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RANDOM WALKS ON SUPERCRITICAL
PERCOLATION CLUSTERS!

By MARTIN T. BARLOW
University of British Columbia

We obtain Gaussian upper and loweounds on the trasition den-
sity ¢ (x, y) of the continuous time simple random walk on a supercritical
percolation cluste, in the Euclidean lattice. The bounds, analogous to
Aronsen’s bounds for unifortyelliptic divergence form diffusions, hold with
constants; depending only omp (the percolation probability) and. The ir-
regular nature of the medium means that the boung;for., -) holds only for
t > Sy (w), where the constarfl, (w) depends on the percolation configura-
tion w.

0. Introduction. In this paper we study the simple random walk on the
infinite component of supercritical bond percolation in the latii¢e We recall
the definition of perolation [see Grimmett (1999)]: For edges- {x, y} e E; =
{{x,y}:|Ix —y| =1}, we have i.i.d. Bernoulli r.vy., with P, (n. = 1) = p € [0, 1],
defined on a probability spa¢g, ¥, IP,). Edges with 5, = 1 are callespenand
the open cluste® (x) that containg is the set ofy such thatc andy are connected
by an open path. It is well known that there exigise (0, 1) such that when
p > p. there is a unique infinite open cluster, which we der@{e= Cy ().

For eachw let Y = (Y;,t > 0, P}, x € Cx) be the continuous time simple
random walk (CTSRW) o®.; Y is the process that waits an exponential mean 1
time at each vertex and then jumps along one of the open edgmt containg,
with each edge chosen with equal probability. If we write(w) = 1if {x, y} is an
open edge and 0 otherwise, and get) = 3_, vy, thenY is the Markov process
with generator

(0.1) Lof@)=n@) Y v (fO) = f(X), X €Cu.
y

A number of papers have studied this process or the closely related discrete
time random walkX = (X,,,n > 0, f’jg,x € Co). De Gennes (1976) discussed
the link between the behavior &f and resistance properties 6f,, and coined
the term “the ant in the labyrinth” to describe its motion. It is believed that, in
all dimensions, there is no infinite clusterpf= p. (this is known to be true if
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d =2ord > 19). Kesten (1986a) defined theipient infinite cluster whend = 2,
and proved [Kesten (1986b)] that the random walk on this set has subdiffusive
behavior.

For the supercritical casg > p., Y is expected to have long time behavior
similar to the random walk of¢, and this has been confirmed in several ways. De
Masi, Ferrari, Goldstein and Wick (1989) proved an invariance principle ),
while Grimmett, Kesten and Zhang (1993) proved thas recurrent ifd = 2 and
transient wher > 3.

More recent papers have studied the transition densifywith respect tqu:

(0.2) a:(x,y)=qP(x,y) = PE(Y; =y)u() L
Theorem 1.2 of Mathieu and Remy (2004) gives the (quenched) bound

—d/2

g (0,y) < ci(p,d)t t > To(w), y € Coo,

P,-a.s. on the sefw: 0 € Cx}, While a similar (annealed) estimate was given by
Heicklen and Hoffman (2000), but with an extra logarithmic factor.
The main result of this paper is the following two-sided boundon

THEOREM 1. Let p > p.. There exists 1 € Q with P,(©21) =1 and r.v.
Sy, x € Z4, such that S, (w) < oo for each w € Q1, x € Co(®w). There exist
constants ¢; = ¢;(d, p) suchthat for x, y € Coo(w), t > 1 with

(0.3) Sx(@)Vx —yli=t,

the transition density ¢;”(x, y) of Y satisfies

d

(0.4) c1t™2exp(—calx — y[3/1) < q®(x, y) < cat~/?exp(—calx — y|3/1).

REMARKS. 1. The usual graph distance df is denoted|x — y|1 =
Y Ixi = vil.

2. The CTSRW orZ¢ (i.e., p = 1) satisfies these bounds with = 1. For
|x — y|1 > ¢, we have bounds which, up to constants, depend only on the tail of the
Poisson distribution and not on the geometrygf; see Lemma 1.1.

3. If G is any finite graph which can be embeddedZh, thenC,, contains
infinitely many copies of5 (attached at one point to the rest®f,). Since (0.4)
does not hold uniformly for all such graphs, it is clear that we cannot expect (0.4)
for all x, y, ¢ with |x — y|1 < ¢. This irregularity ofC, is taken care of by the
random variable,; after an initial period of possible bad behavigr.x, -) settles
down to a distribution with Gaussian tails.

4. In (0.4) we can replack — y|1 by the graph distance i@ and, in fact,
this is the result that we prove first (Proposition 6.1).
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Fic. 1. Bond percolation with p = 0.53. The vertices in the largest open cluster are marked with
black circles.

5. The constantg; are nonrandom, and depend only pnand d. For p
sufficiently close to 1 it would, in principle, be possible to estimate them by careful
tracking of the various constants in this paper. However, for gege&alp., 1)
the constants arise in a honeffective fashiong-i p., then we know that certain
kinds of good behavior occur in cubes of sidle ko(p, d), but have no control
onkg. The constants; then depend okyg.

6. The tail of the random variablg, satisfies

(0.5) P,(x € Coo, Sx > n) < cexp(—c'n®?);

see Lemma 2.24 and Section 6.
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7. Similar bounds hold for the discrete time r.%. The proofs (which are
not given here) run along the same lines, but with some extra (mainly minor)
difficulties due to the discrete time. Where&$ and G, are bipartite we need
to replacey; (x, y) in (0.4) with p,, _1(x, y) + pn(x, y).

8. It seems very likely that this theorem holds for other lattice4rand that
the “random walk” part of the proofs below transfers easily to other situations,
but many of the percolation estimates that we use have been proved only for the
Euclidean lattice.

Similar estimates hold in the annealed case.

THEOREM 2. Let p > p.. There exist constants ¢; = ¢;(d, p) such that for
x,yeZd,tleith lx —yl1 <t,

1t exp(—calx — yI3/1) < Ep(g(x, »)lx, y € Coo)

(0.6)
2 exp(—calx — yI3/1).

<c3t™

An immediate consequence of Theorem 1 is tHails transient if and only
if d > 3, but of course this was already known from Grimmett, Kesten and
Zhang (1993). As an example of a new application, the off-diagonal bounds in
Theorem 1 enable us to control harmonic functionggn Write d,, (x, y) for the
graph distance o8, and letB,(x, R) = {y:d,(x, y) < R} for balls. A function
h:B,(x0, R+1) — Risharmonicon B, (x, R) if Lh(x") =0,x" € B,(x, R). We
have the following Harnack inequality.

THEOREM 3. Let p > p.. There exists c1 = c1(p,d), Q1 C Q with
P,(£21) =1 and Ro(x, w) such that Ro(x,w) < oo for each w € Q1, x € Cwo.
If R > Ro(x,w) and h: B, (x, 2R + 1) — (0, 0c0) is a positive harmonic function
on B, (x, 2R), thenwriting B = B, (x, R),

(0.7) Ssuph < cpinfh.
B B

This leads immediately to the Liouville property for positive harmonic func-
tions.

THEOREM4. (a)Leth:Cs — R bepositiveand harmonicon C. Then i is
constant.

(b) Let T denote the tail o-field of Y. There exists Q, with IP,(£22) = 1 such
that for each w € 2, and for each F € 7, either P} (F) =0 for all x € Coo(w) Or
else P} (F)=1for all x € Co(w).

REMARK. The Liouville property forbounded harmonic functions @, is
already known; see Kaimanovitch (1990) and Lemma 4.6 of Benjamini, Lyons and
Schramm (1999).
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We can also use Theorem 1 to estimafgY; — x|2.

THEOREM 5. Let p > p.. There exists 1 € Q with P,(Q21) =1 and r.v.
S',x € Z4, such that S/ (w) < oo for each w € Q1, x € Co(w). There exist
constants 0 < ¢5 < ¢g such that for x € Coo(w), 1 > S,

(0.8) cst < EX|Y; — x| < cet.

This result implies that the (annealed) invariance principle, proved in De Masi,
Ferrari, Goldstein and Wick (1989) fat = 2, can be extended té > 3. See
Sidoravicius and Sznitman (2003) for a discussion of this and for a much more
delicate quenched invariance principle when 4.

The proof of Theorem 1 breaks into two fairly distinct parts. First (Section 2)
we prove suitable geometric and analytic propertie€Qf Then (Sections 3-5)
we use “heat kernel” technigues to obtain the estimate (0.4). These techniques
originate in the work of De Giorgi, Moser and Nash on divergence form elliptic
equations; more recently they have been employed to study random walks on
graphs. While they have been very successful in a wide variety of algebraic and
geometric contexts, this has almost always been in circumstances in which the
same regularity condition holds for all balls of a given size

A guide to the kind of properties we need is given by the following theorem
from Delmotte, which is a translation to graphs of results from Grigor'yan (1992)
and Saloff-Coste (1992) on manifolds. (The version given here has been adapted
to the CTSRW on a positive density subgrapbf Z<.)

THEOREMA [see Delmotte (1999)]. Let ¢ = (G, E) bea subgraph of Z¢ with
graph distance d. Let cq, c1 and ¢, be positive constants. Suppose that § satisfies
the following two conditions.

(a) For all balls B(x, R) in G,
(Va) coR? < u(B(x, R)) < c1R?,

(b) For any ball B = B(x,R) and function f:B — R, writing fp =
2 xen S () (x)/u(B),

(PI) S (F0) = F8)°u) <e2R? Y. Y (F) — F()>
xXeB xeByeB
veh

Then the transition density ¢; (x, y) of Y satisfies, for t > d(x, y) v 1,
(0.9) car™Zexp(—cad(x, y)?/1) < qi(x, y) < cst P exp(—ced (x, y)?/1).
The first condition is of regular volume growth of balls §1 and can be

replaced by a more general “volume doubling” condition. The second is a family
of Poincaré or spectral gap inequalities §ar
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This theorem suggests that to prove Theorem 1, we should obtain volume
growth and Poincaré inequalities far.. Some results of this kind are in the
literature; see Pisztord996) and Deuschel and Pised1996) for volume growth
estimates, and Benjamini and Mossel (2003) for a Poincaré inequality. These
results show that for fixed € C, the probability that () and (PI) hold for a
ball B, (x, R) increases to 1 aB — oo.

However, on its own this is not enough to give Theorem 1. There are now several
proofs of Theorem A [Delmotte (1999) used Moser iteration to prove a parabolic
Harnack inequality], but all involve iterative methods or differential inequalities
which use (\§) and (P1) for many balls of different sizes. The exact definition of
“good” and “very good” balls is given in Section 1.7, but roughly speaking we say
a ball B, (y,r) is good if (Vg) and (PI) hold, and a baB,(x, R) is very good
if all subballsB,, (v, r) € B, (x, R) are good for > RY@+2 \We need to prove
that all sufficiently large ball8,,(xo, R) (centered at a fixedp) are very good,
and to do this we have to extend some of the estimates in the literature. This is
done in Section 2. The estimates in Pisztora (1996) and Deuschel and Pisztora
(1996) are enough for the volume growth bounds, but more work is needed for
the Poincaré inequality. As in Benjamini and Mossel (2003), we prove this from
an isoperimetric inequality, which was obtained by Benjamini and Mossel (2003)
and Mathieu and Remy (2004). We use the methods of those papers, but the need
for better control of the probabilities means that we have to rework some of these
arguments to identify more precisely the set of percolation configuratioios
which a ball is good or very good. Ip is sufficiently close to 1, then a fairly
direct counting argument [see Benjamini and Mossel (2003) and Mathieu and
Remy (2004)] is all that is needed, but for genepat- p., we have to use a
renormalization argument, as in Antal and Pisztora (1996). In this paper we follow
quite closely the approach of Mathieu and Remy (2004); there is a gap in the
renormalization argument of Benjamini and Mossel (2003).

While percolation arguments generally use cubesZify the heat kernel
estimates work most naturally if we use the “chemical” or graph distdpce y)
on C,. We can compare these two metrics using the main theorem of Antal and
Pisztora (1996).

Many of the methods used to derive (0.9) frony)\and (PI) are not suitable
for the percolation context. For example, Saloff-Coste (1992) proved in that
(PI) and (W) imply a Nash estimate: fof : G — R,

(N) [ 19z ez s
and Carlen, Kusuoka and Stroock (1987) proved that (N) is equivalent to
(0.10) qi(x,y) <172 forallx,ye G,t > 1.

However, since®,, contains copies of0, ..., n} for all n, (0.10) is clearly false
for C,. More generally, we cannot use any method which relies on global Sobolev
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inequalities; it isnecessary to use local methof®ne approach here might be
that of rooted or anchored isoperimetric inequalities as in Thomassen (1992) or
Benjamini, Lyons and Schramm (1999). However, the correct extension to Nash
or Sobolev inequalities has not yet been made.]

In Section 3 we obtain an initial global upper boundgrusing the Poincaré
inequality directly, following the approach of Kusuoka and Zhou (1992). We can
then obtain the off-diagonal upper bound in (0.4) using a method of Nash (1958),
Bass (2002) and Barlow and Bass (1989).

We use the method of Fabes and Stroock (1986), also based on ideas of Nash,
to obtain a local lower bound; that is, faf(x, y) if d(x,y) < /2. However,

a difficulty arises in extending this to prove (0.4) for pointsy with d,,(x, y) ~

t1=¢. The standard technique is chaining: using a sequence of smaliga]ls-)

that connectx and y, and the Chapman—Kolmogorov equations. It turns out
that we need to take ~ t/d,(x,y), SO we may need balls so small that we
cannot be sure that they are very good. This problem is resolved by an additional
percolation argument: for some fixed = r1(p,d) > 1, we can show that the
collection of good balls of size > ry is large enough so that a suitable chain
[B(z;, 1), 0<i < m] of very good balls exists withg close tax andz,, close toy.

(see Theorems 2.23 and 5.4). This argument needs renormalization techniques,
evenifp is closeto 1.

Section 1 contains a brief account of various known facts on random walks
on graphs which are used in the rest of the paper. The percolation arguments
are given in Section 2. Sections 3-5 were written for a general ggapimat
satisfies appropriate volume growth and Poincaré inequalities, and can be read
independently of Section 2. Upper bounds @nare obtained in Section 3.
Section 4 proves a weighted Poincaré inequality from the unweighted (weak)
Poincaré inequalities derived in Section 2, using methods of Saloff-Coste and
Stroock (1991) and Jerison (1986). This is then used in Section 5 to obtain lower
bounds ory;. Section 6 then ties these results together and gives the proofs of
Theorems 1-4.

We user; to denote constants whose values are fixed within each argument and
useC. to denote constants fixed within each sectigrg ; denotes the constant
of Lemma 2.3, and: and ¢’ are constants whose values may change on each
appearance. The constanis ¢;, c andc’ are always strictly positive. The notation
k = k(p, d) means that the constantlepends only op andd.

1. Graphsand random walks. In this section we review some well-known
facts concerning graphs, random walks, and isoperimetric Cheeger and Poincaré
inequalities. Letg = (G, E) be an infinite, locally finite, connected graph. We
define weights),, by

o 1, if {x,y}eE,
Yo, otherwise,
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and setu(x) = >, vxy. We extendu to a measure oG and extendv to a
measure otk . Given a functionf : G — R, we defindV f|: E — Rby |V f|(e) =

| f(x)— f)|if e={x, y}. We write

[£=]rdu=¥ r@uw.

xeV

/IVf|P=/|Vf|pdv= S (V1) v

ecE

Letd(x, y) be the graph distance @n and defineB(x,r) = {y:d(x,y) <r}. We
assume we have a global upper bound on the size of balls: for any, r > 1,

(1.1) w(B(x,r)) < Cor?.
Note that this implies that for eache G,
(1.2) 1< pu(x) < Co.

LetY = (Y;,t > 0, P*, x € G) be the continuous time random walk éh this
is the Markov process with generator

(1.3) LI =@ v (F() = f(X)).
y

ThusY waits atx for an exponential mean 1 random time and then moves to a
neighbor ofx at random. We define the transition densityYofvith respect tqu
(or heat kernel density) by

g (x, y) = ()P, = y).

