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UNIQUENESS OF SOLUTIONS OF THE STOCHASTIC
NAVIER-STOKES EQUATION WITH INVARIANT
MEASURE GIVEN BY THE ENSTROPHY

BY S. ALBEVERIO! AND B. FERRARIO?

Universitat Bonn and Universita di Pavia

A stochastic Navier—Stokes equation with space-time Gaussian white
noise is considered, having as infinitesimal invariant measure a Gaussian
measurew, whose covariance is given in terms of the enstrophy. Pathwise
uniqueness fop,-a.e. initial velocity is proven for solutions having, as
invariant measure.

1. Introduction. We are interested in the stochastic Navier—Stokes equation
with a space-time white noise. We consider the spatial domain to be the torus
T2 = [0, 27]2 (hence periodic boundary conditions are assumed). In [1] it has
been shown that there exists an infinitesimal invariant measure associated to
this stochastic equation; this is a Gaussian meagyrewith covariance given
in terms of the enstrophy (and of the viscosity paramefjerExistence of a
solution has been proven in two different ways: [1] considers a weak solution
and [9] a strong solution (weak and strong are to be understood in the probabilistic
sense). The common point of these papers is that the solution is obtained as the
limit of Galerkin approximations. No result of uniqueness has been given in [1],
whereas [9] shows existence and unigueness in a smaller class than the natural
one to consider for this problem. Indeed, the statement of Theorem 5.1 in [9]
involves an auxiliary process (denotedgin Section 4), not appearing in the given
stochastic Navier—Stokes equation, and for this reason the definition of uniqueness
given in [9] is not the natural definition to consider and does not coincide with the
pathwise unigueness we prove in the present paper, as we will explain in Section 4.

The aim of this paper is to prove unigqueness of the solutions of this
stochastic Navier—Stokes equation with a space-time white noise, in the same
class where existence holds. Precisely, we will deal with processesPwatk.
pathu € C([0, 00); B,,;) (with 8,7 being a certain Besov space specified below)
and havingu, as invariant measure.
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UNIQUENESS OF STOCHASTIC NAVIER-STOKES 1633

Finally, we want to remark that the stochastic Navier—Stokes equation in a two-
dimensional domain and with space-time Gaussian white noise has been discussed
in some papers in the last years. Anyway, the only expression known for an
invariant measure is that of the centered Gaussian measutensidered in this
paper too. No other invariant measures are known with this space-time Gaussian
white noise. However, the (deterministic) 2D-Euler equation has many invariant
measures, including all the measuggs(for v > 0) (see, e.g., [3] for a review on
these invariant measures).

As to the structure of this paper, in Section 2 we shall introduce the two-
dimensional Navier—Stokes equation and define the mathematical setting. In
Section 3 the Gaussian measureof the enstrophy will be defined and the main
properties of the nonlinear operatBrwith respect tou, will be presented. The
uniqueness result will be proven in Section 4. Two results used in the proofs will
be given in the Appendix.

2. The Navier—Stokes equation. We consider the equations governing the
motion of a homogeneous incompressible viscous fluid in the two-dimensional
torus

a
Eu(t,é) —vAu(t,§) + [u(t,§) - Viu@,§) —=Vp,§) = f(1,5),
(21) V-u@ &) =0,

u(0,8) =x(8),

with periodic boundary condition. The definition domains of the variables are
t > 0,& € T2. The unknowns are the velocity vector field= u(z, &) and the

S 92 92 _ (9 9 _
scalar pressure field = p(t, £). HereA = g + el V= (35 35) § = (1.62)

and “” is the scalar product ifR2. The viscosityv is a strictly positive constant;
x and f are the data.

We define the mathematical setting as follows. Consider any periodic diver-
gence-free vector distribution. SinceV - u = 0, there exists a periodic scalar
distributionyr, called the stream function, such that
(22) u=Viy = (_%, %)

