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We study the Fourier expansion of the distribution density of a Lévy
process in a compact Lie group based on the Peter—\Weyl theorem.

1. Introduction. Let G be a Lie group with identity elemerd and of
dimensiord. A stochastic process in G, with right continuous paths having left
limits, is called a Lévy process if it has independent and stationary increments in
the sense that for any< ¢, gs—lg, is independent oﬁo, theo-algebra generated
by g, for u € [0, s], and has a distribution depending onlyo# s. In this paper
a Lévy procesg, will always be assumed to startgtthat is,go = e, unless when
explicitly stated otherwise.

Lévy processes in noncompact semi-simple Lie groups possess interesting
limiting properties. These were studied in Liao (1998, 2002) motivated by the
results on Brownian motion in symrme spaces by Dynki and Malliavia—
Malliavin, and Lie group valued random walks by Furstenberg—Kesten and
Guivarc’h—Raugi. See the references in the above cited papers and also Applebaum
(2000a) for some of the other related results. Lévy processes in a compact Lie
group possess completely different properties. Instead of exhibiting any sample
path convergence, the process is ergodic and one would expect that its distribution
converges to the normalized Haar measure as timeoo. The purpose of this
paper is to study the Fourier expansion of the distribution density of a Lévy process
in a compact Lie group based on the Peter—Weyl theorem and from which to obtain
the exponential convergence of the distribution of the process to the normalized
Haar measure.

Fourier transformation of bounded measures on locally compact groups was
studied in Heyer (1968) and a related central limit theorem was established in
Siebert (1981). Fourier method has been proved useful for studying random walks
on finite groups and, in some special cases, on Lie groups. See, for example,
Diaconis (1988), Rosenthal (1994) and Klyachko (2000). This paper may be
regarded as a first attempt at applying this useful method to study a general Lévy
process in a compact Lie group.

We will now describe a little more precisely the content of this paper. In the
next section after a discussion of the generator of a Lévy process, we first establish
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the existence of 2 distribution density under a nondegeneracy condition. We then
study the Fourier expansion of tfi& density of a general Lévy processin terms

of matrix elements of irreducible unitary representation§ oft is shown that the
Fourier series converges absolutely and uniformlyGgrand the coefficients tend

to 0 exponentially as time— oo. In Section 3, for Lévy processes invariant under
the inverse map, the distribution density is shown to exist, and the exponential
bounds for the density, as well as the exponential convergence of the distribution
to the normalized Haar measure, are obtained. The same results are proved in
Section 4 for conjugate invariant Lévy processes. In this case the Fourier expansion
is given in terms of irreducible characters, a more manageable form of Fourier
series. In Section 5 Fourier coefficients are identified more explicitly using Weyl's
character formula.

The rest of this section is devoted to a brief discussion of Fourier series of
L? functions on a compact Lie grou@ based on the Peter—Weyl theorem. See
Brocker and Dieck (1985) for more details on the representation theory of compact
Lie groups and Helgason (2000) for the related Fourier theory.

Let U be a unitary representation 6fon a complex vector spadéof complex
dimensionn = dimg (V) equipped with a Hermitian inner product. Given an
orthonormal basi$v1, v, ..., v,} of V, U may be regarded as an unitary matrix
valued functionU (g) = {U;;(g)} given by U (g)v; = > ;v U;j(g) for g € G.

Let Irr(G, C) denote the set of all the equivalence classes of irreducible unitary
complex representations. The compactnessGoimplies that Ir(G,C) is a
countable set. Fos € Irr(G, C), let U® be a unitary representation belonging to
the classs and letds be its dimension. We will denote by (@, C)+ the set

Irr (G, C), excluding the trivial one-dimensional representation givert/By= 1.

For any measurg. and measurable functiofi on G, we may write(f) for

the integral/ f(g)u(dg). The normalized Haar measure éhwill be denoted
either by! or by dg. Let L?(G) be the space of functiong on G with finite
L2-norm| fll2 =L f1DIY? =[ | f(g)|?dg]*?, identifying functions which are
equal almost everywhere under

By Peter—Weyl theorem [see 1.4 atidl3 in Brécker and Dieck (1985)], the
family

1/2

{dy’U%;i,j=1,2,...,ds ands € Irr (G, C)}

1]’

is a complete orthonormal system @#(G). The Fourier series of a function
f € L?(G) with respect to this orthonormal system may be written as

1) f=UH+ > dsTracdAsU%  with A; =1(fU)
Selrr(G,C) +

in L2 sense, that is, the series convergeg fo LZ(G), whereU%* = W’ with the
overline denoting the complex conjugate and the prirfiethe matrix transpose.



