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Let IT be an ergodic simple point process B and letIT* be its
Palm version. ThorissorAhn. Probab. 24 (1996) 2057-2064] proved that
there exists ahift coupling of IT andIT*; that is, one can select a (random)
point Y of IT such that translatin@l by —Y yields a configuration whose
law is that of IT*. We construct shift couplings in whicki and IT* are
functions ofI1, and prove that there is no shift coupling in whithis a
function of IT*. The key ingredient is a deterministic translation-invariant
rule to allocate sets of equal volume (forming a partitionksf) to the
points of IT. The construction is based on the Gale—Shapley stable marriage
algorithm JAmer. Math. Monthly 69 (1962) 9—-15]. Next, lef" be an ergodic
random element df0, 1}Zd and letl"* beI conditioned o (0) = 1. A shift
coupling X of ' andI'* is called anextra head scheme. We show that
there exists an extra head scheme which is a function dfand only if
the marginalE[T"(0)] is the reciprocal of an integer. When the lawIdfis
product measure artl> 3, we prove that there exists an extra head schgme
satisfyingE expc|| X || < oo; this answers a question of Holroyd and Liggett
[Ann. Probab. 29 (2001) 1405-1425].

1. Introduction. LetII be a translation-invariant ergodic simple point process
of unit intensity orR?, with law A. Let IT* be the Palm version dil, with law A*.
(Recall that ifIT is a Poisson procesE* is a Poisson process with an added point
at the origin.) We call elements & sites and we call integer-valued Borel mea-
sures oriR? configurations (so IT and IT* are random configurations). For a con-
figuration and a sitey we write T~ for the translated configuration given by
(T~ () =7(- + y). A (continuum) extra head scheme for IT is anR?-valued
random variable’ such that the point procegs ' IT has lawA*. Thorisson [13]
proved (in a more general setting) that for driyas above, there exists a contin-
uum extra head scheme. We may regard an extra head scherskeifésaupling,
that is, a couplingI1, IT*, Y) in which IT, IT* have respective lawa, A*, and
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32 A. E. HOLROYD AND Y. PERES

IT* = T~YI1 almost surely. Anonrandomized extra head scheme is a shift cou-
pling in which Y (and therefordT*) is almost surely a function ofl. We shall
prove the following.

THEOREM 1. For any d > 1 and any translation-invariant ergodic simple
point process IT in R?, there exists a nonrandomized extra head scheme.

Liggett [8] proved Theorem 1 in the cagk= 1. In contrast, we have the
following.

PrROPOSITION2. Letd > 1 and let TT be any ergodic trandation-invariant
simple point process on R?. For any shift coupling of I1, IT* where IT = T IT*,
the trangdlation variable Y cannot be a function of TT*.

Given that extra head schemes exist, it is natural to ask how to construct an
extra head schemé from the configuratiorfl. The existence proof in [13] gives
little clue how to do this; on the other hand, in [8], an explicit construction
for a nonrandomized extra head scheme is givendoe 1. Our proof of
Theorem 1 will be based on the following construction. Toupport of IT is
the random sefIT] = {x € R¢: T1({x}) = 1}. A balanced allocation rule for I1
is a measurable functio@:R¢ — [I1], defined fromII in a deterministic,
translation-invariant way, such thdtﬁl(y) has Lebesgue measure 1 for each
y € [IT]. (We shall give a more careful definition later.) From a balanced allocation
rule ¥, we shall obtain a nonrandomized extra head scheme by t&king/r; (0).

We shall construct a balanced allocation rule using an approach based on the
Gale-Shapley stable marriage algorithm [2]. The resultlng is illustrated in
Figure 1. Its properties are studied in detail in [4]. Related questions involving
stable matchings of point processes were studied in [6].

Consider now the following discrete setting. Lietbe a translation-invariant
ergodic measure on the produgtalgebra of{0, 1}Zd. We call elements of¢

sitesand elements d, 1}Zd configurations. LetI" be a random configuration with
law 1. We say that a site is occupied if I"(x) = 1 andunoccupied if I'(x) = 0. Let

p be the marginal probability that the origin is occupied, and asspra€0, 1).
Let u* be the conditional law of* given that the origin is occupied. For a site
and a configurationy we denote byl ¢y the translated configuration given by
(T~y)(y) = y(y + 2). A (discrete) extra head scheme for T is a Z¢-valued
random variablé such that the random configurati®m*T" has lawu*. An extra
head scheme is calle@nrandomized if it is almost surely equal to a deterministic
function of the configuration.

THEOREM3. Letd > 1andlet 1 beanergodic trandation-invariant measure
d
on {0, 1}%2°.

() For all d, u, there exists an extra head scheme.
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Fic. 1. A balanced allocation rule applied to a two-dimensional Poisson process (here on a
torus). The points of the process are the centers of the concentric circles. Each center is allocated
exactly one unit of area, indicated by concentric anulli in two colors. (If you are looking at
a greyscale image, color versions are available at www.math.ubc.ca/"holroyd/stable.html and via
arXiv:math.PR/0306402.)

(i) For all d, there exists a nonrandomized extra head scheme if and only if
the marginal probability p isthe reciprocal of an integer.

(i) For all d,pn and any shift coupling of I',I'* where I' = TXT*, the
trandation X cannot be a function of T"*.