082 &1
Decomposingy in Fourier series with respect to the complete orthonormal system
in Lo(T?) given by{zte* €}, ;2

ikt -
vE =) 5 Vel Y=y
T
keZ?2
by (2.2) we get that has the following Fourier series representation:
(2.3) wE) = > urer(®), up € C, ux =u_y,

keZ3
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whereeg (§) = ank‘ k8 Herek™ = (—ko, k1), |k| = \/k? + k5 andZ3 = {k € Z?:
|k| # 0}. We define als@2 = {k € Z3:k1 > 0 or {k1 = 0, k > 0}}.
Note that{ek}kezz is a complete orthonormal system of the eigenfunctions
(with correspondlng eigenvalugé|?) of the operator—A in [Ld"’(']I‘Z)]
{u € [L2(T?))?: V-u = 0, with the normal component afbeing periodic o T?}.
Eachey is a periodic divergence-fre&>-vector function. The convergence of
the series (2.3) depends on the regularity of the vector funatiamd can be used
to define Sobolev spaces as in the following definition.
Let U’ be the space of zero mean value periodic divergence-free vector
distributions. Any element € U’ is uniquely defined by the sequence of the
coeﬁicients{uk}kezi; indeed, by dualityy; = (u, e_), Since eacla;, is a periodic

divergence-free and infinitely differentiable function. Following [5], we define the
periodic divergace-free vector Sobolev spacese R, 1 < p < o0,

Hy=Ju=" urereU’ Zuklkl ex(-) € L,(T?)
keZ?

and the periodic divergeer-free Besov spaces as real inpelation spaces
SB;Q = (F0, ]6;1)9,(1, seR, 1<p,g <oo,
s =(1—6)sg+0s1, 0<6 <1
In particular, 85, = #5. (For the theory of interpolation spaces see, e.g., [5].)
Moreover,U’ = User 1<p<co #t, with the inductive topology.

{ex)iezz is @ complete orthonormal system in the spat It follows that the
Hilbert space?’{’2 is isomorphic to the space of complex valued sequem%ezz
such thaty”, |ux|?|k|® < .

We define the Stokes operator as

A=—

which is a linear operator i, with domain](’;ﬁz. It is an isomorphism from
F51+2 to J(’;, seR,1<p<oo. Foru=73;urex, we haveAdu =), uy |k|%ey.

Let IT be the projector operator from the space of periodic vectors onto the space of
periodic divergence-free vectors. Applyiligto both sides of the first equation in

the Navier—Stokes system, we get rid of the pressure term. The bilinear op@rator
is defined as

B(u,v)=TI[(u - V)v]
=TIV - (uQv)] (by the divergence-free condition)

[E3R G
=11 .
02 UVl U2
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whenever it makes sense. For instance, a classical result i8 ti x #3 —

J(’Z_l (see, e.g., [13]). The (optimal) regularity 8fis the key point to solve the
Navier—Stokes equation, both in the deterministic and in the stochastic case.

For less regular vectorsandv, estimates orB are given in Besov spaces (see,
e.g., [6, 7]). This is useful in solving the stochastic Navier—Stokes equation with
space-time white noise, as shown in [9].

We shall very often writeB («) for the quadratic ternB (u, u).

The stochastic Navier—Stokes equation in which we are interested has the
following abstract Ité form:

du(t) + [vAu(t) + Bw@®)]dt =dw(t),  t>0,

(2:4) u(0) =x.

{w(?)};>0 is @ Wiener process, defined on a complete probability sgacé , P)
with filtration {#; },>0, which is cylindric in the space of finite energvg; that is,

w(t) =Y BrDex,
keZ}
where{ﬂk}kezg is a sequence of standard independent complex valued Wiener

processes withB_; = B,. This is a process with continuous paths taking values
in #3 for any o < —1 (see, e.g., [10]). In other termguw(r) is a Gaussian
space-time white noise. We shall denotelbyhe expectation with respect to the
measureP.

The equation for the Fourier compongn$ obtained by multiplying the first
equa’;ion (2.4) bye_;(¢) and integrating over the torug2. We obtain, for any
k € Zg,

dug (1) + Ik Pur(t) + Be(u(1)1dt = dpy (1), t >0,
up(0) = xi,
where
Br(u) = Z Ch kUhUk—hs

heZ3 h+#k
1 (ht-k) (h - k)
Chk = ——7[|k| — 2—].
Az |h||k — Rl |k|

3. The Gaussian invariant measure given by the enstrophy (and viscosity
parameter). We shall consider a certain centered Gaussian measuon the
spacel’ of complex valued sequenc{asc}kezgr. Wy is heuristically defined as the

infinite product of (complex valued) centered Gaussian measures

1
(3.1) du,(u) == x ¢ 2V Ikl 2 duy,
Z ez
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(luk|? = x2+y2, duy = dxi dyy for ug = xx +iyx, Xk, ye € R; Z is a normalization
factor).
Rigorously, 1, is the mean zero Gaussian measure having as covariance the
1 -2, — ;
scalar productu, v), = 5; Zkezi |k|~“uvg. In particular,

