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ON WEIGHTED U-STATISTICS FOR STATIONARY PROCESSES

By TAILEN HSING AND WEI BIAO WU
Texas A&M University and University of Chicago

A weighted U-statistic based on a random sampia, ..., X, has
the form U, = D a<i,j<n Wi—j K (X;, Xj), whereK is a fixed symmetric
measurable function and the; are symmetric weights. A large class of
statistics can be expressed as weightedtatistics or variations thereof.
This paper establishes the asymptotic normalityUpf when the sample
observations come from a nonlinear time series and linear processes.

1. Introduction. Consider the causal process
(1) Xi=F(...,&-1,¢8),

where thes; are i.i.d. random elements. Clearly (1) is very general and represents
a huge class of processes. In particular, it contains the linear progess

> 2oajei-j, wherea; are square summable ard has mean 0 and finite
variance, and many nonlinear processes (cf. Section 3) including the threshold
AR (TAR) models [Tong (1990)], AR with conditional heteroscedasticity (ARCH)
models [Engle (1982)], random coefficient AR (RCA) models [Nicholls and Quinn
(1982)], and exponential AR (EAR) models [Haggan and Ozaki (1981)]. The
main goal of this paper is to consider the asymptotic behavior of the following
statistic:

U= Z H; j(Xi, Xj) = Z wi—; K(X;, X;),
1<i,j<n 1<i,j=n

where K is a fixed symmetric measurable function and the are symmet-
ric constants. We refer t&/,, as a weighted/-statistic. The class of statistics
that can be written in this form or variations of this form is clearly huge. For
example, if H;, ;,(x1, x2) = [G(x1) + G(x2)]/2, n~—1U, is the partial sum of
G(X1), ..., G(Xp); if Hiyi,(x1,x2) = x1x21 (|i1 — i2| = k), then(n — k)~1U,, is
the sample covariance function of lagn {X;}; if H; ;, = 1(i1 #i2)K andK,
respectively, for some fixed functiok, then U, is a (honnormalizedl/- and
V -statistic, respectively.

The study of asymptotic properties of the weighted or even the usistdtistics
is in general not straightforward. Hoeffding’s decomposition [Hoeffding (1961)]
provides a powerful tool for understanding the large-sample properties of
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U -statistics based on i.i.d. or even weakly dependent observations. See Randles
and Wolfe (1979), Serfling (1980) and Lee (1990). For the i.i.d. case, a small
number of papers consider the asymptotic properties of weightetatistics;
recent references include O’Neil and Redner (1993), Major (1994) and Rifi and
Utzet (2000). For weakly dependent processes, the result® fstatistics are
typically developed under mixing conditions; examples of these can be found in
Yoshihara (1976), Denker and Keller (1983, 1986) and a series of recent papers
by Borovkova, Burton and Dehling (1999, 2001, 2002). Laws of large nhumbers
for U-statistics of stationary and ergodic sequences were considered by Aaronson,
Burton, Dehling, Gilat, Hill and Weiss (1996) and Borovkova, Burton and Dehling
(1999). For long-memory processésstatistics and quadratic forms were consid-
ered by Dehling and Taqqu (1989, 1991), Ho and Hsing (1996), Giraitis and Taqqu
(1997) and Giraitis, Tagqu and Terrin (1998), among others.

Using martingale-based techniques, we prove some general results, for
for processes satisfying (1) in a variety of short- and long-memory situations.
Approaches based on martingales are very effective in dealing with asymptotic
issues of stationary processes. See Woodroofe (1992), Ho and Hsing (1996, 1997),
Wu and Mielniczuk (2002) and Wu (2003) for some recent developments, where
certain open problems are dealt with. Wu and Woodroofe (2004) investigate
approximations to sums of stationary and ergodic sequences by martingales. Based
on such approximations, they obtain necessary and sufficient conditions for such
sums to be asymptotically normal from the martingale central limit theorem.
No mixing conditions will be involved and the results obtained are often nearly
optimal.

Specifically, in Section 2, we will state two general central limit theorems
for a stationary proces; ;, whereY; ; is measurable with respect to the
field generated by, k <i Vv j, wherei v j = max(, j). An example ofY; ;
isY; ; = K(X;, X;), butthe realm of possibilities goes beyond that. In addition to
the dependence of the procéss, thew; introduce another level of dependence
in Uy,. The two cases of 72, |w;| < oo and)_ {2, |w;| = oo correspond to short-
and long-range dependence, respectively, thereby entailing norming sequences of
different orders of magnitude. We will address both cases.

In Section 3, we apply the results to nonlinear time series that are geometric
moment-contracting. These are “short-memory” processes, which include a large
class of processes mentioned in the beginning of this section, and also processes
that do not satisfy any strong mixing conditions. In Sections 4 and 5, respectively,
our general results are applied to short- and long-memory linear processes. In the
long-memory case, we lét ; be the remainder of an ANOVA decomposition of
K(X;, X ;). The resulting decomposition &f, is similar in spirit to Hoeffding’s
decomposition, and the asymptotic distribution @f can be determined by
identifying the dominant term(s) of the decomposition. In Sections 3 and 4, we
also compare some of our results with related results in Borovkova, Burton and
Dehling (2001). The two sets of results have overlapping but somewhat different
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ranges of applicability; we explain the differences and, where they overlap, we
point out situations where our results work more effectively.
Detailed proofs are included in Section 6.

2. Notation and main results. Leteg;, i € Z, be i.i.d. random elements taking
values in a general state space. Define the shift processes(..., -1, &)
and, for eacht > 1,Z; = Z;, = (¢i—¢+1, ..., &), Where we often suppredss
in Zlg to simplify notation. LetY; ;,i, j € Z, be random variables with zero
means and finite variances, such thay =Y;;, ¥; ; € 0(Z;vj) and (Y; ;, Zy)
is a stationary process in the sense that(the;, j;, Zr+.) have the same finite-

dimensional distributions ag; ;, Z) for eachr € Z; similarly let Y, ,J,z j €7,
be random variables with zero means and finite variances, suclY,;pat )7]-,1-,
Y i € a(Z,,Z ) and ( ,,,Zk) is a stationary process in the sense that the

(Yl+; ,+r,Zk+,) have the same finite-dimensional dlstrlbutlons(ﬁ,s,,zk) for
eachr € Z. Define the projection operator

Pi§ =EEIZ) — E(1Zi-1), 1 €L,
where¢ is an integrable random variable. Let

Li,j = Wj—j Yi,j and li,'vj = w,-_jl?,-,j.
The two cases where the weighisare summable and nonsummable have distinct
flavors, and they will be considered separately in Sections 2.1 and 2.2.

2.1. Summable weights In this section, we consider the asymptotic distribu-
tionof 31 j<, wi—;Yi ;, where the weighta; are absolutely summable. When
Y =K(X;, Xj)— EK(X;, X;), obvious examples of this include partial sums
for which w; = §; o andk-lag sample covariance function for whiah = §; x. Let

a4 denote convergence in distribution and l&0N>2) be the normal distribution
with mean zero and varianee
For any integers, j, define

(2 0;,; = I1PoYi jll.

THEOREM 1. Assumethat

(3) Zleklell k < OQ.

k=0i=
Then
4) — L;j— N(@,0°)
Vi S,

for some o2 < 0.
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REMARK 1. Sinceé6;; = 0;; and wy = w_, (3) is equivalent to the
seemingly stronger statement

o0 o0
(5) D0 lwilbiik < o0
k=—00i=0
in view of
-1 o0 [e's) o0
Do wklbiick =D lwil Y 0t
k=—00i=0 k=1 j=0
[e.@]
= Z|wk|29,, k< ZDwkw,, k-
k=1 i=k k=0i=

2.2. Nonsummable weights. The derivation of the main result, Theorem 3, in
this section for nonsummable weights relies on Theorem 2, which asserts that
> 1<i,j<n Li.j Can be approximated by _; <, L; ;. To consider the asymptotic
behavior of the latter, we apply the idea of the Hoeffding decomposition.