Note that by (1.2) we have,(x, y) <1 for all x, y, t. Given any points, ...,
xx € G and timesy, .. ., #, then by the Markov property, if= 3", #,

k
qr(x0, xx) = () [ P4 (Y, =xi)
(1.4) i=1

k k
= ) T an Gier xop ) = [T (-1, x0).
i=1 i=1

We begin by recalling some general boundsgpnThese are not given in full
generality, but just as they apply to the situation here.

LEMMA 1.1. Let g satisfy (1.1).



3032 M. T. BARLOW

(a) Thereexist constants ¢; = ¢; (d, Cp) suchthat, writing D =d(x, y),

—coD?
(1.5) q:(x,y) < C1exD< 2 ) D <t,
D
cexp(—ch <1+ log 7)) <q:(x,y)
(1.6) .
EC/eXp(—C4D<1+|097>), D>t>1
and
c3 cq
1.7 — 2 < e > 1.

(b) Ifd(x,y)>R>2andr < csR?/logR, then

(1.8) qr(x,y) < cet™.

PROOF (a) See Corollaries 11 and 12 of Davies (1993) for (1.5) and (1.6).
For the discrete time random wakk on 4, the lower bound in (1.7) is immediate
from Theorem 2.2 of Coulhon and Grigor'yan (2003) and (1.1), while the upper
bound follows from Theorem 2.3 of Coulhon and Grigor'yan (2003) and the fact
thatu (B(x,r)) > r forall » > 1. These bounds then transfergtoby integration.

(b) If + < csR?/logR, thentlogt < 2cs5R? provided R > ¢7. Hencer—4 >
exp(—2dcsR?/t) and, takinges sufficiently small, the bound (1.8) is an easy
consequence of (1.5). IR < cg, thenr < ¢g and (1.8) still holds on adjusting
the constantg. O

We now review some geometric and analytic inequalitieohet H € G be
finite, write
EH)={e={x,y}:x,y€ H}

and call# = (H, E(H)) theinduced subgraph on H. We define the measurgg
on H andvg on E(H) in the same way ag andv are defined foig. Note that
while vg andv agree onE (H), we have only

(1.9) no(A) < u(A) < Couo(A), ACH.
We now assume tha¥ is connected. Fod1, A» C H let
(1.10) de(A1, A2) ={e={x,y}:x € A1,y € A}

Let

i(4) = v(aE(A,H—A))’ ACH.
ro(A)
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and define the isoperimetric constant

Iy = min i(A).
O<po(A)<po/2(H)

Closely related is the Cheeger constant: Let
_ pno(H)v(p(A, H — A))

A
XA = Aol — A)

and define

(1.12) Jy= A%r’]H x(A).

LEMMA 1.2. Theminimumin (1.11)is attained by a set A such that A and
H — A are connected.

This is quite well known. For a proof, see, for example, Section 3.1 of Mathieu
and Remy (2004).

LEMMA 1.3 [see Mathieu and Remy (2004), Section 3.1, and Benjamini and
Mossel (2003)]. Let H be finite and connected.

(a) Thereexists Iy > 2/uo(H).
(b) If Ij; =min{i(A):0< u(A) < %M(H), A and H — A are connected}, then

PROOF (@) Let O< po(A) < %MO(H). Then sinceH is connectedyg (A,
H — A) is nonempty, s@(A) > 1/uo(A) > 2/ uo(H).

(b) The left-hand bound in (1.12) is obvious. If © ug(A) < %MO(H),
then since 1< wo(H)/uo(H — A) < 2 we havei(A) < x(A) < 2i(A). This
immediately implies thafy < Jy < 2Iy. Let A be a minimal set fot/y. By
Lemma 1.2 we can assume thatand H — A are connected. We can also take
Hno(A) < %MO(H). Thenlj; <i(A) < x(A) = Jy < 2Iy, proving the right-hand
boundin (1.12). O

PrROPOSITIONL1.4. Let H C G befinite. Supposethat 7y > a L.

(@) If f:H— R, then
min/ |f—a|2d,uo§cloz2/ IV fI2dv.
a JH E(H)

(b) If f:H — R, then

(1.13) min/ |f —al?du < chan/ IV f12dv.
a JH E(H)
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ProOF (@) This result is well known. For a recent proof, see Lemma 3.3.7 of
Saloff-Coste (1997).

(b) Since (1.9) can be used to replgeg with u, this follows immediately
from (a). O

Inequality (1.13) is doincaré or spectral gap inequality for . The minimum
in (1.13) is of course attained by the valae= fy = [ fdu/n(H). The
following result is immediate from Lemma 1.3 and Proposition 1.4.

COROLLARY 1.5. Let H C G befinite and connected, and let Py be the best
constant in the Poincaré inequality (1.13).

(a) Thereexists Py < cu(H)2.
(b) Ifi(A) >a~Lforall AC H suchthat A and H — A are connected, then
Py < ca?.

We note the following discrete version of the Gauss—Green lemma.

LEMMA 1.6. Let f, g € L%(G, ). Then

(1.14) Y gL =3>Y (f&) = FM)(8(x) — () vxy.
y

xeG X

In the sequel we need the following definitions.

DEFINITION 1.7. LetCy, Cp andCw > 1 be fixed constants. We s@&\(x, r)
is (Cy, Cp, Cw)-good if
(1.15) Cyré < w(B(x,r))

and the weak Poincaré inequality

@16) [ (= Faen)dnzcor? | V£ 2dv

E(B(Cwx,r))

holds for everyf : B(x, Cyr) — R.

We sayB(x, R) is (Cy, Cp, Cw)-very good if there existSNg = Np(x,r) <
RY(@+2 gychthatB(y, r) is good wheneveB(y, r) € B(x, R), andNg <r < R.
We can always assume thaliz > 1. Usually the values of'y, Cp andCy are
clear from the context and we just use the terms “good” and “very good.”
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2. Percolation estimates. We work with both bond and site percolatioriA.
We regardZ? as a graph, with edge sBy = {{x, y}: |x — y| = 1} and writex ~ y
to mean{x, y} € E;. GivenQ C 74, define the internal and external boundaries of
ACQby

0;(A|Q)={ye A:y~xforsomex € A°N Q},
3. (A|Q)={y € AN Q:y~ x for somex € A} = 3;(Q — A|Q).

We begin with the notation for site percolation. lget (0, 1) and2; = {0, 1}Zd,
and define the coordinate mapgw) = w(x). LetQ, be the probability measure
onQ which makes thg, i.i.d. Bernoullir.v. withQ, (¢x = 1) = ¢g. We call thosex
such that, = 1 theopen sitesand write(® = O (w) = {x: ¢ = 1}.

For A € Z¢ we define the graph distandg (x, y) to be the smallest such that
there exists a path = {xq, x1, ..., xx} € A with x = xqg, xx = y andx;_1 ~ x;,
1 <i <k. If there is no suclk, thend,(x, y) = co. [We haveds(x, x) = oo if
x ¢ A] We writed,,(x, y) = dow)(x,y) andreferto a path = xg, x1, ..., x, =y
such that eachy; is open as appen path. We sayA is connected if d4(x, y) < oo
forall x,y € A.

Now write

C(x) ={y:dy(x,y) < o0}
for the connected open cluster that containgVrite also, givenQ C 74,

Co(x) ={y:donow)(x,y) < oo}.

This is the set of points connected.toby an open path withirD. We call sets
of the formC(x) open clusters and call the set€ (x) open Q clusters. It is well
known that there existg. = g.(d) € (0, 1) such thatify > g., thenQ,-a.s. there is

a unique infinite open clustet,,. However, for site percolation we are interested
only in the case wheq is either close to 1 or close to 0. Given a cub& 74 the
setQ N C in general is not connected. We write

CY(Q) for the largest ope® cluster.

(We adopt some procedures for breaking ties.)

Write |x — yloo = max |x; — yil, letE} = {{x, y} : |x — y|oc = 1} and writex~y
if {x, y} € E}. We also need to consider site percolation in the gl(ﬂﬁ’hEZ;). We
say thatA € Z¢ is »-connected if A is connected in the graptZ?, E) and we
define the cluster€*(x) analogously.

DEFINITION 2.1. 1. LetQ be a cube of side in Z¢. We writes(Q) = n for
the side length 00. Let 0 = A1NZ% andQ® = A,NZ%, whereA; andA> are
the cubes iR with the same center g3 and with side%n andgn, respectively.

2. AclusterC in a cubeg is crossing for a cubeQ’ C Q if for all d directions
there exists an open pathén Q’ that connects the two opposing facegf
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3. Thediameter of a setA is defined by diard) = maxX|x — y|oo:x, y € A}
4. Given a sefd, we write |A| for the number of elements iA.

REMARK. Inthe arguments in this section, we frequently need to assume that
a cube is sufficiently large. More precisely, we need th&Q) > n1, where
n1 =n1(d, p) is a constant that depends onlydandp. We make this assumption
in our proofs whenever necessary without stating it explicitly each time. Unless
otherwise indicated, the statements of the results are true far, &flis can be
ensured by adjusting the constants so that the result is automatic for small cubes.

Let O be a cube irfZ¢. Define the event

(2.1) K(Q,\) = {a) :CY(Q) is crossing forQ andw > k}.

10|

The following estimate was proved in Theorem 1.1 of Deuschel and Pisztora
(1996).

LEMMA 2.2. Let Q beacube of siden and A < 1. Then there exists go =

go(d,)) <landc; =c;(x,d) suchthat if ¢ € [go, 1), then
Qq(K(Q. 1)) < crexp(—con?™1).

Let = = {x € Z¢:x ~ 0} U {0}. Foro € £ define the shifted set of open sites
O, ={x—0:x€0}. Let
(2.2) B=1-20+d) t<@d—-1)/d.
Set forr e N ande > 0,

F(Q,r, o0,¢) ={any*-connected seA C Q with |[A|=r
satisfiedAN O, | > (1 — ¢)|Al},
F(Q.e)= () () F(Q.r.0.0.

rzs(Q)f o€
Note that the evenk (Q, r, 0, ¢) is increasing and that althoudh(Q, 1) is notin
general increasing, itis i > %
Recall the following bounds on the tail of the binomial.
LEMMA 2.3. Let X ~ Binomial(n, p) and A € (0, 1). Then
P(X < An) < e "P@p)
whereb(r, p) — oo as p — 1 for each fixed 1 € (0, 1).

LEMMA 2.4 [see Grimmett (1999), Section 4.2]The number of x-connected
sets A with |A| = r containing a fixed point xo € Z¢ is bounded by exp(c1r).
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LEMMA 2.5. Let ¢ € (0,1) and let Q be a cube of side n. There exists
g1 =q1(e,d) > g, suchthat if g > g1, then

Q,(F(Q, &)°) < cexp(—nP).

PrROOF If A is afixed connected set i with |A| =r, then by Lemma 2.3,
Q,(IANOy| < (L —e)|A]) < e P80,

Giveneg, choosey1 large enough so thai(A, p) > 2+ ca41ford >1—¢,9 > g1.
Then since there are at mast+ 1)¢ exp(co.4.17) *-connected sets i@ of sizer,

Qq(F(Q.1.0.8)) < (n+ D! explcaarr — rb(1—¢.q)) <ne™™
and,agXx|=2d +1,
o0
Qq(F(Q.e)) < Y d+D(n+1e
r=ng
< cn? exp(—2n?) < ¢ exp(—n?). O

We collect from Deuschel and Pisztora (1996) the following results on the
boundaries of discrete sets contained in cubes.

LEMMA 2.6. Let Q beacubein Z-.

(@) Let A G Q be x-connected. Let Aj, 1 < j <k, be the connected
componentsof Q — A. Then 9; (A ;| Q) and 3.(A j1Q), 1 < j <k, arex-connected.
(b) Let A € Q with |A| < (15/16)|Q|. Then

(2.3) Al =cald AT and |A] < c1]d (A]Q)1 Y.
PrROOF Part (a) is Lemma 2.1(ii) of Deuschel and Pisztora (1996), while the

discrete isoperimetric inequality (2.3) is assertion (A.3) on page 480 of Deuschel
and Pisztora (1996).0]

The following result is based on ideas in Mathieu and Remy (2004). Recall
from (1.10) the definition 0bg (A1, A2).

PROPOSITION2.7. Lete <1/(4d+2)and i > %. Supposethat both F(Q, ¢)
and K (Q, A) occur for a cube Q withsiden. Let A C Q be connected.

(@) fANCY(Q) =2, then|A| < cnP4/@=D <y,
(b) If1A] < %|Q| and AN CY(Q) # @, then there exists ¢; such that

(2.4) 0E(ANCY(Q), (@ —A)NECY(Q))] = can M Al

PROOFR We writeCY = CY(Q).
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(@) Let Ag be the connected component @ — ¢Y that containsA.
By Lemma 2.6,9;(Ag|Q) is x-connected. The definition ofip implies that
3 (AplQ) N O = @. Since F(Q, ¢) occurs, this implies thatd; (Ao|Q)| < n”
[since otherwise|d;(Apg|Q) N @] > 0]. Hence by the discrete isoperimetric
inequality (2.3),

Al < Aol < cld; (Aol @)] < enf @D <,

(b) Now let AN CY # @ and |A| < n. So there existx € A N €Y. Since
|cY| > %nd, there existy € (Q — A) N €Y and wherea€" is connected, there
therefore exist$x’, y'} € 0e(ANCY(Q), (Q — A)NECY(Q)). So

0(ANCY(Q), (@ = ANCY(Q))| = 1=n YAl
It remains to consider the cageN CY # @, |A| > n. Let
A= J{Co(y) 1y €d.(A|Q)NO — €Y}, A1=AUA;.
LetC;, 1 <i <k, be the connected components®f A1 and let
A= JICi:CineY =g}, Ar=A1U Ao.

It is clear from the construction od; and A> as a union of connected sets each
connected tod or A; that A, is connected. Note that sinde; U A, € Q0 — @€Y
andK (Q, 1) holds, we haveA,| < |A|+|Q — CY| < %|Q|.

We now show that

(2.5) d(A|Q)NCY =8,(A210) N O.

Firstlety € 9,(A|Q) N €Y, so thaty ~ x with x € A. Whereas € €V, we cannot
havey € A1U A2, S0y ¢ Az and thusy € 3,(A2]Q) N O.

Now lety € 9.(A2| Q)N O, so thaty ~ z for somez € A. If z € Ao, thenz € C;
for somei. Hewever, becausg¢ A, andy ~ z, we havey € C;, a contradiction,
soz € Ay If z € A, thenz € C(x) for somex € 9.(A|Q) N O® — €Y. Again
we havey € C(x), a contradiction, so we must hages A and, thereforey ¢
0.(A|Q). If y ¢ €Y, then because € @, C(y) is included inA1 andy is in Aj.
Hence we have € CV. This completes the proof of (2.5).

LetI'y,..., Iy be the connected components®@f A, arranged in decreasing
order of size.

CAsEl. Supposethal'i|> 3/0|. LetAz= A,U(U!_,T;). By Lemma 2.6,
0.(A3]0) = 0;(I'1| Q) is x-connected. We also havg(A3|0Q) C d.(A2| Q). Note
that sincen < |A| < |A3| < %|Q|, by the isoperimetric inequality,

19:(A3] Q)| > c2| Ag|Y 4 > cont=Hd 5 b
SinceF (Q, ¢) holds, writing®’ =N, cx Yo,
19:(A3] Q) N (O] <> 19.(A310) N (06)°] < (2d + 1)eld.(A3| Q).

o
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We deduce
10 (A31Q) N O'| = (1— (2d + 1)¢)[9. (A3 Q)| = %Iae(Ale)l-

If ye d.(A31Q) N O, theny € 3,(A2|Q) N O and therefore, by (2.5)y €
9.(A|Q) N €Y. So there exists € A with y ~ x. Whereas € @', we havex € ©
and thust € €Y. Hence{x, y} € 9g(ANCY,(Q — A)NCY). Thus

IE(ANCY,(Q—A)NECY)>13.(A3]Q) N O]
> 219.(A3| Q)|

> ZealAst Y >

1 -1 1 -1
scon” ~|Asz| = 5con” Al

proving (2.4) in this case.

