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LÉVY PROCESSES AND FOURIER ANALYSIS
ON COMPACT LIE GROUPS
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Auburn University and Nankai University

We study the Fourier expansion of the distribution density of a Lévy
process in a compact Lie group based on the Peter–Weyl theorem.

1. Introduction. Let G be a Lie group with identity elemente and of
dimensiond . A stochastic processgt in G, with right continuous paths having left
limits, is called a Lévy process if it has independent and stationary increments in
the sense that for anys < t , g−1

s gt is independent ofF 0
s , theσ -algebra generated

by gu for u ∈ [0, s], and has a distribution depending only ont − s. In this paper
a Lévy processgt will always be assumed to start ate, that is,g0 = e, unless when
explicitly stated otherwise.

Lévy processes in noncompact semi-simple Lie groups possess interesting
limiting properties. These were studied in Liao (1998, 2002) motivated by the
results on Brownian motion in symmetric spaces by Dynkin and Malliavia–
Malliavin, and Lie group valued random walks by Furstenberg–Kesten and
Guivarc’h–Raugi. See the references in the above cited papers and also Applebaum
(2000a) for some of the other related results. Lévy processes in a compact Lie
group possess completely different properties. Instead of exhibiting any sample
path convergence, the process is ergodic and one would expect that its distribution
converges to the normalized Haar measure as timet → ∞. The purpose of this
paper is to study the Fourier expansion of the distribution density of a Lévy process
in a compact Lie group based on the Peter–Weyl theorem and from which to obtain
the exponential convergence of the distribution of the process to the normalized
Haar measure.

Fourier transformation of bounded measures on locally compact groups was
studied in Heyer (1968) and a related central limit theorem was established in
Siebert (1981). Fourier method has been proved useful for studying random walks
on finite groups and, in some special cases, on Lie groups. See, for example,
Diaconis (1988), Rosenthal (1994) and Klyachko (2000). This paper may be
regarded as a first attempt at applying this useful method to study a general Lévy
process in a compact Lie group.

We will now describe a little more precisely the content of this paper. In the
next section after a discussion of the generator of a Lévy process, we first establish
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the existence ofL2 distribution density under a nondegeneracy condition. We then
study the Fourier expansion of theL2 density of a general Lévy processgt in terms
of matrix elements of irreducible unitary representations ofG. It is shown that the
Fourier series converges absolutely and uniformly onG, and the coefficients tend
to 0 exponentially as timet → ∞. In Section 3, for Lévy processes invariant under
the inverse map, the distribution density is shown to exist, and the exponential
bounds for the density, as well as the exponential convergence of the distribution
to the normalized Haar measure, are obtained. The same results are proved in
Section 4 for conjugate invariant Lévy processes. In this case the Fourier expansion
is given in terms of irreducible characters, a more manageable form of Fourier
series. In Section 5 Fourier coefficients are identified more explicitly using Weyl’s
character formula.

The rest of this section is devoted to a brief discussion of Fourier series of
L2 functions on a compact Lie groupG based on the Peter–Weyl theorem. See
Bröcker and Dieck (1985) for more details on the representation theory of compact
Lie groups and Helgason (2000) for the related Fourier theory.

Let U be a unitary representation ofG on a complex vector spaceV of complex
dimensionn = dimC(V ) equipped with a Hermitian inner product. Given an
orthonormal basis{v1, v2, . . . , vn} of V , U may be regarded as an unitary matrix
valued functionU(g) = {Uij (g)} given byU(g)vj = ∑n

i=1 viUij (g) for g ∈ G.
Let Irr(G,C) denote the set of all the equivalence classes of irreducible unitary
complex representations. The compactness ofG implies that Irr(G,C) is a
countable set. Forδ ∈ Irr(G,C), let Uδ be a unitary representation belonging to
the classδ and letdδ be its dimension. We will denote by Irr(G,C)+ the set
Irr(G,C), excluding the trivial one-dimensional representation given byUδ = 1.
For any measureµ and measurable functionf on G, we may writeµ(f ) for
the integral

∫
f (g)µ(dg). The normalized Haar measure onG will be denoted

either by l or by dg. Let L2(G) be the space of functionsf on G with finite
L2-norm‖f ‖2 = [l(|f |2)]1/2 = [∫ |f (g)|2dg]1/2, identifying functions which are
equal almost everywhere underl.

By Peter–Weyl theorem [see II.4 andIII.3 in Bröcker and Dieck (1985)], the
family

{d1/2
δ Uδ

ij ; i, j = 1,2, . . . , dδ andδ ∈ Irr(G,C)}
is a complete orthonormal system onL2(G). The Fourier series of a function
f ∈ L2(G) with respect to this orthonormal system may be written as

f = l(f ) + ∑
δ∈Irr(G,C)+

dδ Trace(AδU
δ) with Aδ = l(fUδ∗)(1)

in L2 sense, that is, the series converges tof in L2(G), whereUδ∗ = Uδ
′
with the

overline denoting the complex conjugate and the prime “′ ” the matrix transpose.
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The L2-convergence of the series in (1) is equivalent to the convergence of the
series of positive numbers in the following Parseval identity.

‖f ‖2
2 = |l(f )|2 + ∑

δ∈Irr(G,C)+
dδ Trace(AδA

∗
δ ).(2)

The character ofδ ∈ Irr(G,C) is

χδ = Trace(Uδ),(3)

which is independent of the choice of the unitary matrixUδ in the classδ and
is positive definite in the sense that

∑k
i,j=1 χδ(gig

−1
j )ξiξj ≥ 0 for any finite set

of gi ∈ G and complex numbersξi . The normalized character isψδ = χδ/dδ . The
positive definiteness ofχδ implies that|ψδ| ≤ ψδ(e) = 1. By IV, Theorem 1.6, in
Helgason (2000), for anyu, v ∈ G,∫

ψδ(gug−1v) dg = ψδ(u)ψδ(v).(4)

A function f on G is called conjugate invariant iff (hgh−1) = f (g) for any
g,h ∈ G. Such a function is also called a class function or a central function
in the literature. LetL2

ci(G) denote the closed subspace ofL2(G) consisting of
conjugate invariant functions. The set of irreducible characters,{χδ ; δ ∈ Irr(G,C)},
is an orthonormal basis ofL2

ci(G); see II.4 and III.3 in Bröcker and Dieck (1985).
Therefore, forf ∈ L2

ci(G),

f = l(f ) + ∑
δ∈Irr(G,C)+

dδaδχδ with aδ = l(f ψδ )(5)

in L2 sense.

2. Lévy processes in compact Lie groups. Lévy processes in a Lie groupG
have been defined earlier. Such a processgt is a Markov process with a Feller tran-
sition semigroup, hence, its distribution is completely determined by its generator.
The generatorL may be defined byLf (g) = lim t→∞(1/t){E[f (ggt )] − f (g)}
for any continuous functionf on G vanishing at infinity, such that the limit ex-
ists under the norm‖f ‖∞ = supg∈G |f (g)|, and the set of such functions is the
domainD(L) of L. An explicit expression forL is obtained in Hunt (1956).