Let

0;,; = sup|| PoY; ;|

>1
and
(©) 8¢ :=sup||Y1; — Y1
JEL
Define

1/2
Wn(z)_Zwl _; and Wn_|:ZW2(z)/ni| :

j=1

THEOREM 2. Assume that limy—.o 8¢ = 0, liminf,_ oo W, /(> 7_glw;|) >0
and

(7) lim supZ min@;. i, €) =
6—>Ok>ol =0
Then
2
(8) lim Iimsup > (Lij—Lijp| =0.
t—o00 n—oo nW n 1<i,j<n
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THEOREM 3. Assume that Y%, |w;| = oo and Y{_o(n — k)w? = o(nW?).
Then under the conditions of Theorem 2,

1
9 L ;i % N@©,0?
\4 nW 1<lXJ:<n 7

for some o2 < o0o.

REMARK 2. The assumptions on the; in Theorems 2 and 3 are very
minor and are satisfied for every situation of practical interest. For example, if
w, ~ C/nP, B <1, then those conditions hold. Note, however, that in Theorem 3,
the second conditiol";_y(n — k)w,f = o(anz) cannot be derived from the first
one ) 72, |w;| = oo. For example, letw, = 2k whenevern = 22k, k € N, and
w, = 0 otherwise. Thery_7°, |w;| = co and there exists a constatit> 0 such
thaty"7_o(n — k)yw? > ¢'nW?2 for all n > 4.

The conditions (3) and (7) are closely related thro8igiT he following is useful
in verifying the conditions in certain situations.

ProPOSITION4. Thefollowing hold:

(10) SUpPY Bii—k <2) 5
k- i=o0 i=0
and, for any ¢,
(11) supZ min@; i ¢, €) < 42 mm(supée e)
>i

PROOF Letj >i >¢>0; thenZ; andZ; are independent oZo. Thus
Ylj is also independent ofg and g oYl] = 0 If i >¢,j < -1, then Z; is
independent oZo andZ; is Z_; measurable. S&[Y; ;|Zo] = E[Y; ;1Z_1] and,
again,?oY; ; = 0. Therefore,

Or.o—k = 1 PoYe.o—kll = 1Po(Ye.o—k — Ye.o—t) |l
<1 Ye.o—k — Yeo—ill <6, k>1¢>0,
(12)
Orik.e = 1 PoYesk el = 1PoYeske — Yerno)l
< 1 Yesre — Yerrell <8¢, k,£>0,

by Cauchy’s inequality. Hence

00 k=1 [ee} o0
Y Oick = Oiick+ Y _Oiski <24,
i=0 i=0 i=0 i=0
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proving (10). To prove (11), similarly write

OO ~
> min(®;,; ., €)

i=0
k—1
(13) —me(supn PoFiil, e)+2mm(supn PoTi-iill, e)
i=0 i=0
k—1
—me(supn PoTiiill e)+me(supn PoTicill, e)
i=0 i=0 =i

Now, for 0<i <k — 1, by the triangle inequality and (12),
”JOYZZ k” =< ” OYll k” + ” O(Yll k— i,i—k)” =< 81’ +8€’

where the same bound holds f§PoY; ;| if i > 0. Applying this and the
inequality mina + b, ¢) < min(a, ¢) + min(b, ¢) for a,b,c > 0, (11) follows
readily from (13). O

It follows from Proposition 4 that if both théw;| and thes, are summable,
then (3) holds; ify_72ysup.; 8¢ < oo, then (7) holds.

3. Nonlinear time series. Let {e } be an i.i.d. copy of{e;}. We say that
X, = F(Z,) is geometric moment- contractl ng if there existe > 0,C =C(x) >0
and O< r(a) < 1 such that

E{|F("-,8—17807817 "'78}1)
(14)
—F(...,¢ 1,60, 61, .-, en)|*} < Cr''(a), neN.
Without loss of generality, lekt < 1 since otherwise we can employ the Hélder
inequality. We may viewX;, := F(..., &’ 1, &0, €1,...,€&,) as a coupled version
of X,,.

Condition (14) is very mild, and is safied by a wide class of nonlinear time
series. Note that geometric moment contraction does not even require mixing (see
Example 1). An important special class of (1) is the so-caitedated random
functions such that (14) is satisfied. L&t, be defined recursively by

(15) Xp=F(X,_1,¢€n),
whereF (-, -) is a bivariate measurable function with the Lipschitz constant
|F(-x78) - F(x/a ‘9)|

<00

(16) L. = sup -
x'#x lx — x|

satisfying
17) E(logL) <O.
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Then the Markov chain (15) admits a unique stationary distributian(ff) < co
and E[|xg — F(xo, €)|*] < oo for somea > 0 andxg [Diaconis and Freedman
(1999)]. The same set of conditions actually also imply the geometric-moment
contraction (14) [cf. Lemma 3 in Wu and Woodroofe (2000)]. The condition (17)
indicates that the iterated random function (15) contracts on average, which is
satisfied for many popular nonlinear time series models such as TAR, RCA, ARCH
and EAR under suitable conditions on model parameters.

Recall thatZ; = (...,&x-1,6¢) and Zy ¢ = (€k—¢+1,---,6x). Let Z) =
(ceoi 81,81

LEMMA 5. The geometric moment-contraction condition (14) holds if and

onlyifthereexist F1, F>, ..., with each F, being an ¢-variate measurablefunction,
such that, for some C < oo,
(18) E{|F(Zy) — FeZyplI*y < Crf@),  teN.

PrROOF The “=" direction. Assume (14). Then for eadh there exists a
realizationZy = zg such thatt (| X, — X;|“|Zp = 2p) < Cr'(a). So (18) holds by
defining Fy(-) = F(zo, -), which is clearly measurable. The=" direction follows
easily from

E(IX¢— X)|*) = E[|F(Zi) — F(Z}_¢. Z.0)1*]
< E[|F(Z) — Fo(Zi.)l + |F(Zj_y. Zio) — Fe(Zio))1”
< E[|F(Zy) — Fe(Ze.)I"1+ ENF Zj_g. Zet) — Fe(Zi.o)|*]
= 2E[|F(Z) — Fe(Z,0)|*],

where we have applied the inequality+ b|“ < |a|* + |p|* forO<a <1. O

In Lemma 5, we can often choogg arbitrarily in definingF,. This can be
illustrated by the correlation integral example in Theorem 7.

We remark that conditions similar to (14) and (18) have appeared in the
literature. Denker and Kler (1986) assumed that is Lipschitz-continuous in
the sense that there existg & (0, 1) for which

(19) |F(...,2n-1,20) — F(...,2,_1,2,)| < const- p"

if z4 =z23....,2. = z,. For the two-sided extension, see Definition 1.3 in
Borovkova, Burton and Dehling (2001). Comparing with our condition (14), (19)
is stronger and it does not allow models likg = pX,,_1 + &,, Where|p| < 1

and the random variables are i.i.d. with unbounded support. Borovkova, Burton
and Dehling (2001) proposed a weaker version of (19), terragaproximation
condition, which requires

(20) di(r):=E|Xo— EXole—;,...,e)|" =0 ast — oo,
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for somer > 1. To make this weaker version operational, one needs to implicitly
assumeE | Xp| < oo, which excludes the case thgt does not have a mean. Our
formulation has the advantage that heavy-tailed distributions are allowed.