LEVY PROCESSES AND FOURIER ANALYSIS 1555

The L2-convergence of the series in (1) is equivalent to the convergence of the
series of positive numbers in the following Parseval identity.

2) IAIZ=1H1P+ > dsTracgAsA}).

Selrr(G,C) 4+
The character of € Irr (G, C) is

©) xs = TracgU?),

which is independent of the choice of the unitary mati% in the classs and
is positive definite in the sense th@ﬁizl X(g(gl-gj‘l)sis_j > 0 for any finite set
of g; € G and complex humbels. The normalized characterig = xs/ds. The
positive definiteness ofs implies that|ys| < vs(e) = 1. By IV, Theorem 1.6, in
Helgason (2000), for any, v € G,

(@) / Vs (gug v dg = Y )P (v).

A function f on G is called conjugate invariant if (hgh~—1) = f(g) for any
g,h € G. Such a function is also called a class function or a central function
in the literature. Lethl.(G) denote the closed subspaceIdf(G) consisting of
conjugate invariant functions. The set of irreducible characigssé < Irr (G, C)},
is an orthonormal basis df (G); see 1.4 and I11.3 in Broker and Dieck (1985).
Therefore, forf € L2(G),

(5) =N+ Y dsasxs  withas=1(fVs)

Selrr(G,C) +

in L2 sense.

2. Lévy processesin compact Liegroups. Lévy processes in a Lie group
have been defined earlier. Such a proggss a Markov process with a Feller tran-
sition semigroup, hence, its distribution is completely determined by its generator.
The generatol. may be defined byLf(g) = lim;— oo (1/){E[f(99,)] — f(g)}
for any continuous functiorf on G vanishing at infinity, such that the limit ex-
ists under the nornf| f{loc = SUR,e £ (g)], and the set of such functions is the
domainD(L) of L. An explicit expression foL is obtained in Hunt (1956).

In this paper we will consider exclusively Lévy processes in compact Lie
groups. Therefore, in the rest of this pagewill be a Lévy process in a compact
connected Lie grou. In this caseD(L) containsC?(G) and L is completely
determined by its restriction t€%(G). To state Hunt's formula, leg be the
Lie algebra of G and let{X1,..., X;} be a basis ofg. There are functions
X1,...,%q € C°(G) such thaty;(e) = 0 and X;x; = §;;. These functions form
a local coordinate system atand, hence, will be called a set of coordinate
functions associated to the ba$%,, ..., X;}. Note that they are not uniquely
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determined by the basis. We will write|2 = Zd 1x Forg e G, letL, andR,

be, respectively, the left and right translations @rdefined byL,(h) = gh and
Ry(h) = hg for h € G. For X € g, let X! and X" denote, respectlvely, the left
|nvar|ant and right invariant vector fields ai given bel(g) DL¢(X) and
X"(g) = DR,(X), whereD applied to a mapping denotes its differential. Hunt's
formula says that for any € C%(G) andg € G,

d
Lf(e) =73 Y aijXiX" f()+ Xpf ()
(6) W
+f[f(gh) f(g) — le(h)le(g)}H(dh)
i=1
wheregq;; are constants forming a nonnegative definite symmetric malgx g
andTl is a measure oy satisfying the following condition:

(7) ({e}) =0, (VS <oo and /|x|2dl'l <0

for some neighborhood of e. HereV¢ denotes the complement &fin G. Note
that the above condition dri is independent of the choice of the neighborhdqd
the basig Xy, ..., X4} and the coordinate functions. The measurél is called
the Lévy measure of the procegsand is, in fact, the characteristic measure of a
homogeneous Poisson random measur@ porx G which counts the jumps of the
process, hencé&] vanishes if and only if the procegsis continuous.

WhenTI has a finite first moment, that is, jf|x|dI1 < oo, then for anyf €
C?(G), the integral([ f (gh) — f(g)1T1(dh) exists and by suitably changingg
in (6), Hunt’s formula takes the following simpler form:

@ Lf(e)=3 Z aij X\ X} f(g)+Xof(g)+f[f(gh) f(@I(dh).
i,j=1
Note that if the Lévy measumé is finite, then it has a finite first moment.

For any two probability measurgs andv on G, their convolutionu x v is a
probability measure ot defined byu x v(B) = fgheB u(dg)v(dh) for any Borel
subsetB of G. Let u, be the distribution ofg, for eachr € R,.. Then; 1, =
W % s for anys, t € Ro.. We note thatd /dt)iu; (f)|;=0 = Lf (e) for f € C?(G).