CASE2. Supposél'1| < 3|0|. Note that

|BE(A NEeY,(Q—-A)N GV)| = Z|8E(F,~ NneY,(Q — ') mev)|.
J
We have

(2.6) 10;(T;10)NO'| <|oe(T;NECY,(Q—-Tj)HNEY).

Forif y € 9;(T';|Q) N ¢, theny € T'; and there exists € A, with x ~ y. So
y € 3.(A2|Q) N O and hence € 8.(A|Q) N CY by (2.5). Whereay € ¢, then
x € 0, so thatx € @V and hence: € A sincex cannot be inA1 U A,. Therefore
{y,x}€dp(;NCY,(Q-T;)NECY).

Next, each”; intersect®®" by the construction of\,. If |9;(I";| Q)| > nP, then

18;(I;1Q) N O] = 319:(Tj1 Q)] = |17 Y9 > 'n ™).
If 18;(T;1Q)| < nP, then|I';| < cnfd/@=D <y and
9e(C;NEY, (@ -T)HNneY)|=1>n1ry|.
Combining these estimates we obtain

Be(ANECY, (0 —A)NEY)| =Y |9e(T;neY, (@ -T,)NeY)
j

>en 1Y T = en H(Q — Aal).
J
WhereagQ — Az| > gn? > c|Al, this proves (2.4). O
We now follow the renormalization argument of Mathieu and Remy (2004),

which uses techniques introduced by Antal and Pisztora (1996). We introduce a
second percolation process, which is bond percolatiofZ8nE,). Let p € (0, 1):
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We setQ2;, = {0, 1}]Ed, letn., e € Eq4, be the coordinate maps and Bt on 2, be
the probability measure which makesi.i.d. Bernoulli r.v. withP,(n. = 1) = p.
We call the edges such that), = 1 open edges and we writeOg = {e:n, = 1}.
An open path is any pathy = {xo, ..., x;} such that eaclx;_1, x;} € Op. As
for site percolation, we writel,(x, y) for the length of the shortest open path
connectingx andy, and setd,,(x, y) = oo if there is no such open path. For a
setA we write d4 (x, y) for the length of the shortest open path contained in
connectinge andy. SetC(x) = {y:dy(x, y) < oo}. Letd(p) =P,(|C(0)| = c0)
andp. =inf{p:6(p) > 0}. Then if p > p., there existd,-a.s. a unique infinite
cluster. We always assume that- p.. We defineC, Cp(x) andC"(Q) in the
same way as for site percolation.

Letn > 16 be fixed and leQ be a cube of side. Recall the definition o™
and crossing clusters from Definition 2.1. We define the e®@Q) in a similar

fashion to the evenRi(") in Antal and Pisztora (1996) and we set
Ro(Q) = {there exists a unique crossing clusfein Q* for 0, all open paths

contained inQ ™ of diameter greater tha%n are connected t@
in 0 and¢ is crossing for each cub@’ € Q with s(Q’) > n/8},
R(Q) = Ro(Q) N{€Y(Q) is crossing forQ} N {€(Q™) is crossing forQ™}.

Note that ifw € R(Q), then this force®€V(Q) c €V (Q™) andthate¥(Q™) is the
unique crossing cluster given by the ev&at Q).
Now letk > 17 and consider a tiling d&¢ by disjoint cubes

2.7) Tx)={yeZ':x; <y <xi+k1<i<d)
with sidek — 1. Let
(2.8) @(x) =1R(T(x))-

LEMMA 2.8. (a)Let Q beacubeof sidek — 1 andlet p > p.. There exists
c1=c1(p, d) suchthat

(2.9) P,(R(Q)°) < cexp(—cik).

(b) The process (¢,, x € Z?) dominates Bernoulli site percolation with para-
meter g*(k), whereg*(k) - 1lask — oo.

PROOF.  (a) The bound”,(Ro(Q)°) < cexp(—c’n) follows from Theorem 3.1
of Pisztora (1996)d > 3) and Theorem 5 of Penrose and Pisztora (1996j fer2.
The estimate

P,(C¥(Q) is not crossing fo) < cexp(—c'n?™1)

follows from Theorem 1.2 of Pisztora (1996) £ 3) and Theorem 1 of Couronné
and Messikh (2003} = 2).
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(b) By (a) we haveP,(¢(x) =1) — 1 ask — oo. The r.v.¢(x) and¢(y)
are independent ifx — y|o > 3, so the result is immediate from Theorem 0.0
of Liggett, Schonmann and Stacey (1997). [We remark that using this theorem
means that the evenﬂ%N) defined in (2.5) of Antal and Pisztora (1996) are no
longer needed.] O

Recall the definition ofy1(e, d) from Lemma 2.5 and choose = ko(p, d)
large enough so that* (k) > g1(¢e, d) for all k > kg. We fix k = kg and refer to the
process as themacroscopic percolation process. We writ@, C(x), to denote the
open sites, open clusters for the macroscopic procesﬁ“dodassomated events.

Let O be a macroscopic cube of sideand associate witl® the microscopic
cube Q = U{T*(x), x € O}. Any (microscopic) cube which can be obtained in
this way is called apecial cube. DefineT’(x) to be T (x) if x is in the interior
of O [so thatT*(x) is in the interior ofQ]. Otherwise, ifx € 3; (Q|Z%), let T’ (x)
beT (x) together with all points irT"* (x) which are closer td@ (x) than anyr' (y),
y#x,y e Q. ThusT’(x) is ad-dimensional rectangle ar@ is the disjoint union
of the T’(x), x € 0. Note that each side df'(x) (x € Q) is less tharg (ko — 1).

Fix g = (4d +2) L.

LEMMA 2.9. Let Q be a special cube with s(Q) =n and let O be the
qg@qci ated nlacioscopic cube. Supposethat m = s(Q) > mo(kg) and that the event
K(Q,§) N F(Q, eo) holdsfor (¢, x € Z4). Thenthe cluster €V (Q) satisfies

V(@) =cin?,  diam(e¥(Q)) =n.

PROOF Write G, = CY(T1(x)). If x,y € @ N Q andx ~ y, then the events
R(T(x)) and R(T (y)) force the cluster®, andC, to be connected. Thus there
exists aQ-cluster®’ with J{C,, x € C¥(Q)} C €. It follows immediately that

1€ >1CY(Q)] = §m? > c1n.

Also, sinceCY is crossing forQ, we deduce that’ is crossing forQ and
diam(€’) = n.

It remains to prove tha®’ = €V (Q). Suppose not. Choose so that(?’ko)d
Smd and therefore the clusté” (Q) is not contained in any one cuﬂ“é(x) Let
x € CYV(Q). ThenCY(Q) N G, = @ and soCY(Q) N T (x) consists of clusters
which have diameter less thap/8. SinceC" (Q) contains points outsidE™ (x),
it follows thatCY(Q) N T (x) =&

So, ifI'1, ..., Ix are the connected componentsdf- C¥(Q), we deduce that
for somej, €Y (Q) € U{T'(x),x € I';}. By Proposition 2.7(a) we deduce that
IT;| < com®/@=1 and so ifmg is large enough,

1€V < ca(3ko) mPd=D < Tind,
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giving a contradiction. Thue’ = ¢ (Q). O

Let Q be a special cube witl{ Q) = n and letQ be the associated macroscopic
cube. For setdq, A> C 0, let

dE(A1, A2|0p) = {{x, y}:{x,y} € Op, x € A1,y € Ag}.
LetAC CY =CY(Q) and letl’ = €Y — A both be connected. Set
A={xe Q:ANT (x) # &),
F={xe0:I'NT'(x)+a).
Note that

(2.10) Al > 1A > (3k) ™

|Al.
WhereasA and I are connected, it is clear that and T are connected. Let
GV = CY(Q) be the largest open (macroscopic) cluste@in

LEMMA 2.10. Let Q be a special cube with s(Q) = n and let O be the
associated macroscopic cube. Supposethat m = 5(0) > mo(ko) and that the event
K(Q, %) N F(Q,eo) holds for (pr,x € Z%). Let AC Y and I' = €Y — A be
connected.

(@) Letx~y,xecAandye Q — Awithx,ye . Thentheset TT(x) N Q
contamsatleastoneedgeln 9e(A,T|OF).

(b) Supposex € ANT N@. Thentheset T (x) N Q containsat least one edge
indg (A, T|OF).

PROOFR AsinLemma 2.9 we have th&t” is not contained in any or&™* (x).
Let G, =CY(T " (x)) be as in Lemma 2.9.

(a) Sincex € A there existst’ € T(x) N A, so sinceC” is connected there
exists an open patp € Q from x’ to Q N T (x)¢. This path must have diameter
greater tharkg/3, so it is connected withiff ™ (x) to G,. Hencex’ is connected
within 7% (x) to €,. Choosey’ € G, N T (y); theny’ ¢ A buty € €V. There exists
an open path’ from x’ to y’ that must contain at least one edgé (A, I'|O).

(b) Letx’ € ANT'(x) andy’ e T NT’(x). Sincex € @, bothx” andy’ are inCy
and there therefore exists an open patii'in(x) betweenx’ andy’. As in (a) this
path must contain at least one edg@in(A, '|Og). O

PROPOSITION2.11. Let Q and Q beasabovewithm = s(Q) > mq. Suppose
that the event K (Q, %) N F(Q, go) holds for (¢, x € Z?). Let A be a connected

open subset of €Y (Q) with |A| < %lGV(Q)| andsuchthatI' = Y (Q) — Aisalso
connected. Then

(2.11) 19£(A, T|0F)| = can H A
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PROOF We write €Y = €V(Q), €Y = CY(Q). SinceA # €Y (Q) and Y

is connected, we hay@g (A, T'|Of)| > 1, so (2.11) is immediate ifA| < cl_ln.

Also, using Lemma 2.10(a) we have
(2.12) 0£(A.T|OF)| = c2|0p(AN O, (0 — AN P)|.

We consider four cases.

CAasel. ANCY=wg.LetA be the connected component@f— € which
containsA. By Proposition 2.7(a),A| < cm9f/@=D so that

Al = (3ko)IA] < ck§m™/ @D <n,

providedmy is large enough. Hence (2.11) holds for

CASE2. ANCY # @ and|A| < 3|0|. We apply Proposition 2.7(b) to see that
10(ANEY, (0 — A NEY)| =em A= cen YAl
and combining this with (2.12) proves (2.11).
CASE3. ANCY #g,|A| > 3|0|and|T'| < 3|Q|. Using Lemma 2.9 we have

IT| > (3ko)~?|T| = 3(3ko)~|C"| = cn. So by Proposition 2.7(a); N € #
and we can therefore apply Proposition 2.7(b) 't deduce

10e(CNEY,(Q-T)NEY)| =em YT = em™1nd = en2)A.
Using (2.12) (withA andI" interchanged) we deduce that
0£(T, AlOE)| = c2|05(F N, (0 —T)N )|
> |0 (TNEY, (0 -THNEY)| =ntA]
CASE 4. ZNH;éV # 2, |Al > 3|0] and|T'| > 2|0|. SinceA andT are both

connected an@' (Q, o) holds, we have

AN 0| = (1-¢o)lA| > 310,

ITNAI=1—e0)l| > 5/01.
Hencel ANT NO| > $|0|. So by Lemma 2.10(b),

8£(A, T10E)| = | ANT NO| = /m? = ¢"|Al,

which implies (2.11). [
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As in Section 1 we define

1, if {x,y} isan open edge,
Vxy = Vay (@) = { 0, otherv\y/ise, P °

p(x) = p(x)(@) = 3y vxy, X € 74, and we extend and u to measures. If
f:A— R, we write

fa=ny* [ fdu.
Let O be a special cube and I& be the associated macroscopic cube. Define

Ho(Q) =K (0, §) N F(Q, e0)

and extend the definition affp(Q) to all cubesQ by taking Ho(Q) = Ho(Q'),
where Q' is the largest special cube containeddn[We setHy(Q) = 2 if there
is no such special cube.]

Recall the definition o8 from (2.2).

PROPOSITION2.12. Consider bond percolation i, on (Z¢, E;) with p > p..
Let O be a special cube of side n.

(&) Thereexists

(2.13) P, (Ho(Q)) < crexp(—can®).
(b) If w € Ho(Q) and f: €V (0Q)(w) — R, then
Y 2 2
L0 = FeoPanzes? [ 19 fiav.

PrROOF (@) To prove (2.13) note that
(2.14) P,(Ho(Q)°) <P,(K(Q, §)°) +P,(F(Q, £0)°).

As the event¥K (-, %) andF (-, -) are increasing, the two probabilities on the right-
hand side of (2.14) are bounded by the probabilities of these events with respect to
a Bernoulli site percolation process with probability= ¢*(kp). Using Lemmas

2.2 and 2.5,

Py(K(Q. §)) +Pp(F(Q.20°) < Qq+ (K (0. §)) + Qy* (F(Q. £0)°)
<cexp(—em?™Y) + ¢’ exp(—c'mP)
<cexp(—c'n?).

(b) This is immediate from Propositions 1.4 and 2.111
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REMARK. See Section 3.2 of Mathieu and Remy (2004) for similar bounds in
the case whep is close to 1.

Recall from Definition 2.1 thaD € 0% € 0. Leta € (0, %), let O be a cube
with s(Q) =n and set

H(Q,a)=R(Q)N{R(Q") N Ho(Q") occurs for every cub@’
(2.15) with (Q)F € 0F, 0'N Q% £ 2
andn® <s(Q") <n).

LEMMA 2.13. (a)For p > pe,
P,(H(Q,a)°) < cexp(—c1n®).

(b) f w € H(Q, @) and Qg C Q satisfiesthe condition (2.15),then €Y (Qg) C
CY(Q™M).

PrROOF (@) By (2.9) and (2.13),

(2.16) P,(H(Q,a)) < Z cn exp(—c1r?) < ¢ exp(—con®?),
proving (a).

(b) Define a sequence of cubgs, 0 <i <k, by Q;11 = QF and where we
stop at the last cub@; with Q,j C Q7. The eventsR(Q;) then forceCV(Q;) C
CV(Qi11), so thatC¥ (Qo) C €V (Q}). Since diane¥ (Q;) = diam(Q;") > n/8,
the eventR(Q) implies thate¥(Q;) c €v(Q™). O

Proposition 2.12 and Lemma 2.13 complete our results on the Poincaré
inequality in sets of the fornr®Y(Q). However, to be able to obtain bounds
(particularly lower bounds) on transition densities 6g,, we need to relate
|x — y|1 to the shortest path (or chemical) metdg on C,. This was done in
Theorem 1.1 of Antal and Pisztora (1996), but we need some minor extensions of
their results and it is desired to make this paper as self-contained as possible, so
we repeat some of their constructions.

Let k > 17 and recall the site proceg$x) = 1g(r(x)) introduced in (2.8). Set
¢’ (x) =1—@(x); since, by Lemma 2.8(by dominates Bernoulli site percolation
with parametey* (k), ¢ is dominated by Bernoulli site percolation with parameter
q'(k) = 1—q* (k). We consider the clusters of the proce$en the graphZ¢, EY).

Given a functiony’ : Z¢ — {0, 1}, we write @ (¢’) = {x: ¢/ (x) = 1}. If ¢'(x) =0,
we setC*(¢/,x) = &, and if ¢'(x) = 1, we let C*(¢’, x) be thex-connected
component of9(¢’) that contains. Let

ae(e*((p/7x)|zd)7 If (P/(x

/ _ )= 11
(2.17) Dlg’.x) = { {x), if ¢/(x)=0.
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Forx, y € Z¢ let y (x, y) be a shortest path [itZ¢, E%)] that connects: andy.
Note that ifx andy are contained in a cub@, theny (x, y) C Q. Set

(2.18) W' x, = |J D 2.
zey(x,y)

The importance of¥ comes from the following result, which is Proposition 3.1 of
Antal and Pisztora (1996).