As before, writeX; = F(Z;), and for a fixed choice of-variate function
Fy from Lemma 5, definef(l- = Xi’g = Fg(zi’g); let Yil,iz = K(Xil,Xiz) —
E[K(Xl'l, Xiz)] and Yil,iz = K(f(il, Xiz) — EK(;(il, Xiz) and recall thatil’iz =
wi,—i,Yiy.i, @A Ly, i, = wi,—i,Yi; i,- Then Theorems 1 and 3 imply (i) and (i) of
the following result, respectively, in view of Proposition 4.

THEOREM 6. Suppose that for each ¢ > 1, there exists an ¢-variate func-
tion Fy suchthat (18) holdsand Y72 sup.; 8, < oo.

@ 1f > |w;| < o0, then

n
w23 wi K (i X))~ EK (X3 X )] N0, 0?)
ij=1
for some o2 < oo.
(i) Let Y02 |wi| = oo. If we also have liminf,_, o W, /(>"_q lw;|) > 0 and
Y i—o(n — k)w,f = o(nW?), then

WA Y2 3 wi K (X, X)) — EK (X, X )15 N(O, 02
i,j=1

for some o2 < 0.

The inequality (18) implies that the distance betwe€nand 5(1-,@ decays
exponentially fast to O id. Thus under certain continuity conditions &n §, is
expected to vanish sufficiently quickly. For an application of Theorem 6, consider
the correlation integral

Np = Z 1ix;,—xi,1<b>
i1,ip=1
which measures the number of pai’s;, X ;) such that their distance is less than
b > 0. Correlation integral is of critical importance in the study of dynamical
systems; see Wolff (1990), Serinko (1994) and Denker and Keller (1986) for
further references.

THEOREM 7. Suppose that X, defined in (1) satisfies (14), and for some
Kk >1,
(21) sup P(x<Xo—X;<x+1)<Clog*¢!
j#0,xeR

for all 0 < 7 < 1/2. Then [N, — E(Ny)]/n%? % N(0, o2) for some 2 < oo.
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PROOF Let K(x,y) =1,_y<» andw; = 1. By Lemma 5, for eacld there
exists an¢-variate measurable functiaF, (-) such that (18) holds. Next we shall
verify that (18) together with (21) implies th&t = O (£7%), which is summable
and thus completes the proof in view of (i) of Theorem 6. To this end, let
u=r(@)¥@ < 1. Then by (18) and the Markov inequaliﬂy,t‘XO_)~(O|>M€||2 <
u=*E|Xg — Xol* < Cr(a)/?, where, as usualf; = X; ;. For any O< u < 1,
observe that

IK (Xo, Xi) — K (Xo, Xi)]lmaxuxo—m, |X;—X;|)<u® I

< PY2(b —2u" < |Xo— X;| <b) + PY?(b < |Xo— Xi| <b+2u®)
which, by (21), is bounded by@/?log™ (2u*)~1 = 0(¢~¥). Since|K| <1,
I[K (Xo, Xi) — K (X0, X1l

< |IK (Xo, Xi) — K (Xo, )N(i)]lmaxuxo—f(m, 1X;—X; ) <ut I

+ K (X0, Xi) — K (KXo, X)L a1 x0—%ol. 1X— & =t |

=0(™) + Olr(@)"/*,
proving thats, = 0(¢=). O

ExaMPLE 1. LetX, = (X,—1+ &,)/2, whereeg, are i.i.d. Bernoulli random
variables with success probability/2. Then X,, admits Uniform(0,1) as a
stationary distribution. This process is not strong mixing. Now we show that (21) is
satisfied. Assumg > 1. LetU = >/_; ¢;/2/~". ThenU is uniformly distributed
over{0,1/2/,...,(2/ — 1)/2/} andX; = Xo/2/ + U. Hence (21) holds in view
of

Px<Xo—Xj<x+71)
=EP[(x+U)/1-2H<Xo<(x+7t+U)/1-2"))U]
<t/(1-2"7)<2r1.

The processX,, is related to the doubling mapx := 2xmod1 in the following
way. Let Yo be a Uniform(0, 1) random variable and define recursivEly=

2Y;_i1mod1fori > 1. Then(Xy, ..., X,) has the same distribution 85,, ..., Y1)

and henc&V, andM;, = Zﬁjzl 1v,—v,<» are identically distributed. The limiting
distribution of the empiricalU-process{M;, 0 < b < 1} was discussed in
Borovkova, Burton and Dehling (2001); see Section 6 therein.

Our Theorems 6 and 7 are closely related to certain results by Borovkova,
Burton and Dehling (2001), which considered nonweiglitedtatistics for two-
sided processeX,, = F((e,+i)kez), Where(e,),cz is stationary and absolutely
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regular (or weak Bernoulli). To make a specific comparison, we state here their
Theorem 7, a central limit theorem. Let

B =2sudsup P(Ale1, ..., &n) — P(A): AiS o (entks Enti+1, - - .)-Measurablg
n

be the mixing coefficients, let; = [237°, di(1)]%/2 with d; (1) defined by (20),
and letK (-, -) be a bounded, symmetric function such that

sup E{|K (Xo, Xi) — K(X', Xi)|1jxo—x|<¢ } < ¢(2)
1<k<oo
with lim;_o¢(r) = 0, where X’ is identically distributed asXg and X, is
interpreted as an independent copyXyf. See Definitions 1.2, 1.4 and 2.12 in
Borovkova, Burton and Dehling (2001). Then the asymptotic normality/pf
holds provided

(22) STk (B + e + p () < 0.
k=1

This result has a number of similarities with our Theorem 6. However, the two
results do not imply one another. Theorem 6 assumes one-sided processes with
i.i.d. innovations while their result allows the innovations to be two-sided and
weakly dependent; on the other hand, Theorem 6 allows unboukidegneral
weightsw; and process(; for which the mean is infinite, whereas their result
requiresk to be boundedw; = 1 andE|Xp| < oco. Let us make a more specific
comparison in the context of Theorem 7 of the present paper where both results are
applicable. Applying the central limit theorem in Borovkova, Burton and Dehling
(2001) to N, for one-sided processes with i.i.d. innovations satisfying (18) with
a =1 and (21), we havg,, =0 andw,, < Cp" for all n > 1, wherep € (0, 1). By
Example 2.2 in Borovkova, Burton and Dehling (2001),

d(t)= sup P(b—1 <|Xo— Xx| <b+71)<2Clog~% L.

1<k<oo
Thus condition (22) is reduced @,filkz log=%(1/p%) < 0o, namelyx > 3/2,
which is stronger than the conditian> 1 imposed in Theorem 7.

4. Short-memory linear processes. Let (a,),>0 be square summable, let
(en)n>0 be i.i.d. random variables with mean 0 and finite variance and let

[e.e]
(23) Xn = Zaien_i.
i=0
If >7°glail < oo, then the covariance functioR(n) = E(XoX,) is summable

and we say thafX, is short-memory. In this section, lef ; = K(X;, X;) —
EK(X;, X;). For short-memory processes, we shall utilize the linearity structure
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and provide conditions oK (-, -) such that (3) and (7) hold by computing the
quantitiesy; ; in (2) andéi,j in (7). In Section 5, we shall discuss the case when
X, is long-memory, which has a very different flavor. Note th&f® 8, < oo is
not guaranteed by 7 |a;| < oo, and we need more refined computations, which
is feasible by the linearity ok, .

Leta, =a;1(i < ¥), Xn = Z?iod,-gn_,- andf,-,j = K()?i, Xv/) — EK(X,‘, )2/)

Also defineX; i, = Xiojr.jo — ai€0+ a; &g, where the truncated process

Z ai—jé&j, —00 < j1 =< j2 <00,
Xij1,jp =\ A<i<j2
0, —00 < jo+1<j1<o0.
Define the convolutions

(24) Kiyip, j(x1,x2) = EK (x1+ Xip, j+1,005 X2 + Xiy, j+1,00)

K, j(x1,x2) = EK (x1 4 Xiy, j+1,00 X2), x1,x2 €R.
Let IZ,-L,-Z,‘,-, Igil,j! }?i,‘/'l,jz and 5(!{,]1,/2 be defined similarly tOKil,iz,j! Kl'lyj’
Xi,jl,jz andX’

i1 with Z; replaced byZ;.

