≤ R = t2/3 ≤ t = R3/2 ≤ cR2

logR
.

To obtain (5.22), we use Theorem 5.3. SinceR ≥ D we havey ∈ B(x,R). Let
R1 = R logR. SinceR1 ≥ R0, B1 = B(x,R1) is very good withN3(2+d)

B1
≤ R1. So

N
2(2+d)
B1

≤ R logR ≤ R3/2 = t ≤ 1
4R2

and (5.14) is verified. Also,

cDN2+d
B1

≤ c′t2/3R
1/3
1 ≤ t2/3R1/2 ≤ t,

so (5.15) holds and we obtain (5.22).
(b) We now takeR = t , so thatR ≥ RE . Then D ≤ t = R and we apply

Theorem 5.6 toB(x,R1) with R1 = R logR. Condition (5.16) is easily verified
and the bound in (5.22) is immediate.�

We now prove an elliptic Harnack inequality for graphs satisfying the conditions
of Theorem 5.3. The approach is the same as in Section 5 of Fabes and Stroock
(1986), but we need an additional argument in Theorem 5.11.

LEMMA 5.8. Let B = B(x0,R logR) be a very good ball with N
2(d+2)
B ≤ R.

Let d(x0, x1) ≤ 1
2R logR, let B0 = B(x1,R) and let q0

t (x, y) be the density of the
process Y killed at the exit time τ of Y from B0. Then

q0
t (x, y) ≥ c1t

−d/2, x, y ∈ B(x1,3R/4), c2R
2 ≤ t ≤ R2.(5.23)

PROOF. Whereas this argument is quite standard [see, e.g., Lemma 5.1 of
Fabes and Stroock (1986)], we only give a sketch. Forx, y ∈ B0 we have

q0
t (x, y) ≥ qt (x, y) − Ex1(τ<t)qt−τ (Yτ , y)

≥ qt (x, y) − sup
0≤s≤t

sup
z∈∂B0

qs(z, y).
(5.24)
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Let δ ∈ (0, 1
8), d(x, y) ≤ δR and t = δ2R2. Using the estimates in Theorems 5.3

and 3.8 in (5.24) we obtain, providedt ands = θt satisfy conditions (3.18), (5.14)
and (5.15),

q0
t (x, y) ≥ t−d/2

[
c1 exp(−c2) − sup

0≤θ≤1
c3θ

−d/2 exp
(−c4/(θδ2)

)]
.

[If s is too small to satisfy (3.18), we use Lemma 1.1.] Hence ifδ is chosen small
enough, we obtain

q0
t (x, y) ≥ c5t

−d/2.(5.25)

A chaining argument now gives (5.23).�

DEFINITION. Write �B(x,R) = B(x,R) ∪ ∂e(B(x,R)). A function h : �B(x,

R) → R is harmonic onB(x,R) if

Lh(x) = 0, x ∈ B(x,R).

We write Osc(h,A) = supA h − infA h.

The following oscillation bound follows from (5.23) just as in Lemma 5.2 of
Fabes and Stroock (1986).

LEMMA 5.9. Let B = B(x0,R logR) be a very good ball with N
2(d+2)
B ≤ R.

Let d(x0, x1) ≤ 1
2R logR, B0 = B(x1,R), B1 = B(x1,

1
2R) and h be harmonic

in B0. There exists c1 ∈ (0,1) such that

Osc(h,B1) ≤ (1− c1)Osc(h,B0).

PROOF. By a linear transformation we can assume minB0 h = 0, maxB0 h = 1
and

∫
B1

hdµ ≥ 1
2µ(B1). Then ifx ∈ B1, by Lemma 5.8,

h(x) ≥
∫
B1

q0
R2(x, y)h(y)µ(dy) ≥ 1

2c2R
−dµ(B1) ≥ c3.

So Osc(h,B1) ≤ (1− c3). �

We also need an intermediate range Harnack inequality.

LEMMA 5.10. Let B = B(x0,R logR) be a very good ball with N
3(d+2)
B ≤ R.

Let d(x0, x1) ≤ 1
2R logR, B0 = B(x1,R), and h be nonnegative and harmonic

in B0. Then if d(x1, y) ≤ R/2 and r = R1/2,

sup
B(y,r)

h ≤ c1 inf
B(y,r)

h.
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PROOF. Let B1 = B(x1,3R/4). We can assume infB1 h = 1. The local
Harnack inequality for graphs implies that ifx ∼ y andx, y ∈ B1, thenh(x) ≤
C0h(y). Henceh(x) ≤ exp(c2R), x ∈ �B0. We extendh to G by taking h ≡ 1
outside�B0. Letτ be the first exit time ofY from B1. Whereash(Yt) is a martingale
on [0, τ0], for x ∈ B(x1,R/2),

h(x) = Exh(Yt∧τ )

= Ex1B1(Yt)h(Yt∧τ ) + Ex1Bc
1
(Yt )h(Yτ )

= Ex1B1(Yt)h(Yt ) + Ex1B1(Yt)1(τ<t)

(
h
(
Yτ − h(Yt )

)) + Ex1Bc
1
(Yt)h(Yτ )

≤
∫
B1

qt(x, y)h(y) dµ(y) + exp(c2R)P x(τ < t).