The density of a measure ai will always mean the density function with
respectto the normalized Haar meastgeainless when explicitly stated otherwise.
Supposeu, has a density, € L2(G) for t > 0. Then p,4s = p; * ps, Where
the convolution of two functiong and f> in L2(G) is defined byfi * fo(g) =

[ f1(gh™h) f2(h) dh or, equivalently,f1* fo(g) = [ fi(h) f2(h ™ g)dh for g € G.

LEMMA 1. Let u and v be two probability measures on G such that one of
themhas a density p. Then u x v hasa density ¢ with |lg|l2 < | pll2. In particular,
if p; isadensity of u; for r > 0, then || p;|l2 < || psll2 for 0 < s < t.
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ProoF  We will only consider the case whenis the density ofx. The other
case can be treated by a similar argument. For AryC(G), by the translation
invariance ofdg,

wav(f) = / / F(gh)p(g) dg v(dh)
= [ r@ptehdgvian

-/ f(g)[ / p(gh‘%v(dh)]dg

Hence,q(g) = [ p(gh~Yv(dh) is the density ofu * v. It is easy to see, by the
Schwarz inequality and the translation invariancel@f that||g||2 < | p|l2. Note

that using the Holder inequality instead of the Schwarz inequality, we can prove
the same conclusion with- |2 replaced byL.”-norm|| - ||, for 1 <r <oco. O

The Lévy procesg; will be called nondegenerate if the symmetric matrix
a = {a;;} in (6) is positive definite. Let be ad x d matrix such that = o’c
and let

d
(9) Yi:ZO—inj forl<i<d.
=1

Then the second-order differential operator part of the generatgiven by (6)
may be written ag1/2) >¢_, v!v!. LetLie(Y1, Yz, ..., Y4) be the Lie sub-algebra
of g generated by, Y, ..., Y;. The following weaker nondegeneracy condition
is sufficient for most results in this paper.

(H) Lie(Ys,...,Y,) =g.

A continuous Lévy process satisfying the hypothesis (H) is a hyper-elliptic
diffusion process irG;. It is well known that such a process has a smooth transition
density function for > 0. In this casey,; has a smooth density; for z > 0.

THEOREM 1. Let g; be a nondegenerate Lévy process with a finite Lévy
measure. Then each distribution 1, of g, hasa L? density p, for ¢ > 0.

PROOF Because the Lévy measufe is finite, the Lévy procesg, may
be constructed from a continuous Lévy processby interlacing jumps at
exponentially spaced time intervals. The precise meanings of this construction are
as follows. Letx, be a continuous Lévy process (h whose generator is given
by (8) withIT =0, let{t,} be a sequence of exponential random variables with a
common rate. = IT(G) and let{o, } be a sequence @f-valued random variables
with a common distributiorT1(-)/I1(G). We will assume all these objects are
independent. LeT,, =11+ 12+ --- + 1, for n > 1 and setly = 0. Letg? = Xy,
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let gt = g2 for 0 <t < 71 and g! = g%(T1)o1x(T1)"1x, for ¢ > T3, and,
inductively, letg! = g1 for 1 < T, andg? = g"X(T;)ox(T;,) " Lx, for t > T,.
Here, for typographical convenience, we have wriié(r) for g}'. Defineg; = g/

for T, <t < T,+1. A similar construction is carried out in Applebaum (2000b). It
can be shown that, is a Lévy process iid; with generator given by (8).

Let (22, ¥, P) be the underlying probability space. For any real or complex
valued random variabl& on Q and B € ¥, we will write E[X; B] = [z XdP
andE (X) = E[X; 2]. Note thatT,, has a Gamma distribution with density(¢) =
A Le=M /(n — 1)! with respect to the Lebesgue measuréRon Let g, denote
the smooth density of the distribution of for t > 0. For f € C(G) andr > 0,
using the independence, we have

wi(f) = ELf (x); 1 < T1]

+ Y E[f(g); Ty <t < Ty + Tyy]
n=1

0 g
+ Z/o ra(8)ds ELf (8" Yonx )P (tas1 > 1 — 5).
n=1

We now show that for > 1 and O< s < ¢,

ELf(g" topx )] = f F(@)Ps.an(g)dg

for SOMEps.t.n with ||ps,t,n ||2 =< ”qt/2” ||2

(11)