PROPOSITION8. Assume that sup; 1K (X;, Xj)l < oo and sup, ;¢ 1K (X,

X )| < oco. Further, assume that there exist np € N and C < oo such that, for all
i1,i2, £ = no,

(25) ”Igil,iz,o(f(z{l,—oo,o’ }?1{2,—00,0) - Igilyiz,o(iil,—oo,ov Xvizv—ooyo) ”
= C(|ai1| + |a,-2|)

and
(26) ksuq” K~1150(Xl/1,—00,0’ Xk) - I%l:bo(jzll’_w’O’ Xk) H S C|all|'
<—

Then the following hold.
(i)
A .<{C(|ai|+|aj|), i, J = no,
Y= Clail, i >no, j<O.
(i) There exists some constant C’ < oo such that
o0 o0
SupY 6k <C'Y_suplail,
k=0;—g i=0J2i
and for any € > 0,

o [e.e]
supy_min(@; ;. €) < C’ [e +> min(sup|a,- l, e)}

k>0;_g i=0 Jj=>i
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PrROOE Fixiq,i2 > ng. First we remark that if < ng, then the left-hand sides
of (25) and (26) are both equal to 0 so that the inequalities trivially hold. Writing

E[Kll i2, 0( i1,—00,0° 5(12 —o0, 0)|ZO] Kiy,ip, —1(}21'1,—00,—1’ )N(iz,—oo,—l)’
we have by Cauchy’s inequality that

| PoK (Xiy, Xi,)|
= [ Kii2.0(Xi1,—00.0: Xiz,—00,0) — Kiy,in,~1(Xi1,—00,~1. Xip,—o0,~1) |
= | E[Kiy,i5,0(Xi1, 00,0, Xig,—00,0) = Kis,i,0(Xi;, _o0,00 X —00,0)1Z0] |
< Ky i,0(X};, —00,00 Kby, —00,0) = Kin,in,0(Xiz, 0,0, Xiz, —00,0) [

Similarly, [[PoK (Xip. X < 11Kip.0(X], _s0.00 X&) — Kiy.0(Xiy, —00.0. X0,
which completes the proof of (i) in view of (25) and (26).
The first inequality in (ii) follows simply from

Zell k—zell k—J’_Z@l-l-kl <C —{—ZZSUpIa,

_n0]>l

whereas the second inequality there can be derived similarly.

REMARK 3. Note thatf(lfl,_oo,o — Xiy,—00,—1 = ai; (g, — €0), conditions (25)

and (26) can be interpreted as the “Lipschitz continuity”&f ;,.0 and K;, 0.
Discontinuous function& are allowed since these are convolutiongkond the
distribution functions of(X;; 1,00, Xi,.1.00) @nd (X, j+1.00, 0), respectively. For
example, ifK is a bounded function and., the density function of,, satisfies
[1fl(®)|dt < oo, then itis easily seen that (25) and (26) hold. Observe that degree
of smoothness of the distributions of the above random vectors increases with
i1, i2. Thus, by only requiring (25) and (26) to hold for largei», an additional
dimension of flelbility is in place.

Proposition 8 together with Theorems 1 and 3 immediately yield

THEOREM 9. Assume that Z?ilsupjzi laj| < oco. Also assume that
sup,; 1K (Xi, X )|l < oo and sup ; , 1K (X;, X;)|| < oo and that the regularity
conditions (25) and (26) hold.

(i) 1f X720 wi| < oo, then

n
nY2 S wi K (X, X)) — EK(Xi, X )15 N(©0,02)
i,j=1

for some o2 < oo.



1612 T. HSING AND W. B. WU

(i) Suppose that Y 721 |w;| = oo with liminf,_, Z" >0and Y }_o(n —

| il
kyw? = o(nW?2). Assume also that lim oo 8, = 0. Then

_ " d
W2 wi K (X, X ;) — EK (X, X;)] > N(0, 02
i,j=1

for some o2 < oo.

REMARK 4. Consider the special case in whigh = n"# for n > 1 and
B > 1 andg; are i.i.d. standard normal random variables. Then by @Q)) ~
c1n/?=# for somecy > 0. Herey, ~ B, is meant as iMoo ¥u/Bn = 1. SO
a, ~ con®4~P/2 and the conditin (22) of Borovkova, Burton and Dehling (2001)
necessarily requireE;’lenzoe,, < 00, or 8 > 15/2. In comparison, our Theorem 9
only imposes3 > 1.

5. Long-memory linear processes. In (23), leta; = FJPL()HI( = 1) for
somep € (1/2,1) and slowly varying functionL. Thus,a; is regularly varying
at oo with index —B. This represents a rich class of processes. In particular,
it contains the important time series model fractional autoregressive integrated
moving average (FARIMA) process. See Granger and Joyeux (1980). Note that
{X;} is long-range dependent in the sense that the covariances are not summable
[cf. Beran (1994)].

Let K = {00 U{k = (k1,....k):r=21,2,...,k € {1, 2}} and let|k| be the
length ofk (]0] = 0). We assume throughout the section that integerl satisfies

o0
(27) Zn—ﬁ(p+l)+p/2|L(n)|p+l < 00

n=1
Condition (27) allows simultaneous consideration of two cases{di} 1)
28— >1land(i)(p+D(2B -1 =1andd 2, |ILPtL(n)|/n < oo. Case (i)
has been widely studied [see Ho and Hsing (1997)], while the boundary case
(p + 128 — 1) =1 has been overlooked in the literature. Our approach allows
us to investigate the boundary case for which the limiting behavior depends on the
growth of the slowly varying functiod..

Denote byC”(R?) the class of all functiong such that the partial derivatives

Dyg =0"g/0xy, - -- 0xg, existfor allk = (kq, ..., k) € X for which|k| < p. For
eachiq, iy, let

P r
Yiyip = K(Xll’ Xi, Z Z DiKiy iy~ (0, 0) Z 1_[ Qij —js € ji
r=0|l|=r j1>ee>jrs=1
andL;, i, = Wiy —iyYiy ip- LetY; o L; .j bedefinedas; ;, L; jwitha; =a;1(i <)
replacinga;. Let Ky, i, j, Kiy iy Xi.jr.jo» Kivin.j» Kiy.; @andX; j, j, be defined as
in Section 4.
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Write
n o
(28) Un = Z Lil,iz + Z Zn,h
i1,ip=1 r=0
where
n r
Znr = Y Wi—iDiKiir-00(0,0) > []ai,—jej-
H=ri1,i2=1 J1>e>jrs=1

Observe thaZ, ,, 1 <r < p, are well-structured, and can be shown to follow non-
central limit theorems under mild regularity conditions on e7;, ;, — (0, 0).
Our main results, Theorems 10 and 11, show that the norma¥zed _; Li, s,
follows a central limit theorem under mild conditions. These two pieces of
information will then combine to give a comprehensive picture of the asymptotic
behavior ofU,. We refer to}"}' ; _; Li i, andY_7_; Z, ., respectively, as the
short- and long-memory componentslgf.

We now state the technical conditions for our main results. In the following, let

o
Aik) =" db, k=24, i>0.
j=i

(K1) There existsig € N such thatX;, ;, 0(-,-) € C*(R?) wheni, i> > ng, and
forall k € X with |K| < p,

(29) E[DkKil,iz,O(Xil,—OO,O’ Xiz,—oo,0)|z—1]
= DkKi1+1,i2+l,0(Xi1,—OO,—l7 Xiz,—oo,—l)-

(K2) Fori1, i» > ng, there exist€ < oo such that, for alk € X with |k| < p,
H DkKil,iz,O(Xil,—OO,O’ Xiz,—OO,O) - DkKil,iz,—l(Xil,—OO,—L Xiz,—oo,—l)
(30) — (VDkKil,iz,—l(Xil,—OO,—lv Xiz,—oo,—l)a (ai1807 ai280)>”
< C(al-zl + al-zz),
and, for|k| = p,
2
”DkKil,iz,O(Xil,—oo,O’ Xiz,—OO,O) - DkKil,iz,—l(o’ 0) “
<C[Ai,(2)+ Aj,(2)].