Thorisson [13] proved Theorem 3(i). The “if” part of (ii) follows from [8],
where appropriate nonrandomized extra head schemes are constructed. We shall
present a construction which gives extra head schemes faf, al] and also
extends to arbitrary countable groups in placeZ8f When p is rational our
construction will yield an extra head scheme which is a deterministic function of
and an independent roll ofiasided die, whera is thenumerator of p expressed
in its lowest terms.

Consider now the special case whgnis product measure with parameter
p € (0,1). Itis natural to ask how large the random variapke| must be when
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X is an extra head scheme (whdre| is the Euclidean norm, say). This was
essentially answered in dimensiods= 1,2 by Liggett [8] and Holroyd and
Liggett [5].

THEOREM 4 ([8], d = 1 and [5],d > 2). Let u be product measure with
parameter p on Z<.

(i) For all d, there exists an extra head scheme X satisfying
PUIX| > r) <er™/?,

wherec =c(d, p) < oo.
(i) For d =1, 2, any extra head scheme satisfies

EllX (92 = oo.

It was also shown in [5] that for alld > 1, any extra head scheme must
involve theexamination of sites at distance at leagtfrom O, whereP(Z > r) >
c'(d, p)r=%/2. In the light of the above results, one might guess that any extra
head scheme must satisfy| X ||/2 = oo for d > 3 also. In fact, this is very far
from the truth.

THEOREM 5. Let u be product measure with parameter p on Z<. If d > 3,
then there exists an extra head scheme satisfying

Eexp(C||X|¢) < oo
for some C =C(, p) > 0.

(An analogous result also applies to continuum extra head schemes for the
Poisson process it > 3.) The above result is the best possible up to the value
of C. Indeed, ifX is an extra head scheme, thgxi|| must be at least as large as the
distance to the closest occupied site to the originPgpX || > r) > exp(—C'r?)
for some C’ = C’'(d, p) > 0. The proof of Theorem 5 relies on a result of
Talagrand [11] on transportation cost.

Consider now the case wheh= 1 andu is an ergodic translation-invariant
measure or{0, 1}Z. The following natural measure-theoretic construction of an
extra head scheme is due to Thorisson [12, 13], and is also presented in [8]. For two
measureg, S on {0, 1}Z, definea A B to be the measure whose Radon—Nikodym
derivative with respect te@ 4 8 is the minimum of the Radon—Nikodym derivatives
of o and B with respect tar + 8. Define measuras,, ., x» on {0, 1}% forn > 0
as follows:

oo =L, Po=u*
and forn > 0:

Xn =0n N T"ﬁn’ Opt+1 =0y — Xn» Bn+1=PBn — T_an-
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Let X™M€aS5phe such that
P(X™e3= T € A) = x,(A).

It follows from results in [12, 13] thak ™5 < 0o and thatX™¢2Sis an extra head
scheme. However, the above description gives little clue about how to explicitly
constructx M¢3Sfrom the configuration”.

In contrast, the extra head schemes described in [8ffowolve an explicit
construction ofX from I', and this construction enabled computation of tail
behavior. Liggett [8] commented that such solutions were “completely different”
from X™M€aS gbove. In fact, it turns out that they are identical wheris the
reciprocal of an integer. Moreover, we can give a simple explicit construction
of XM€aSfor generalp.

LetI" have lawu, and letU be a Uniforn{0, 1) random variable, independent
of I'. Definex"ak py

n
X" =minln>0:3>"(1-p7ra) <U{.
i=0
(See Figure 2.)

PROPOSITIONG. X™MeaSand xWak gre extra head schemes, and the joint laws
of (X™eaS 1) and (XxWak I") areidentical.

It is easy to check thax"@K is the same as the extra head scheme constructed
by Liggett [8] whenp is the reciprocal of an integer.

4 — 2oL =p7'T (i)

2 — / ¥ N\
y 1 L}
1 — N N\
U [ . L4 \\I_
n: 0 1 2 3 4 6 8 9
Tn): 0 0 1 0 0 1
1/2 1/2

FIG. 2. Anillustration of the construction of XWalK, The walk PN p~1r (i) isplotted as
afunction of n. In this example p = % so the walk takes an up-step of 1 for an unoccupied site and
a down-step of % for an occupied site. Conditional on this configuration, X walk takes the values 2, 9
each with probability 3.
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Our main tool will be a bijective correspondence between extra head schemes
and balanced transport rules (to be defined later). In the special case of
nonrandomized extra head schemes, the correspondence becomes simpler, and
can be expressed instead in termsalfanced allocation rules. We describe this
case below.

Let u be a translation-invariant ergodic measure{Onl}Zd, and suppose that
the marginal probabilityp is the reciprocal of an integer. Aligcrete) balanced
allocation rule for u is a measurable mag@ which assigns tq.-almost-every
configurationy and every sitex a site®,, (x), such that the following properties
hold. First, we have(®,)~1(y)| = p~1y(y) for u-almost-ally and ally; that is,
almost surely the range dfr is the set of occupied sites, and each occupied site
has exactlyp—1 pre-images. Second; is translation-invariant in the sense that if
®, (x) =y, thendrz, (T?x) =T y.

ProPOSITION7. Let I" have law w, and suppose p is the reciprocal of an
integer. If ® is a balanced allocation rule for w«, then the random variable X
given by

1) X = &r(0)

isa nonrandomized extra head scheme for . Conversely, if X isa nonrandomized
extra head scheme, then there exists a w-almost-everywhere unique balanced
allocation rule @ satisfying (1).