PROPOSITION 2.14. Let k > 17, x, y € Z¢ and %, 7 € Z% be such that
x e T(x) and y € T(y). Suppose that [ for the bond percolation process n, on
(2, Pp)] du(x,y) < co. Then there exists an open path y’(x, y) that connects x
and y containedin

W= |J TT®.

ZeW (@, 5,5)
In particular, d,,(x, y) < |W'(x, y)| < Bk)4|W (¢, %, 7).
PROPOSITION2.15. Let p > p.. There exists k1 = k1(p,d) and Cap such
that if k > k4, then the following hold.
(@) Ifx,57eZ% xeT(X)andy e T (), then
Pp(IW(¢', x,y)| = CaplX — F1) < co€XP(—c3|X — F[1).
(b) If ¥ and 3 € Z¢, 1 > 0, then

IP’,,( max diam(D(¢’, 7)) > k) < c4lx — J|1eXp(—csh).
zey(x,y)

PrROOF (@) This is proved on page 1047 of Antal and Pisztora (1996).
(b) We chooseék; large enough so that'(k) < g. for all k > k;. Sinceg’ is
dominated by Bernoulli site percolation with parametemwe have

P,(diam(D(¢’, 2)) > 1) < Qy(2+ diam(C*(0)) > 1) < cexp(—c'2).

[For the second estimate above, see Theorem 5.4 of Grimmett (1999).] The bound
in (b) is now immediate. [

Now fix k1 as in Proposition 2.15 and set
(2.19) Cy =dCap(3k1)?.
Let Q be a cube with side. Forx, y € Q let

E(Q,x,y)={x,y€CY(Q") 1dev(g+)(x,y) > Cplx — yloc}.
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LEMMA 2.16. Letp > p.,let Q beacubewithsiden andlet x, y € Q. Then
P,(E(Q,x,y)) < cexp—cslx — yleo).

PROOF Let x € T(xX) and y € T(y). Supposex,y € CV(Q™"). Then by
Proposition 2.14 there exists a open paththat connects: and y contained in
W (¢, x,y). So if E(Q, x,y) holds, then eitheW’(¢’, x, y) is not contained
in 0t or

Crlx — yloo <devio+(x, ¥) < Bk)|W(g', X, ).
Thus
P,(E(Q,x,y)) <P,(IW(¢', X, 3)| = Caplx — F]1)

+P, < max dlam(éo(cp 2) > & )

Zey(X,y)
~ ~ - -~ cn
< cexp(—cl|F — §11) + clf — y|1exp(—k—)
1
< cexp(—clx — Yloo). 0

Let O be a cube with side. Set
Do(Q) = R(Q) N{dev(o+)(x,y) < Crlx = Yoo

(2.20) _
if x,y €CY(QMNQO,|x — yloo >n/12}
and
(2.21) D(Q,a) = {Do(Q") occurs for every cub@’ with (Q")* € 0,
0'N Q% +£ g andn® <s(Q') <n).
Let also

Bw(yar) = {xidy(x, y) <r}.
SinceCy is embedded iZ¢ we havew (B, (v, r)) < Coré for someCo = Co(d).

PROPOSITION2.17. Let p > p..
(@) ThereexistsP,(Do(Q)¢) < c1€Xp(—c2n).
(b) ThereexistsP,(D(Q, @)¢) < czexp(—can®).
(c) Letw e Do(Q)andx,y € QN CY(QT). Thend,(x,y) < Cyn.
(d) Letwe D(Q,a)and x,y € Q¥ NEY(Q™). Then
X = Voo < dw(x,y) < Ch((L+n") V [x — yloo)-

(e) Letw e D(Q, ), let x € 0% and let Q' satisfy the conditionsin (2.21)with
s(0)=r.Then Q' NCY(Q") C By(x,Cgr).
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PrOOF (a) By Lemma 2.16,
P,(Do(Q)) <P, (R(Q)) + D cexp(—cslx’ — y'|oo),

x/’y/
where the sum is over, y' € Q with |x’" — y'| > n/12. Hence, using (2.9),

(2.22) P,(Do(Q)°) < c(n + 1) exp(—csn/8) < c1exp(—czn).

(b) This is immediate from (a), since

n
P,(D(Q.0)) < > (3n+ 1)?c1exp(—car) < cexp(—c'n%).
r=n%

(c) This is immediate ifix — y|oo > n/12. If |[x — y|oo < n/8, then choose
7 € CY(QH) N Q with n/12 < |z — x|ex < n/4 andn/12 < |z — y|e < n/4.
SinceCY(Q™) is crossing forQ, such a choice of is possible. Thed,, (x, y) <
dy(x,2) +dy(z,y) <2CH(n/4) < Cyn.

(d) SinceD(Q, @) € Do(Q), this is immediate from (b) ifx — y|oo > n/12.
Otherwise choose the smallest possible c@bsuch thats(Q’) > n* Vv |x — y|so
andx,y e Q. We have(Q")™ c 0*. As in Lemma 2.13(b), we have(Q’) C
CY(Q") and, by (c)dev(p+)(x,y) < Cus(Q) < Ca(lx — yloo V (141%)).

(e) SinceDo(Q’) occurs, this is immediate from (c).

Recall from Definition 1.7 the definition of good and very good balls.

THEOREM?2.18. Leta € (0, %), let QO beacubeofsiden,letwe H(Q,a)N
D(Q, ) and let Cyn® < r < n. Write Q(y,s) = {z € Z%:|z — yloo < s}. Let
yeCY(QHNE®with Q(y,r + ko)™ € 0.

(a) Thereexists Cy = Cy (p, d) such that

(2.23) Cyr? < |By(y,r)| < Cor.
(b) There exist constants Cp(p,d) and Cw(p,d) such that if f:B,(y,
Cwr) — Randwriting fz = fB,(y,r), then

@28) [ (= Fason) dusCor? [ VR,
By (y.1) E(Bw(y.Cwr))

(©) If (Cun®)¥*2 < R <n and B,(y.3R) € 0@, then B,(y.R) is (Cy,
Cp,Cw)-very good with NBw(y,R) < Cpgn“.

PrROOF Recallfrom Lemma2.13(b) thate H(Q, «) implies thatCv(Q’) C
CV(Q™) for every Q’ satisfying (2.15).
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(@) SinceB,(y,r) € Q(y,r), the upper bound in (2.23) is clear. Let=
r/(2Cpg), so that 2 > n®. By Proposition 2.17(e)¢V(Q(y,s)) C By(y,Cus),
so that by Lemma 2.9,

1B, (v, )| = [CV(Q(,5))| > c15¢ > car?.

(b) Let Q1 be the smallest special cube that contaipéy,r); we have
Q7 € OT. Letry = s(Q1). By Proposition 2.17(e)¢¥(Q1) C B, (y, Cur1) and
so takingCw = 2Cy, €Y(Q1) € B,(y, Cwr). By Proposition 2.12(b),

[ u-iwtaps[ (- fendn
By (y,r) By (y,r)
5/ (f = fe)?du
CV(Q1)

<t VR <ca? [ IV £ 1Pdv.
E(CY(Q1)) E(By(y,Cwr))

(c) Thisis immediate from (a), (b) and the definition of very good ballg]

Using the estimates in Lemma 2.13(a), Proposition 2.17(b) and and Borel-
Cantelli lemma, we obtain the following lemma.

LEMMA 2.19. Let p > p..For eachx € Z thereexists M, (») With P, (M, >
n) < c1exp(—can®?) such that whenever n > M., then H(Q, «) N D(Q, o) holds
for all cubes Q of siden with x € Q.

REMARKS. 1. An inequality of the form (2.24) is called \weak Poincaré
inequality. In many situations (including this one) it is possible to derive a
strong Poincaré inequality (i.e., witiyy = 1) from a family of weak ones; see
Lemma 4.9.

2. Note that ifx € Q ands(Q) > M., thenC"(Q) C Cx.

Theorem 2.18 and Lemma 2.19 are suitable for most of our needs, but they
have the defect that the minimum size of ball inside a c@bef siden for which
the Poincaré inequality is certain to hold increases witBince (for a fixedC p)
the clusterC,, contains arbitrarily large balls in which the Poincaré inequality
fails, we cannot do better than this as long as we require it for all balls of some
size. However, we can improve Theorem 2.18 if we relax this condition, and in
Section 5 we want to connect points by a chain of very good balls of some fixed
size. To do this we need an additional percolation argument.
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We consider again Bernoulli site percolatipnon (Z¢, E,) with parametey,
whereg > ¢. is close to 1. LeD be a cube of side. Forx,y € O, A > 1, let

S, Q.4 x,y)

2,29 = K(Q, §) N {there exis’, y’ € €V(Q™)
' With |x — x'|oo <02, |y — y/|ee < n¥/5,
such tha‘d@wQﬂ(x/, y/) <Alx — yloo}

Note that this event is increasing.

LEMMA 2.20. Let O be a cube of side n and let x, y € Q. There exists
g2 =q2(d) € (., 1) and Lo > 1 so that if ¢ > g», then

(2.26) Qq(S(£, 0. 20, x,y)) < crexp(—can'’®).

ProoOF We follow the proof of Theorem 1.1 of Antal and Pisztora (1996) and
consider the dual process¢ajiven by;, =1—¢,. We view¢'’ as site percolation
(with parameteyy’ = 1 — ¢) on the lattice(Z¢, E*) and write €*(¢’, z) for the
x-connected cluster of the processthat containg. Then by Theorem 5.4 of
Grimmett (1999) we can chooge large enough so that if > ¢, then

Q(IC*(¢" 2)| = k) <exp(—c3k), k=1
So, if
G ={|C*(’,x)| <nYforall x € 0},
then (using Lemma 2.2)
(2.27) Qy(K(Q, §)° UGE) < exp(—can™®).

If |x — yloo <n¥/° andw € G, there exista’ € €Y (Q1) with |x — x|se < nl/°.
In this case we can takg = x'.

So supposer € G and |x — y|oo > n¥°. Letl =|x —yjy andy = {x =
X0, X1, ..., x; = y} be a path inZ¢, E,) of length! that connects and y—note
thaty ¢ Q. Whereas each clust€&*(¢’, y), y € Q, has diameter less thart/?,
the pathy mustintersec€" (Q"). Let V, andV, be the first and last (resp.) points
iny NCY(QT); we havelx — V,| <nl/®and|y — V,| < n?/S.

We takex” = V,, y' = V, and construct a patfi from x” to y’ in €Y (Q™). This
path followsy whenever possible, and when it encounters azsitgth ¢, = 0 it
“walks around”C*(¢’, z)—this requires at most’3¢*(¢’, z)| steps. Since» € G
this path does not leau@ ™. Hence, recalling from (2.18) the definition &f(.),

[
(2.28) NI <I+3> 1C* ¢ I <3WE . X, ) <3 W x, y)l.
i=0
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By Proposition 215(a) we have

Qu(IW(Z', x, y)| = cslx — yl1) < ceeXp(—c7|x — y[1)
(2.29) .
< ceeXp(—cgn / ).

Taking Ao = dcs and combining the bounds (2.27)—(2.29) completes the proof.
O

Letm > ko \ k1 and let{T™ (%), X € Z¢} be the tiling ofZ¢ by disjoint cubes
of sidem — 1 given by (2.7). Letry = 1/(4 + d) and define [on the spa¢&, P))
carrying the bond percolation proceg$

(2.30) Wém) = LHTm#),a)ND(T™(F),01)> iez’.

LEMMA 2.21. Thereexists Cp = Cg(d, p) > 1 such that for any k > Cg the
process ™, 5 € 74, under P, dominates Bernoulli site percolation on Z< with
parameter ¢».

PROOF Note thatlp;m) andwyﬁm) are independent it — | > 3. Using this
and the fact thaP,(H(Q,a1) N D(Q,a1)) — 1 asp 1 1, this is an immediate
consequence of Theorem 0.0 of Liggett, Schonmann and Stacey (1997).

Let Ag be as in Lemma 2.20 and I¢t be a cube of side. For xg, x1 € O and
Ce<m §n1/gset

L(Q,m, xo, x1)
= {there existry, x; € C€¥(Q™) with |x; — x| < n?/9 j=0,1,
(2.31) k with mk < 2A0|xo — x1]ee @and a path{yo, ..., yx} in (Z4, Ey)
such that™ (3;) € 0%, 0<i <k, xp € T™(Jo), x1 € T" (k)
andH (T™ (3:), «1) N D(T™(3;), a1) holds for eachi}.

LEMMA 2.22. Let Q be a cube of side n and let Cg < m < n1/°. Then if
X0 — X100 = n?/°

(2.32) P,(L(Q,m, x0,x1)) < cexp(—cin/1h).

PROOF Whereasmn is fixed in this argument, we writd (x) for T"(X).
Let n’ be such thatnn’ > n > m(n’ — 1). Let O be a (macroscopic) cube of
siden’ such thatQ c J{T (%), % € Q}. Let ; be such that; € T(%;) and let
s = |¥o — %1|1, S0 thatm(s — 1) < |xg — x1|eo < m(s + 1) ands > n?/°. Let
S=Sw™ 0, %o, %1) be the event defined from the proces” in the same
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way asS(-) in (2.25) is for¢. Then, asS is an increasing event, by Lemmas
2.20 and 2.21,

(2.33) ]p>p(§) < cexp(—c/(n/)l/g) < cexp(—cznl/ll).

Letw e S and lett) = o, ..., 5k = %1 be the open path (with respect$d™)
given by the evens. SinceS occurs we haver; — X/|o < (n")Y%fori =0,1and
k < A|X¥o — X1]oo. Choosex! € T(x}) N CY(Q™); then

i — x/loo <m(L+ |5 — &/loo) <m(1+ ()Y < n?/°.

Also, sincek < Ags, mk <msig < Ao(m =+ |x0 — x1|oo) < 2A0lx0 — X1|oe. Thus
w € L(Q,m, xg, x1) and using (2.33), this proves the lemmal

Now letas = (11(d + 2))~ 1 and let
L(Q)=H(Q,a2) N D(Q,a2) N{L(Q, m, x, y) holds for every, y € Q,

with |[x — y|eo > 1?2 andCg < m < nt/9)}.

THEOREM2.23. Let Q beacubeofsiden andlet p > p..

(a) Thereexists P, (L(Q)¢) < c1exp(—con®2).

(b) Let w € L(Q) and Cg < m < nY®. Then if xg, x1 € O N CY(Q1) with
de(x0,x1) > 3nY/4 there exist x] € €V (Q™) with d,,(x;, x]) < 3nY* and a path
¥ = (20, ...,2;) in €¥(Q™) that connects x{, and x; such that:

(i) For each 0 <! < j, the ball B; = B,(z;,m/16) is very good, with
NB; < Cym“L,
(i) Thereexists j < c3|xo — x1loo < Crlxo — x1l1.

PrROOF (a) This is immediate from the bounds in Lemma 2.13, Proposi-
tion 2.17 and Lemma 2.22.

(b) Since D(Q, a2) occurs, |xg — X1leo > cdy(x0, x1) > 1?2 and sow €
L(Q,m,xo,x1). Letx], Jo,..., yx be as in (2.31). Note that we can choose
to be within a distance:/8 of the center of the cub&&(39) andT (3;). Then, by
Proposition 2.17(d},, (xi, x}) < Cx((1+n%?) V |x; — x/]oc) < cn?/® < /4,

We now show that the clustez¥(Q;) are all inCv(Q™). Consider first two
adjacent cubeg (y;) andT (y;41). Since the everR (T (y;)) N R(T (y;+1)) OCCUTS,
the cluster®¥ (T (y;")) and €@V (T (y;,;)) are connected. Thus there exist®a
cluster ¢ which contains eacl@V(T(yf)), and so has diametdb with D >
g — X4loe = X0 — X1loo — 201/° > %nl/“. It now follows, as in Lemma 2.13(b),
thate c ¢V(Q™).