In this paper we will consider exclusively Lévy processes in compact Lie
groups. Therefore, in the rest of this papergt will be a Lévy process in a compact
connected Lie groupG. In this caseD(L) containsC2(G) andL is completely
determined by its restriction toC2(G). To state Hunt’s formula, letg be the
Lie algebra ofG and let {X1, . . . ,Xd} be a basis ofg. There are functions
x1, . . . , xd ∈ C∞(G) such thatxi(e) = 0 andXixj = δij . These functions form
a local coordinate system ate and, hence, will be called a set of coordinate
functions associated to the basis{X1, . . . ,Xd}. Note that they are not uniquely
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determined by the basis. We will write|x|2 = ∑d
i=1 x2

i . Forg ∈ G, let Lg andRg

be, respectively, the left and right translations onG defined byLg(h) = gh and
Rg(h) = hg for h ∈ G. For X ∈ g, let Xl andXr denote, respectively, the left
invariant and right invariant vector fields onG given byXl(g) = DLg(X) and
Xr(g) = DRg(X), whereD applied to a mapping denotes its differential. Hunt’s
formula says that for anyf ∈ C2(G) andg ∈ G,

Lf (g) = 1
2

d∑
i,j=1

aijX
l
iX

l
j f (g) + Xl

0f (g)

+
∫ [

f (gh) − f (g) −
d∑

i=1

xi(h)Xl
if (g)

]
�(dh),

(6)

whereaij are constants forming a nonnegative definite symmetric matrix,X0 ∈ g

and� is a measure onG satisfying the following condition:

�({e}) = 0, �(V c) < ∞ and
∫

|x|2 d� < ∞(7)

for some neighborhoodV of e. HereV c denotes the complement ofV in G. Note
that the above condition on� is independent of the choice of the neighborhoodV ,
the basis{X1, . . . ,Xd} and the coordinate functionsxi . The measure� is called
the Lévy measure of the processgt and is, in fact, the characteristic measure of a
homogeneous Poisson random measure onR+ × G which counts the jumps of the
process, hence,� vanishes if and only if the processgt is continuous.

When� has a finite first moment, that is, if
∫ |x|d� < ∞, then for anyf ∈

C2(G), the integral
∫ [f (gh) − f (g)]�(dh) exists and by suitably changingX0

in (6), Hunt’s formula takes the following simpler form:

Lf (g) = 1
2

d∑
i,j=1

aijX
l
iX

l
j f (g) + Xl

0f (g) +
∫

[f (gh) − f (g)]�(dh).(8)

Note that if the Lévy measure� is finite, then it has a finite first moment.
For any two probability measuresµ andν on G, their convolutionµ ∗ ν is a

probability measure onG defined byµ ∗ ν(B) = ∫
gh∈B µ(dg)ν(dh) for any Borel

subsetB of G. Let µt be the distribution ofgt for eacht ∈ R+. Thenµt+s =
µt ∗ µs for anys, t ∈ R+. We note that(d/dt)µt(f )|t=0 = Lf (e) for f ∈ C2(G).

The density of a measure onG will always mean the density function with
respect to the normalized Haar measuredg unless when explicitly stated otherwise.
Supposeµt has a densitypt ∈ L2(G) for t > 0. Thenpt+s = pt ∗ ps , where
the convolution of two functionsf1 andf2 in L2(G) is defined byf1 ∗ f2(g) =∫

f1(gh−1)f2(h) dh or, equivalently,f1 ∗ f2(g) = ∫
f1(h)f2(h

−1g)dh for g ∈ G.

LEMMA 1. Let µ and ν be two probability measures on G such that one of
them has a density p. Then µ ∗ ν has a density q with ‖q‖2 ≤ ‖p‖2. In particular,
if pt is a density of µt for t > 0, then ‖pt‖2 ≤ ‖ps‖2 for 0 < s < t .
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PROOF. We will only consider the case whenp is the density ofµ. The other
case can be treated by a similar argument. For anyf ∈ C(G), by the translation
invariance ofdg,

µ ∗ ν(f ) =
∫ ∫

f (gh)p(g) dg ν(dh)

=
∫ ∫

f (g)p(gh−1) dg ν(dh)

=
∫

f (g)

[∫
p(gh−1)ν(dh)

]
dg.

Hence,q(g) = ∫
p(gh−1)ν(dh) is the density ofµ ∗ ν. It is easy to see, by the

Schwarz inequality and the translation invariance ofdg, that‖q‖2 ≤ ‖p‖2. Note
that using the Hölder inequality instead of the Schwarz inequality, we can prove
the same conclusion with‖ · ‖2 replaced byLr -norm‖ · ‖r for 1≤ r ≤ ∞. �

The Lévy processgt will be called nondegenerate if the symmetric matrix
a = {aij } in (6) is positive definite. Letσ be ad × d matrix such thata = σ ′σ
and let

Yi =
d∑

j=1

σijXj for 1 ≤ i ≤ d.(9)

Then the second-order differential operator part of the generatorL given by (6)
may be written as(1/2)

∑d
i=1 Y l

i Y
l
i . Let Lie(Y1, Y2, . . . , Yd) be the Lie sub-algebra

of g generated byY1, Y2, . . . , Yd . The following weaker nondegeneracy condition
is sufficient for most results in this paper.

(H) Lie(Y1, . . . , Yd) = g.

A continuous Lévy process satisfying the hypothesis (H) is a hyper-elliptic
diffusion process inG. It is well known that such a process has a smooth transition
density function fort > 0. In this case,µt has a smooth densitypt for t > 0.

THEOREM 1. Let gt be a nondegenerate Lévy process with a finite Lévy
measure. Then each distribution µt of gt has a L2 density pt for t > 0.

PROOF. Because the Lévy measure� is finite, the Lévy processgt may
be constructed from a continuous Lévy processxt by interlacing jumps at
exponentially spaced time intervals. The precise meanings of this construction are
as follows. Letxt be a continuous Lévy process inG whose generator is given
by (8) with � = 0, let {τn} be a sequence of exponential random variables with a
common rateλ = �(G) and let{σn} be a sequence ofG-valued random variables
with a common distribution�(·)/�(G). We will assume all these objects are
independent. LetTn = τ1 + τ2 + · · · + τn for n ≥ 1 and setT0 = 0. Let g0

t = xt ,
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let g1
t = g0

t for 0 ≤ t < T1 and g1
t = g0(T1)σ1x(T1)

−1xt for t ≥ T1, and,
inductively, letgn

t = gn−1
t for t < Tn andgn

t = gn−1(Tn)σnx(Tn)
−1xt for t ≥ Tn.

Here, for typographical convenience, we have writtengn(t) for gn
t . Definegt = gn

t

for Tn ≤ t < Tn+1. A similar construction is carried out in Applebaum (2000b). It
can be shown thatgt is a Lévy process inG with generator given by (8).

Let (
,F ,P ) be the underlying probability space. For any real or complex
valued random variableX on 
 andB ∈ F , we will write E[X;B] = ∫

B X dP

andE(X) = E[X;
]. Note thatTn has a Gamma distribution with densityrn(t) =
λntn−1e−λt/(n − 1)! with respect to the Lebesgue measure onR+. Let qt denote
the smooth density of the distribution ofxt for t > 0. Forf ∈ C(G) and t > 0,
using the independence, we have

µt(f ) = E[f (xt ); t < T1]
+

∞∑
n=1

E[f (gt );Tn ≤ t < Tn + τn+1]

= E[f (xt )]P (T1 > t)

+
∞∑

n=1

∫ t

0
rn(s) ds E[f (gn−1

s σnx
−1
s xt )]P (τn+1 > t − s).