1
Ep, [uguj] = ’ 2v|k|?’
0, if ko .

if k =/,

The quantity in the exponent of the heuristic Gaussian density in (3.1) is the
enstrophy$ associated to the velocity field: 8(u) = [32|V* - u@)2ds =
ZZkeZz+ Ik|2|lux|?. In this sensey, is the Gaussian measure given in terms of
the enstrophy (and of the viscosity paramefter

Let us characterize the support of the meagureWe have, for any integer,

E. (lull?® :/ ull? dpy(u
o (W02, ) = | Tl e

1.

2n
dpy(u)

—s
Hon

Zukek
k

J-
Ju

=cx /T . [;|k|—2S|ek<s>|2(E,L,)|uk|2)} d§

2n
Zuklkl_SEk(S)‘ dé) d iy (u)
k

(3.2)

T2

L
(

2n
Zuklkl_SEk(S)‘ duu(u)) dé§
k

n
= C;Z[Z |k|_2sE,uv|uk|2}
k

for some constants,, ¢, > 0. In these calculations we have used that, for any
vk € C,

(33) Eﬂv

2n n
= ol [Ek [Vl “Ep, (lukl )}

> e
k

and the fact thafe, (£)| = 5= for any& e T2
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Since Eyi, (lukl?) = 5.
positive constant, such that

the above calculation implies that there exists a

1

5 5 1/n 1
(Il ) = (Bl ) <y B R

The latter series converges as soon as0. Henceuv(sz‘,ls) =1 foranys >0
and integer. Since we are in a bounded spatial domain, we have the embedding
Homrr) C Hy* C Iy, for 2n < g < 2(n + 1). Therefore,

MU(,%’q_S)zl Vs>0, 1<g <oo.

We remark that it was already known that the spﬂ%of finite-energy velocity
vectors does not have full measure with respecittg in fact, one has even
o (33) =0 (see [4]).
We want to get Besov spaces of full measure First, we have the embedding
Jf C SquS, 2<qg <00

(see [5], Theorem 6.4.4). Hengg,(B,,/) =1 for anys > 0 and 2< g < oc.
Moreover,

!BZTZSCJBZ_;, 2<qg <00

(see [5], Theorem 6.2.4). Henge (B;, ") =1 for anys > 0 and 2< g < co. By
interpolation, for 0< 6 < 1,

(B,,° By, o1 = B,y

with —s = (1 — 6)(=s0) + 6(—s1) and 3 = =2 + § (see [5], Theorem 6.4.5).
This implies that, givery, for any s > 0 there existt € (0,1) andsg,s1 > 0
such that the above interpolation holds. Necessarily we havep2< ¢. Hence
Bgq° N Byt C By, giving

(3.4) po(Bpy) =1 Vs >0,2<p<q < o0.

Summing up, we have proven the following result.

ProPOSITION3.1. For any viscosity > 0,

MU(IB )_ Vs>0,2<p<qg<o0.

REMARK 3.1. With calculation similar to (3.2), we can obtain tH&da.s., the
paths of the Wiener processt) Jé’;l—s fors >0and 1< p < oo.

We present now an estimate of the quadratic t&;mseful in the following.
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ProOPOSITION3.2. Forany viscosity > 0, we have

(3.5) / ||B(u)||§€2,,.,l du,(w)<oo  Vr>0,1<p<oo.

PROOF Let us start by considering the cage= 2. We have thatBB(u) =
Y Br(u)ey is defined as the limit ingt; "~ of BN (u) := Y 1<y B w)ex,
with B,i\’(u) 21kl lk=h|.Jk|<N Ch.kU4nti—p- It Will be shown that this limit exists
in £2(u,) and that||B(u)||2 = = Y, |Br(w)|?k|?—"=D. Let us compute the

following integral with respect to the measuyre:

[1B@I2,  sdi @

2
=/ SKPCTDL ST opgunug—n| dien ()
keZ3 heZd hsk

=3 kP D/ZCh KCH kUnUk—ntp gy d Ly ()

keZ? h.h

1 1

— k2= 2+ ChiCk— :

Zzl | ; (Ciy ke + € kck h,k)2v|h|22v|k_h|2

keZy heZ§,h#k

where we have used the Fubini-Tonelli theorem to interchange the summations
overk and over: with the integral.
Let us notice that the coefficients x are such thaty, x = cx—n x and