Since each evenD(Q;,«1) holds, we can find a patlr = {z0,...,z;} €
UT (y;) that connectsy and x; with length j < 2Cymk < c|xo — x1]eo. Each
point z; is in a cubeQ; for which H(Q;, 1) N D(Q;, 1) occurs, so using
Theorem 2.18(c)B; = B, (zi, m/16) is very good withNp, < Cym®t. [
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LEMMA 2.24. Let p > p. and, for each x € Z¢, let N, be the largest n such
that L(Q) failsfor some Q with s(Q) =n and x € Q. Then

(2.34) P,(Ny >n) <c1 exp(—con®2P).
PROOF This is immediate from Theorem 2.23(a)]

3. Upper bounds. We now consider a connected gragh= (G, E) that
satisfies the conditions (1.1) and (1.2). We use the notation of Section 1, and study
the transition density, (x, y) of the continuous time r.w¥; on 4. Fix constants
Cy, Cp andCy, and recall from Definition 1.7 the definition of good and very
good balls, and olNg. In this section the constants depend on the constants
Co, Cy, Cp andCy in (1.1), (1.15) and (1.16).

As in Section 2, we assume without alwapgating it explicitlythat the radiu®
of a ball B(x, R) is sufficiently large; that is, thaR > cg = co(d, Co, Cp, Cw).

All the bounds in this section hold for balB(x, R) with R < ¢, with a suitable
choice of the constants in the bounds, by elementary arguments.

We begin by investigating the on-diagonal decaygf, x). We remark that
a similar result was proved in Mathieu and Remy (2004), using an isoperimetric
inequality directly. We give another of here because it is quite short and also
allows us to estimate the “initial timel'’s directly in terms ofN .

PROPOSITION3.1 [see Mathieu and Remy (2004), Theorem 1.2]et xg € G
and let B = B(xo, R) be very good, so that N3"¢ < R. Then

2
2 2d R 8
(31) ql‘(xlvxl)f td/z for ClNB §t§mandx163(xo,§]?),

PROOF Letcz < c115, let o = c3R?/logR and suppose that< 7. Then
providedR > ¢, we haver logr < c3R? and hence that< exp(czR?/t). Fix x1 €
B(xo, 3R), write f;(x) = g;(x1,x) and letyr(t) = [ q;(x1, y)?dt = gz (x1, x1).
Note that by (1.7),

c4 1
3.2 — <Y () = , < —, r>1
Using the discrete Gauss—Green formula,
afi

v =23 fix) gix) =23 fiOLA) == an (i) = fi(»)?
X X X,y

and, in particulan) (¢) is decreasing (and continuous).
Definer; so thatrll/2 = cgN<, wherecg is chosen later, and choosg) so that

(3.3) 2. r()y () > 1
c5C6 C5Cq
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Then, ift > 11, by (3.2), ¥ (1)1 > csceN% and sor(t) > Np. If t <1, then by

(3.2) and (3.3)7(1)? < c(tlogt)¥/2 < cc4/?R?, so if the constants is chosen

small enough, we havegt) < R/18.

Write B’ = B(xo,17R/18). Letr € [11, 2], SO thatr = r(¢) € [ro, R/18], and
let B(y;,r/2),i =1,...,m, be a maximal collection of disjoint balls with centers
in B'. SetB; = B(yi,r) and B = B(y;, Cwr). Note thatB’ C |J; B; € B. If
x € BN B, we haveB(y;,r/2) € B(x,r(1+ Cw)), and so

Co(1+ Cyw)?r? = u(B(x,r(14 Cw)))
> Zﬂ veny (B r/2) = {i:x € Bf}|Cy2~r?.
Thus anyx € B is in at mostcy of the B;'.

The bounds on- above imply that eactB(y;, r) is good. So, applying the
Poincaré inequiy (1.16) to eachB; and writing f; ; = (B;)~* /s, fi, we have

BUAUEPY / IV /2
(3.4) > Cz?lr‘ZZ/Bi | fe = fril?
=C; r_ZZ/ 12— Cplr_zz,u(B)_ (/ )2.

By Lemma 1.1(b),

2 —d
Joon 7= (g0 ) [yt
while, by (3.2),¥ (1) > ca(tlogr)~4/2. So ag > c1,
Sz f2=vo- [ r2zve.

Also, sincef; has total mass 1,

) 2
Xi:u(Bi)‘1< [ 5) = (cvrf’)—l(lz /, ft) < er(Cyr!y ™t = car )™,
Combining these estimates, we obtain
(3.5) —e7y (1) 2 Cpr() 2 (3 (1) — car (™).
Now let cg = (4escg) 1 so that by the choice of=r(¢) in (3.3),
—/ (1) = cor (T2 (1) = crop ().



RANDOM WALKS AND PERCOLATION 3055

Settingp () = ¥ (1) %/ we havey/(t) > 2c10/d, from which it follows that

@(t) = ¢(t1) + (2c10/d)(t — 11) = c1at, 21 <t <ty

Rearranging, this gives (r) < ct—4/2 for 211 <t < to. Since is decreasing
it follows, by adjusting the constant that g, (x1, x1) = ¥ (1/2) < c11t~%/2 for
41 <t < R?/logR. O

We need a bound foy outsideB (xg, R).

COROLLARY 3.2. Letxge G andlet B = B(xg, R) be very good. Then
2

c1 c3R
(3.6) gi(x1,y) = a2 for C2N12;d <t=

,X1€B ,ZR andy €G.
_IogR X1 (XOQ) y

PROOF  If y € B(xo, §R), theng, (x1, y) < g (x1, x1)Y2q: (v, y)/? < ct=/2
by Propositim 3.1. If y ¢ B(xl,gR), then d(x,y) > R/9 and we use
Lemmal.1(a). O

For a very good balB, let T = c322N2 andTj, = c323R?/logR.

REMARK. Itis natural to ask if the bounds in (3.1) and (3.6) holddfer ¢ R2
rather than just < ¢cR?/logR. However, in this paper this restriction erdoes
not matter, since we ultimately apply (3.6) in the situation whegey, R) is very
good for all sufficiently largeR.

We now use the method of Bass (2002) to obtain off-diagonal upper bounds.
Following Nash (1958) and Bass (2002), we introduce the functions;ferG,
t >0,

M(t)=M(x1,1) =Y d(x1, y)qi(x1. Y)ie(y),
y

Q1) = Q(x1.1) =— Y _q;(x1,y)10gq; (x1, y) (y).
>

We can extendM and Q to r = 0 by continuity: M(0) = 0, while since
qr(x1,x1) = p(x) "t ast | 0, Q(0) = logu(x1) = 0.
LEMMA 3.3. Let B(xo, R) be very good and let x1 € B(xo, §R).
(a) We have
Q(x1.1) > c1+3dlogt,  Tg<t<Tj.
(b) We have
M(x1,1) = coexp(Q(x1,1)/d),  t=c3.
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PROOF Fix x1 € B(xp, gR). Part (a) follows directly from the upper
bound (3.6).

The proof of (b) is similar to that in Nash (1958) or Bass (2002). Letd< 1,
and setDg = {xg} and D,, = B(xg, 2") — B(xo, 2"~1) for n > 1. Then using (1.1)
to boundu(D,,), we have, fou < 2,

> exp(—ad(xy, M)y <D > exp(—a2")u(y)

veG n=0yeD,
00
< Z COZ”d exp(—a2") < C4a_d.
n=0

Now note thatu(logu + A) > —e 1% for u > 0. So, settingh = ad(xo, y) + b,
wherea < 2,

—Q(x1, 1) +aM(x1, 1) +b =) qi(x1, y)(109q: (x1, y) + ad (x1, y) + b) u(y)
5

> — Y exp(—1—ad(x1,y) — b)u(y)
5
> —e 10 exp(—ad(x1, y))u(y) = —cse Pa .
5
Since M (x1,1) > P*1(Y, # x1), using (1.7) we have/(x1,1) > 3 whent > cs.
Settinga = 1/M (x1, t) ande’” = M (x1, 1)? = a~¢, we obtain
—Qx1,t)+14+dlogM(x1,t) > —cg,
and rearranging gives (b)J
PROPOSITION3.4. Let xg e G andlet B(xg, R) be very good. Then

(B.7) cu’? < M(x1, 1) <cpt™?  for x € B(xo, §R) and TplogTp <t < T,

PrROOF For the moment we just writ@(¢) and M (¢). Set f; (x) = g:(x1, x)
and letb, (x, y) = f;(x) + f;(y). We have

0
M) =Y dexg ) g(ty L) = S dxn, )L Fi ()
y y
1
(3.8) =5 DY ay(d(x1, y) — d(x1, 0))(fi(y) — fi(x)
Xy

1
< Ezzaxylfz(y) = fr(x)]
x oy
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12 o\ 1/2
1 (i) = f())
=2 (Z ;a"yb’(x’ g )) (Z ;a"y bi(x, y) )

1
(fr(y) = fi(x)
3.9 <c
(.9) (ZZ TR F L) )
In the calculation above the use of the discrete Gauss—Green formula to

obtain (3.8) is valid since, by (1.5);(x1, -) decays exponentially. Since we have,
foru, v >0,

(u—v)?
u-+v

< (u —v)(logu — logv),

we deduce
M (07 <33 ag(fi(y) — fi(0))(log £, (y) — log f; (x)).
x oy

On the other hand [again using (1.5) and the discrete Gauss—Green formula],

0'(t) =— Z(1+ log f: ()L f; ()
(3.10) . ,
= ZZZaxy log f;(y) — log f; () (fi (») — fi(x)) = 3M' ()"

The remainder of thls proof is similar to that in Nash (1958) or Bass (2002),
except that we have to control the growthiffor smallz. SetR (1) =d~1(Q(t) —
331 — %d logr), so thatR(r) > 0if Tp <t < Ty. Define

T — 1, if R(r)>0on[1, Tg],
0= |supr < Tj:R(r) <0},  otherwise.

If Ty > 1, thenTp < T and, by (3.10),

Tt Tt
M(To):/o OM/(s)ds§21/2/o ° 0/ (s)Y2ds

To 1/2
521/2</ Q/(s)ds> T4/?

< e3Ty(Q(To) — 0(0)?

< caT*(caz1 + 1d10gTo)Y? < ca(Tg log T) 2.
If To=1, thenM(Tp) = E*d(x, Y1) < c5 by elementary arguments.
By Lemma 3.3(b) and (3.10), ifp < < T}, then

t
et 2eR® — (OO/d < pp(py < M(Tp) + 2Y/2 f 0' ()2 ds
To

1/2
< M(Tp) + (2d)1/2/t (R’(s) + %) ds.

To
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Using the inequalitya + b)Y/2 < b¥/2 4 a/(2b)1/? gives

t
(3.11) ctY2eR® < M(1) < M(To) + ct¥/? + c/ sY2R'(s) ds.
To
Integrating by parts, and using the fact thiat> 0 on [To, T;], the final term
in (3.11) is bounded by (1 + R(r)t}?). Combining these estimates, fop <
1 <Tjg,
ctY2eR0 < M (1) < c(1+ R0))tY2 + c4(Tplog Tp) Y2,
SoforTglogTg <t <Tp,
ctY2eR0 < M(1) < c(1+ R(1))rY2.
ThusR(¢) is bounded and this implies (3.7)0
As in Bass (2002) we can use the moment bounds in (3.7) to obtain off-diagonal
upper bounds og; by the method of Barlow and Bass (1989, 1992). We define
t(x,r)=inf{t:Y, ¢ B(x,r)}, xeG,r>0,
and begin by controlling the probability thafx, r) is small.

LEMMA 3.5. Let xg € G and let B(xg, R) be very good. Let clNg X
(logNg)Y2 < r < R. Then

cot

(3.12) P (r(x,r)<t) < +5 for x € B(xo, SR)and0 <t < 3T}.

NI =

PROOF  Suppose first that < R/9. Let x € B(xo, §R), A = B(x,r) U
dB(x,r) andr =t(x,r). ThenifTglogTp <t < 3T}, sinceA C B(xo, §R),
cstt? > E¥d(x, Yar) = E*(d(x, Yinr) — d(Yinr, Yor))
> E"1(r<pyd(x, Yr) — EX(EY"" d(Y;rz, Yar—1n7))
> P (t <t)r— sup E*d(z,Yz_g)

Z€A,s<t
> Pt <tr — C3t1/2.
Thus
(3.13) P¥(t <1t) < 2c3tY?)r.
Sincei < %(1+ 12), (3.12) is immediate. If < T log T3, then
P*(z(x,r) <t) < P*(t(x,r) < TglogTg) < 2c3(TplogTp)/?r 1 < 1,

providedr > ¢(TplogTp)Y/? = ¢/N¢(logNp)Y/2. Finally if R/9 <r < R, we
haver (x,r) > t(x, R/9), so (adjusting the constant) we deduce (3.12).
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REMARK. In the end we gain nothing useful by using the stronger
bound (3.13).

We need the following estimate.

LEMMA 3.6 [Barlow and Bass (1989), Lemma 1.1]Let &1, &2,...,&,, V be
nonnegativer.v. such that V > >7 &;. Supposethat for some p € (0,1), a > 0,

P(& <tlo(1,....&-1) < p +at, t>0.

Then
ant\ /2 1
IogP(ng)gZ(—) —nlog—.
p p

PrROPOSITION 3.7. Let xop € G and let B(xg, R) be very good. If x €
B(xo, 2R) and ¢ > 0, p > O satisfy

(3.14) p<R, cN%(logNp)¥?p <t and 1<Tj,
then
(3.15) P*((x, p) < 1) < co€Xp(—cap?/1).

PROOF Let r1 = c351N%(logNp)Y/2. Suppose first that, in addition,
0 < R/9. Letm > 1 be chosen later, and let=¢/m andr = |p/m]. Define
stopping times

So=0, S,'=inf{lZSi_lid(YSiil,Y,)zr}, i>1

Set§ =8 — S;-1 and write & = o (Y5, s < t) for the filtration of Y. By
Lemma 3.5,
1 cau

(316) Px(gl. > u|f/:'si_l) < E + r—z,

u>0,

providedri <r <R,u < Tlg andYs, , € B(xo, gR). Whereas! (Yo, Ys, ) <mr <
0 < R/9, we haveS,, < t(x,p) and Ys, € B(xo, gR) for 0 < j < m. Using

Lemma 3.6 and writingy = % a= C4/r2, we deduce that

log P*(t(x, p) <t) <logP* (S, <1) < 2(amt/p)'? —mlogp~t.

Simplifying this expression, we obtain

1/2
(3.17) log P*(x(x, p) <1) < —Csm<1— (CGT> )
0

Let A = p2/(2cqt). If we can choosen € N with %A < m < A and so that the
estimate (3.16) is valid, then (3.17) implies (3.15).
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If A <1, then, adjusting the constant appropriately, (3.15) is immediate.
If A > 1, then letm = LZ/\J + 1. Since thenn > 1, we haves < < Tj and
r < p < R, while the conditiornp < cgt/r1 ensures that > ry.

Finally let p satisfy (3.14) but witho > R/9. Then (adjusting if necessary)
we can apply the argument above g9 = R/9 and adjust the constang to
obtain (3.15). O

THEOREM3.8. Letxg € G andlet B(xo, R) beverygood. Let x € B(xo, 3R),
let y € G and assume that

2

R
3.18 N2+l g ;<
(3.18) vd(x,y) < t_IOgR
Then
(3.19) qi(x, ) < cot ™% exp(—cad (x, y)?/1).

PROOF LetD =d(x, y). Using (1.5) we have, sinc <1,
q1(x, y) < csexp(—2c4D?/1).
If tlogs < 2c4d~1D?, then exp—c4D?/1) < 1~4/? and we deduce that
g1 (x, y) < cst~ % exp(—caD?/1).

Suppose therefore thatogr > 2c4d~1D?. Note that this implies thay
B(x, 2R), provided R > ¢ and ¢1 in (3.18) is chosen small enough. Let
Ay ={z:d(x,2) <d(y,2)}, Ay =G — Ay, s =t/2 andp = D/2. Note that
B(x,p) C A,. Then

X —
(3.20) u(x)P* (Y =y)
=p@)P (Y, =y, Ys€Ay) +ux)P (Y, =y, Y5 € Ay).