Using Proposition 3.7, the final term above is bounded byc3 exp(c2R − c4R
2/

t) ≤ c3 if t ≤ Rc2/c4.
Now letd(z, x) ≤ R1/2 ands = λt with λ > 1. Then ifλθ ≤ c2/c4,

h(z) ≥ Ez1B1(Ys)h(Ys) − Ez1(τ<t)h(Ys)

≥
∫
B1

qs(z, y)h(y) dµ(y) − exp(c2R)P x(τ < s)

≥
∫
B1

qs(z, y)h(y) dµ(y) − c3.

Also, if u = R2, by Lemma 5.8,

h(z) ≥
∫
B1

q0
t (z, y)h(y) dµ(y) ≥

∫
B1

c5u
−d/2h(y) dµ(y).

Hence

2h(z) ≥
∫
B1

(
c5R

−d + qs(z, y)
)
h(y) dµ(y) − c3.

Using Lemma 1.1, and Theorems 3.8 and 5.3, we can chooseλ so that

c5R
−d + qs(z, y) ≥ c6qt(x, y), y ∈ B1.

It follows that 2h(z) ≥ c6(h(x) − c3) − c3, so that [ash(z) ≥ 1] we havec6h(x) ≤
(2+ c3(1+ c6))h(z). �

THEOREM 5.11. Let B = B(x0,R logR) be very good, with N
4(d+2)
B ≤ R.

Then if d(x0, x1) ≤ 1
3R logR, B0 = B(x1,R), and h : �B0 → R is nonnegative and

harmonic in B0,

sup
B(x1,R/2)

h ≤ c1 inf
B(x1,R/2)

h.
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PROOF. We begin in the same way as in Fabes and Stroock (1986). Let
α3 = 1/4. From Lemma 5.9 it follows that there existsA such that

Osc
(
h,B(y, r)

) ≤ (2ed)−1 Osc
(
h,B(y,Ar)

)
if Rα3 ≤ r,Ar ≤ R/8.(5.26)

We normalizeh so that minB(x1,R/4) h = 1. Letx2 ∈ B(x1,R/4) satisfyh(x2) = 1.
By Lemma 5.8, ify ∈ B(x1,3R/4) andB(y, s) is good,

1 = h(x2) ≥ c2

∫
B(y,s)

R−dh(y) dµ(y) ≥ c3(s/R)d inf
B(y,s)

h.

Thus

inf
B(y,s)

h ≤ c−1
3

Rd

sd
.(5.27)

Now letMr = 2c−1
3 erd andar = Re−r .

Suppose that there existsyr ∈ B(x1,R/2) with h(yr) ≥ Mr . Then, by (5.27),
Osc(h,B(yr, ar)) ≥ c−1

3 erd . So, provided

ar ≥ Rα3 and Aar ≤ R/8,(5.28)

it follows that Osc(h,B(yr,Aar)) ≥ 2edc−1
3 erd = Mr+1. Hence there existsyr+1

with d(yr, yr+1) ≤ Aar with h(yr+1) ≥ Mr+1.
Chooser0 so that

∑∞
r0

Aar ≤ R/8. Then if supB(x1,R/4) h ≥ Mr0, the argument
above implies that we can construct a sequenceyj , r0 ≤ j ≤ k with yj ∈
B(x1,R/2) andh(yj ) ≥ Mj . Herek is the largestr such that (5.28) holds. We
haveMk = 2c−1

3 ekd = cRda−d
k ≥ c4R

d(1−α3). The local Harnack inequality in
Lemma 5.10 implies that

inf
B(yk,R

1/2)
h ≥ c5c4R

d(1−α3),(5.29)

while (5.27) implies that

inf
B(yk,R

1/2)
h ≤ c−1

3 Rd/2.(5.30)

Sinceα3 < 1
2 this gives a contradiction ifR ≥ c6. So we deduce that

sup
B(x1,R/4)

h ≤ Mr0 inf
B(x1,R/4)

h.