1 |t - k|?
2 2
= k—h)-k—h-k
Uk = G2 a2k — ke " ]
2 ht - k|? 2 |(k—h)t-k?
L, 1 5 0 T A el DAL VAN
(47)2 |n|2k — h|2|k| (41)2 |h|2k — h|?|k|
< 2|k|2.
= e k|
Then, continuing the estimates on the quadratic term, we get
1 1
Bw)|%,_,_1du, ) < ———
[1B@I2  wdnw < 5 I
k.heZg k#h
1 1 1
3.6 < -
(36 Se22 LGP 2 kP
keZ? heZ3 h#k
c log |k|

<
— 8722 |k|2+2r
keZ3
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In the final calculation we have used Propaosition A.1 in the Appendix. We need
these detailed calculations in order to obtain the estimate in (3.6). Indeed, the
present literature (see the references given before Proposition 3.3) deals with the
componentsB;’'s, without taking too much care on how the valuefthk|2de
depends on the indek. But this is important for the estimate of the “vector”
B =3, Byek.

Let us come back to the question of the definitionBin) in sz_’_l. By similar
calculation as above, one shows that

BN (u) — B@)] ;-1 —>0 i £2(11y), @SN — 00;
therefore, for some subsequence we have that
I BN (u) — Bu)|| g1~ 0 foru,-aeu,

which shows thaB (u) is indeed inJ(’z‘"l. Sincepu, is Gaussian [and bearing in
mind (3.3)], similar calculations hold for any even exponetind then by Holder
inequality for any 1< p < co. [

REMARK 3.2. According to the latter result, the nonlinear teBu) is
defined foru,-a.e.u. Sincep, (#3) = 0 butu,(#,;") =1 (- > 0, 1< g < c0),
the elementsu for which the nonlinear termB(u) exists are (nonregular)
distributions. Da Prato and Debussche [9] explain tBét) € L (i sz_"l)
for 1 < p < o0, r >0, as follows. Denote by« ® u: the renormalized square
(Wick square), defined asu:@ u:=u ® u — E,,(u ® u) (see, e.g., [12]).
Consider the finite-dimensional approximatians := > ;< uxex; one has that
supy E,, | :uN®uN:||§€_, < 0o. NoticethatV - (luy Quy:) =V - (uy Quy —
E, (uy®@uy)) =V -(uy Suy). HenceB(uy) = [V - (:uy ®uy :)] and in the
limit B(u) =TI[V - (:u @ u:)] is well defined, that iB(u) € £ (1u,; H; ™).

Finally, let us recall the main properties of the componéhits(For the proof,
see [2, 4, 8]. As noticed above, the proof consists in getting uniform estimates for
the sequence of finite approximatioﬂﬁ.’.)

PROPOSITION3.3. Foranyk € Z,

(3.7) o Bx =0,
(3.8) By =By,
(3.9) By € L7 () foranyl < p < oo.

Each componenB; is the.L? (u,)-limit (as N — oo) of the Galerkin approxima-
tions

N 2
B, (u) = Zh Ch kUhUk—h, keZy N eN,
O<|hl.|k—h[,|k|<N
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for which one has the conservation of the enstroimgt is,

> BY (u)|k|%ax =0, N eN.
O<|k|<N

4. Pathwiseuniqueness. First, we recall the result in [9]. These authors show
that there exists a unique (strong) solutiohof (2.4) for u,-a.e.x € B, (if the
parameters satisfy: @ s < % 2<p=gq <o0,s+ 2 <1; therefore the set of
initial data hagt,-measure equal to 1), such that
(4.1) u* —z € C([0, 00); B,3) N L{([0, 00); B%,)

loc

P-a.s., wherex and g8 are suitable parameters ands the stationary solution of
the Ornstein—Uhlenbeck equation (see Section 5in [9]). Sirc€ ([0, o0); B,)
(P-a.s.), then the regularity of* (which is the important unknown variable) is
obtained by merging together the regularity:6f— z and ofz. Therefore the result
of [9] states that there exists a procasssuch that

u* € C([0, 00); JB;;) P-a.s;

moreover, only one of the processes in the spade®, co); £;qs) satisfies the
further condition (4.1).