To bound the first term in (3.20) we write
P*(Y,=y,Ys€A) =P (t(x,p) <s,Ys €Ay, Y, =Y)
(3.21) < E (L, P (Yi—r = )

<P (t(x,p)<s) sup  gu—s(z, Y)u().
z€dB(x,p),s<t

Since Iy < N3t <5 < T}, by Corollary 3.2 the second term in (3.21) is
bounded bycr~4/2. To control the first term we use Proposition 3.7. We have
o <D < R ands < Ty, while, sincer > N2d+1,

c371N4(logNp)Y2p < cN§(log Np)Y2(tlognY/? < i1 =,
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the three conditions in (3.14) are satisfied and, by (3.15),
P*(Y, =y, Y € A)) < etV 2exp(—c'D?/s).

By symmetry the second term in (3.20) equals

(3.22) p(NPY(Y, =x, Y, € Ay)

and so can be bounded in the same way as the first term. Combining these estimates
completes the proof.[J

4. A weighted Poincar € inequality. While the weak Poincaré inequality of
Section 2 is enough for upper bounds on the transition density, to obtain lower
bounds we need a weighted Poincaré inequality, which we derive using the
methods of Jerison (1986) and Saloff-Coste and Stroock (1991).

We continue with the notation and assumptions of the previous section. Fix
x0 € G, fix R e N and let B = B(xg, R) be a very good ball withRy =
Np < RY+d  For eachx,y € G we write y(x, y) for a shortest pathr =
20, ---» 2d(x,y) = y betweent andy.

We begin with a Whitney decomposition &f, which we need to adapt to our
situation. We have two differences from Jerison (1986), which both arise on small
length scales. The first—minor—difficulty is that in our discrete setting we cannot
use balls of size smaller than 1. The second difficulty is that we do not have any
volume doubling estimate for balls smaller th&g

Let (X, d) be the metric space obtained as the “cable systeng. @his is the
metric space obtained by replacing each eelpg a copy of(0, 1), linked in the
obvious way at the vertices € G. We define a measutg on X by taking to
be Lebesgue measure on each cable. See, for example, Barlow and Bass (2004)
for further details of this construction. We writé(x,r) for balls in X. Since
R € N, the boundary off is contained inG. For x € B = B(xg, R) we write
o(x) =d(x, B). Note that ifx € G, thenp(x) =d(x, G — B). We frequently use
the inequality

(4.1) lp(x) —pW| <d(x,y).

Let» > 10° v (21Cw) and let 10< K < A/10 be fixed constants. We can assume
thatRg > A.

LEMMA 4.1. There exists a sequence of disjoint balls B; = B(x;,ri), i > 1,
suchthat r1 > ro > --- and:

() Thereexists B = U2, B(x;, 2r;).

(b) For eachi, p(x;) = Ar;.

(c) If y e B(x;, Kr;), then

(4.2) A—=K)ri <p(y) =(A+ K)r;.
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PROOF This is standard. We start by choosing a l&llof maximal size that
satisfies (b) and continue, so thBf is chosen to be the largest ball contained
in B Ul_ B; that satisfies (b). To prove (a), supposé U B(x;, 2r;). Since

fi(B) < oo and ju(B;) > r;, we must have; — 0. Let #; = d(y,x;) > 2r;,
t =infz;. Then by (4.1),

p(y) < p(a) + 1 =ri + 1 < (L4 301,

so thatr > cp(y) =1 > 0, contradicting the definition oB; if r; <t.
Part (c) follows immediately from (4.1) and (b)O

We now adapt this construction to our discrete setup. Aebe defined by
rv > Ro+ 1> ryy1. For eachi < N the centern; of B, = B(x;,r;) lies on a
cable[y;, y/1, wherey;, y. € G. We label these so that is the point inG closest
to x; and we sek; = r; — d(x;, y;). Then we haveB(y;, s;) C B(x;,r;) NG and
ri Zslzrl—%>Ro

We seth1 =1 — 2K andiy = A + 2K.

LEMMA 4.2. Thesequenceof digointballs B; = B(y;, s;),1<i < N, defined
above satisfies the following statements.
(a) For eachi < N,

(4.3) Asi— 3 < p(yi) < 3(1+1) + As;.
(b) 1f x € B— N B(y:,3s:), then p(x) < A2Ro. Furthermore,

N N
(4.4) B(xo, R —22R0) € | J B(yi.3si —1) € | B(vi. A1si) € B(xo. R).
i=1 i=1
(c) If x € B(y;, Ks;), then
(45)  dasi< (A= K)si— 3= p() < 04 K)si + 3(1+2) < as;.
(d) Thereexistsa constant ¢q such that

(4.6) {i <N:x e By, Ksij)}| <c1.

PROOF Sincep(x;) = Ar; and|p(y;) — p(x;)] < % (a) is immediate.

(b) Letx € B. Thenx € B(x;, 2r;) for somei and S0p(x) < 2+ M. If
i > N,thenr; <14+ Rgand soo(x) < (2+A)(1+ Rg) < A2Rg, which implies that
d(x0,x) > R — A2Rg. S0, if p(x) > A2Rg, thenx € B(x;, 2r;) for somei < N. We
then havel(x, y;) < d(x, x;) +d(x;, y;) < 2s; + 3. Since each; > 3, this implies
thatx e U B(y;, 3s; — 1).

The final inclusion in (4.4) is immediate from (a) and the first follows from the
inequalityd (xg, x) + p(x) > R.

(c) Thisis immediate from (a) and (4.1).
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(d) If x € B(yi, Ks;), then by (c),0(x) > A1s; andB; € B(x, (1+ K)c1p(x)),
wherecz = (1 + K)/A1. Also, u(B;) > Cvs,-d > Cvkglp(x)d. So writing I =
{i:x € B(y;, Ks;)}, we have

4.7)  Cocgp()? = u(B(y,c2p(x))) = Y w(B;) = |I|Cy a3 p(x)",
iel

which proves (4.6). O

Let
Bi = B(yi, 3s:), 1<i<N.
Letn = 21 and set
B! = B(y;,10s;)  if s; > nRo.

If s; <nRo, we call B; a boundary ball and defineB; to be the connected
component ofB(y;, 2As;) N B which containgy;. (While balls are connected, the
intersection of two balls need not be.) We relabel the billso thatxg € B1, and
B; is a boundary ballifandonly i/ +1<i < N.

LEMMA 4.3. (a)Thereexists B = (L1 B)) U (U/Y 441 B))-
(b) There exists a constant ¢4 such that for any x € B,

(4.8) i <N:xeB} <c1.

PROOF.  (a) Supposer € B but x ¢ |J; B. Then p(x) < A2Ro = t. Now
choosex’ € y(x, xg) with 1 + 7 > p(x’) > ¢t and choosex” € y (xg, x") with
d(x',x")=1. Thenx’ € B(y;, 3s; — 1) for somei, sois; < p(x”) <t < A2Ro.
Hence

MR
R0<Si§ﬂ<nR0,
Al

so thatB; is a boundary ball. Now/(x, y;) <d(x,x’) +3s; —1<1t+ 3s; <
2)s;, which proves that € B(y;, 2As;). The same argument proves that each
y € y(x,x) is also inB(y;, 2\s;). Hencex is connected ta’ (and soy;) by a
path inB(y;, 2As;) N B, and sax € B/'.

(b) SinceK > 10, we have a bound ofi : x € B(y;, 10s;)}|. So it is enough
to control|I’|, wherel’ = {i : x € B(y;, 2As;), s;i < nRo}. The argument is almost
exactly the same as in Lemma 4.2(d):i/l1€ I’, thens; < nRo andd(x, y;) <
2)28; < 2honRo. SOB; C B(x, cRp) and we use volume bounds as in (4.7

For each define

F (@) ={j:y o, yi) N B(yj, Ksj) # 2},
FOry={jeF@).r<s;<2r}.
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LEMMA 4.4, (a)If j € F (i), thens; > 1r15"s > s
(b) If j € F (@), thend(yi, y;) < (K +22)s;.
(c) Thereexists | (i,r)| < c1Co/Cy.

PROOF. Let j € #(i), so that there exists € B(y;, Ks;) Ny (xo, y;). Since
x € y(xo0, i), d(x,y;) = d(xo0,y) — d(x0,x) < R — d(xp,x) < p(x). Thus
using (4.5),
Aisi < p(yi) <d(x, yi) + p(x) <2p(x) < 2225,

which proves (a).

For (b) note thatl(y;, y;) <d(yi,x) + Ks; < p(x) + Ks;.

From the estimates above,jife ¥ (i,r), theny; € B(y;, 2(K + A2)r), so that
B(yj,sj) € B(y;, 3Arr). Hence

c2Cor’ = > w(Bj) = |F (i, r)|Cyr,
JeF ,r)
proving (c). O

COROLLARY 4.5. Thereexists |F (i)| < c1l0g(R/s;).
PROOF The proof follows easily from Lemma 4.4(c)

Now let
Fr(H={i:jeFO)}
Fr,rn)={i:jeF@),r <s <2r}.

LEMMA 4.6. Thereexistsa = a(d, Co, Cy) > Osuchthatforeachl< j <N
we have, for r > Ry,

> n=ensp()

ieF*(j,r)

ProOOF This argument runs along the same lines as the proof of Lemma 5.9
in Jerison (1986). Note first that we can assumeithats;, since ifi € F*(j,r),
then by Lemma 4.4(a) we haye< 4s;.
Write d B = {y :d(xo, y) = R}. Fix j. Using (4.5) we have(y;) < Azs;, SOwe
can choose € B with d(y;, z) < Aps;. Sett = (4+ K + 4rp)s; and foru > 0,
let

A(w)=B(z,t+2u)N{x € B:p(x) <u}.

Suppose that € *(j, r). By Lemma 4.4(b)d(y;, y;) < (K + X2)s;, so that
d(yi,z) < (K + 2x2)s;j and

B{ C B(z, (K + 242+ 4)s;).
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By (4.5), p(x) < 2xor on B}, soB; € A(2)or). Whereas the ballB; are disjoint,

(4.9) > w(B) < p(Arar)).
i€F*(j.r)
Now fix # > 0 and choose a maximal set of poifts, ..., z,,} € dB such that
B(zx, u) are disjoint and{(z, zx) <t + u for eachk. We next show that

m
(4.10) Au/8) < | Bz, 3u).

k=1
Letx € A(u/4), sothatd(x, z) <t +u/2 and there exists € 9B with d(x,7) <
u/4. Henced(z',z) <t + 3u <t +u. Whereagzy, ..., z,,} is maximal, we must

haved (7', zx) < 2u for somek. Thusd (x, zx) < 2u + %u < 3u, proving (4.10).
For eachz; we haved(xo, z;) = R by construction. Choose; on y (xo, z;)
such that

su<d(zj,wj) < 5u;
this is possible provided & u < R. We haved (wy, wy) > d(zx, 1) — 3u > 3u,

so the ballsB(wy, %u) are disjoint. The choice ofv; implies that p(wy) =
d(wk, zx) > 3u and therefore

(4.11) B(wi, fu) N Au/4) = 2.
We also have
(4.12) B(wg, 3u) S Au).

To check this, ifx € B(wy, su), then p(x) < d(x,zx) < 3u, while d(x,z) <
d(x,z¢) +d(zx, 2) < Su+1 +u < 1+ 2u. By (4.10), we deduce that

m

(4.13) i(Au/8) <3 (B, 3u)) <mCo(3u)?,
k=1

while by (4.11) and (4.12),

m

(4.14) (A ) = w(A/B) + Y w(B(wr, zu)).
k=1

So, providediu > Ro,

(4.15)  u(A@) = u(A@/D) +mCy(Gu)! = A+ cou(A@w/b).

Note that the constairt here depends only ofip, Cy andd.
Now let Rg < r < 4s;. Choosen € Z as large as possible so thdt4< 4s;.
Then

(4.16)  u(A@i2r) < A+ cD) " 1(A@024"T)) < (L+c) " 1(A20)).
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Seta = log(1 + c1)/log4. Then(1 + c1)" = (s;/r)*. We haveu(A(2t)) <
w(B(z,5t)) < Co(5t)¢ and alsqu(B)) > Cvs;’ > ct¢. Combining this with (4.16)
and (4.9) completes the proof of the lemmal

PROPOSITION4.7. For each1l< j < N wehave

. (B <R>
F <cplogl — ).
iefz*(j)l ONMB}) =09 Sj

PROOFE We can write
0
F = F*G.27"s).
n=-1

Hence using Corollary 4.5 and Lemma 4.6,

Y IFOIBH= Y, Y IFOInB)

i€F*(j) n==lieF*(j,27"s;)

<c Y 10g(2"R/s;)2"* u(B;j) < cu(Bj)Iog(R/sj). [
n=-1

Set

R 2
(4.17) p(y) = (/\Tp(y)) , yeG.

For any setA, let i(A) = [,pdp and fa = a(A)~1 [, fedu. For an edge
e = {x, y} defineg(e) = ¢(x) A ¢(y). Note that ife € E(B), then@(e) > R~2.

THEOREM4.8. Let B = B(xq, R) beverygood and let Ry = Nz < RY/@+2),
Then

(4.18) [0 = fwPerdu=car® [ 9 Pga.
B E(B)

ProoFr We follow the proof in Saloff-Coste and Stroock (1991), but need
some extra care close to the boundaryof
Forl<i <N set
i\ B, M+1<i<N.
Whereas 10ys; < 3is; — 1, we haveB; C B for eachi < M, while Bf € B by
definition if M + 1 <i < N. Note that for any balB(y;, cs;) with ¢ < %/\, we
have, from (4.17),

3
(4.19) o(x) < Zigo(y) forall x, y € B(y:, csi).
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Let P; be the best constant in the weighted Poincaré inequality
(4.20) [ (@ = Fo Yo =p; [ 19725
B E(B})

Then for j < M, as eachB” is good, we have, using (4.19F; < CCPS If
M < j < N, then, using Corollary 1.5(a),

(4.21)  P; <2u(B})* sup o) < c(CorRE)?(LRo)? < ¢/ RE2,

X yeB” pLy

Fix for the moment a balB,,. We define a sequence of balls = B(w;, t;),
1<i<L,,with D1 =BiandD,, = B,, as follows. SupposP4, ..., Dy_1 have
been defined. Let; be the point iny (xo, y,) N U= D} which is furthest fromxo.
(If D; = Bj, thenD; = B! andD; = B;/.) If zx = y,, thenwe letD, = B,,, L, =k
and stop. Suppose that # y,. If zx € B(y;, 3s; — 1) for somei, then we take
D, = B; and continue. (We choose the largest siidhhis i is not unique.) Note
that D, must be distinct fronDq, ..., Dy_1.

Finally, supposey # v, andz; ¢ U B(y;,3s; — 1). Thenp(zx) < A2Rp and
p(yn) < d(yn, z) + p(zx) < 2x2Ro. Hences, < 21217 Ro < nRo, so thatB, is
a boundary ball. We also haygw;_1) < 3t_1 + p(zx), SO thatD;_1 is also a
boundary ball. In this case we tak® = B,,, L,, = k and stop. Note that eadby
isaballin{B;: je ¥ (n)},sothatL, <|F (n)|.

We now show that

(4.22) D,_1UD,C D/ ;NDY, 2<k<L,.