(10)

We now show that forn ≥ 1 and 0≤ s < t ,

E[f (gn−1
s σnx

−1
s xt )] =

∫
f (g)ps,t,n(g) dg

(11)
for someps,t,n with ‖ps,t,n‖2 ≤ ‖qt/2n‖2.

To prove (11) forn = 1, first assumes ≥ t/2. We haveE[f (g0
s σ1x

−1
s xt )] =

E[f (xsσ1x
−1
s xt )] = µ ∗ ν(f ), whereµ andν are, respectively, the distributions

of xs and σ1x
−1
s xt . By Lemma 1,µ ∗ ν has a densityps,t,1 with ‖ps,t,1‖2 ≤

‖qs‖2 ≤ ‖qt/2‖2. If s ≤ t/2, then we may takeµ and ν to be the distributions
of xsσ1 and x−1

s xt , respectively, and still obtain a densityps,t,1 of µ ∗ ν with
‖ps,t,1‖2 ≤ ‖qt/2‖2. This proves (11) forn = 1. Now using induction, assume (11)
is proved forn = 1,2, . . . , k for some positive integerk. This implies, in particular,
that the distribution ofgk

t has a densitypk
t with ‖pk

t ‖2 ≤ ‖qt/2k‖2. Consider
E[f (gk

s σk+1x
−1
s xt )] = µ ∗ ν(f ), whereµ areν are taken to be the distributions

of gk
s andσk+1x

−1
s xt , respectively, ifs ≥ t/2, and those ofgk

s σk+1 andx−1
s xt if

s ≤ t/2. By an argument similar as above using Lemma 1, we can show thatµ ∗ ν

has a density whoseL2-norm is bounded by

‖pk
s ‖2 ≤ ‖qs/2k‖2 ≤ ‖qt/2k+1‖2

if s ≥ t/2, and bounded by‖qt/2‖2 if s ≤ t/2. In either case, theL2-norm of the
density ofµ ∗ ν is bounded by‖qt/2k+1‖2. This proves (11) for anyn ≥ 1.
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By (10) and the fact thatP (τn > t) = e−λt for t > 0, we see thatµt(f ) =∫
f (g)pt (g) dg with

pt = qte
−λt +

∞∑
n=1

∫ t

0
rn(s) ds e−λ(t−s)ps,t,n

and

‖pt‖2 ≤ ‖qt‖2e
−λt +

∞∑
n=1

∫ t

0
rn(s) ds e−λ(t−s)‖ps,t,n‖2

≤ ‖qt‖2e
−λt +

∞∑
n=1

∫ t

0
rn(s) ds e−λ(t−s)‖qt/2n‖2.

(12)

It is well known that the density of a nondegenerate diffusion processxt on a
d-dimensional compact manifold is bounded above byCt−d/2 for small t > 0,
whereC is a constant independent oft . See, for example, Chapter 9 in Azencott
(1981). Therefore,|qt | ≤ Ct−d/2 and‖qt/2n‖2 ≤ C(2n/t)d/2. Since

∫ t
0 rn(s) ds ≤

(λt)n/n!, it is easy to see that the series in (12) converges. This provespt ∈ L2(G).
�

We note that if all the eigenvaluesλi of a square matrixA have negative real
parts Reλi , thenetA → 0 exponentially ast → ∞ in the sense that for anyλ > 0
satisfying maxi Re(λi) < −λ < 0, there is a constantK > 0 such that

∀ t ∈ R+ {Trace[etA(etA)∗]}1/2 ≤ Ke−λt .(13)

To prove this, letA = Qdiag[B1(λ1),B2(λ2), . . . ,B(λr)]Q−1 be the Jordan
decomposition ofA, whereQ is an invertible matrix andBi(λi) is a Jordan block
of the following form

B(λ) =




λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · λ


 .

A direct computation shows that

etB(λ) =




eλt teλt t2eλt/2! t3eλt/3! · · · tk−1eλt/(k − 1)!
0 eλt teλt t2eλt/2! · · · tk−2eλt/(k − 2)!
0 0 eλt teλt · · · tk−3eλt/(k − 3)!
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · eλt


 .

Let bij (t) be the element of the matrixetA = Qdiag[etB1(λ1), etB2(λ2), . . . ,

etBr (λr )]Q−1 at place(i, j). From the above expression foretB(λ), it is easy to
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see thatbij (t) = ∑r
m=1 pijm(t)eλmt , wherepijm(t) are polynomials int . Then

Trace[etA(etA)∗] = ∑
i,j |∑m pijm(t)eλmt |2 and from this (13) follows. We note

that if A is a Hermitian matrix, that is, ifA∗ = A, then Q is unitary and all
Bi(λi) = λi are real.

THEOREM 2. Let gt be a Lévy process in a compact connected Lie group G

with generator L. Assume the distribution µt of gt has a density pt ∈ L2(G)

for t > 0. Then the following statements hold:
(a) For t > 0 and g ∈ G,

pt(g) = 1+ ∑
δ∈Irr(G,C)+

dδ Trace[Aδ(t)U
δ(g)],(14)

where

Aδ(t) = µt(U
δ∗) = exp[tL(Uδ∗)(e)],(15)

and the series converges absolutely on G and uniformly for (t, g) ∈ [η,∞) × G

for any fixed η > 0. Moreover, all the eigenvalues of L(Uδ∗)(e) have nonpositive
real parts.

(b) If the hypothesis (H) holds, then all the eigenvalues of L(Uδ∗)(e) have
negative real parts. Consequently, pt → 1 uniformly on G as t → ∞.

REMARK 1. The uniform convergence of the series in (14) implies that the
map(t, g) 
→ pt(g) is continuous on(0,∞)×G. The matrix-valued functionδ 
→
Aδ(t)

∗ = µt(U
δ) is the (noncommutative) Fourier transform of the measureµt

discussed in Heyer (1968).

PROOF OF THEOREM 2. For f = pt , the series in (14) is just the Fourier
series in (1) withAδ = Aδ(t) = l(ptU

δ∗) = µt(U
δ∗). We haveµ0(U

δ∗) = I , the
dδ × dδ identity matrix, and

µt+s(U
δ∗) =

∫
µt(dg)µs(dh)Uδ(gh)∗

=
∫

µt(dg)µs(dh)Uδ(h)∗Uδ(g)∗

= µs(U
δ∗)µt (U

δ∗).

Therefore,µt(U
δ∗) = etY for some matrixY . Because(d/dt)µt(U

δ∗)|t=0 =
L(Uδ∗)(e), we see thatY = L(Uδ∗)(e).