Suppose thap = % and consider the natural special case of a nonrandomized
extra head schem¥ such thatX = 0 whenevei (0) = 1. We call such aiX lazy.
This corresponds via Proposition 7 to a balanced allocationduile which for
every occupied site we have®r(x) = x almost surely. Such @ amounts to an
translation-invariantatching rule of occupied sites to unoccupied sites, in which
unoccupied site is matched to occupied siter(x). ThenX equals the origin if
it is occupied, or the partner of the origin otherwise.

We shall use Proposition 7 and its generalizations to deduce results about
extra head schemes from results about allocations. The reverse implication is also
potentially useful. As an illustration, we note that the following are consequences
of Theorem 4(ii) combined with our results.

COROLLARY 8. Let u be product measure on Z¢ with parameter p the
reciprocal of an integer. If d = 1, 2, then any balanced allocation rule ® for u
satisfies

E[[®r(0)]|*/% = oc.

We shall also state a continuum analogue of Corollary 8.
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COROLLARY 9. Let IT, IT" be two independent Poisson processes of unit
intensity in RY and consider any translation-invariant random perfect matching
between the points of IT and the points of IT'. If d = 1, 2, then the total distance L
frompointsin [0, 1)¢ to the points they are matched to satisfies

ELY? = 0.

Consider the extra head schem@®2K in Proposition 6 whend = 1 and
p=2. Note X"k is |azy, therefore it corresponds to a matching rule. It is
easy to see that the matching rule has the following simple description. Wher-
ever the sequence.,I"(—1),I'(0), "(1),... has an adjacent pair of the form
(T'G@), '+ 1) =(0,1), match them to each other. Then remove all such pairs
from the sequence and repeat indefinitely. This matching was used earlier by
Meshalkin [10] in the context of finitary isomorphisms.

Whend = 1, one might guess that™¢@Sis optimal in the sense that any other
nonnegative extra head scheme stochastically dominates it; Srinivasa Varadhan
asked whether this was the case (personal communication). The answer is no.
For a counterexample, let be product measure with parame%rWherever the
configuration contains a sequence of the fqing),...,I'G + 3)) = (0,0, 1, 1),
the allocation rule (Meshalkin matching) correspondingkt$'k = xMeasapove
has®r (i) =i+ 3 and®r (i + 1) =i + 2. Consider modifying the matching rule so
thatinsteadbr (i) =i +2 and®r (i + 1) =i + 3 in this situation. By Proposition 7
this results in an extra head scheiesatisfyingP(X’ < 2) > P(XM¢385< 2), so
XM€aSwas not stochastically optimal. On the other hand, one may similarly show
(by induction) that no nonnegative extra head scheme can be strictly stochastically
dominated byx"“ak. Hence there is no stochastically optimal extra head scheme.

The article is organized as follows. In Sections 2 and 3 we establish correspon-
dences of extra head schemes with transports and allocations, and prove Proposi-
tion 7 and Corollaries 8 and 9. In Sections 4 and 5 we construct allocations and
transports, and prove Theorem 1 and Theorem 3(i) and (ii). In Section 6 we prove
Proposition 2 and Theorem 3(iii) regarding shift coupling in the reverse direction.
In Section 7 we prove Proposition 6 about one-dimensional constructions, and in
Section 8 we prove the tail estimate Theorem 5.

2. Discrete equivalence. In this section we state and prove an equivalence
between discrete extra head schemes and balanced transport rules, of which
Proposition 7 is a special case.

Let G be an infinite countable group with identityand letu be a measure on
the producto-algebra of{0, 1}¢. Elements ofG are calledsites and elements
of {0,1}¢ are calledconfigurations. A site g acts on other sites via left
multiplication g : x — gx, and hence on configurations \igy)(x) = y (g ~1x),
on measurable functiong :{0,1}¢ — R via (gf)(y) = f(g~1y), on events
A C{0,1)¢ viagA = {gy:y € A} (Whencel[gA] = g1[A] where1[A] denotes
the indicator of A), and on measures viggu)(f) = u(g~1f). We suppose
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that u is invariant and ergodic under the action 6f. We write p for the
marginal probability

p=n(l{)=1).

We assume that & p < 1, and we writen™ for the conditional law of" given
ri=1:

W) =p(l e NG =1).

Let X be a discreté;-valued random variable on some joint probability space
with T", with probability measurd® and expectation operatdE. We call X
a (discrete) extra head scheme for . if X 1T has lawu* underP.

A (discrete) transport rule for  is a measurable functio® which assigns to
u-almost-every configuratiosr and every pair of sites, y a nonnegative real
number®, (x, y), with properties (2), (3) as follows. We think 6éf, (x, y) as the
amount of mass transported fronto y when the configuration ig, and we write

©,(A,B)= Y O,(x,y).
xeA,yeB
We require the following properties. First,

2 Orx,G)=1

for u-almost-alll” and all y (i.e., each site sends out exactly one unit in total).
Second@ is G-invariant in the sense that

(3) ®gy(gxagy):®y(x’y)

forall y and allx, y,g € G.
We call a transport rul® balanced if it satisfies in addition

4 Or(G,y)=p T (),

for u-almost-alll” and allx, y (i.e., unoccupied sites receive nothing, all occupied
sites receive equal mass, which must then necessarity be

We are now ready to state the equivalence result..Filet ® be a transport
rule, letX be aG-valued random variable and suppose that

(5) Or(i,x) =P(X =x|I')

for u-almost-alll" and allx (i.e., conditional on the configuration, the identity
distributes one unit of mass according to the conditional distributioki)ofNote
that by summing ovex and using (3), (5) implies (2). For any, (5) determines
® uniquely up to &-null event, and conversely for ay, (5) uniquely determines
the joint law of X, I.