The Harnack inequality forB(x1,R/2) ⊆ B(x1,R) now follows by an easy
chaining argument. �
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6. Random walks and percolation. In this section we tie together the results
of Section 2 and Sections 3–5 and prove Theorems 1–5. We recall the notation for
bond percolation: We take� = {0,1}Ed , write ηe, e ∈ Ed , for the coordinate maps
and takePp to be the probability on� which makes theηe i.i.d. Bernoulli r.v. with
meanp. We assume thatp > pc so that there exists�0 with Pp(�0) = 1 such
that for ω ∈ �0 there is a unique infinite clusterC∞(ω). As in the Introduction
we takeY to be the Markov process with generatorLω given by (0.1), and write
qω
t (x, y) for the transition density ofY as given by (0.2). Write(P x

ω, x ∈ C∞) for
the probability law ofY .

PROPOSITION 6.1. Let p > pc. There exists �1 ⊆ � with Pp(�1) = 1 and
Sx, x ∈ Zd , such that Sx(ω) < ∞ for each ω ∈ �1, x ∈ C∞(ω). There exist
constants ci = ci(d,p) such that for x, y ∈ C∞(ω), t ≥ 1 with

Sx(ω) ∨ dω(x, y) ≤ t,(6.1)

the transition density qt(x, y) of Y satisfies

c1t
−d/2 exp

(−c2dω(x, y)2/t
) ≤ qω

t (x, y) ≤ c3t
−d/2 exp

(−c4dω(x, y)2/t
)
.(6.2)

PROOF. Let the constantsC0, CV , CP , CW , CE and CF (depending on
d and p) be as in Section 2 and, as in Section 2, letα−1

2 = 11(d + 2). Let
(Nx, x ∈ Zd) be as in Lemma 2.24 and let�1 = {ω :Nx(ω) < ∞ for all x}. Let
ω ∈ �1 andx ∈ C∞(ω). We setSx = RE(x) = Nx and check the hypotheses of
Theorem 5.7. LetR ≥ RE , B = Bω(x,R) ⊆ Q = Q(x,R) andn = 2R = s(Q).

Whereasω ∈ L(Q) ⊆ D(Q,α2) ∩ H(Q,α2), applying Theorem 2.18(c) we
deduce thatB is very good withNB ≤ CF nα2 ≤ R1/(10(d+2)).

Now let CE ≤ r ≤ Nd+2
B and letx1, x2 ∈ B with dω(x1, x2) ≥ R1/4. Whereas

D(Q,α2) holds,dω(x1, x2) ≥ 1
3n1/4. Choosem so thatm/16= �r logr� and apply

Theorem 2.18(b) to deduce that there exists a pathx′
1 = z0, . . . ,

zj = x′
2 that satisfies condition (b) of Theorem 2.23. We need to verify (a)–(c) of

Definition 5.4.2. Part (a) holds sinceBi = Bω(zi, r logr) = Bω(zi,m/16) is very
good andNBi

≤ m1/(d+4) < r1/(d+2). For (b) we havej ≤ c2.23.3|x1 − x2|∞ ≤
dc2.23.3dω(x1, x2). Part (c) is easily verified asdω(xi, x

′
i) ≤ 1

3n1/4 < R1/4. ThusB

is exceedingly good.
So we can apply Theorem 5.7 to deduce that the bound (6.2) holds fort ≥ RE

andy such thatd(x, y) ≤ t . �

PROOF OFTHEOREM 1. Given Proposition 6.1, all that remains is to replace
the chemical distancedω(x, y) by |x − y|1. Whereas|x − y|1 ≤ dω(x, y), the
upper bound in (0.4) is immediate. For the lower bound, we takeSx as in
Proposition 6.1, and letx, y ∈ C∞ and t ≥ Sx with |x − y|1 ≤ t . Choose the
smallest cubeQ of side n that containsx and y and with n ≥ Sx . SinceQ is
very good, by Proposition 2.17(d) we have|x − y|∞ ≤ CF (nα2 +1)∨ |x − y|∞. If
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|x − y|∞ ≥ 1+ nα2, then it follows thatdω(x, y) ≤ c|x − y|∞, so the lower bound
in (0.4) follows. If |x − y|∞ < 1 + nα2, thendω(x, y) ≤ nα2. So becauset ≥ Sx ,
bothdω(x, y)2/t and|x − y|21/t are less than 1, and again the lower bound in (0.4)
holds. �

PROOF OFTHEOREM 2. Fix x, y ∈ Zd , letD = |x − y|1 and fixt ≥ D. Write
A = {x, y ∈ C∞}. Sincec5 ≤ Pp(x, y ∈ C∞) ≤ 1, it is enough to prove (0.6) for
Ep(qω

t (x, y)1A). Let Sx be as in the proof of Theorem 1 and letn = t/2. Then

Ep

(
qω
t (x, y)1A

) = Ep

(
qω
t (x, y)1A1{Sx<n}

) + Ep

(
qω
t (x, y)1A1{Sx≥n}

)
.(6.3)