We now prove the absolute and uniform convergence of series in (14). Note
that by the Parseval identity,‖pt‖2

2 = 1 + ∑
δ dδ Trace[Aδ(t)Aδ(t)

∗], where the
summation

∑
δ is taken overδ ∈ Irr(G,C)+. For anyη > 0 andε > 0, there is

a finite subset
 of Irr(G,C)+ such that
∑

δ∈
c dδ Trace[Aδ(η/2)Aδ(η/2)∗] ≤ ε2.
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By the Schwarz inequality and the fact thatUδ is a unitary matrix, for any finite

′ ⊃ 
 andt > η,∑

δ∈
′−


dδ|Trace[Aδ(t)U
δ]|

= ∑
δ∈
′−


dδ|Trace[Aδ(η/2)Aδ(t − η/2)Uδ]|

≤ ∑
δ∈
′−


dδ{Trace[Aδ(η/2)Aδ(η/2)∗]}1/2

× {Trace[Aδ(t − η/2)Aδ(t − η/2)∗]}1/2

≤
{ ∑

δ∈
′−


dδ Trace[Aδ(η/2)Aδ(η/2)∗]
}1/2

×
{ ∑

δ∈
′−


dδ Trace[Aδ(t − η/2)Aδ(t − η/2)∗]
}1/2

≤ ε‖pt−η/2‖2 ≤ ε‖pη/2‖2,

where the last inequality above follows from Lemma 1. This proves the absolute
and uniform convergence stated in part (a).

To complete the proof, we will show that all the eigenvalues of the matrix
L(U∗)(e) have nonpositive real parts, and if (H) holds, then all these real parts are
negative. Note that this implies thatAδ(t) → 0 exponentially forδ ∈ Irr(G,C)+
and, combined with the uniform convergence of the series in (14), the uniform
convergence ofpt to 1 ast → ∞.

Write U = Uδ and n = dδ for δ ∈ Irr(G,C)+. Consider the quadratic form
Q(z) = z∗[L(U∗)(e)]z for z = (z1, . . . , zn)

′, a column vector inCn. Since the
eigenvalues ofL(U∗)(e) are the values ofQ(z) with |z| = 1, it suffices to show
that Re[Q(z)] ≤ 0 for all z ∈ Cn, and Re[Q(z)] < 0 for all nonzeroz ∈ Cn if
(H) holds. ForX ∈ g, let X̃ = Xl(U∗)(e). ThenX̃ is a skew-Hermitian matrix, that
is, X̃∗ = −X̃, andU(etX)∗ = exp(tX̃). Moreover,

Xl(U∗)(g) = d

dt
U(getX)∗

∣∣∣∣
t=0

= d

dt
U(etX)∗U(g)∗

∣∣∣∣
t=0

= X̃U(g)∗.

Therefore,Y lXl(U∗)(e) = Y l[X̃U∗](e) = X̃Ỹ for Y ∈ g, and if Z = [X,Y ] (Lie
bracket), theñZ = [Ỹ , X̃]. LetYi be defined in (9). Then

∑d
i,j=1 aijX

l
iX

l
jU

∗(e) =∑d
i=1 Ỹi Ỹi = −∑d

i=1 Ỹ ∗
i Ỹi and by (6),

L(U∗)(e) = −1
2

d∑
i=1

Ỹ ∗
i Ỹi + ỸV −

∫
V c

[I − U(g)∗]�(dg) + rV ,(16)
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whereV is a neighborhood ofe, ỸV = X̃0 − ∫
V c

∑d
i=1 xi(g)X̃i�(dg) and

rV =
∫
V

[
U(g)∗ − I −

d∑
i=1

xi(g)X̃i

]
�(dg) → 0 asV ↓ {e}.

Becausez∗Wz = 0 for any skew-Hermitian matrixW ,

Q(z) = −1
2

d∑
i=1

|Ỹiz|2 −
∫
V c

z∗[I − U(g)∗]z�(dg) + z∗rV z.(17)

SinceU(g)∗ is unitary,|z|2 ≥ |z∗U(g)∗z|, it follows that Re[z∗(I −U(g)∗)z] ≥ 0.
This shows that Re[Q(z)] ≤ 0. If Re[Q(z)] = 0 for some nonzeroz ∈ Cn, then
Ỹiz = 0 for 1 ≤ i ≤ d . For Y = [Yi, Yj ], we haveỸ z = [Ỹj , Ỹi]z = Ỹj Ỹiz −
Ỹi Ỹj z = 0. If (H) holds, thenỸ z = 0 for anyY ∈ g. BecauseU(etY )∗ = exp(tỸ ),
U(g)∗z = z for all g ∈ G. This implies thatU(g) leaves the subspace ofCn

that is orthogonal toz invariant for all g ∈ G. By the irreducibility of the
representationU , this is impossible unlessn = 1. Whenn = 1, U(g)∗z = z would
imply that U is the trivial representation, which contradicts the assumption that
δ ∈ Irr(G,C)+. Therefore, Re[Q(z)] > 0 for nonzeroz ∈ Cn. �

The total variation norm of a signed measureν on G is defined by‖ν‖tv =
sup|ν(f )|, with f ranging over all Borel functions onG with |f | ≤ 1. The
following result follows easily from the uniform convergence ofpt to 1 and the
Schwarz inequality.

COROLLARY 1. If (H) holds in Theorem 2, then µt converges to the
normalized Haar measure l under the total variation norm, that is,

‖µt − l‖tv → 0 as t → ∞.

3. Lévy processes invariant under the inverse map. For a measureµ on
G and a Borel measurable mapF :G → G, let Fµ be the measure onG defined
by Fµ(f ) = µ(f ◦ F) for anyf ∈ C(G). The measureµ is said to be invariant
under the mapF or F -invariant if Fµ = µ. The Lévy processgt will be called
invariant underF or F -invariant if Fµt = µt for all t ∈ R+. This means that the
processF(gt) has the same distribution as that ofgt .

In this section we will show that ifgt is a Lévy process invariant under the
inverse map

J :G → G given by g 
→ g−1

and satisfying the hypothesis (H), then its distributionµt has anL2 density
for t > 0 and converges exponentially to the normalized Haar measurel as
t → ∞. Some simple implications of theJ -invariance of the Lévy processgt are
summarized in the following proposition.
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PROPOSITION 1. Let gt be a Lévy process in a compact Lie group G. The
statements (a) and (b) are equivalent. Moreover, they are also equivalent to
statement (c) if the Lévy measure has a finite first moment.

(a) gt is invariant under the inverse map J on G.
(b) L(Uδ∗)(e) is a Hermitian matrix for all δ ∈ Irr(G,C)+.
(c) The Lévy measure � is J -invariant and the generator L of gt is given by

Lf (g) = 1
2

d∑
i,j=1

aijX
l
iX

l
j f (g) +

∫
[f (gh) − f (g)]�(dh)(18)

for g ∈ G and f ∈ C2(G).

PROOF. We note thatL(Uδ∗)(e) is a Hermitian matrix for allδ ∈ Irr(G,C)+
if and only if Aδ(t) = exp[tL(Uδ∗)(e)] is a Hermitian matrix for allδ ∈ Irr(G,C)+
and some (hence, all)t > 0. SinceAδ(t)

∗ = µt(U
δ) = µt(U

δ∗ ◦ J ) and{d1/2
δ Uδ

ij }
is a complete orthonormal system onL2(G), we see that the above is also
equivalent to theJ -invariance ofµt for all t > 0, that is, the invariance of the Lévy
processgt under the inverse map. This proves the equivalence of the statements
(a) and (b).