THEOREM 10. Supposethat X and © arerelated by (5). Then X is an extra
head scheme if and only if ® is balanced.
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PROOF OFPROPOSITIONY. Thisis animmediate special case of Theorem 10,
whereG is Z4 under addition, and we identify a balanced allocation dileith
the balanced transport rule given 8y, (x, y) = 1[®, (x) = y]. O

PROOF OF COROLLARY 8. Immediate from Proposition 7 and Theorem 4.
O

We shall make use of the following lemma.

LEMMA 11 (Mass transport principle).Let m: G x G — [0, oo] be such that
m(gx, gy) =m(x,y) forall x, y, g. Then

Y omx,y) =) m(y,x).

veG veG

For a proof see [1] or [3].
The proof of Theorem 10 is based on the following lemma. Léte the total
mass received by the identity:

J=JT)=0r(G,i).

LEMMA 12. Suppose X and ® are related by (5). For any nonnegative
measurable function f on {0, 1}, we have

E(f(X7'D) =E(J D) f(ID).
[In the aboveJ (T") f (") denotes ordinary multiplication.]

PROOF OFLEMMA 12. The following device will be useful. Enlarging the
probability space if necessary, we may assume ha a deterministic function
of I' and an independent Unifori® 1) random variabldJ/; thus, X = &(T", U).
(U represents any “additional randomization” in the choic& p§ee [5] for a more
detailed explanation.)

We have the chain of equalities

1
E(f(X~')) = / dp(y) /0 du f(E(y.u)"ty)

1
= [ano) [ au Y tter0 =177 )

xeG
(6) - / du(y) 3 0,60 F(x~1y)
xeG
7) - / du(y) 0, (G. 1) f ()

=E(J(T) f()).
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In (6) we have used (5), and in (7) we have used Lemma 11 with, y) =
EOr(x,y)f(y™11). O

PROOF OF THEOREM 10. Suppose thab is a balanced transport rule. For
any nonnegative measurabfe by Lemma 12 and (4) we have

E(f(X~) =E((D) f(D) = pE(T () f(I))
=E(f(M)I"() =1) = n*(f).

So X ~II" has lawu*, thusX is an extra head scheme.

Conversely, suppose thatis an extra head scheme. We must check ehéd
balanced. SincéX ~1I")(i) = 1 almost surely, it is immediate from (5) and (3) that
every unoccupied site receives zero mass, so it is sufficient to check that every
occupied site receives maps! almost surely. By (3) it is enough to check this
for i, so we must check that undet we have/ = p~1 almost surely.

Since X is an extra head scheme, for afiywe haveE(f (X 1I")) = u*(f).

Note also thaE(Jf) = pE(JfIT () =1 + (L — p)EJSIT({) =0) = pu*(Jf)
[sinceJ =0 on{I'(i) = 0}]. Thus Lemma 12 yields

w*(f) = pu*Jf).

Applying this first with f = 1 and then withf = J shows that undep*,
the random variablg has meanp~—! and variance 0; hence,*-almost-surely
we have/ = p~t. O

3. Continuum equivalence. The equivalence between extra head schemes
and balanced transport rules in Theorem 10 has an analogue in the continuum
setting, which we shall state (without proof) at the end of this section. Since the
full continuum result is somewhat technical and is not required for any of our main
results, we shall instead prove the special case involving nonrandomized extra head
schemes and allocations (the analogue of Theorem 7).

Let IT be a translation-invariant ergodic simple point process of intensity 1
onR?, with law A. Elements ofR? are calledsites. Integer-valued Borel measures
on R? are calledconfigurations. Let £ denote Lebesgue measure BA. For
any z € R?, we define the translatioi?, which acts on sites vid<x = x + z,
on functionsh:R? — R via (T*h)x = h(T~*x) and on configurations via
(T*m)(h) = (T %h).

Let IT* be the Palm version ofT, with law A*. The following is a standard
property of the Palm process. For any bounded measurable fungtiam
configurations and any Borel sBtC R?, we have

(8) E/B FTSTDII(ds) = L(B)E f(IT%).

Note that the integral on the left-hand side can be writtep asg;np f (T °T1).
See, for example, [7] for details.
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A (continuum) allocation rule for IT is a measurable functio& which as-
signs toA-almost-every configuratioms and every site: a sitew; (x), and which
is translation-invariant in the sense thatdif, (x) = y, then Wz, (T*x) = T*y.
(It is important that we require the preceding statement to holdoconfigu-
rationss; in particular, it is thus understood théty:, is defined if and only if
W, is.) Let £ denote Lebesgue measure Bfi. An allocation rule¥ is called
balanced if A-almost-surely for each e [T1] we have£(lpﬁl(s)) = 1, while
LW R\ [M]) =0.