First, if zx # y, andzi ¢ U B(y;, 3s; — 1), then bothD;_1 and D; are boundary
balls, and? (wi_1, wr) < 3f_1+ A2Rg, from which (4.22) follows easily. Now let
7k € B(wg, 3t —1). Thend (wi_1, zk) < 3tx_1 and sad (wr_1, wi) < 3fp_1+ k.
Sincez, € B(wj, 4t;) for j =k —1,k, by (4.5),

Aotk V tk—1) = p(zk) = Atk A tg—1).
Sinceiz/A1 < 10/9 this implies (4.22).
Let f1= f(By). Then
| (= Ao du
Lo—1

2
(423) = f ( *) = 1+Z (f(D) ~ <DZ+1>)) () dp

L,—1

<Ly [ (1) =AY du+Ly Y (FD) = F(DL ) AE).

i=1
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To control the terms in (4.23) note that

N = = 2

AB)(F(DY) — f(D{1)

A(B)

= (F(DY) = F(DL.) pdu
(DY N D q) Joinpy,, "

(B, "

- ,zl(D,’(/ﬂD,/c’H)(/Dg(f F(Dp) qodu+/k+l [ = F(D{4) @dﬂ)

A(By)

—Dp)
Using (4.19) and Lemma 4.4(a),

B _ 9On)(By) _ C,M(B”) - C,M(B/)

f(D}) = @w?u(Dy) ~ (D)~ w(Dy)

Combining these estimates we obtain, from (4.23),

([, = 7D ot 250505 [ (7 = Dl a)Podn)

Dy 1) I}y

fB (@ - APemdp<cdF il Y 2 (( )) (f FBN)pdpu
4.24) ero )
M 2
F \Y du.
< (z)|]§m (5 J/E(B;)' fPRpdp

Summing inequalities (4.24) gives

/B(f(X) — f_l)zfp(x)d,u

<CZ|f(t)|M(B) S u(B, >—1Pf IV £ 25 dv

JEF ()

N !
e M(Bi) ) 2~
_CZ< > |f(l)|M(B}))P, /E(B;)Wfl Gdv

J=1\ieF*(j)
N R

<c) Iog<—>Pj / IV f12@ dv.
j=1 Sj E(Bj)

If j <M, thenP; < cs2Cp and so since? log(R/t) < c¢R? for t > 0 we have
Pjlog(R/s;) <cCpR2.If M+1< j < N,thenRg <s; <nRoandP; < cR3 "2,
and so sinc&®{ ™ < R,

log(R/s;) P; < cRZ**?1og(R/Ro) < cR?.
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So since any edge i8 is contained in at mostof the B,
- 2 N
[0 - iewdnzccr®2Y [ 19 Ppav
B i1V E®D

<ccoR? [ 19 Pgav.
E(B)
which completes the proof of the theoreni.]

We can also take = 1 in (4.17) and use the same argument to obtain a (strong)
Poincaré inequality from the family of weak ones. The conditiomvgris slightly
weaker than in Theorem 4.8, since we h#/e< cRgd in (4.21).

LEMMA 4.9. Let B = B(xo, R) be very good and let Ry = N < RY/(d+2),
Then

. 32 2 2
rrllln/B(f(x) a)®dp <ciR /E(B)Wfl dv.

REMARK 4.10. The weight functiorp in (4.17) is similar to that in Saloff-
Coste and Stroock (1991). Fabes and Stroock (1986) and Stroock and Zheng
(1997) used weight functions which are supported on the whole space. In
particular, Stroock and Zheng (1997) used

Yr(x) =exp(—d(xo,x)/R),  xeZ’,
and proved a weighted Poincaré inequality of the form

(4.25) min [ (f = @®pdi < @R [ 19 PP
a Jzd E4
It is interesting to note that this fails for percolation clusters wiien3.

To see this, fix a pointg € G and R > 1 large enough so tha&(xg, R) is
good. If we look far enough fromg we can/P,,-a.s., find a cub@ of side R with
0 C Cx and such tha is only connected to the rest 6f, by one edgéx1, x2}.
We takex1 € O€, x2 € Q and writes = d(xg, x2); we can assume>>> R. We have
e—(s-‘rdR)/R < v/ < e—S/R on Q

Let f =1. Then asf ¥ < RY,

and

min [ —@Pyrdn= [ (/= frduz} [ vrduzde R
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On the other hand,
RZ/ IV £1%9 dv = R%Y (x2) = R%e /R,
Thus (4.25) cannot hold with a constaatindependent oR.
5. Lower bounds. In this section we use the weighted Poincaré inequality

and the technique of Fabes and Stroock (1986) to prove lower bounggfor).
We continue with the notation and assumptions of Section 3.

PrRoPOSITIONS.1. Let xp € G and let B; = B(xg, Rlog R) be a very good
ball with Ny < RY/@+2) Thenif x1 € B(xo, RI0gR),

(5.1)  gi(x1,x2) > c1t™?  forxp€ B(x, R) and §R? <1 < R?.

PROOF Let x3 be such thatxq, x2 € B(x3, R/2). Write Ry = RIogR, let
p = R/6 and letT = coR?. Let x4 € B(x3, R/2). We apply Proposition 3.7 t81
with 1 = T. SinceTj = cRflogR1 > ¢'R?logR, the third condition in (3.14)
holds, while the other two are evident. Sa ik T, then

Y @ik x)pu(x) = P4(Y, ¢ B(x1, 2R/3))
x€B(x3,2R/3)¢

(5.2) < P*(t(x4, R/6) <1)
< P™(t(x4,R/6) <T)
<cexpd'R%/T) < 3,
providedc; is chosen small enough. We can assumediagi%.
Let B = B(x3, R), setp(x) =d(x, B) for x € B, and set

R 2
o0 =(LEL) L yeGandro= Y ponco.

R xeB

Then we have
(5.3) c3R? < Vo < u(B) < caR.
Write u(s, x) = us(x) = g5 (x4, x), s >0 andx € G. Set
wis.y) =wi(x) =logVou(s. )., H(®=Ha.n) = V5" [ pwidp.

Then

ow 10
Vo' = [ o=t dn= [ o-Titd —Z t( )£u,<x>u<x>
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Hence, writingf = 1g¢/u,;, we have
VoH' ()= =3 D D~ axy(f(0) = F() (e (%) — s @)
xeGyeG
Now we use the elementary inequality [see Stroock and Zheng (1997)]
~(5 - <)o - = e Adrogh - logar? ~ 5= 2
b a 2 2(c Ad)

which holds for any strictly positive, b, c,d. If f(x) > 0 and f(y) > 0, then
x,y € Band

—(f &) = F ) (s (x) — us (w))

_ () e(y) B
= <u,<x> m(y))(“’(") ue10)

(e —9()?
2(p(x) A ()
If both x € B andy € B¢, thenf(x) = f(y) =0, while if x € B andy € B¢, then

—(f ) = FO) (ur(x) — ur () = —‘P<x><1‘ Z,Eﬁi)
We therefore have

1
(5.4) VoH'(t) = 3 37 3 any (9 () A g(y) (wi () — wi ()?

1
= S(0) Ap(y) (I0gue (x) - logu, (y))?

xeB yeB
1 (p(x) — p())?
55 - = y————————
69 4%%“ o) A e(y)
1 u: (y)

The sums in (5.4), (5.5) and (5.6) are call8g S> and S3, respectively. To
bounds$> note that ifx ~ y with x, y € B andk = p(x) A p(y), thenk > 1 and
(90 =) _ 2@k +D? 9
p(x) Ap(y) k2 T R%

So
S2> —3R7?Y" u(x) = —3R?p(B) = —cR™?Vj,
X€B
Also, if x € 3;(B), thenp(x) = R~2, so that

S3=— Y Y ayR?=-R7?Y ux)=—cR V.
xeByeB¢ xXeB
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So the termsS, and S3 are controlled by bounds of the same size, and we deduce,
using Theorem 4.8,

H/(t) = levo_l Z Z axy((p(x) AN (p(y))(wt(x) - wt(y))z - CSR_2
xeByeB

> —csR ™2+ c6R2V5 1 Y (wi(x) — H()) p(0)(x).
xeB
Letl = [%T, T1. We use only (5.7) for € I. Note that by Theorem 3.8 we have
Vou(x) < c7 fort € I. Sincev — (logv — h)?/v is decreasing ofe?t", co0), we
have

(5.7)

Z (wy (x) — H(l))zﬁf’(x)u(x)

xeB
_ « (log Vou, (x) — H(1))?
(5.8) = ;B e (V) (X (x)
| — H(1))?
> 09— 20 Y e Voup).

X€B: Vouy (x)>e2+H®
Then sincep(x) > § on B(x1, 2R/3),
> @(0)u (x)p(x)

xX€B: Vous (x)>e2t+H®

= Z OX)us(x)(x) — Z P )us (x) p(x)

xeB x€B: Vou; (x)<e2tH®

>3 Y wp@) =Y @)V e O u )
x€B(x1,2R/3) X€B

> %(1— > m(x)u(x)) —ZHH0 = fg — O,
x€B(x1,2R/3)¢

where we used (5.2) in the final line.
Combining the estimates (5.7), (5.8) and (5.9) we deduce that

TH'(1) > —cs+ cg(loger — H () (3 — €271 O).

(5.9)

Since(a — h)? > 112 if h < —a, this implies that there existg such that
(5.10) TH'(1) > c10H (t)? providedH (r) < —c, rel.

If sup,c; H(t) < —co, then (5.10) implies thalf (T') > —c11, while sinceH (1) +
csT~ Yt is increasing, if sup, H(t) > —cq, then H(T) > —cg — cac5. We
therefore deduce tha&f (T') > —c12 and it follows that

(5.11) H(t) = H(xa, 1) > —c13, T <t<R>
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To conclude the argument, we have, far x> € B(x3, R/2),t € [T, R2,

Vogar(x1, x2) = Vot Y Vogs (x1, ¥) Vogi (x2, ) u(dy)
y

> Vot Vogi (1. ¥) Vogi (x2, ) (0 (dy).
yeB

So, using Jensen’s inequality,

log(Vogz: (x1, x2)) = Vot Y (log(Vog: (x1, y)) + 109(Vog: (x2. )¢ (1) 11 (dy)
yeB

= H(x1,t) + H(x2,t) > —2c13.
Using (5.3) completes the proof of (5.1)

LEMMA 5.2. Let x,y € G. Suppose there exist » > 1 and a path x =
20,...,2Zm = y such that for eachi =0, ...,m, B(z;,rlogr) is very good with

d+2
Ngs riogr <7 Then
(5.12) Gmr (X, y) = c(mr) "% exp(—cim /).

PROOF This uses a chaining argument similar to that in Proposition 3.7.
Choose pointst = wg, w1, ..., wy = y along the path{zo, ..., z,}, such that
dwi—1,w;) <r/3and 3n/r <k <4m/r.Lets =mr/k, SO tha.t%lr2 <s< %rz.

Let B; = B(w;, r/3). We haved(x’, y') < r whenever’ € B;_;1 andy’ € B;. So
by Proposition 5.1,

gs(x',y) = cas TP = can(B)t,  x'€Bj1,y €B;.
So P¥' (Y, € Bj) > c3 and therefore

k—1
P (Yis =)= P*(Yjs€Bj,1<j<k—1 Y =y) > (1‘[ 03>03S_d/2- 0
j=1
THEOREM 5.3. Let B = B(xg, RlogR) be a very good ball with Np <
RY@+2 et d(xo,x1) < 3RIogR and x, y € B(x1, R). Then

(5.13) gr(x, y) = cit =% exp(—cad (x, y)?/1),
provided

(5.14) NAEHD <t < g2

and

(5.15) NoHa(x, y) <t.
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PROOF Let D =d(x,y). If D?/t <1, then set = t1/2 and apply Propo-
sition 5.1 toB1 = B(x,rlogr). SinceD <r <R, By C B and Np, < Np. So
Ngjz < N4+2 < (%2 — | the hypotheses of Proposition 5.1 hold and we deduce
thatg, (x, y) > ct=%/2.

For the caseDZ/t > 1we use Lemmab.2. Let=z,...,zp = y be a shortest
path between andy, and let =¢/D. By (5.15),r > N2, whiler <%2 <R,

so thatB; = B(z;, rlogr) € B and henceVit? < Ng*2 < r. So the hypotheses
of Lemma 5.2 are satisfied and we obtain (5.13)1

REMARK. The restriction in (5.15) is weaker than the hypotheses in the upper
bound of Theorem 3.8, where we were able to use global upper boungs on
to restrict to the case whenwas close taD/2. The lower bound argument for
cD<t< cDN§+d requires the existence of a chain of small balls (of size roughly
r = t/D) on which the lower bounds of Proposition 5.1 are validr £ O (1)
so thatr >~ D, then we can just use a path in the graph and (1.4) to deduce that
g:(x,y) = e~ ~ exp(—c’D?/1). However, ifD = t17¢, then we need ~ ¢ > 1
and elementary bounds are not enough.

For a very good balB, the volume condition or the Poincaré inequality fails for
some subballs of size< Ng. However, these may hold for enough small subballs
so that we can still use Lemma 5.2, and in Section 2 it is proved, in the percolation
context, that it is possible to find such a chain. Eix > 1 andCr > 1.

DEFINITION 5.4. A ball B = B(xg, R1) is exceedingly good if:

1. We haveB is very good withV %™ < R
2. For eachxq, x2 € B(xg, R1) with d(x1, x2) > Ri/ﬂ' andCg <r < Nﬁ*" there
exists a pathy1 = zo, . .., zx = y2 with the following properties:
(@) B; = B(z;, rlogr) is very good withN 3™ < r;
(b) k < Crd(x,y);
(©) d(xj,yj)<R* j=12

REMARK 5.5. If B is very good andN§+d <r < R/logR, then taking
m =d(x,y) andzo,...,z, t0 be a shortest path between and x», we get a
path satisfying 2(a)—(c) above, with = x;.

THEOREM5.6. Let B = B(xg, Rlog R) be exceedingly good and let x1, x> €
B(xo0, R). Then there exist constants ¢; (depending on Cg and C ) such that

qr(x1, x2) > c1t~ % exp(—cad (x1, x2)%/1),

(5.16)
RY2v d(x,y) <t <R2
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PROOF LetR1= RIogR andD =d(x1, x2). By Theorem 5.3 it is enough to
consider the case whersatisfies the condition in (5.16) but fails (5.14) or (5.15).
Sincet > RY2 > R > N3“*?  (5.14) must hold. So we just need to consider
the case whe <t < Nﬁ*dD. Note that this implies that
D2 t R1/2 1/4
(5.17) D>" >~ >"__>R]

p le;(d—i-Z) R%/E’
In particular, D?/r > logr so that, for this range of and D, terms of the
ordert—%/2 can be absorbed into the constaatn (5.16%.

Letr =1/(2Cp D), so that2Cr)~1 < r < (2Cr) N5, We have to consider
two cases. If 1< r < Cg, then we use (1.4) directly. Set=¢/D, so that
c3 <s < ca, and we obtaigp, > eP > exp(—cD?/1).

If Cg <r, then we use the fact tha is exceedingly good so that there
exists a pathyo, ..., zx that satisfies conditions 2(a)—(c) of Definition 5.4. We
haveD <k < CpD, so that2Cp) 1t < kr < %t andk/r < 2C2D?/t. Applying
Lemma 5.2,

(5.18)  qir(z0, 21) = clkr) "% exp(—csk/r) > ct~ V% exp(—c D?/1).

By (5.17), D%/t > Ry/* > d(x1,y1) V d(x2, yo). Let D; = d(x;. z;). By (5.17),

D; < Rim <t/8. Using (1.4),

(5.19) m, (x},2;) > exp(—cem ;) > exp(—ceD?/1).
Letu = D1+ Do+ kr. Thendt <u < 3t. By (1.4),
q:(x0, X1) = qu(x0, X1)qs—u (X1, X1)

> 4Dy (X0, 20)qkr (20, k)G D1 Tk, X1)Gr—u (X1, X1).

Using the bounds (5.18) and (5.19), and Proposition 5.1 to control the final term,
we obtain (5.16). O

THEOREM 5.7. Letd > 2, and let Cg, Cy, Cp and Cy be constants. Let
g = (G, E) bean infinite graph that satisfies(1.1)and let x € G.

(a) Suppose that there exists Rg = Ro(x) such that B(x, R) is very good with
Nf;((’ffRz)) < R for each R > Rg. There exist constants ¢; = ¢;(d, Co, Cy,Cp,Cw)
such that if r satisfies

(5.20) t>RS®,
then
(5.21) gi(x,y) < cit™ % exp(—cad (x, y)%/1),  d(x,y) <t,
and

(5.22)  qi(x,y) > st V2exp(—cad(x, )2/1),  d(x,y)¥2 <.
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(b) If in addition there exists R = Rg(x) such that B(x, R) is exceedingly
good for each R > Rg, then the lower bound (5.22) holds (with constants
depending in addition on Cr and Cr) whenever t > Rg and t > d(x, y).