To prove (11) forn = 1, first assume > /2. We haveE[ f(glo1x;1x,)] =
E[f(xsalxs_lx;)] =u *v(f), whereu andv are, respectively, the distributions
of x; ando1x;x,. By Lemma 1,u % v has a density ;1 with || ps..1]l2 <
lgsli2 < llgsj2ll2. If s <t/2, then we may take¢. andv to be the distributions
of x;01 and x1x,, respectively, and still obtain a densipg, 1 of u * v with

I Ps,:,1ll2 < llgs2ll2. This proves (11) for = 1. Now using induction, assume (11)
isprovedfom =1, 2, ..., k for some positive integdr. This implies, in particular,
that the distribution ofgf has a densityp} with ||pf|l2 < llg, 2. Consider
E[f(gfakﬂxs—lx,)] =u *v(f), whereu arev are taken to be the distributions
of gk andoy,1x1x,, respectively, ifs > ¢/2, and those of*oy1 andx;Lx, if

s <t/2. By an argument similar as above using Lemma 1, we can show that
has a density whosk?-norm is bounded by

k
10112 < llgs 212 < llgy jaesal2

if s >¢/2, and bounded byg, 2|2 if s <¢/2. In either case, th&2-norm of the
density ofu * v is bounded bylg, ,oc+1]l2. This proves (11) for any > 1.
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By (10) and the fact thaP(z, > 1) = ¢e™* for t > 0, we see thau,(f) =
[ f(®)pi(g)dg with

O ot
Pr = qte_)\t + Z/ ra(s)ds e_A(I_S)ps,t,n
n=1 0
and

0 t
Ipell2 < ligelloe™ + > /O ra(s)ds e pg o all2
n=1
(12) -
<lgillze™ + Y /O ra(s) ds e gy 20 2.
n=1

It is well known that the density of a hondegenerate diffusion progess a
d-dimensional compact manifold is bounded abovethy?/2 for smallt > 0,
whereC is a constant independent ofSee, for example, Chapter 9 in Azencott
(1981). Thereforelg,| < Ct=%2 and||q; /21 ||l2 < C(2"/1)%/?. Since [§ry(s)ds <
(A1)*/n!, itis easy to see that the series in (12) converges. This ppoveL.2(G).

O

We note that if all the eigenvalues of a square matri¥d have negative real
parts Re.;, thene’4 — 0 exponentially as — oo in the sense that for any> 0
satisfying maxRe(1;) < —X < 0, there is a constark > 0 such that

(13) VieR,  {Tracde'd () Y% < Ke ™.

To prove this, letA = Qdiag B1(A1), B2(A2), ..., B(A)]1Q~! be the Jordan
decomposition ofA, whereQ is an invertible matrix and; (1;) is a Jordan block
of the following form

A1 0 O 0
O » 1 O 0
Ba)=]10 0 A 1 0
o 0o o 0 --- A
A direct computation shows that
Mottt 12eM 21 BeM 3l o kLM (e — 1))
0 M reM 1220 . tKT2eM ik — 2)!
etB()\) — 0 0 eM teM L. l‘k_3e)‘t/(k —3)!
0 0 0 0 e eM

Let b;;j(t) be the element of the matrix'4 = Qdiage'8:*0 /B2
e!Br0)10~1 at place(i, j). From the above expression feff™) it is easy to
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see thath;; (1) = )_,,_1 pijm(t)e*'"’, where p;;,, (t) are polynomials ire. Then
Tracde (e'M*]1 =3 ;1 pijm(t)e*|? and from this (13) follows. We note
that if A is a Hermitian matrix, that is, ifA* = A, then Q is unitary and all
B;(A;) = A; are real.

THEOREM 2. Let g, be a Lévy process in a compact connected Lie group G
with generator L. Assume the distribution w, of g; has a density p; € L%(G)
for r > 0. Then the following statements hold:

(@) Fort >0and g € G,

(14) p(@=1+ Y dsTracdAs(HU°(9)],
Selrr(G,C)+

where

(15) As(t) = u (U) = explt L(U%*) ()],

and the series converges absolutely on G and uniformly for (¢, g) € [, 00) X G
for any fixed n > 0. Moreover, all the eigenvalues of L(U%*)(e) have nonpositive
real parts.

(b) If the hypothesis (H) holds, then all the eigenvalues of L(U%*)(e) have
negative real parts. Consequently, p; — 1 uniformly on G ast — oo.

REMARK 1. The uniform convergence of the series in (14) implies that the
map(z, g) — p;(g) is continuous or0, co) x G. The matrix-valued functiof —
As(0)* = ., (U%) is the (noncommutative) Fourier transform of the meagure
discussed in Heyer (1968).