THEOREM 13. Let ¥ be an allocation rule for I1. The random variable
Y = ¥(0) is a nonrandomized extra head scheme for IT if and only if W is
balanced.

We shall prove Theorem 13 via Lemma 14. L&t be an allocation rule.
For z € Z4, define the unit cubed, = z + [0, 1)? < R?. For s € R4, write
Jn(s) = LYg(s)) andIl = 7-¥nO),

LEMMA 14. For any z € Z¢ and any nonnegative measurable f, we have

Ef(To) =E /Q Jn(s) £ (T THT1(ds).

PROOF The translation-invariance af andW¥ implies thatIT, has the same
law for eachx € R<. Indeed, writeIT’ for T=*I1. Then ¥ (x) = x + ¥ (0),
so that7~¥nW11 = 7-¥wO(11') = 11, which has the law of1o. Therefore,
E f(ITg) = Ef(IT,) for any f. Fix f andx, and define

m(z, w) = E fQ FIOWR(X) € QulL(dx).

Applying the mass transport principle (Lemma 11) yields

Z m(z, w) = Z m(w, z).

weZd weZd

The left-hand side equalsf (Ig), and the right-hand side equals

EfRdf(T_‘I’“(")H)l[llln(x) € Q.1L(dx) = E/Q Jn(s) f(TIIds). O

PROOF OoF THEOREM 13. If W is balanced, then Lemma 14 immediately
gives that¥(0) is an extra head scheme. For the converse, apply the lemma to
f=landf(r)=J,(0). O

The following is the continuum analogue of Corollary 8.
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COROLLARY 15. Let IT be a Poisson process of unit intensity on R?. If
d =1, 2,then any balanced allocation rule ¥ for IT satisfies

E|Wn (0|72 = oo.

PROOE One possible proof is to deduce the result from Theorem 13 together
with Theorem 2(B) of [5], which is the continuum analogue of Theorem 4(ii).
Alternatively, we may proceed via discrete transports as follows.

Denote the unit cub&. = z + [0, 1)¢. Let ¥ be a balanced allocation rule
for I, and define a discrete configuratibrby

['(z) =1AT1(Q2),

so that the law ofl" is product measure with parameter-le—1 on Z<. Now
define® by

Or(x, y) = E(L[¥*(Qy) N Q4]IT).

It is elementary to check tha® is a balanced transport rule fdr, so by

Theorem 10 there is an associated extra head scherités furthermore easy to
check thatE | U (0)[|9/2 < oo implies E|| X ||4/2 < oo, so the result follows from
Theorem 4(ii). O

PROOF OF COROLLARY 9. The required statement may be formulated as
follows. Let M be a simple point process &f x R¢, invariant under the diagonal
action of translations dR?. We write M (A, B) = M (A x B), and suppose that the
marginals given by[1(-) = M(R%, ) andIT'(-) = M(-, R%) are two independent
Poisson processes of unit intensity Bfi. [If M has an atom atx, y), it means
that the pointc of IT" is matched to the point of I1.] It is sufficient to prove that
ford =1, 2, any suchM must satisfy

©) [ [ 15 = y197211x € QalM @, dy) = oc.
As in the preceding proof, we define
I'(z) =1ATI(Qy),
and
Or(x,y) =E(M(Qx, Qy)IT).

It is easy to check that the law df is product measure of?, and that® is
a balanced transport far. Equation (9) may then be deduced from Theorem 10
and Theorem 4(ii). O

Finally in this section we shall state without proof the full continuum analogue
of Theorem 10. Aransport is a nonnegative -finite Borel measure onR¢ x R?.
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We writew (A, B) = w(A x B), and think of this as the mass sent fragnto B. The
marginals of w are the measures(-, R?), w(R%, -) onRR<. Let IT be a translation-
invariant, ergodic simple point process @&f with law A. A (continuum)
trangport rule for IT is a measurable maf2 which assigns toA-almost-every
configurations a transpor€2,, with the following properties. The first marginal
Qn (-, ]Rd) is Lebesgue measurk-almost-surely, an®? is invariant in the sense
that Q77 (T*A, T*B) = Q; (A, B) for all n,z, A, B. A transport ruleQ is
balanced if the second marginal satisfis-almost-sure (R¢, A) = I1(A) for
all A C R4,

Let Y be anR?-valued random variable and |6t be a transport rule, and
supposd® admits conditional probabilities such that
(10) M(O) =P(Y € A|TD).

dL(")

Here a specific version of the Radon—Nikodym derivative must be used, to ensure
that it is defined everywhere and translation-invariant. By the Lebesgue differenti-
ation theorem (see [9], Theorem 2.1.2), the upper density limsyp(B(x,r))/
L(B(x,r)) is a suitable version of the Radon—Nikodym derivativg'd L.

THEOREM 16. Suppose Y and Q2 are related asin (10). Then Y is an extra
head schemeif and only if 2 is balanced.

We omit the proof of Theorem 16, which proceeds along the same lines as that
of Theorem 10. The proof involves no new ideas, but more technical notation.

4. Discrete allocations and transports. Let 4 be an ergodicG-invariant
measure o0, 1}¢. In this section we shall prove the following.

THEOREM17. For any G, u, there exists a balanced transport rule.

THEOREM 18. For any G, there exists an integer-valued balanced transport
ruleif and only if p isthereciprocal of an integer.