Finally, this solutionu = {u"},, as well as any other solution obtained as the
limit of a subsequence of Galerkin approximations (taking the limit as done in [9]),
has invariant measuye,, in the sense that

42) [Era@)dmm = [ fodu@ Ve Lu), 120

The fact thatu, is invariant for the Galerkin approximatiomg; is an important

tool in the proof of the existence (in the spaces considered in [9] as well as in
those considered in [1]). Moreover, any solutienobtained as the limit of a
subsequence of Galerkin approximations, pgasas invariant measure. Since in
both articles [1, 9] the limit of a subsequence is considered and not that of the
whole sequencéu y}, it is natural to ask about uniqueness of this limit obtained
from any subsequence of Galerkin approximations.

We intend, however, to show pathwise unigueness for solutions with paths
in C([0, 00); B,) and with invariant measure:,, without the additional
requirement (4.1) om* — z. The invariance of the measugg is used in order
to deal with the nonlinear term ().

From now on, we consider as state space any Besov sgggeof full
measureu,,.

Foru,-a.ex € 8,7 [i.e., x € S'NB, 7, with 11, (S') = 1], letu* be a process
solving (2.4) such that (4.2) holds affel.e. path

(4.3) u* € C([0, 00); B,3).
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In particular, from the invariance formula (4.2) with(x) = || B(x)||”
obtains that

(4.4) / /O B|B(* 1)), 1 drdu,(e) =T / 1B, 2 dus o)

[Actually, this holds ifu* € C([0, c0); S), x € S, foranyS C U’ with 11,,(S) =1.]

Because of (3.5), the quantity on the right-hand side is finite for any finite
time T and anyr > 0, 1< p < oco. Fix now these parameters. From the left-hand
side of (4.4), we obtain that there exists a suletC (S’ N B,7) C U with
wy(S”) =1 such that

J{rl’

T
/4 X 14
Vres E/O B )], 1dr <ox.
and therefore
T
Vxe S 3Q cQ, P(QY)= 1:/ | B(u*(z, a)))H;f,,,ldt <o  YoeQ'.
0 2

We repeat this procedure for a countable choice of the parametefs=£ 1, 2,

%, %) and use interpolation results for all positive real numbers

.. Then we obtain that, fom, (") =1

“ey

r£3 s

OOH—\ ”

Vres'3Q cQ, ]P(Q")—l/ B o)}, 2di <o

(4.5)
YVoeQ*, T>0r>0 1<p<oc.

Hence, givenx € S, the solutioru® enjoys P-a.s.) the property
T
(4.6) / IBw*®))|? _,_1dt <co VT >0,r>0,1<p<o0.
0 2

Letz”* be any other process defined on the same probability S9ace, {F;},
P), with the same properties given above fof and solving (2.4) with the
same{ft} -Wiener process as far*. Define the difference® = u* — u*; then
v* € C([0, 00); B, ) From now on we drop the dependencexon satisfies the
equation

o %U(,) + Av(t) = —Bu() + B@@),  1>0,

v(0) =
Bearing in mind the regularizing effect of the Stokes operdtosomething more
can be proven. More precisely, (4.6) grants that the right-hand side of the first
equation in (4.7) belongs to the spab%c(o, 00; sz_"l) for any 1< p < o0,
r > 0. By Proposition A.2 in the Appendix, one has that

(4.8) v € L (0, 00: #3711 C (10, 00): B, /7).
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This holds for any- > 0, 1 < p < co. Hence we have proven that any solution
to (4.7) must belong to the functional spage:= 1_,00 ,~0Zp.r» Where

S, = LE (0, 00; 57 N € ([0, 00); 32_pr+1_2/p). Let us point out that, for

2<p<p<gq,we have:Bz_p’H_Z/p - :B;,)’_Z/HZ/" C 8,7 < 8,r, and for

r <s, we haves,” C 8, therefore,Bz_p’H_z/p C 8,,. Thus the regularity
specified in (4.8) is stronger than the regulatitg C([0, o0); 8,,7) given by the
definition of v itself, asv =u — u.

REMARK 4.1. The regularizing effect of the Stokes operator is not enough to
obtain more regularity in the stochastic equation (2.4), because of the presence of
the cylindric noiseiw. This is already evident for the stochastic Stokes equation,
that is, the equation obtained from (2.4) by neglecting the nonlinear opeBator
(see, e.g., [9] for the optimal regularity of the stochastic Stokes equation, where it
is shown that the solutiop of the stochastic Stokes equation does take values
in distribution spaces). Therefoig as well asz, are expected to have paths
in C([0, c0); :8;5 .