Suppose the Lévy measure� of the Lévy processgt has a finite first moment.
Then its generator is given by (8). Assume the vectorX0 in (8) vanishes. Then the
generatorL takes the form (18). Using the notation in the proof of Theorem 2,

L(U∗)(e) = −1
2

d∑
i=1

Ỹ ∗
i Ỹi −

∫
(I − U∗) d�

and (1/2)
∑d

i=1 Ỹ ∗
i Ỹi is a Hermitian matrix. It is easy to see that if� is

J -invariant, then
∫
(I − U∗) d� is a Hermitian matrix and, hence,L(U∗)(e) is a

Hermitian matrix. This shows that the processgt is J -invariant. Conversely, ifgt is
J -invariant, thenL(f ◦ J )(e) = Lf (e) for anyf ∈ C2(G). SinceXl(f ◦ J )(e) =
−Xlf (e) for anyX ∈ g, by (8),

−Xl
0f (e) +

∫
[f (h) − f (e)]J�(dh) = X0f (e) +

∫
[f (h) − f (e)]�(dh)

for any f ∈ C2(G). This implies thatJ� = � and X0 = 0. This proves the
equivalence of (a) and (c).�

The main result of this section is the following theorem.

THEOREM 3. Let G be a compact connected Lie group and let gt be a Lévy
process in G invariant under the inverse map and satisfying the hypothesis (H).
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(a) For t > 0, the distribution µt of gt has a density pt ∈ L2(G) and for g ∈ G,

pt(g) = 1+ ∑
δ∈Irr(G,C)+

dδ Trace{Qδ diag[exp(λδ
1t), . . . ,exp(λδ

dδ
t)]Q∗

δU
δ(g)},(19)

where the series converges absolutely and uniformly for (t, g) ∈ [η,∞) × G for
any fixed η > 0, Qδ is a unitary matrix and λδ

1 ≤ · · · ≤ λδ
dδ

< 0.
(b) There is a largest number −λ < 0 in the set of negative numbers λδ

i for
δ ∈ Irr(G,C)+ and 1 ≤ i ≤ dδ, and for any η > 0, there are positive constants c

and C such that for t > η,

‖pt − 1‖∞ ≤ Ce−λt , ce−λt ≤ ‖pt − 1‖2 ≤ Ce−λt

and

ce−λt ≤ ‖µt − l‖tv ≤ Ce−λt .

PROOF. Suppose first thatµt has a densitypt ∈ L2(G) for t > 0. Because
L(Uδ∗)(e) is a Hermitian matrix for allδ, Aδ(t) = Qδ diag[exp(λδ

1t), . . . ,

exp(λδ
dδ

t)]Q∗
δ , whereQδ is a unitary matrix, andλδ

1 ≤ · · · ≤ λδ
dδ

are the eigenvalues
of L(Uδ∗)(e). It now follows from Theorem 2 that allλδ

i < 0 and the series in (19)
converges topt(g) absolutely and uniformly.

The series in (19) also converges inL2(G). BecauseQδ is unitary, by the
Parseval identity,

‖pt − 1‖2
2 = ∑

δ∈Irr(G,C)+
dδ

dδ∑
i=1

exp(2λδ
i t).(20)

If (H) holds andgt is continuous, thenpt is smooth and is given by (19).
Using the notation in the proof of Theorem 2, we will writeU = Uδ , n = dδ,
Q(z) = z∗L(U∗)(e)z andQ0(z) = z∗[−(1/2)

∑d
i=1 Ỹ ∗

i Ỹi]z = −(1/2)
∑d

i=1 |Ỹiz|2
for z ∈ C

n regarded as a column vector. Note that−(1/2)
∑d

i=1 Ỹ ∗
i Ỹi is a

Hermitian matrix. By assumption, so isL(U∗)(e). Thus,Q1(z) = Q(z) − Q0(z)

is a Hermitian quadratic form. LettingV ↓ {e} in (17), we see thatQ1(z) =
− ∫

z∗(I − U∗)z d�, where the integral exists as the limit of
∫
V c z∗(I − U∗)z d�

asV ↓ {e}. Because|z| ≥ |z∗Uz|, Q1(z) ≤ 0 and, hence,Q(z) ≤ Q0(z) for z ∈ Cn.
It is known that the eigenvaluesλ1 ≤ λ2 ≤ · · · ≤ λn of an n × n Hermitian

matrix A possess the following min–max representation:

λi = min
Vi

max
z∈Vi,|z|=1

z∗Az for 1≤ i ≤ n,(21)

where Vi ranges over alli-dimensional subspaces ofCn, see, for example,
Theorem 1.9.1 in Chatelin (1993). Letλ1 ≤ · · · ≤ λn andλ0

1 ≤ · · · ≤ λ0
n be the

eigenvalues ofL(U∗)(e) and−(1/2)
∑d

i=1 Ỹ ∗
i Ỹi , respectively. Thenλi ≤ λ0

i for
all i.
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Now supposegt is not necessarily continuous. Then the series in (20)
still converges becauseλδ

i can only become smaller and, hence, the series
in (19) defines a functionpt ∈ L2(G), which may also be written aspt =
1 + ∑

δ dδ Trace[µt(U
δ∗)Uδ]. Any f ∈ L2(G) has Fourier seriesf = l(f ) +∑

δ dδ Trace[l(f Uδ∗)Uδ]. By the polarized Parseval identity,

l(fpt ) = l(f ) · 1+ ∑
δ

dδ Trace[l(f Uδ∗)µt(U
δ)]

= µt

{
l(f ) + ∑

δ

dδ Trace[l(f Uδ∗)Uδ]
}

= µt(f ).

This shows thatpt is the density ofµt and proves (a).
By Theorem 2, if (H) holds, thenλδ

i ’s are all negative. From the convergence
of the series in (20), it is easy to see thatλδ

i should converge to−∞ asδ leaves
any finite subset of Irr(G,C)+. This implies that there is a largest number, denoted
by −λ, in the set of negative numbersλδ

i for δ ∈ Irr(G,C)+ and 1≤ i ≤ dδ. By the
computation proving the absolute and uniform convergence of the series in (14)
in the proof of Theorem 2, replacing
′ − 
 andη/2 there by Irr(G,C)+ andη,
respectively, we can show that fort > η > 0,

|pt − 1| ≤ ∑
δ∈Irr(G,C)+

dδ|Trace[Aδ(t)U
δ]|

≤ ‖pη‖2

{ ∑
δ∈Irr(G,C)+

dδ Trace[Aδ(t − η)Aδ(t − η)∗]
}1/2

= ‖pη‖2

{ ∑
δ∈Irr(G,C)+

dδ

dδ∑
i=1

exp[2λδ
i (t − η)]

}1/2

≤ ‖pη‖2

{
e−2λ(t−2η)

∑
δ∈Irr(G,C)+

dδ

dδ∑
i=1

exp(2λδ
i η)

}1/2

≤ e−λte2λη‖pη‖2‖pη − 1‖2,

where the last inequality above follows from (20). This proves the inequality for
‖pt − 1‖∞ in (b).