(K3) Fori1 > ng, there exists" < oo such that
sup | PoK (Xiy, Xi) |
k<—1
(32)

(31)

= kSUle Kiy 1(Xiy,—00,00 Xx) — Kiy,0(Xiy,—c0.—1, Xk)|| < Claiy |-
S_
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Similarly, we define

(K4) There existsng € N such that, for eacly, K;o(-,y) € C°(R) when
i1>ng,i2 < —1, and, for allk < p,

k,0 k.0

(33) E[Ki(l,o)(Xil’_oo50’ X12)|Z_1] = Ki(l_l'_l)’O(Xl.]_,—OQ,—:L? Xiz)'

(K5) Foriq > ng, iz < —1, there exist& < oo such that, for alk < p,

(k,0) (k)
” Kll 0 ( i1,—00,0 Xi ) Kll i, —1(Xilv—007—1’ Xi2)

_ Kl(ktl ,0)
1,

(34)
(Xiy—o0,—1. Xip), aiyeo < CaZ,

and, for allk < p,

k,0 k,0 2
(35) | K50 (Xiy—o0.0, Xi) — K120, X,)[|* < €A, (2).
(K6)
(36) lim sup|K (X1, X;) — K (X1, X;)|| =0.
{—o0 j>1

REMARK 5. The conditions (K1) and (K4) state that we can interchange
the order of differentiation and integration. The other conditions are smoothness
conditions onk;, ;, 0 and K;, o for largeiy, io. For the latter, Remarks 3 and 4
are still relevant. These conditions are left in the form in which they are directly
applied in the proofs. Finding sufficient conditions that are easy to work with in
specific contexts should be straightforward. See Ho and Hsing (1997), Koul and
Surgailis (1997) and Giitis and Surgdis (1999).

In the following, we consider two special case$gfiw;| < oo and)_; |w;|= oo
Generalizations are possible at the expense of additional details.

THEOREM 10. Assume that 32, |w;il™PL(i)| < oo, E(e]) < 0o and
sup; [| K (Xo, X;)II < oo. Thenunder theregularity conditions (K1)—(K3), we have

_ d
nY2Y i iy<n Livi— N(0, 0'?) for some o2 < oo.

THEOREM 11. Let w; =1, and assume that E(el) < oo, and sup ; K (X;,
X < o0, sup ;e ||K(XI,X])|| < oo. Then under the regularity condltlons

(K1)—~(K6), we haven=%2%"1_; o\ Lir iy “ N(0, 0'2) for some o2 < oc.

We conjecture that Theorems 10 and 11 can be made more general by dropping
the restrictions on the;. While that generality is not achieved in this paper, the
two theorems do already cover a wide range of interesting results. In particular,
numerous limit theorems for the partial sum in the context of long-memory linear
process [cf. Ho and Hsing (1997)] are special cases.
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As explained earlier, the asymptotic distribution @f is determined by one
term or a combination of terms on the right-hand side of (28). The asymptotic
behavior ofU, is described by Theorems 10 and 11, while those for the “non-
central” termsZ,, . are typically more straightforward but must be considered case
by case. Let us take anly,...,[, € {1,2} with 1 <r < p and(r1,r2) = (p, q),
and consider two special cases for the purpose of illustration.

First let us consider the case whewng| is summable. Note that under general
conditions we expect

Ko.s—o0o(x1, X2) = G(x1, x2) := EK (X1 + x1, X2 + x2),

where X1, X» are i.i.d. that have the same distributionXs Hence we assume
that thew; Dy, .1, K1, -0 (0, 0) are absolutely summable irand

.....

lim (woDzl ..... 1 K1.1,-00(0, 0)+22WD11 ..... Iy KOt—oo(O,0)>
n—oo =1

=C € (—00, 0).
Then it is not difficult to see [cf. Surgailis (1982) and Major (1980)] that

2
Z Wi — tlel ..... 11 io, ~—(0,0) Z 1_[ i —js € js

1<ii,i2<n J1>e>jr s=1

2
-
Z ( Z wil—ilel,...,lr Kil,iz,—oo(o’ O) 1_[ ails —j.;)

J1>->jr \1<iy,io<n s=1

» [5110]

Jji>->jrbt=1ls=1

2
1 r
~ C%n? @D L2 () [/ []ex— ug);? dx} dui---du,
x=0
s=1

U1>->uUr

and

(37) X Z Wiy—ip, Dy ..., Kiyir,—00(0,0) Z 1_[ aj; —js € jg

1<iy,ip<n J>e>jrs=1

1 r
5 icl [/ [T —uoy’ dx} dB(u1)---dB(u,).
ug>-->up | Jx=0_._4

where the limit is expressed in the form of a multiple Wiener-Ito integral WBith
denoting standard Brownian motion and = max(y, 0). Note that applying

Theorem 10, the rate of} ; _; Li i, in this case is:*/?, which is lower than

that Of21511,12§n Dl ,,,,, I Hl1 ip,—00 (0,0 Zjl> > ngl iy —j € g
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As a second example, we consider an application in connection with Theo-
rem 11 by assuming

(38) w; =1 and Dy, ;Ko -00(0,0) = C € (—00, 00).

.....

Under this assumption,

Z Dll ..... 11 i2, —OO(O 0) Z 1_[ ally —Js SJA

1<iy,ip<n Ji>->jrs=1

2
/ [/ / 1_[ xly — Ug ﬁdxldxzi| duldur
Ur>-->ur x1=0Jxo=

and

.
n YLy S Dy Kini 000,00 > [T ai -6

1<i1,i2<n J1>->jrs=1

d 1 1
39) i N AT
uy>->uy | Jx1=0Jx=0
X H(xl.; —us);ﬁ dxldxzi| dB1)---dB(u,).
=1

Now Theorem 11 implies thatthe ratef ;,_; Li, i, iSn 3/2 which is dominated
by that 0fZl<11 i2<n Dll vvvvv Kll i2,— (O O)Zj]_> > Hs:l alls —js€Js+

In view of these examples and Theorems 10 and 11, in (28) one can refer
to >V i,—1Liy.i, the short-memory component, aﬁcle Z,.r the long-memory
component otJ,,.

Numerous applications result from these two simple cases. The following are
some illustrations.

(a) Sample covariance function. Suppose

Un = T(X)T(Xits),
i=1

where T is some function.n=1U, is an estimator of E[T(X1)T (X144)].
So Hj,i,(x1,x2) = wi;—i, K(x1,x2), where wj,_;,| = I(liy — i2] = k) and
K(x1,x2) = T(x1)T (x2). Thus Theorem 10 applies, where the asymptotic
distribution rests off. Let us consider an example by assuming 2, T (x) = x2
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andE(X1X{+k) =0,j=1 2. Itis easy to see that

2E(X?), if 7 =k and

w; Dyy....1, Ko,r,—00(0,0) = (1,....I.)=(1,1or(2,2),
0, otherwise.
If Be(3/4,1), thenZ _1Zn,r =0and hence

1
N
If B €(1/2,3/4),theny.’_, Z, , is dominated by the term

(U, — EU,) 5 N(O, 5?).