Bearing in mind the bilinearity of the operat®, the equation fon can be
written in the following form:

.9) %v(t) + Av(t) + B(u(t), v(r)) + B(v(?), i(1)) =0, t>0,

v(0) =0.

REMARK 4.2. Actually, so far the equivalence between (4.7) and (4.9) holds
only heuristically. Of course, for the rigorous equivalence of this equality it is
necessary thaB(u, v) + B(v, u) is meaningful. We shall see in the proof of the
next theorem that this is indeed the case, becausenore regular than andi,
as already shown in (4.8).

More precisely, fodz-a.e.t € [0, T], for the N-finite-dimensional approxima-
tions we have

B(uy (1), un (1)) — By (1), iy (1)) = B(uy (1), vy (1)) + B(vy (1), iy (1)).

The left-hand side converges ®(u*(t)) — B (¢)); indeed, proceeding as in
Section 3, we prove thaB(u}) — Bu*) in £L1(uy; LL (0, 00; 3,77 Y), as
N — oo (for r > 0 and 1< p < 00), and hence, fop, x dt-a.e.(x,t), some
subsequence df(u}, (¢)) converges ta(u* (1)) in sz‘"l, asN — oo. The same
holds forz.

The right-hand side has a limit, thanks to the regularitywoin particular,
under the assumptions (4.10), for fixeds B,; and fordz-a.e.t, u*(r) € B,
andv*(r) € 8;,. Then Chemin’s estimate [6] on the bilinear operaByras in
the proof of the next theorem, gives that the expressiart (¢), v*(¢)) exists and

B, (), v5, (1) — B (1), v* (1)) in By T "#P71 asN — oo,
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The functionv = 0 is a solution to (4.9). We are going to prove that this is the
only solution of (4.9) in the class.

To prove this, we first show that, givemn, u € C([0, o0); B;qs), under the
assumptions (4.10), there exists a unique solutido the problem (4.9) into a
class less regular than. This is proven in Theorem 4.1. From this, uniqueness in
the smaller clasX immediately follows. This concludes our proof that the unique
solution for (4.7) isv = 0. What remains to be proven is therefore the following.

THEOREM 4.1. Let real numbers, a be given as well a& < o, p,g < 0©
satisfying the following conditions

0 < s<a,

a <

1 2
—<s+—+l> <
2 p

1 2
—<—a+—+1) ¥ 1.
p 1

2
p b
(4.10)
1,

2 o —
Then for anyu, i € C([0, c0); :8;;), there exists a unique € V := C([0, c0);

B,7) N Lig(0, 00; B7,) solution to the following problem

(4.11) %”(’HA”(”+B(M<f),v<t))+B(v(t),ﬁ(t))=0, t>0,

v(0)=0.
In particular, if v satisfieg4.11),thenv(z) =0 for r > 0.

PrROOFE To begin with, we fix any finite time interv@0, T]. We consider the
solution to (4.11) in the mild form (in the sense of, e.g., [10])

(4.12) v(1) = —/Ote_(t_f)A[B(u(t), v(1)) + B(v(), d(r))]dr.

We want to prove existence and uniqueness of a solutioWzin= C([0, T'];
B,,)NL*0O,T; B},) by a fixed point theorem, as in [9]. We consider the norm
lvllv, = ||U||C([0,T];£;;) + ||v||La(o,T;$$q). We proceed in three steps.

Stepl. We begin by estimating the bilinear operator by means of Bony's para-
products techniques, as given in [6], Corollary 1.3.1:

”B(u, U) ||£—s+a—2/p—l = ”V . (I/i & U)”$—s+a—2/p—l
rq pPq
(4.13) < 1 @ vll gsea-2rp

=cluligslvlisg,,
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if

2
(4.14) O<s<a and a<—.

p

We remark thaB (u, v) makes sense, when at least one element belongs to a Besov
space of positive ordep (€ B85, with a > 0).