By this inequality,‖pt − 1‖2 ≤ Ce−λt for t > η. On the other hand, by (20),
‖pt − 1‖2

2 ≥ dδ exp(2λδ
i t) for anyδ ∈ Irr(G,C)+ and 1≤ i ≤ dδ. This proves the

inequalities for‖pt − 1‖2.
By ‖pt − 1‖2 ≤ Ce−λt and the Schwarz inequality,‖µt − l‖tv ≤ Ce−λt . On the

other hand, since|Uδ
ii | ≤ 1 andl(Uδ

ii) = 0 for δ ∈ Irr(G,C)+,

‖µt − l‖tv ≥ |µt(U
δ
ii)| = |Aδ(t)ii | =

dδ∑
j=1

|(Qδ)ij |2eλδ
j t .
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For anyj , (Qδ)ij �= 0 for somei and this completes the proof of (b).�

4. Conjugate invariant Lévy processes. For h ∈ G, let ch :G → G be the
conjugation map defined bych(g) = hgh−1. Its differential ate is the linear map
Ad(g) = DLg ◦ DRg−1 :g → g. This induces an action ofG on its Lie algebra
g: G × g � (g,X) 
→ Ad(g)X ∈ g, called the adjoint action ofG ong and denoted
by Ad(G). For X ∈ g, define the linear map ad(X) :g → g by ad(X) = [X,Y ].
Then Ad(eX) = ead(X), whereead(X) is the exponential of the linear map ad(X).

Recall that a functionf on G is called conjugate invariant iff ◦ ch = f for
anyh ∈ G. A measureµ is called conjugate invariant ifchµ = µ for anyh ∈ G.
A Lévy processgt in G with distributionsµt is called conjugate invariant if each
µt is conjugate invariant. This is equivalent to saying that for anyh ∈ G, the
processhgth

−1 has the same distribution asgt .
Let gt be a conjugate invariant Lévy process inG. Then its generatorL is

also conjugate invariant. This means that iff ∈ D(L), the domain ofL, then
f ◦ ch ∈ D(L) andL(f ◦ ch) = (Lf ) ◦ ch for anyh ∈ G. In particular, this implies
that for anyf ∈ C2(G) andh ∈ G, [L(f ◦ ch)] ◦ c−1

h = Lf .
Note that forg,h ∈ G, X ∈ g andf ∈ C1(G),

Xl(f ◦ ch)
(
c−1
h (g)

) = d

dt
(f ◦ ch)(h

−1ghetX)

∣∣∣∣
t=0

= d

dt
f

(
get Ad(h)X)∣∣∣∣

t=0

= [Ad(h)X]lf (g).

By (6), we can write downL(f ◦ ch)(c
−1
h (g)) for f ∈ C2(G) explicitly as follows.

L(f ◦ ch)(h
−1gh)

= 1
2

d∑
i,j=1

aij [Ad(h)Xi]l[Ad(h)Xj ]lf (g) + [Ad(h)X0]lf (g)

+
∫ {

f (gσ ) − f (g) −
d∑

i=1

[xi ◦ c−1
h ](σ )[Ad(h)Xi]lf (g)

}
(ch�)(dσ ).

(22)

Note that{Ad(h)X1, . . . ,Ad(h)Xd} is a basis ofg and xi ◦ c−1
h are associated

coordinate functions. It is proved in Hunt (1956) that in the expression (6) of a
Lévy process generator, the Lévy measure� and the second-order differential
operator

∑d
i,j=1 aijX

l
iX

l
j are completely determined by the generatorL, and are

independent of the choice of the basis{X1, . . . ,Xd} of g and the associated
coordinate functionsxi . It follows that if the Lévy processgt is conjugate invariant,
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thench� = � and

d∑
i,j=1

aijX
l
iX

l
j =

d∑
i,j=1

aij [Ad(h)Xi]l[Ad(h)Xj ]l(23)

for anyh ∈ G. In particular, the Lévy measure� is conjugate invariant.
A Lie groupG is called simple if its Lie algebrag does not contain any proper

ideal. It is called semi-simple ifg does not contain any nonzero abelian ideal. The
center ofg is {0} in semi-simple case.

Recallψδ = χδ/dδ is the normalized character. In a neighborhood ofe, we may
use a set of coordinate functionsx1, . . . , xd as local coordinates and regardψδ as
a smooth function of these variables. We may assume that in a neighborhood ofe,
the coordinate functionsxi are given byg = exp[∑d

i=1 xi(g)Xi ]. Then they satisfy
xi(g

−1) = −xi(g). The positive definiteness ofψδ implies that Re[ψδ(g
−1)] =

Re[ψδ(g)]. From this it follows that all the first-order partial derivatives of Re(ψδ)

with respect toxi vanish ate. Becauseψδ(e) = 1, this shows that

|Re(ψδ) − 1| = O(|x|2),
therefore, by (7), the integral

∫
(1 − Reψδ)d� in the following theorem exists.

Because|ψδ| ≤ 1, this integral is in fact nonnegative.

THEOREM 4. Let G be a compact connected Lie group and let gt be a
conjugate invariant Lévy process in G satisfying the hypothesis (H).

(a) For t > 0, the distribution µt of gt has a density pt ∈ L2(G) and for g ∈ G,

pt(g) = 1+ ∑
δ∈Irr(G,C)+

dδaδ(t)χδ(g) with aδ(t) = µt(ψδ ) = etL(ψδ )(e),(24)

where the series converges absolutely and uniformly for (t, g) ∈ [η,∞) × G for
any fixed η > 0, and

|aδ(t)| = e−[λδ+∫
(1−Reψδ) d�]t

with λδ = −∑d
i,j=1 aijX

l
iX

l
jψδ(e) > 0.

(b) Let

λ = inf
{[

λδ +
∫

(1− Reψδ)d�

]
; δ ∈ Irr(G,C)+

}
.

Then λ = [λδ + ∫
(1−Reψδ)d�] > 0 for some δ ∈ Irr(G,C+), and for any η > 0,

there are positive constants c and C such that for t > η,

‖pt − 1‖∞ ≤ Ce−λt , ce−λt ≤ ‖pt − 1‖2 ≤ Ce−λt

and

ce−λt ≤ ‖µt − l‖tv ≤ Ce−λt .
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(c) If G is semi-simple and the Lévy measure � has a finite first moment, then

aδ(t) = e−[λδ+∫
(1−ψδ ) d�]t .

REMARK 2. The above expression foraδ(t), together with (30) and Theo-
rem 5 in the next section, is essentially a type of Lévy–Khintchine formula, similar
to that obtained on symmetric spaces by Gangolli (1964).

PROOF OFTHEOREM 4. Suppose that the distribution ofgt has anL2 density
pt for t > 0. Thenpt is conjugate invariant and, hence, by (5), may be expanded
into a Fourier series in terms of irreducible characters as in (24) inL2-sense with
aδ(t) = ∫

pt(g)ψδ(g) dg = µt(ψδ ). By the conjugate invariance ofµt and (4),

aδ(t + s) = µt+s(ψδ )

=
∫

ψδ(uv)µt(du)µs(dv)

=
∫

ψδ(gug−1v)µt (du)µs(dv) dg

=
∫

ψδ(u)ψδ(v)µt(du)µs(dv)

= aδ(t)aδ(s).