.
Zn2= Y. (D11+D22)Hiyi-0(0,00 > []ai,-je)

1<iy,io<n Jj1>->jrs=1

n—k
= 8E(X%) Z Z i—j1Qitk—j28 1€ jz-

i=1 j1>jr
Hence (37) and the discussion leading to it give

[8E (X)) 1n~1H2B-V2 [ ~2(n) (U, — EU,)

1
d _
e == w2 x| aBan o).
ui>up =
(b) U- andV-statistics. The asymptotic distribution of statistics of the form
> K(Xi.Xi) or > K(Xip. Xi)
1<ii#ip<n 1<iq,io<n

can be considered using Theorems 10 and 11. Note that the partial-sum theory
developedin Ho and Hsing (1997) is readily recovered here by lekiifag, x2) =

(h(x1) + h(x2))/2. We give another example here, the Wilcoxon one-sample
statistic and the signed-rank statistic, for which the asymptotic distribution is not
seen elsewhere.

Let
Ki ip(x1,x2) = I (x1+x2 > 0).

Then [n(n — 1)1 > 1<iyio<n K(Xiy, Xi,) is called the Wilcoxon one-sample
statistic. Let us assume for simplicity that has a normal distribution and that
the marginal of X;} is standard normal. Simple calculations give

X1+ Xx2
Kil,iz,—oo(xl, X2) = P(Xil + Xiz > —(xl +X2)) =1— d)(——)

vV 2(1 + pil—iz) ’
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wherep, = EX1X1+, and¢ is the standard normal p.d.f. Hence,

KD (0,0)=

&0 $(0) —

as|iy — io| — oco.

1 1
A% 2(1 + pil—iz) Zﬁ
With C =1/(2\/) in (38), it follows from (39) that, for each € (1/2, 1),

p-5/2y -1 B a 1 Lo s
@0)  n? L (W~ EUD S /uem /x_o[(" )17 dx dBw),

which has a normal distribution. A related statistics is the signed-rank statistic

n
Wa=) R,
i=1

where¥; = sign of X; andRJr the rank of| X;| among|X1|, ..., |X,]. It can
be shown [cf. Randles and Wolfe (1979 they = U, (1 + op(l)) and hence the
asymptotic distribution can be derived in exactly the same way.

There are situations whel€; , _; L;, i, as well asZ, ,, 1 <r < p, all equal
zero. Then the asymptotic distribution will be determined by the lowest-order non-
trivial Z, .. This is exemplified by certai/-statistics with degenerate kernels,
kernels which satisf)/x1 K (x1, x2) dF (x1) = 0 for all x. See Dehling and Taqqu
(1989, 1991) and Ho and Hsing (1996). The approach in those references overlaps
and complements the approach described here.

6. Proofs

PROOF OFTHEOREM 1. Let

t+m
Sm(zt)— Z LtzandSn(gm)—Z%_m(Zt) m>1.
i=t—m
Then (5) implies
oo t+m oo m
ZHJosm(z,) <Y w6 DY (wlbri—k < 00

t=0i=t—m t=0k=—m

which entails S, (§,,)/+/n = N(O, crn21) for some crn21 < 0o by Theorem 1 in
Woodroofe (1992) [see also Lemma 5 in Wu (2003)].
Let LIM be limsup,_, .. limsup,_, ... It remains to verify that

Z Liy i,

liv—iz|>m, 1<iy,ip<n

1
=LIM —

(41) LIM — NG —0.

\/— Z Lll 12 Sn (gm)

1<ii,i2<n
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To this end, note that the projectios’ are orthogonal and hence

2
Z Li1,i2

lig—iz|>m, 1<ii,iz<n

n

= Z j)l‘ Z Lil,iz

1=—00 lig—iz|>m, 1<ii,iz<n

n — 2
@) s SR ||}

t=—00l|ij—iz|>m, 1<iy,ip<n

<Z+Z)[i > H«mil,iznr.

t=—00/ Lipx=1li1=ip+m+1
Making use of the fact tha®, L;, ;, =0 for¢ > i1 v ip,

Z(Z Z HJ’zLil,izll):f_ f ik ||e7>,L,-+k,,-||T

=1 \ip=1iy=ip+m-+1 t=1L k=m+1i=t—k

n [ n=1 n—t 2
@3) 2> Dwkw,-,,-_k}

=1L k=m+1i=0

n—=1 n 2

n[ > Z|wk|9i,i—ki|,
k=m+1i=0

and similarly,

0 n n 2
DD ||J>tLl-1,,-2u}

t=—00 [ io=1i1=io+m+1

= XO: [ nX:l glld Ll+kl||i| f:[ nX_:l r§|wk|9i+k+t,i+ti|2

t=—col k=m+1i=1 r=0L k=m+1i=1
(44)
n—1 n—k
<CZ D0 D lwklbiskqrive =C Z ZZ|wk|91+k+m+z
t=0k=m+1i=1 k=m+1i=1t=0
o n (e e] [e.e] (e e]
<C >0 D2 D lwlbjj=Cn 30 Y wilb) .
k=m+1i=1 ;=0 k=m+1 ;=0
in view of
n—1 n—k [ele) [ele)
Do wilbigkgrive < Y wil Y Oirktrive
k=m+1i=1 k=1 i=1

8

Z|wk|20” r=:C < o0.
j=1

k=1
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Hence (41) follows from from (3), (42)—(44).0

PROOF OF THEOREM 2. By Cauchy’s inequality, we havgPo(L;, i, —
Li,.i,) |l < |wi,—i,]8¢. By the triangle and Cauchy’s inequalities, we also have

H Po(Liy.iy — Zil,iz)” = C|wi1—i2|éi1,i2'
Thus there exists @ > 0 such that, for all1, i, £,
(45) H?O(Lil,iz - iil,iz)” = C|wi1—i2| min(éil,iz’ 85)'

In the sequel let LIM stand for limsyp, ., limsup,_, ., and letC stand for a
constant which may vary from line to line. By the proof of Theorem 1, we have
2

Z (Lil,iz - Lilyiz) I+,

1<iy,iz=<n

2

n

1
A:=LIM —
n

where

n—1n—t
| =LIM- ZZ[ZZmlmm(e”k,&)}

t=1L k=0i

00 — n-+t
h=LIM—7 Z|: Y Ju ming;; k,3e)i|

k=0i=1+4+k+t

By the assumptions, we have

| <Clim supsupZ mln(eu k,0¢) =C lim supZ mln(eu £, 0) =

{—00 k>Ol -0 3—>0k>Ol -0
and
n—1 n+t n—1 oo
I<LIM—Z<Z > lwel min(;,i— k,aw)(22|wk|min<9i,i_k,ae>>
”t 0 \k=0i=1+¢ k=0i=1

2
<C I|m (supZ min(@;.; _x. 6))

-0 k>Ol 0
ThusA =0 follows. O

PROOF OFTHEOREM 3. The plan of the proof is to show that, for every fixed
£>1,

(46) WA 2 S L, S N©0,6%)  asn— oo

1<iy,iz=<n
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for some finite2. It follows then from Theorem 2 that? is Cauchy in¢ and
hence converges to a finite constanfas oo. By this and another application of
Theorem 2, we conclude that (9) holds with = lim,_, o, 62 € (0, o). Thus, we
will focus on proving (46) for a fixed. Observe that

Z ]:il,iz

1<iy,ip=<n,li1—ip|<¢

L
B 0<~/ﬁ > |wk|) = olmW;)?]

k=0
sinceW,, — oo. Thus it suffices to show that

@7y @wHY? 3 Lii, 5 N©.62  asn— oo

1<iy,io=<n,liy—iz|>¢

for some finite52. Fix i1, i with |iy — iz| > €, and observe th&;, andZ;, are
i.i.d. Now defineJ;, ;,(Z;,) = E[Li, ;,|Z;,] and

ki1,i2 = £i1,i2 - jil,iz (Zil) - 'ii1,i2 (Ziz)'
Let i1 = r1 + g1€ and iz = ro 4+ g2£, where integers & r1,72 < £ — 1 and
0<q1#q2=<q=|n/t]. SINCER,, 14t ry+qp¢ are uncorrelated for different pairs
q1 < q2,

2
2
=C Z Wri+q1t—rp—gat>
1<q1<g2=q

Z Rri4+g16, ra+q0t
1<q1<q2=q

which in conjunction with Cauchy’s inequality by summing owvar ro= 0,
..., ¢ —1yields that

2

=C Z Z wr21+61113—r2—612@

1<r,r2<t1<q1<q2=q

Z Iéil,iz

1<iy,ip=<n,li1—iz|>¢

n
=C Z wizl_iszZ(n—k)wlfzo(anZ).