Step2. Let us show that, given € V7, the right-hand side of (4.12) belongs
to V. By the property of the Stokes operator [basically, the property of the heat
operator:||e—’Ax||£gq < ct—(“—b)/2||x||£§q for + > 0 anda > b], the following
holds:

H /0, e "TDAB(u(r), v(1))dt

a
BP‘I

t
—(t—17)A
< /0 le B(u(D), ()] 5y dv
(4.15)

! 1
= C/o (t — 7)6+2/p+D)/2 “B(M(T)’ U(f)) ||$;;+a72/p71 dt

t
= cliulleqo.ry. 853 _/0 ({ — 1)6+2/ptD/2 lv(o)ll 8, dt

(denoting different constants by the same symol
We now estimate the convolution integral by Young's inequality. Thus

” /Ote_(’_’)AB(u(r), (7)) dt

L*(0.T:84,)

(4.16) o
< LT PR ) oo 1y, g 0l 07383,
if
1 2
(4.17) —(s-l———l—l) <1
2 p

In the same way, we check the estimat€io, 7']; £;q~‘). First

” /ot e DB (u(r), v(r)) dt

BP‘]

! 1
(4.18) <c /0 D) |B(u(t), v(0)] grrro-2r1dT

t
SCIIMHC([O,T];,B;;)/O (t_T)(_a+2/p+1)/2||U(f)||$;§q dr.

Again Young's inequality allows us to conclude that the latter expression is finite

if
(4.19) }<—a + % + 1)

o
a—1

> <1,
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and moreover,

H /Ot e~ OB (u(r), v(1))dt

(4.20) L®(0,T];Bp8
: —2/p-1)/2 ~1)+1
SCZT((a /p—1)/2)(a/(a—1))+ ”u”C([O,T];BE,;)||v||La(0,T§£%q)‘

We notice that the same computations holdBgv, ir).

Hence, ifv € Vr and (4.14), (4.17), (4.19) hold, theff e~ "4 B(u(z),
v(t))dt € Vr.

Step3. Equation (4.11) is linear in. Hence the estimates (4.16) and (4.20) give
that the mapping

V> — fot e "OA[B(u(r), v(v)) 4+ B(v(z), i(z))]dt

is a contraction irVz+ with T* < T and such that
1 1/(((a—2/p—1)/2)(a/(@—1))+1)
T* <min {( )
2C1Nt

’

(4.21)

’

1 1/((=s=2/p+1)/2)
<2C2NT) }

where N = llullco,r1.8;3) + 1#llco.r1. 35 HeNce, on the intervd, %),

there exists a unique solutiarwith the regularity specified if¥. Thisisv(z) =0

for 0 <r < T*. Notice that the amplitude of the time interval for local existence

depends only on th€ ([0, T']; 3;5)-norms ofu andu; therefore, we can continue

in such a way as to cover the time intery@) 7'] with a finite number of intervals

of amplitude3 7*.

Since this holds for any finit&, the proof is completed.]

REMARK 4.3. Sinces > 0, the third condition on (4.10) imposes that- 2.
This is the reason for working in Besov spaces, instead of the usual Hilbert spaces.

Choose now the parameters of Theorem 4.1tpbeg = = 3,5 = §,a = 3.

In this way, bearing in mind Proposition 3.1, we have fixed aBp} of initial
data such thau,(8,;) =1 (but many other choices are possible); moreover,
the assumptions of Theorem 4.1 are satisfied. Choose also the paramet8rs

r =% for the regularity of (4.8). Finally, by an embedding theorem [see [5],
Theorem 6.5.1], we have

—r+1-2/p —s
£2,0 C B,y

Iy B,

HenceX C V. And the uniqueness i implies the uniqueness IB.
We have therefore proven the following.
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THEOREMA4.2. Pathwise unigueness of the solutions to the stochastic Navier—
Stokes equation with space-time Gaussian white n@sh, for which u, is an
invariant measurgholds in the following precise sengbere exists a sef C U’
with u, (S) = 1 such that foru,-a.e. x € S, the C([0, 00); S)-valued paths of any
two solutions 0f(2.4),defined on the same probability space with the same Wiener
process and having invariant measyrg, coincideP-a.s.

APPENDIX

In this appendix, two results used in the previous proofs are presented. We
begin with the estimate on the sum of the sefi€g ;2 . m which is

(absolutely) convergent for eaglhe zg. Itis enough to perform the calculation for
the integral

1
dxd
/Rz\wouck) (x2+y2)([x — k12 + [y — k21?) Y

with Cj, = {(x, y) e R?:[x — h1]?+ [y — h2]? < 1}, givenh = (hy, ho) € Z2. By a
rotation around the origin bringing the poihinto the semipositive-axis (SoCy
is C(ik1,0)), the integral can be written as

(A.1)

1
dxdy.
/RZ\(couck) (24 y2)([x — |k[12 + ¥?)