THEOREM19. For any G, u, there exists an extra head scheme.

THEOREMZ20. For any G, there exists a nonrandomized extra head scheme if
and only if p isthereciprocal of an integer.

PROOF OF THEOREM 18, “ONLY IF” PART. In an integer-valued transport
rule, the unit of mass sent out by a site all goes to a single site, while in a balanced
transport rule, occupied sites receive mass. Hencep~—1 must be an integer.

O
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PROOF OFTHEOREM 3(i), (i) AND THEOREMS19, 20. Theorems 19 and 20
follow immediately from Theorems 17 and 18 together with Theorem 10. [A non-
randomized extra head scheme corresponds via (5) to an integer-valued balanced
transport rule.] Theorem 3(i), (ii) are Theorems 19 and 20 specializeft to

O

ProOOF OFTHEOREM 17. We construct the required transport rule by a kind
of invariant greedy algorithm. Order the elements®fas G = {go, g1, .-},
and fix a configuratiory. Informally, each site starts with mass 1 to distribute,
while a site y has the capacity to receive magsty(y). At time n, every
site x sends as much mass as possible to gjte Formally, inductively define
0" (x, y) =0y(x,y) forn=0,1,... as follows. For all sites, y,

0%x,y) =0,
and forn > 0,
0" (x, y) = 0" (x, ) + 8" (x, y),
where
§"(x,y) = 1lgax = yImin{1—0"(x, G), p~ 1y (y) — 0"(G.y)}.

Finally, put®, (x, y) =1lim, . 0,1 (x, ).
Clearly, ® is G-invariant; we claim that it is a balanced transport rule. By the
construction, we have for al

Or(x,G)<1 and Or(G,x)<p T'(x).

We call a sitex unexhausted if the former inequality is strict, and we catl

unsated if the latter inequality is strict. We must show that almost surely there

are no unexhausted sites and no unsated sites. First, note that unexhausted sites
and unsated sites cannot exist simultaneously for the samEor suppose

that x is unexhausted ang is unsated. Then considerirdg (x, y) wheren is

such thatg,x = y shows that eithe#”*1(x, y) = 1 or 6"t1(x, y) = p~1y(y),

a contradiction. Also, by ergodicity, the existence of unexhausted sites and the
existence of unsated sites are both zero—one events. Hence it remains only to
rule out the possibility that almost surely one occurs without the other. The mass
transport principle (Lemma 11) applied#gx, y) = E@Or(x, y) yields

EO®r(0,G) =EBOr(G,0),

but the left-hand side is less that 1 if and only if there exist unexhausted sites, and
the right-hand side is less that 1 if and only if there exist unsated sifés.
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REMARK. In the case wherG = Z under addition, the above construction
also gives a balanced transport rule if we ggt=n for all n > 0, even
though go, g1,... no longer exhaust%;. (This will be relevant in the proof
of Proposition 6.) The above proof goes through, except for the argument that
unexhausted sites and unsated sites cannot exist simultaneously, which must be
modified as follows. By the previous argument, fox y it is impossible thak is
unexhausted anglis unsated. Hence if with positive probability both unexhausted
and unsated sites existed, then by the invariance of the construction, the random
variable maxx : x is unsate$l would take all integer values with equal positive
probabilities, which is impossible.

PROOF OFTHEOREM 18, “IF” PART. Consider the construction & in the
proof of Theorem 17 above. Ji—1 is an integer, then eactt is integer-valued, so
the same appliest®. 0O

If p=u/v whereu, v are integers, the same argument shows iai© is
integer-valued, and the corresponding extra head scheme can consequently be
written as a deterministic function @f and an independent roll ofasided die,
as remarked in the Introduction.

Note also that if the ordering af satisfiesgo =i, then the resulting extra head
scheme is lazy.

5. Continuum allocations. Let IT be a translation-invariant ergodic simple
point process of unit intensity dR“. Denote the law of 1 by A.

THEOREM 21. For any d, A, there exists a balanced continuum alloca-
tionrule.

PROOF OFTHEOREM 1. Immediate from Theorems 21 and 13

It is natural to try to prove Theorem 21 by some continuous-time version of the
invariant greedy algorithm, in which sites Bf are ordered by Euclidean norm,
say. Although this is an appealing idea, it appears difficult to rigorize directly.
Instead, our construction will be based on the stable marriage algorithm of Gale
and Shapley [2].

PROOF OF THEOREM 21. In what follows, all distances are Euclidean.
Elements of IT] are calledlI-points. LetL be the (random) set of all sites Bf
which are equidistant from two or moi@-points. SincdT has intensity 1[T1] is
countable almost surely; hencg(L) = 0 almost surely. For convenience we set
Yn(s)=sforalls e L.

Consider the following algorithm. For each positive integestage n consists
of two parts as follows.



46 A. E. HOLROYD AND Y. PERES

() Each sites ¢ L appliesto the closesII-point tos which has not rejected
at any earlier stage.

(i) For eachII-point x, let A,,(x) be the set of sites which applied ioin
stagen (i), and define thegjection radius

rp(x) =inf{r: £L(A,(x) N B(o,r)) > 1},

whereB(x,r) = {s e R¢:||s — x|| < r} is the ball of radiug atx, and the infimum
of the empty set is taken to lse. Thenx shortlistsall sites inA, (x) N B(x, r,(x)),
andrejects all sites inA, (x) \ B(x, r,(x)).