1<iy,io<n k=0

So (47) will follow from

48) (w22 3 JinZi) SN©,60)  asn— oo

1<iy,ip=<n,liy—iz|>¢

for some finite5 2, which can be easily shown to hold by the central limit theorem
for £-dependent processed.]
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PROOF OFTHEOREM10. We verify (3). By Lemmas 12(iii) and 13, we have,
fork >0,

[e.e] o0 [e.e]
Zez’,i—k < CZ‘//i—k = Czlﬁi < o00.
i=k i=k i=0

Next fori > 0 and j < —1, we have by (K3) thaf| 20K (X;, X)) = O(|al|)
uniformly. It is easily seen that, for the “well-structured” p&ftX;, X;) —Y; ;,
we also havel P K (X;, X ;) — Y; ;1 = O(la;]) uniformly. Hence, foﬂc >0,

k—1 k-1
Y Ok <Y lail < CKPL(K)
i=0 i=0

by Karamata’s theorem. Hence

k—1
Z|wk|29” k<CZ|wk|k1 PL(k) < o0.
k=0 i=0 0
PROOF OFTHEOREM 11. For eachiy > ip, let
yil,lz _K(Xll’X )
i1 pA(I—i2) -0 r
.
- > > K ip(Xin—coin Xiy) > [Tain-jei
t=ip+1 r=1 1=j1>> jr>izg+1ls=1
] r
=22 DiKinin-(0.0) > [Tai,—je
r=0|l|=r i2z j1>-> jr s=1

and¥y;, i, = Yi,.iy if i1 <iz. We first apply Theorem 3 to show that

(49) 3/2 Z Yir iy > N(O, 02

i1,ip=1

for someo? < co. For the procesgY, ;}, it follows easily from (36) that
lim,_. ~ 8¢ = 0. Hence we focus on verifying the condition (7). Observe that for
i1>1i2, P Yi.i, IS equal to

PA(t—i2)

.
0
PrK (Xiy, X Z Hl(lrlz)lz (Xiy.—c0.ip» Xi) > [Tai—je

t:j1>--->jr2i2+1S=l
if io <t <ijy, and is equal taP,Y;, ;, if t <ip. Hence by Lemmas 12 and 14, for
i1 > max0, i),

I~ -~ Cgl is 12 < 0 < ila
Bi1,i, = SUPPOYir,i < { b . -
b2 s0 bz Ci,, ip>0.
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Note that&;, ;, = ¥y, if i < —p. Thus

00 R k—1 . o) R
> min(G;i—k, €)=Y _ Min@i—. €) + > _ Min@4k,;, €)
i=0 i=0 i=0

o0
§C(G+Zmin(wi,e)) -0 ase — 0,

i=0
since they; are summable by Lemma 13. Hence the condition (7) is proved for

{Y,. ;1 and the proof for (49) is complete.
Next observe that

Yisip = Yirsin + Winin
i1

1% r
= Yirip + O Rivior Y > [ ai-je)i-

r=1 t=iptr t=j1>> jrzip+1s=1
where
Riyiyr = Ki(lr:g),iz (Xil,—oo,iz’ Xiz)
o—r r'
-3 Y DKL 0.0 Y [l
r'=0|l|=r" ip> j1>>jpr s=1

Hence the conclusion of the theorem follows from (49) and Lemma [b.

Fork e X with |K| < p, define

K
M, = DiKiyi5,0(Xiy.—00.0: Xiz.—00.0)
p—IK] r
- Z Z D\ Dk Ky ip,—0(0,0) Z nails—jsgjs-
r=0 |l|=r 0> j1>jo>-->jr s=1

LEMMA 12. Assume that E(¢7) < oo, and (K1) and (K2) hold. Then there
exists a constant C, independent of i1, i» > ng, such that

(i) foral k e X with |k|<p—1,

K) |12 1K) 2 2.k 27
I ﬂ’oMi(l,i-z |I“< C[ai + aé + aizl ”Mi(l,iz) |~ + ai22 ||Mi(1+1),i2+1|| [E

(i) for all k € X suchthat |k| < p,

|M 12 < C[AL @ + A @) + AL @) 4 a2 K o)),

i1,i2

(iil) 11P0Yiy.i, 12 < COWE +¥2), where v = |ailllai| + VAi11(4) + A7 1 (2) .
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PrOOF We first prove (i). Define

p—IK| r
Bk(inia)= D Y DiDkKijip (0,00 Y [lai, e
r=1 |ll=r 0=j1>jo>->jr s=1
p—IK| r
Bik(it.io)= Y Y DiD1kKipip-00(0.0) > [ai,-jej-
r=1 [l|=r-1 —1> jo>-> jp s=2
p—lKk| r
Box(itin)= Y Y DiD2kKii-o0(0.0) > [ai,-jej-
r=1 |l|=r-1 —1>jo>-> jr s=2

Then By (i1, i2) = aj,eoB1 (i1, i2) + ai,e0B2k(i1,i2). Observe that, for =1
and 2,
|| Dt,kKil,iz,—l(Xil,—OO,—l’ Xiz,—oo,—l) - Bt,k(il7 12) || = ||M(t+1 12+1||

i

Hence by the triangle inequality,

H<VDkKi1,i2,—l(Xi1,—OO,—la Xiz,—oo,—l)7 (ai1807 ai280)> - Bk(ila l2) ||

2
(50) < lai || Dk Kiy,ig—1(Xiy,—00,~1, Xip,—00,~1) — Buk (i1, i2)
=1

2
= > lail 1M -

By (29) and the triangle inequality,
k
| 2o

11 i
< | DkKiy,i5,0(Xi1,—00,05 Xiz, —00,0)
— Dk Ky i ~1(Xiy,—00.~1, Xip—00,~1)
—(VDkKiy iy —1(Xiy,—c0,—1, Xip—00.—1), (@i, €0, @ir€0))|
+ (VD Kiyip.—1(Xiy,—00,~1, Xip,—00,~1): (@i €0, ain€0)) — Bk (i1, i

from which (i) follows in view of (30) and (50).
To establish (ii) we will adopt a backward induction argument. Firstkp& p,

since M) = DiKiy i5,0(Xi,. 50,0, Xip~00,0) — DiKiiz,—00(0, 0), (i) follows
from (31). Next we make the induction assumption that (ii) holds fokaMith
k| =m > 1 and we wish to show that it holds for &k| = m — 1. By (i) we have,

for anyk with |k| =m — 1,

k 1k 2.k
| PoMiy, | < Clafy + afy + af | M |* + af |MEY 1, 41)
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Since the projectiong; are orthogonal and, M (k). =0fortr=>1,
(k) (k) (] 2
Mll 12 Z H Mll 12 Z” Mll-H‘ i+t H
t=—00
o
<C ([A,-l(4) + A @]+ D (af 4+ af ) [ A (@) + Aigrr (D]
=0

+

WK

2 2 +1 +1
(@ 4 a2, AL 4 AL <2>])

t=0

by the induction assumption. Now the induction is complete srﬁ(ﬁéoa
Aiy (@) = ol A and 20 a2, A7) = 01A7 ")),

t+t

i+t
Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that
PiYiy i andPoY s in—y = le)z in—t have the same distribution]

LEMMA 13. If p and L(-) satisfy (27),then }-72, ¥; < oo.