PROOF Fixy e G and letD =d(x, y). We need to check that we can fikd
so that we can apply Theorems 3.8, 5.3 and 5.6. We begin with (a) ket?/3,
so thatR > D; by (5.20) we have® > Rg. Let B = B(x, R); thenN§(2+d) <R.

To apply Theorem 3.8 and obtain (5.21) we need (3.18) to hold, but this is clear
sincer > D¥? > D and

cR?

~logR’

To obtain (5.22), we use Theorem 5.3. SilRe= D we havey € B(x, R). Let
R1=RIogR. SinceR1 > Ry, B1 = B(x, R1) is very good withNginrd) < R;.50

N123§2+d) <RIlogR < R¥?=1 < 1R?
and (5.14) is verified. Also,
CDNIZ;fd < c/t2/3Ri/3 < 2BRY2 ¢

so (5.15) holds and we obtain (5.22).

(b) We now takeR =1t, so thatR > Rg. Then D <t = R and we apply
Theorem 5.6 taB(x, R1) with R1 = RlogR. Condition (5.16) is easily verified
and the bound in (5.22) is immediatel]

We now prove an elliptic Harnack ineditg for graphs satisfying the conditions
of Theorem 5.3. The approach is the same as in Section 5 of Fabes and Stroock
(1986), but we need an additional argument in Theorem 5.11.

LEMMA 5.8. Let B = B(xp, RlogR) be a very good ball with Nﬁ(dﬂ) <R.

Let d(xo, x1) < 3RIOQR, let Bo= B(x1, R) and let ¢2(x, y) be the density of the
process Y killed at the exit time = of Y from Bg. Then

(5.23) ¢%x,y) = c1t™?, x,y € B(x1,3R/4), coR? <t < R2

PROOF Whereas this argument is quite standard [see, e.g., Lemma 5.1 of
Fabes and Stroock (1986)], we only give a sketch.X5ore By we have

q2(x,y) > ¢ (x, ¥) — EX Lz qi—r (Yr, ¥)
>qi(x,y) — sSup supgs(z,y).

0<s<rze€dBop

(5.24)
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Let§ € (0, §), d(x,y) <8R and¢ = §2R2. Using the estimates in Theorems 5.3
and 3.8 in (5.24) we obtain, providednds = 0r satisfy conditions (3.18), (5.14)
and (5.15),

q2(x,y) > t_d/2|:cl exp(—c) — sup cz0~? exp(—C4/(962))].
0<h<1

[If s is too small to satisfy (3.18), we use Lemma 1.1.] Hendeidf chosen small
enough, we obtain

(5.25) q2(x,y) > cst =2,
A chaining argument now gives (5.23)]
DEFINITION.  Write B(x, R) = B(x, R) U 8.(B(x, R)). A function % : B(x,
R) — R is harmonicon B(x, R) if
Lh(x) =0, x € B(x, R).
We write Os¢h, A) =sup, h —inf, h.

The following oscillation bound follow from (5.23) just as in Lemma 5.2 of
Fabes and Stroock (1986).

LEMMA 5.9. Let B = B(xo, RlogR) be a very good ball with N,§<"’+2> <R.

Let d(xo,x1) < 3RI0gR, Bo = B(x1, R), B1 = B(x1, 3R) and h be harmonic
in Bg. Thereexists c1 € (0, 1) such that

Osdah, B1) < (1—c1) Osdh, By).

PROOF By a linear transformation we can assume gin= 0, maxg, h = 1
and g hdp > $u(By). Thenifx € By, by Lemma 5.8,

hx) > /B 4%(x, MR (dy) > SR~ pu(By) > cs.
1
So00s¢h, B1) <(1—c3). O

We also need an intermediate range Harnack inequality.

LEMMA 5.10. Let B = B(xp, RlogR) beavery good ball with N§<d+2) <R.
Let d(xg, x1) < %R log R, Bo = B(x1, R), and h be nonnegative and harmonic
in Bg. Thenif d(x1, y) < R/2and r = RY/2,

sup i <cp inf h.
B(y,r) B(Yvr)
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PROOF Let By = B(x1,3R/4). We can assume ipgfr = 1. The local
Harnack inequality for graphs implies thatif~ y andx, y € By, thenh(x) <
Coh(y). Henceh(x) < exp(caR), x € By. We extendh to G by takingh = 1
outsideBy. Let r be the first exit time o¥ from B1. Whereas:(Y;) is a martingale
on|0, tg], for x € B(x1, R/2),

h(x) = E*h(Y;rr)
= E*15,(YDh(Yiae) + E*Lpe (YD) h(Yr)
= E"1p,(YOh(Y)) + E*1g, (Y) Lz <i) (R(Yz — h(Y)))) + E*Lpe (Y)h(Y7)

< /B gr(x. () die(y) + eXpicaR) P (T <1).
1

Using Proposition 3.7, the final term above is bounded-$gxp(caR — caR?/
t) <cgif t < Reg/cy.
Now letd(z, x) < RY? ands = At with A > 1. Then ifA0 < c¢2/ca,

h(z) = E*1p,(Y)h(Ys) — E*Lz<nh(¥s)

> f 45 (2. Y)h(y) dju(y) — expcaR) P* (T < 5)
B1

> fB 45 (2 (Y dit(y) — ca.
1
Also, if u = R?, by Lemma 5.8,

h) > / 0% h(y) du(y) = / csu2h(y) du(y).
B1 By
Hence

2h(z) > / (csR™ + gz, )R () du(y) — ca.

B1

Using Lemma 1.1, and Theorems 3.8 and 5.3, we can chiosedhat

csR™ +q,(z,y) = coqi(x,y),  y€ By

It follows that 2 (z) > ce(h(x) — ¢3) — c3, SO that [agi(z) > 1] we havecgh(x) <
(24 c3(1+cp))h(z). O

THEOREM 5.11. Let B = B(xo, RlogR) be very good, with N3“*? < R.
Thenif d(xo, x1) < 3R10gR, Bo = B(x1, R), and h: Bo — R is nonnegative and
harmonicin By,

sup h<cy inf h.
B(x1,R/2) B(x1,R/2)
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PROOF We begin in the same way as in Fabes and Stroock (1986). Let
a3 =1/4. From Lemma 5.9 it follows that there existssuch that

(5.26) Osdh, B(y,r)) < (2¢)"1Osdh, B(y, Ar))  if R® <r, Ar <R/S8.

We normalizeh so that ming (., r/4)h = 1. Letxz € B(x1, R/4) satisfyh(xp) = 1.
By Lemma 5.8, ify € B(x1, 3R/4) andB(y, s) is good,

1=h(x2) 202/

R™n(y)du(y) > c3(s/R)? inf h.
B(y,s) B(y,s)

Thus

d

R
5.27 inf h<c3l—.
( ) B(y,s) = sd

Now let M, = ZCgle’d anda, = Re™".
Suppose that there exists € B(x1, R/2) with h(y,) > M,. Then, by (5.27),
Osd, B(yr,ar)) > 3 e". So, provided

(5.28) a, > R*® and Aa, <R/8,

it follows that Os¢/, B(yy, Aa,)) > 2¢%c3 e = M, ;1. Hence there exists, 1
with d(yr, yr+1) < Aa, With h(y, 1) > M, 11.

Chooserp so thaty"® Aa, < R/8. Then if sug,, g/ah > My,, the argument
above implies that we can construct a sequengerg < j < k with y; €
B(x1,R/2) andh(y;) > M. Herek is the largest such that (5.28) holds. We
have My = 2c3%ek? = cRYa ¥ > c4RY1=*9. The local Harnack inequality in
Lemma 5.10 implies that

(5.29) inf  h > c5caRIE3),
B(yr,RY/?)

while (5.27) implies that

(5.30) inf  h<cytRY?
B(yr,RY?)

Sinceas < % this gives a contradiction iR > c¢g. So we deduce that

sup h<M, inf h.
B(x1,R/%) B(x1,R/4)

The Harnack inequality forB(x1, R/2) € B(x1, R) now follows by an easy
chaining argument. [
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6. Random walksand percolation. In this section we tie together the results
of Section 2 and Sections 3-5 and prove Theorems 1-5. We recall the notation for
bond percolation: We take = {0, 1}%¢, write 7., e € E4, for the coordinate maps
and takeP, to be the probability o2 which makes the, i.i.d. Bernoulli r.v. with
meanp. We assume thagt > p. so that there exist®q with IP,(€20) = 1 such
that for w € Qg there is a unique infinite cluste®(w). As in the Introduction
we takeY to be the Markov process with generatéy, given by (0.1), and write
g’ (x, y) for the transition density of as given by (0.2). Writé€ P}, x € C) for
the probability law ofY .

PROPOSITIONG6.1. Let p > p.. There exists Q21 € Q with P, (21) =1 and
S, x € Z4, such that S,(w) < co for each w € Q1, x € Coo(w). There exist
constants ¢; = ¢; (d, p) suchthat for x, y € Coo(w), t > 1 with

(6.1) Sx(w) Vdy(x,y) <t,
the transition density ¢, (x, y) of Y satisfies
(6.2) c1t™?exp(—cady(x, )2/1) < q®(x, y) < cat~ % exp(—cady, (x, y)?/1).

PrROOF Let the constant€y, Cy, Cp, Cw, Crg and Cr (depending on
d and p) be as in Section 2 and, as in Section 2,d@1 = 11(d + 2). Let
(Ny, x € Z%) be as in Lemma 2.24 and 1€; = {w: N,(w) < oo for all x}. Let
w € Q1 andx € C(w). We setS, = Rg(x) = N, and check the hypotheses of
Theorem 5.7.LeR > Rg, B=B,(x,R) C Q = Q(x, R) andn = 2R = s(0Q).

Whereasw € L(Q) C D(Q,a2) N H(Q, a2), applying Theorem 2.18(c) we
deduce thaB is very good withNz < Cpn®2 < RY/(A0d+2)),

Now let Cr < r < N4™2 and letxy, x2 € B with d,,(x1, x2) > RY*. Whereas
D(Q, ap) holds,d,,(x1, x2) > $n¥/4. Choosen so thatn /16 = |rlogr | and apply
Theorem 2.18(b) to deduce that there exists a path= zo,...,
zj = x,, that satisfies condition (b) of Theorem 2.23. We need to verify (a)—(c) of
Definition 5.4.2. Part (a) holds sind& = B, (z;, rlogr) = B, (z;, m/16) is very
good andNp, < mY/@+d < y1/d+2) For (b) we havej < c2233/x1 — X2]00 <
dc2.233d0(x1, x2). Part (c) is easily verified ak, (x;, x]) < 2n¥/4 < RY4. ThusB
is exceedingly good.

So we can apply Theorem 5.7 to deduce that the bound (6.2) holds-f&g
andy such that/(x,y) <¢. O

PrROOF OFTHEOREM 1. Given Proposition 6.1, all that remains is to replace
the chemical distancé,(x, y) by |x — y|1. Whereas|x — y|1 < d,(x, y), the
upper bound in (0.4) is immediate. For the lower bound, we tékeas in
Proposition 6.1, and let, y € C», andt > S, with |x — y|1 < t. Choose the
smallest cube? of sidern that containst andy and withn > §,. SinceQ is
very good, by Propositin2.17(d) we havér — yloo < Cr(n*2+1) V |x — y]eo- If
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|x — y]|oo = 14 n%2, then it follows thatd, (x, y) < c|x — y|«, SO the lower bound

in (0.4) follows. If |x — y|eo < 14 n%2, thend,,(x, y) < n*2. So because> S,,
bothd,, (x, )2/t and|x — y|3/t are less than 1, and again the lower bound in (0.4)
holds. O

PROOF OFTHEOREM2. Fixx,yeZ?, letD = |x — y|1 and fixt > D. Write
A ={x,y € Cu}. Sincecs <P, (x,y € Cx) < 1, it is enough to prove (0.6) for
E,(g(x,y)14). LetS, be asin the proof of Theorem 1 andtet=¢/2. Then

(6.3) E, (g7 (x, 1) =Ep(q(x, WLalis,<ny) + Ep(g° (x, Y)Lalis, >n})-

By the proof of Theorem 1, ifv € A and S, (w) < n, theng;’(x, y) satisfies the
bounds in (0.4). So the lower bound in (0.6) is immediate since

Ep(g7"(x, »)1a) = Ep(q;"(x, 1) LaL(s, <ny)
(6.4) > coexp(—c7D?/1)(Pp(A) =P, (AN {S, = n}))
> cgexp(—c7D?/1)(cs — cgexp(—t*P)).

So if t > cg, then the final term in (6.4) is greater thérand we obtain (0.6). If

t < cg, then with probability at leastsp? there is a path of length in G, that
joins x andy, and using (1.4), we deduce that on this evefi(x, y) > c” > ¢
So (0.6) holds in this case also.

To prove the upper bound, recall that by Lemma 1.1 we always have (when
t > D) that

q°(x, y) < cexp(—2c10d, (x, y)?/t) < cexp(—2c10D?/1).

If exp(—c10D?/1) < t~4/2, then the upper bound in (0.6) is then immediate. If not,
then by Theorem 1 we have

Ep (g2 (x, Y)Lal(s, <n)) < cr1€Xp(—c12D?/1),
so it remains to control the second term in (6.3). We have, provigech s,
Ep(q2(x, )1al(s,>n}) < Pp(Sy > n) < cexp(—ct*?P)
<t <1742 exp(—c10D?/1).

If + <c13, then (asD < t) we obtain the upper bound in (0.6) by taking the
constant; large enough. [

PrROOF OF THEOREM 3. The proof follows easily from Theorem 5.11 and
Proposition 6.1. [

PROOF OFTHEOREM4. (a) Thisis awell-known consequence of the Harnack
inequality. Leth : Coo — (0, o0) be a global harmonic function. Replaciadpy ch
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if necessary, we can assume> 1 everywhere and that there existg with
h(xo) < 2. Applying Theorem 3 taB,,(xg, R) € B, (x0,2R) C Cx, WhenR is
large enough we deduce that $UR,. k) h < 2cq, so thath is bounded.

Let B, = B(xg,2"R). Then Theorem 3 implies the oscillation inequality
infp, h >cy* sups, ,, h, sothat Ose, B,) < (1—c; ) Osdh, B,11). By iterating

we deduce that Osk, B,,) > (1 — cl_l)‘" Osdh, Bp) and sincér is bounded, this
implies that Os@:, Bg) = 0. Thush is constant on any large ball and so is constant.
(b) This is also standard [Lemma 5.2 of Fabes and Stroock (1986)]. Lemma 5.8
gives lower bounds on the transition probabim?/“’(x, y) for Y killed outside a

ball B(xo, R) for all sufficiently largeR. Let F be an event in the tail field and set
f(s,x)=P,(F|Y;=x). Then 0< f <1 andf satisfies

(6.5) fo0= [ gl censerdn. s <t
Fix xg € @, 1o > 0 and set

A(R) = B(xo, 3R) x [t0, to + R?].
Let g(s, x) satisfy (6.5) with min2g) g =0, maxs2r) g = 1 and

/ gt + 4R2, y)u(dy) = 1.
B(x0,R/2)

Thenif (s, x) € A(R),
0,w 2
s, x) > ’ X, to+4R*, d
g(s,x) /B(xo,R/z)q’0+4R2—S( »)g& (1o y)u(dy)

> —/B(xo,R/Z) c2R™g(to + 4R?, y)u(dy)
> %czR_d,u(B(xo, %R)) > 3.
Hence there exis& > 0 such that
Osd f, A(R)) < (1—8)0Osd f, A(2R)),
and by iterating, it follows thayf is constant. [

PROOF OF THEOREM 5. The proof is immediate on integrating the
bounds (0.4) and using (1.6) to conteglx, y) for [x — y[1>¢. O
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