We now describa. Consider a site ¢ L. Since any bounded set contains only
finitely manyII-points almost surely, the following is clear. Eitheis rejected by
everyIT-point (in increasing order of distance frorj) or, for somell-pointx and
some stage, s is shortlisted by at stage: and all later stages. In the former case
we calls unclaimed and put for convenienc@r (s) = s; in the latter case we put
\IJH (S) =X.

We claim that¥ is a balanced allocation rule. Clearly, it satisfies the required
measurability and translation-invariance.

Let S, (x) be the set of sites shortlisted byT&point x at stagen. By the
construction in (i) and the intermediate value theorem, we hagg, (x)) < 1.

But by the definition of ¥ above we have\IJﬁl(x) = limsup,_, o, Sx(x) =
liminf,_ - S, (x), SO Fatou’s lemma impliecﬁ(llfﬁl(x)) < 1. We call alT-point x
unsated if that inequality is strict. Note also that if H-point x ever rejects any
sites (at stage, say), then we must havé(s,,(x)) = 1 for all later stages: > n.
Hence an unsated-point never rejected any sites.

We must show that almost surely there are no unsétgmbints and the set
of unclaimed sites isC-null. UnsatedIT-points and unclaimed sites cannot exist
simultaneously, since an unclaimed site is rejected by eveqyoint, but an
unsatedlT-point never rejects sites. Also, by ergodicity, the existence of unsated
[T-points and of a positive measure of unclaimed sites are both zero—one events,
S0 it remains to rule out the possibility that almost surely one occurs without the
other. Forz € Z4, define the unit cub@, = z + [0, 1)¢ € R?. Let

m@s,0)=E Y £(0;NV¥gl)).
xe[MNQ;
By the mass transport principle (Lemma 11), we have

E > £L@ilw)= > m(s,0

xe[ITNQo sezd
= " m(0, 1) = EL(Qo N Wi (TI]).
tezd

Sincell has intensity 1, the left-hand side equals 1 if there are no unsated centers,
and is strictly less than 1 otherwise. And the right-hand side equals 1 if the set of
unclaimed sites isc-null, and is strictly less than 1 otherwisel]
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6. Reverse extra head schemes.

PROPOSITION22. Let u be a G-invariant ergodic measure on {0, 1}¢, and
let T have law . For any discrete extra head scheme X we have almost surely

P(X =x|Xx"'I) <p

forall x e G.

PROPOSITION23. Let IT be a trandation-invariant ergodic point process of
unit intensity on R<. For any continuum extra head scheme Y, the conditional law

of Y given T~YIT is absol utely continuous with respect to Lebesgue measure, with
density bounded above by 1.

PROOF OFTHEOREM 3(iii)) AND PROPOSITION2. Immediate from Proposi-
tions 22 and 23. O

PROOF OFPROPOSITION22. LetX be an extra head scheme forand write
' = X"1I'. Fix 8 > p, and define fox € G
Ar={y* €0, 19 :P(X =x|T")(y*) = B}.
Since{l’'* e A;, X =x} C{I" exA,}, we have
Bt (Ax) =PI e Ay, X =x) < u(xAy) = pu*(Ay).
Therefore,u*™(A,) = 0. Taking a union over ration#l > p completes the proof.
]

PROOF OFPROPOSITION23. LetY be an extra head scheme fdr and write
Im* = T-Y'11. It is sufficient to show that for every rational cul of positive
Lebesgue measure, almost surely

P(Y € W|IT*) < L(W).
Fix 8 > 1, and define the event
Ay ={r":P(Y € W|IT*) (™) > BL(W)}.
We have
BLW)A*(Aw) <P(IT* € Ay, Y € W)

E/A(dH)A( U TyAW)

ye[lTINW
< [a@m Y Aaw)
ye[[TINW
= LW)A* (Aw).
Hence whenf (W) > 0, we haveA*(Aw) =0. O
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7. Measure-theoretic construction. The following is a variant of the con-
struction of X™M®3Sin the Introduction. Letu be aG-invariant ergodic measure
on {0, 1}¢. Let G be ordered a%s = {go, g1, ...}. Define measures,,, B, xn
on {0, 1}¢ as follows:

oo =L, Po=u*
and forn > 0:
Xn =y A (8nBn), Optl =0y — Xns Brn+1= Bn _gn_lxn'

Let ©r be the balanced transport rule constructed in the proof of Theorem 17,
using the same ordering @ as above. Lefx9¢€% pe the corresponding extra
head scheme given by (5) and Theorem 10.

THEOREM24. For any G, 1 and any ordering go, g1, - - -, We have
P(X9eW=g, €)= yu()
for al n.