PROOF By Karamata’s theorem,
(51) Ap(k) = 0(nay  fork=>2.

So the lemma easily follows from (27) after elementary calculations.

For alli; > 0> i», define

i1,i2 i1,ip’
t=ip+1
h ® |
w eI’EJtNl > is equal to
(k,0)
Kll io, t(Xil,—OO,h Xiz)
(oA (t—iz2))—k (kir.0) r

r,

— 2 Kipii, Xi—coiz Xip) > [Tai-se;.

r=1 t=j1>--> jr>ip+1s=1

if 0 <k <pA(t —i2) and 0 otherwise. The following lemma is very similar to
Lemma 12.

LEMMA 14. Assume that E(sf) < oo and conditions (K4) and (K5) hold.
Let i1 > ng > 0> i» and write p’ = p A (—i2). Then there exists a constant C,
independent of i1, i, such that
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() forall0<k<p —1,
k k+1 2
|PoN O, 12 < Clafh + a2 NS, a1 PT:

(i) forall0<k <y,

NG 12 < clan@ + a7 K@),

11,12

(iii) (| PoYiiplI2 < CEZ . Where&;, i, = Ialll[lazll+\/Azl+1<4)+All+1<2>]-

PrROOFR  We first prove (i). Fixk < p’ — 1. By the triangle inequality and (33),

k k,0 k,0
H ONl(l 32 H — “ Kl(l lz)O(Xil’_OOaO’ Xiz) - Ki(l iz)—l(Xil,_OO’_l’ Xiz)
k+1,0
— aineoK i 5% (Xiy, o0 -1, Xiy) |
+ || @i €0 Kz(lkj;l—oi(xil,—oo,—l’ Xi,)
o' —k 40 r
+r,
— Y K (Xiy—co.ins Xip) > [ Tai—je5|
r=1 O0=j1>jo>-->jrZipg+1ls=1

The first term on the right-hand side is bounded 6yw,-l_,-2|a,.21 by the
assumption (34). The second term on the right-hand side is bounded by

K(k+l 0) (th o1, Xi ) K(k-i—l O)(Xil,—oo,iz’ X,‘Z)

| il| i1,in,—1 i1,i2,i2

p'—k—1

r
(k+1+"0) . . . || P,

Z Klllztz Xllv—oole’XIZ) Z all_]sejs

=1>j1>>jr>ip+1s=1

= |ai1|HN(k+l)2+1” + [aiy || Wiy, ip k. — N(k+l)

i1+1,i
where
_ pk+1,0)
Wigipk = K11+1 io+1, O(Xi1+1,—00,0’ Xi2+1)
(k+1,0) . . .
K11+l i>+1, 12+1(X11+1,—OO,12+17 X12+l)
o —k—-1
(k+1+r,0)
— Y Kitioitipra(Xin+l—coip+1s Xipt1)
r=1

r
X Z l_[ ail+1—j.s Ej.s °

0> j1>->jpr>ip+2s=1
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Observe that

k+1)
” Wil,iz,k Nz(1:1 12—5-1”

0 o —k—1

=2 2

t=io+1r=(pA(t—i2))—k+1

(k+1+r,0) ) ) )
i1+1,i2+1,i2+1(X11+1» —00,i2+1s X12+1)

.
x > Jlauws-je

1=j1>> jr2iz+25=1

< C|ail|.

Hence (i) follows.
To establish (i), we will adopt a backward induction argument. Firstg ferp’,
(ii) follows from (35) in view of
0 0

Nl(lpl)z Kl(lplz g)(Xil,—OO,O’ Xi ) Kl(lplz 22 (Xil,—OO,iZ’ Xi2)~
Next we make the induction assumption that (ii) holdsifes m > 1 and we wish
to show that it holds fok =m — 1. By (i) we have

12
[ 20N P < Clafy +af NG 7).

11 i2 11,12
Since the projectionS’, are orthogonal,
—ip—1
t(lmt)z Z ” Nz(lmt)z Z ” (1m—§—)t ip+t ”

t=ip+1

0 0
2 2 2 +1
<cul, (A,.1<4> IDIRVINERD 37 <z>)
= 1=l

by the induction assumption. Now the induction is complete SE@O“;-H

Aie @ = ol A@®] and X% ga?, AL (2) = 0147 ")),

Finally, (iii) follows readily from parts (i) and (ii) of this lemma by noting that
P Yiri, aNAPoYi 11—t = Nl(l), in—t have the same distribution]

LEMMA 15. Under the conditionsof Theorem11,
n
n_3/2 Z Wil,iz _p) 0.
i,j=1

PrRooE Recall that
(r,0)
Riyipr = Kzlrzz i (Xilv—oovizv Xiz)

- Z Z D Kl(lrloz)— ©.0) Z Hails_jsej“

'=0|l|=r' ip>j1>>j s=1
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and hence we have for > i» > 0,

[ PoRiyin.r| = [ PoMiL ) | < Clai|[[aiy] +V Aip41(8) + AL 1 (2]

i1,i2

. N S SN
NCa,-Z(la,-Z)('O n/ ~ip 8 LP (i) = Nigs

whered = (p —r + D(B — 1/2) + 1/2 by Lemma 12 and (51). Projecting
iteratively, we obtain

n r
> Ripipr Y, > air—jy | [ air—j. €

i1>ip=1 ip+r<t<iyt=j1>->j,>ip+1 s=1

n -1 r 2
= Z Z Z Hail—l‘.;Ril,iz,r

n>t1>-->t>1llig=t1 irp=1s=1

t—1 n -1 r
= Z Z Z Z Hail—tsj)ﬂRil,in

n>t1>-->4>1'=—oclliy=t1 ip=1vt’ s=1

t—1 n tr—1 r 2
¢ ¥ T (X F o).

n>t1>-->t>1'=—00 \i1=t1ip=1vt’ s=1

2

2

Now approximating summations by integrals, the last expression can be seen to be
asymptotically equal t@n”+5-20F+9) ([, (n))2(P=+D » INT for largen, where

INT = 1> >-->1>0 /t’— (/ n(x B tS) ﬁ) (/y:;jt’(y B t/)_a)Z.

Since
r+5-2rp+8)=4—(p+1)(2—1) <3,

where the equality holds only i (n) — 0 by (27), the result will follow if we can
show thalNT < oo, which is what we will do. First,

/x IL[(x — 1) Pdx

=1

PR
<(n —tz)‘(’ﬁ‘l)/o FPa+nF ]‘[( ts) dx

n—rnmn

B ro0
< (1 —1p) P~ 1)1—[<t1 ) /0 s Px+ 1) Pax

n—n

<C(tn—t) @D n(tl —1)7 P,
5s=3
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Hence we have

.
INT <C (th— 1) 2V — 1)

1>11>>1>0 =3

Iy t—1 2
X / </ (y—t/)_‘s) .
t'=—o00 \Jy=0v¢’

t t—1 2
[ oo
t'=—o00 \Jy=0vr’
-1 0 tr — 2
([ L LU o) ar
t'=—00 t'= t =0vt’

it is easy to see that all three integrals are uniformly bounded sifee<® < 1.
Also, integrating iteratively from, to t3, we obtain

Writing

/ H(tl — 1) ﬁdl‘g -dt, <C(1 — ;2)—0—2)(2/3—1).
to>-- >tr>0
Sincer(28 — 1) <1,

,
/ (1= 1) 2D [[1 = 1) dry--dyy
1>t1>->1>0 =3

< C/ / tz)_r(zﬁ_l) dt1dty < 00.
1n=0J1
Hence we conclude th&iNT < co and the proof is complete.C]
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