By the proof of Theorem 1, ifω ∈ A andSx(ω) ≤ n, thenqω
t (x, y) satisfies the

bounds in (0.4). So the lower bound in (0.6) is immediate since

Ep

(
qω
t (x, y)1A

) ≥ Ep

(
qω
t (x, y)1A1{Sx<n}

)
≥ c6 exp(−c7D

2/t)
(
Pp(A) − Pp(A ∩ {Sx ≥ n}))

≥ c6 exp(−c7D
2/t)

(
c5 − c8 exp(−tαβ)

)
.

(6.4)

So if t ≥ c9, then the final term in (6.4) is greater than1
2 and we obtain (0.6). If

t < c9, then with probability at leastc5p
D there is a path of lengthD in C∞ that

joins x andy, and using (1.4), we deduce that on this event,qω
t (x, y) ≥ cD ≥ c′.

So (0.6) holds in this case also.
To prove the upper bound, recall that by Lemma 1.1 we always have (when

t ≥ D) that

qω
t (x, y) ≤ c exp

(−2c10dω(x, y)2/t
) ≤ c exp(−2c10D

2/t).

If exp(−c10D
2/t) ≤ t−d/2, then the upper bound in (0.6) is then immediate. If not,

then by Theorem 1 we have

Ep

(
qω
t (x, y)1A1{Sx<n}

) ≤ c11exp(−c12D
2/t),

so it remains to control the second term in (6.3). We have, providedt ≥ c13,

Ep

(
qω
t (x, y)1A1{Sx≥n}

) ≤ Pp(Sx ≥ n) ≤ c exp(−ctα2β)

≤ t−d ≤ t−d/2 exp(−c10D
2/t).

If t ≤ c13, then (asD ≤ t) we obtain the upper bound in (0.6) by taking the
constantc2 large enough. �

PROOF OF THEOREM 3. The proof follows easily from Theorem 5.11 and
Proposition 6.1. �

PROOF OFTHEOREM4. (a) This is a well-known consequence of the Harnack
inequality. Leth :C∞ → (0,∞) be a global harmonic function. Replacingh by ch
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if necessary, we can assumeh ≥ 1 everywhere and that there existsx0 with
h(x0) < 2. Applying Theorem 3 toBω(x0,R) ⊆ Bω(x0,2R) ⊆ C∞, whenR is
large enough we deduce that supBω(x0,R) h ≤ 2c1, so thath is bounded.

Let Bn = B(x0,2nR). Then Theorem 3 implies the oscillation inequality
infBn h ≥ c−1

1 supBn+1
h, so that Osc(h,Bn) ≤ (1−c−1

1 )Osc(h,Bn+1). By iterating

we deduce that Osc(h,Bn) ≥ (1− c−1
1 )−n Osc(h,B0) and sinceh is bounded, this

implies that Osc(h,B0) = 0. Thush is constant on any large ball and so is constant.
(b) This is also standard [Lemma 5.2 of Fabes and Stroock (1986)]. Lemma 5.8
gives lower bounds on the transition probabilityq

0,ω
t (x, y) for Y killed outside a

ball B(x0,R) for all sufficiently largeR. Let F be an event in the tail field and set
f (s, x) = Pω(F |Ys = x). Then 0≤ f ≤ 1 andf satisfies

f (s, x) =
∫
C∞

qω
t−s(x, y)f (t, y)µ(dy), s < t.(6.5)

Fix x0 ∈ C, t0 ≥ 0 and set

A(R) = B
(
x0,

1
2R

) × [t0, t0 + R2].
Let g(s, x) satisfy (6.5) with minA(2R) g = 0, maxA(2R) g = 1 and∫

B(x0,R/2)
g(t0 + 4R2, y)µ(dy) ≥ 1

2.

Then if (s, x) ∈ A(R),

g(s, x) ≥
∫
B(x0,R/2)

q
0,ω

t0+4R2−s
(x, y)g(t0 + 4R2, y)µ(dy)

≥
∫
B(x0,R/2)

c2R
−dg(t0 + 4R2, y)µ(dy)

≥ 1
2c2R

−dµ
(
B

(
x0,

1
2R

)) ≥ c3.

Hence there existsδ > 0 such that

Osc
(
f,A(R)

) ≤ (1− δ)Osc
(
f,A(2R)

)
,

and by iterating, it follows thatf is constant. �

PROOF OF THEOREM 5. The proof is immediate on integrating the
bounds (0.4) and using (1.6) to controlqt (x, y) for |x − y|1 ≥ t . �
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