PROOFE By construction, the measures, ,, x» are all absolutely continu-
ous with respect ta. Denote the Radon—Nikodym derivatives

d(xn d,Bn an
a, = s bl’l =
du du

’ Cn: .

du

We have
w=1  poy)=p .
And usingG-invariance ofu,
cn = dn N (8nbn), dn41= an — Cn, bns1=Dbn — g, Cn.
By induction onn, it is easy to verify that
an(y) =1-0,(0,G),
bu(y) = p~ty(0) - 05(G.0),
cn(y) = 85(0, gn) = ©, (0, gn),

whered" (x, y), 8" (x, y) are as in the proof of Theorem 17. It follows that for any
eventA C {0, 1}€,

P(XYeN_ o T e A)= /A W(dy)©, (0, ga) = /A W dP)ea () = xn(¥),

as required. O
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PROOF OFPROPOSITIONG. Letg, =nforn=0,1,... (note thatgo, g1, ...
does not exhaust) and construc®, X9¢% and x, as above. As remarked
after the proof of Theorem 1% is a balanced transport rule in this case also,
and thereforex9e®is an extra head scheme. The statement of Proposition 24
above also holds, with the same proof. Theref@ped™ed ) and (X™eaS )
have identical joint laws. It remains to check ti&©"¢¢% 1) and (XK ) have
identical laws. This follows from the fact that for amy< y,

1 z
O, (x,y) :/ du 1|:y = min{z >x: Z(l —p Ly < u”
0 i=x
This is evident from Figure 2. More formally, it may be checked by induction
ony—x. U

8. Three-dimensional tail behavior. In this section we prove Theorem 5.

THEOREM 25. Let i be product measure with parameter p on Z4. 1f d > 3,
then there exists a balanced discrete transport rule ® satisfying

Eexp(C||®r(0)[|9) < 00
forsomeC =C(, p) > 0.

PROOF OFTHEOREMS5. Immediate from Theorem 25 and Theorem 101

PROOF OF THEOREM 25. It is convenient to work first in a continuum
setting, and then transfer &. A transport is a nonnegative -finite measurev
on R? x R?. For Borel setsA, B € RY we write w(A, B) = w(A x B), and
we think of this as the amount of mass transported frérto B. By a random
transport we mean a random element in the space of all transports, this space
being equipped with the natural producialgebra. A random transpdrt is called
invariant if 7(A+z, B+z) isequal inlaw tar (A, B) for any Borel setst, B and
any sitez. We shall construct an invariant random transgomwhose marginals are
Lebesgue measure @f and a Poisson process.

The following is proved in [11]. Let/ > 3. For each positive integex there
exists a random transpaft= 4§,, with the following properties. The first marginal
8(-,RY) is Lebesgue measure on the culie1]? almost surely. The second
marginal §(R?, -) is equal in law tam 1 Y7t 18i, where thes; are point masses
whose locations are i.i.d. uniform of®, 1]¢. Finally, for constants, ¢’ < oo
depending only o, we have the following “bound on transportation cost”:

E// expicm|lx — y|9)8(dx,dy) <.

Here | - || is the Euclidean norm anB denotes expectation with respect to the
random transport.
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We now define a random transpdit, as follows. Informally, we rescald,,
to cover a cube of volume:, and multiply bym so that the intensity is still 1;
then we tile space with identical copies of this transport, with the origin chosen
uniformly at random. Formally, let be uniform onO, 1] and independent of,,,,
and definer;, by

Tn(A.B)y=m Y Su(m M (A+a+z2),m B +a+2).

ze74

It is easy to check the followingf;, is invariant.7;,(-, R?) is almost surely
Lebesgue measure @f. Asm — oo, T, (R4, ") converges weak* to a Poisson
point process of intensity 1 d&¢. Finally, for any Borel seft C R? with Lebesgue
measurel(A) € (0, co), we have

(11) E/f explcllx — Y9 T (dx, dy)1[x € A] < ¢ L(A).

[To check (11) we first use invariance to deduce that the left-hand side must be
a linear multiple of£(A), and then takeA to be a cube of volume: to find
the constant.]

By (11), the sequenad,) is tight, so let7” be a weak* limit point, and note the
following properties of7 . It is invariant, since invariant random transports form
a weak* closed set. Clearly (-, R¢) is Lebesgue measure ®f almost surely.
Writing TI(-) = 7 (R?, .), we see thafl is a Poisson point process of intensity 1
on R?. And finally (11) holds with7 in place of7,,, since the set of random
transports for which (11) holds is weak* closed.

Choose? such that 1- p = e~t, and forz e Z¢ define the unit cube
Q. =10, 1)¢ + z. Define a discrete configuratidhby

I'(z) =1ATI(£Q;).

The choice oft¢ ensures that the law df is product measure with parameter
on {0, 1}%’. Now define® by

Or(x,y) =E(T(£Qx, £Q))IT).
Itis elementary to check th& is a balanced transport rule fbr and (11) implies
that it satisfies the required bound.]
The following continuum analogue of Theorem 5 may be proved by applying
Theorem 16 to the continuum transport given by
On(A, B) =E(T (A, B)|TI),

where 7, I1 are as in the above proof. Alternatively, it may be deduced from
Theorem 5 by techniques similar to those used in [5], Section 4.
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THEOREM 26. Let IT be a Poisson process of unit intensity on RY. 1f d > 3,
then there exists a continuum extra head scheme for IT satisfying

Eexp(C|Y|¢) < oo

for some C =C(d) > 0.

Open problems.

(i) In the case of product measure @A or a Poisson process d@f, what

is the optimal tail behavior fomonrandomized extra schemes (or equivalently, for
balanced allocation rules)?

(i) What is the tail behavior of the extra head schemes (or allocation rules)
constructed in Sections 4 and 57

(i) What is the optimal tail behavior of extra head schemes for product
measure on other groups (e.g., for a free group with distance measured according
to a Cayley graph)?
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