This combined with limt→0 aδ(t) = ψδ(e) = 1 implies thataδ(t) = ety for some
complex numbery. We havey = (d/dt)µt(ψδ )|t=0 = Lψδ(e) and, hence,aδ(t) =
exp[tL(ψδ )(e)].

As in the proof of Theorem 2, for fixedδ ∈ Irr(G,C)+, write U = Uδ and
n = dδ , and letX̃ = Xl(U∗)(e) for X ∈ g and letYi be defined in (9). By (16),

L(ψδ )(e) = 1

n
Trace[L(U∗)(e)]

= 1

n
Trace

[
−1

2

n∑
i=1

Ỹ ∗
i Ỹi + ỸV −

∫
V c

(I − U∗) d� + rV

]
,

(25)

where rV → 0 as V ↓ {e}. Since ỸV is skew-Hermitian, Trace(ỸV ) is purely
imaginary. It follows that

|aδ(t)| = exp{t Re[L(ψδ )(e)]}

= exp

{
−

[
1

2n

n∑
i=1

Trace(Ỹ ∗
i Ỹi ) +

∫
(1− Reψδ)d�

]
t

}

= exp
{
−

[
λδ +

∫
(1− Reψδ) d�

]
t

}
,

(26)
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where

λδ = −1

2

d∑
i,j=1

aijX
l
iX

l
jψδ(e) = 1

2n

d∑
i=1

Trace(Ỹ ∗
i Ỹi )

is nonnegative and is zero only whenỸi = 0 for all i. Under the hypothesis (H)
and the irreducibility ofδ ∈ Irr(G,C)+, someỸi is nonzero. Therefore,λδ > 0.

If gt is continuous and satisfies the hypothesis (H), then its distributionµt has
a smooth densitypt for t > 0, for which (24) holds inL2 sense. By the Parseval
identity, ‖pt‖2

2 = 1 + ∑
δ d2

δ |aδ(t)|2 = 1 + ∑
δ d2

δ |aδ(2t)|. Sinceχδ(e) = dδ , the
series in (24) evaluated ate is equal to 1+ ∑

δ d2
δ aδ(t). We see that it actually

converges absolutely ate. As a positive definite function onG, |χδ(g)| ≤ χδ(e) for
any g ∈ G, it follows that the series in (24) converges absolutely and uniformly
onG. In this case, the integral term in (26) does not appear because� = 0.

Now assume that� is not equal to zero, but the hypothesis (H) is still satisfied
by the second-order differential operator part of the generatorL. We can still write
down the series in (24) withaδ(t) = exp[tL(Uδ∗)(e)]. Because Re(1 − ψδ) ≥ 0,
we see that|aδ(t)| becomes smaller when� �= 0, hence, the series in (24) still
converges absolutely and uniformly onG. Let pt be its limit. As in the proof of
Theorem 3, we can show thatpt is the density ofµt using the polarized Parseval
identity. By (26), it is easy to see that the series in (24) also converges uniformly
in t for t > η > 0. We have proved (a).

The convergence of the series in (24) ate implies that [λδ + ∫
(1 −

Reψδ)d�] → ∞ as δ leaves any finite subset of Irr(G,C)+. In particular, this
implies that the set of positive numbers[λδ + ∫

(1 − Reψδ)d�], δ ∈ Irr(G,C)+,
has a smallest numberλ > 0.

For t > η > 0, |pt − 1| ≤ e−λ(t−η) ∑
δ dδ|aδ(η)χδ| ≤ e−λ(t−η) ∑

δ d2
δ |aδ(η)| ≤

e−λ(t−η)‖pη/2‖2
2, this proves the inequality for‖p1 − 1‖∞ in (b), and from which

the upper bounds for‖pt − 1‖2 and‖µt − l‖tv follow. The lower bounds follow
from ‖pt − 1‖2

2 ≥ d2
δ |aδ(t)|2 and ‖µt − l‖tv ≥ |µt(ψδ)| = |aδ(t)|. Part (b) is

proved.
If � has a finite first moment, then the generatorL is given by (8). The

equation (22) now takes form

L(f ◦ ch)(h
−1gh)

= 1
2

d∑
i,j=1

aij [Ad(h)Xi ]l[Ad(h)Xj ]lf (g) + [Ad(h)X0]lf (g)

+
∫

[f (gσ ) − f (g)](ch�)(dσ ).

The conjugate invariance ofL implies that the elementX0 satisfies Ad(h)X0 = X0
for anyh ∈ G and, hence,X0 belongs to the center ofg, which is{0} if G is semi-
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simple. In this case,

L(ψδ )(e) = 1

2n

d∑
i=1

Trace(Ỹi Ỹi) +
∫

(ψδ − 1) d� = −λδ −
∫

(1− ψδ)d�.

This proves (c). �

5. Application of Weyl’s character formula. We will now describe Weyl’s
character formula which provides important information about irreducible repre-
sentation of a compact Lie groupG. The reader is referred to Bröcker and Dieck
(1985) for more details. LetT be a maximal torus ofG, that is, a maximal con-
nected abelian subgroup ofG, with Lie algebrat. It is known that anyg ∈ G is
conjugate to an element ofT , that is,∃h ∈ G such thatch(g) ∈ T . The normalizer
and the centralizer ofT are the closed subgroupsN(T ) = {g ∈ G; cg(T ) = T }
andC(T ) = {g ∈ G; cg(t) = t for all t ∈ T } of G, respectively. It is known that
C(T ) = T . The quotient groupW = N(T )/T is finite and is called the Weyl group
of G associated to the maximal torusT . The Weyl groupW acts onT via W ×T �
(gT ,u) 
→ cg(u) ∈ T and ont via W × t � (w,X) 
→ w(X) = Ad(g)X ∈ t with
w = gT .

Forg ∈ G andX ∈ g, the linear maps Ad(g) and ad(X) extend naturally to the
complexificationgC of g. Let t′ be the dual oft, the space of real-valued linear
functionals ont. There is a finite subset� of nonzero elementsα of t′, called real
roots, such thatgα

C
= {X ∈ gC; ad(H)X = 2πiα(H)X for anyH ∈ t} is nonzero,

wherei = √−1. Moreover,gC = tC ⊕ ∑
α∈� gα

C
(direct sum). Note that ifα ∈ �,

then Ad(eH )X = e2πiα(H)X for H ∈ t andX ∈ gα
C

.
The hyper-planes determined by the equationsα = 0 for α ∈ � divide t into

several convex conic regions, called the Weyl chambers. Fix a Weyl chambert+.
A real rootα is called positive ifα > 0 ont+. Let�+ be the set of all positive real
roots. Note that ifα ∈ � is not positive, then it must be negative, that is,−α ∈ �+.