We state the following.

PROPOSITIONA.L1. There exists a positive constansuch that
1 log |k|

_/ 2.2 7 dxdy e 5
R2\(CouCy) (X2 + ) ([x — [k]]= + y9) |k]

VkeZ3, k=2

PrRoOOF The proof is based on elementary calculations. We show the main
steps. First, we note that the integrand function can be written as the sum of four
terms:

1
(x2+ y2)([x — k|12 + y?)
(A.2) _ 2x _ 2[x — [k]
' KGR+ y2) (2 + 4y TkI(x — K12+ y2) (k]2 + 4y2)
1 1

+ + .
(2 +yD) (k12 +4y2)  ([x — k12 + y2) (|k|2 + 4y?)
For the integral of the second addendum, one has

2[x — |k|]
2442 2 5 dxdy
R2\(CouCy) [k|([x — k|12 + y2) (k|2 + 4y?2)
_ 2x p
~ Jracoco G2+ DK +2y2)

xdy
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by a change of variable. Therefore the integrals of the first two addenda on the
right-hand side of (A.2) partly cancel each other, and what is left are two integrals
on small balls:

2x 2x
dxdy —/ dxdy.
/Ck k12 + y2) (KI? + 4y%) ci 1k (x2 + y2) (1K |2 + 4y?)

This quantity vanishes, by symmetry.
Hence, the only contribution to the integral (A.1) comes from the last two
addendain (A.2). We have

/ dx dy / dxdy
=
R2\(CoUCr) (X2 4 y2)([k|? 4 4y?) ~ Jr2\co (02 + y2) ([k|2 + 4y?)
and
/ dxdy
R2\(CouCy) ([x — k|12 + y2)(|k|2 +4))2)
_ dxdy
= Jrevc e G YD (KT 4y2)

/ dxdy

< .

R2\Co (x% + y2) (k|2 + 4y?)

It remains to calculate this latter integral. We proceed as follows.Q¢be the
rectangle(x, y) € R?: |x| < % O<y< %}. Then

/ dxdy
R2\Co (x2 + y2) (k|2 + 4y?)

dxdy
52/2 2 1 v2) (k12 + 42
R2\Qo (x= + y9)(k]* +4y9)

V2 gy dx 00 dy dx
:2/ 2 2/ 212 +2/ 2 2/ 2142
0 |kI*+4y* Jixz1/v2 x5+ y V2 [k|*+4ys Jr x“+y
Let us estimate these two integrals. For the first, we have

0 |kI24+4y? Jix21/v2 X% + y?

/1/«/5 dy / dx
< S — _
“Jo k124 4y? Jix=1/v2 x?

1/3/2 dy
< = oV2
_./o k|2

2
kP2
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For the second,

foo dy / dx _2/00 1 nd
K2+ ay2 Jp x2 432~ )y kiZ+ a2y

:2n/|k dy +2ﬂ/oo dy

1/v2 ([k|2 +4y2)y K (k|2 +4y2)y
21 kI dy 27 [© dy

K2+2J1yvz y Ikl g k12442
log(W2lk]) 27 1 n

< _ .
SRR+ 2 Tk 2K 2

=

Summing up all the estimates, the proof is completéd.
The second result concerns regularity for parabolic equations.

PROPOSITIONA.2. LetT € (0,00], 1 < p < o0, ando € R. Let A be the
Stokes operator described in Sectin
Forany f € L”(0, T; #3), the Cauchy problem

%X(r) +AX()=f@).  1€(O.T],

X(0) =0,
has a unique solutio € W-(0,T) = {X € LP(0,T; #5 ) : L X e L*(0, T;

#£3)}. Moreoverthe solution depends continuously on the data in the sense that
there exists a constan}, , such that

T o d p J 1/p T o 1/p
([ [1x@n.+ | Sxo ﬂg} ()= (ena [ N7 dr)

Finally, X € C, ([0, T1; 85,7%7%/").

PROOF.  The Stokes operatot is a positive self-adjoint operator i3 with
domain J€§+2, and it generates an analytic semigroupf§ . Then the first
part of the proposition is obtained applying Theorem 3.2 in [11]. Moreover, by
interpolation we get that the spad€’* (0, T) is continuously embedded in the

spaceCy ([0, T1; 35:2_2/’)); that is, there exists a positive constarstuch that

”X”Cb([O’T]’B;:z*z/p) S C”X“Wl’P(O’T)- D
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