The integral latticeI is the kernel of the exponential map restricted tot,
that is, I = {X ∈ t;exp(X) = e}. The latticeI′ of integral forms is the set of
elementsβ ∈ t′ that mapsI into the setZ of integers, that is,β(I) ⊂ Z. Let
〈·, ·〉 be an Ad(G)-invariant inner product ong. Its restriction tot induces an inner
product ont′, denoted also by〈·, ·〉, given by 〈α,β〉 = 〈Hα,Hβ〉 for α,β ∈ t′,
where Hα ∈ t representsα in the sense thatα(H) = 〈H,Hα〉 for H ∈ t. Let
I

′
+ = {β ∈ I′;Hβ ∈ t+}, wheret+ is the closure oft+ in t. Note thatI′ and hence,

I
′
+ are countable.
Let ρ = (1/2)

∑
α∈�+ α, the famous half sum of positive roots. Forβ ∈ t′, let

fβ =
∑

w∈W det(w)e2πi(β+ρ)◦w

e2πiρ
∏

α∈�+(1− e−2πiα)
,(27)

where det(w) is the determinant ofw regarded as a linear transformation ont

and is equal to±1 becauseW is known to be generated by the reflections about
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the hyper-planesα = 0 for α ∈ �. This is a function defined ont off the set

 = ⋃

α∈
 α−1(Z), where both the denominator and the numerator in (27) vanish.
It can be shown that for anyβ ∈ I′, there is a unique continuous functionFβ onT

such thatFβ(eX) = fβ(X) for X ∈ t − 
. Moreover, ifβ ∈ I
′
+, thenFβ is the

restriction toT of an irreducible characterχβ of G.
The Weyl character formula provides a one-to-one correspondence between

the setsI
′
+ and Irr(G,C), where the latter may be identified with the set of the

irreducible characters. The correspondence is given by

I
′
+ � β 
→ δ ∈ Irr(G,C) with χδ = χβ.(28)

The complex dimensiondδ of δ ∈ Irr(G,C)+ corresponding toβ ∈ I
′
+ will be

denoted bydβ and is given by

dβ = ∏
α∈�+

〈α,β + ρ〉
〈α,ρ〉 .(29)

Note that 0∈ I
′
+ corresponds to the one-dimensional trivial representation with

χ0 = 1.
It is known that a Lie groupG is semi-simple if and only if its Killing form,

defined byB(X,Y ) = Trace[ad(X)ad(Y )], a bilinear form ong, is nondegenerate.
The Killing form is always invariant under any Lie algebra automorphism onG.
WhenG is compact and semi-simple, its Killing form is negative definite, and,
hence, induces an Ad(G)-invariant inner product〈X,Y 〉 = −B(X,Y ) on g. This
inner product ong = TeG induces a left invariant Riemannian metric onG,
under which the Laplace–Beltrami operator is given by� = ∑d

i=1 Xl
iX

l
i , where

{X1, . . . ,Xd } is an orthonormal basis ofg.

PROPOSITION2. Let G be a compact connected simple Lie group and let gt

be a conjugate invariant Lévy process in G. Then the second-order differential
operator part of the generator, (1/2)

∑d
i,j=1 aijX

l
iX

l
j , is equal to c� for some

constant c ≥ 0.

PROOF. We may assume the basis{X1, . . . ,Xd } is orthonormal. Then Ad(g)

is an orthogonal transformation ong. By (23), the symmetric bilinear form
Q(x,y) = ∑d

i,j=1 aij xiyj on g ≡ R
d is Ad(G)-invariant. BecauseG is simple,

g contains no proper Ad(G)-invariant subspace, hence, this action is irreducible.
By Appendix 5 in Kobayashi and Nomizu (1963), any symmetric bilinear form
onRd that is invariant under an irreducible action of a subgroup of the orthogonal
groupO(d) is equal to a multiple of the standard Euclidean inner product onRd .
It follows that the symmetric matrix{aij } is equal to a multiple of the identity
matrix I . This provesL = c� for somec ≥ 0. �
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By (16) in Helgason (2000), V.1, ifG is semi-simple and simply connected,
then forβ ∈ I

′
+,

�χβ = −(〈β + ρ,β + ρ〉 − 〈ρ,ρ〉)χβ.(30)

Note that〈β + ρ,β + ρ〉 − 〈ρ,ρ〉 = 〈β,β〉 + 2〈β,ρ〉 > 0 becauseρ > 0 ont+.
The formula (30) in fact holds without the simple connectedness assumption.

To see this, note that any compact connected Lie groupG is covered by a simply
connectedḠ which has the same Lie algebrag. The roots are determined byg with
a choice of a maximal abelian sub-algebrat. The Weyl group is also determined
by g because it is generated by the reflections about the walls of Weyl chambers.
Through the covering map, any irreducible representation ofG can be lifted to
be such a representation ofḠ, hence, in a neighborhoodV of e, an irreducible
characterχβ of G may be regarded as one forḠ. Therefore, (30) holds inV and
thus must hold on the wholeG because a Lie group is an analytic manifold. Note
that G and Ḡ, in general, have differentI, I′ and I

′
+, but this will not affect

validity of (30) onG.
It is now easy to obtain the following result.

THEOREM 5. In Theorem 4(c),assume (1/2)
∑d

i,j=1 aijX
l
iX

l
j = c� for some

constant c ≥ 0. Note that by Proposition 2 this assumption is automatically
satisfied if G is simple. Then

λδ = c(〈β + ρ,β + ρ〉 − 〈ρ,ρ〉),
where β ∈ I

′
+ corresponds to δ ∈ Irr(G,C)+ in Weyl’s character formula.

EXAMPLE. Let G = SU(2), the group of 2× 2 unitary matrices of deter-
minant 1. This is a simple Lie group with Lie algebrag consisting of traceless
2× 2 skew-Hermitian matrices. A direct computation shows that the Killing form
is B(X,Y ) = −4 Trace(XY ∗). We will take 〈X,Y 〉 = 4 Trace(XY ∗) to be the
Ad(G)-invariant inner product ong. The representation theory ofSU(2), as a
special case of that ofSU(n), is discussed in Bröcker and Dieck (1985), VI.5.
The setT = {diag(e2πiθ , e−2πiθ ); θ ∈ R} is a maximal torus with Lie algebrat
consisting ofH = 2πi diag(θ,−θ) for θ ∈ R. The roots are±α with α(H) = 2θ .
We haveρ = (1/2)α, whereI consists of theseH with integerθ andI′ = {kρ;
k ∈ Z}. Becauseθ = ρ(H) = 〈H,Hρ〉 = 4 Trace(HH ∗

ρ ), it is easy to see that
Hρ = i diag(1,−1)/(16π) and

〈kρ + ρ, kρ + ρ〉 − 〈ρ,ρ〉 = [(k + 1)2 − 1]〈ρ,ρ〉

= [(k + 1)2 − 1] · 4 Trace(HρH ∗
ρ ) = (k + 1)2 − 1

32π2 .

It also follows thatI
′
+ = {kρ; k = 0,1,2, . . . }. The irreducible representations

are indexed by integerk ≥ 0 with dimensiondk = k + 1 and characterχk(θ) =
sin[2π(k + 1)θ]/sin(2πθ).
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It follows from Theorems 4 and 5 that ifgt is a continuous Lévy process in
G = SU(2) with generatorL = c� for some constantc > 0, then its distribution
µt has a densitypt for t > 0, which may be regarded as a functionpt(θ) of θ , and

pt(θ) =
∞∑

n=1

nexp
[
−c(n2 − 1)

32π2 t

]
sin(2πnθ)

sin(2πθ)
.(31)

This formula can also be obtained by a direct and elementary computation, which
is contained in author’s forthcoming book an Lévy processes in Lie groups.
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