PROOF OF THEOREM 2. For f = p,, the series in (14) is just the Fourier
series in (1) withAs = As(r) = L(p: U®™) = u,(U*). We haveuo(U®*) = I, the
ds x ds identity matrix, and

Uras (UP) = / e (dg) s (dh)UP (gh)*

=/,ut(dg),us(dh)U‘s(h)*Ua(g)*

= s (U (U°).

Therefore, 1, (U*) = 'Y for some matrixY. Because(d/dt)u,(U%*)|,—0 =
L(U%*)(e), we see that = L(U%*)(e).

We now prove the absolute and uniform convergence of series in (14). Note
that by the Parseval identity,p,ng =1+ Y sdsTracdAs(t)As(t)*], where the
summation)_s is taken oves € Irr(G, C)4. For anyn > 0 ande > O, there is
a finite subser” of Irr (G, C)4 such tha _s.rc ds TracdAs(n/2)As(n/2)*] < g2,
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By the Schwarz inequality and the fact tHat is a unitary matrix, for any finite
[>T andr > 7,

> ds| Tracd As (1) U]

sel’—r
Y ds| TracdAs(n/2)As(t — n/2U°]]
sel’—r
< Y ds{TracdAs(n/2)As(n/2)*1}1/?
sel’—r

x {Trac@As(t — n/2)As(t — n/2) Y2

1/2
S{ > daTraCQAs(ﬁ/Z)As(ﬂ/z)*]}

sel’—r

1/2
x { Y dsTracdAs(t — n/2)As(t — n/2)*]}

sel'’—T
<eéllpi—ys2ll2 < el py/2ll2,

where the last inequality above follows from Lemma 1. This proves the absolute
and uniform convergence stated in part (a).

To complete the proof, we will show that all the eigenvalues of the matrix
L(U*)(e) have nonpositive real parts, and if (H) holds, then all these real parts are
negative. Note that this implies that (r) — 0 exponentially fors € Irr (G, C)
and, combined with the uniform convergence of the series in (14), the uniform
convergence op;, to 1 ast — oo.

Write U = U® andn = dj for § € Irr(G, C),.. Consider the quadratic form
0(z) = Z*[L(U*)(e))z for z = (z1,...,z,)", @ column vector inC". Since the
eigenvalues of.(U™*)(e) are the values 00 (z) with |z| = 1, it suffices to show
that RéQ(z)] <0 for all z € C", and ReEQ(z)] < 0 for all nonzeroz € C" if
(H) holds. ForX € g, let X = Xl(U*)(e) ThenX is a skew-Hermitian matrix, that
is, X* = —X, andU (¢!X)* = exp(t X ). Moreover,

d tX \* *
=7 tU (e)"U(g)

d
X' (U (g) = —U(ge'™)*

=XU(g2)*.
o (&)

t=0

Therefore YIXI(U*)(e) Y [XU*|(e) = XY for Y e g, and if Z = [X, Y] (Lie
bracket) ther? = [V, X]. LetY; be defined in (9). Thel:! ;_ 16 X; X U*(e) =
Y4 VY =-Y% Y'Y, and by (6),

t=0

d
(16)  L(U*e) =33 7/ ¥+ Fy — /VC[I — U()N(dg) + rv,
i=1
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whereV is a neighborhood of, Yy = Xo — [y« X% xi(g) X; T(dg) and

d
o= |ow 1= Sk |nao ~0 s iia,

i=1
Because*Wz = 0 for any skew-Hermitian matri}/,

d
an  e@=-3Y Wi~ [ - U@ N + 2y
i=1

SincelU (g)* is unitary,|z|? > |z*U (g)*z|, it follows that R¢z*(I — U (g)*)z] > 0.

This shows that R&(z)] < 0. If R Q(z)] = 0 for some nonzerg € C", then
Yiz=0for 1<i <d. ForY =[Y;,Y;], we haveYz = [V, Y]z = ¥;Y;z —
Y;Y;z =0. If (H) holds, thenYz = 0 for anyY € g. Becaused/ (e'")* = exp(tY),
U(g)*z =z for all g € G. This implies thatU(g) leaves the subspace @Ff

that is orthogonal toz invariant for all g € G. By the irreducibility of the
representatioW/, this is impossible unless= 1. Whenn =1, U(g)*z = z would
imply that U is the trivial representation, which contradicts the assumption that
3 elrr (G, C)4. Therefore, REQ(z)] > 0 for nonzerqz € C". O

The total variation norm of a signed measuwren G is defined by||v|w =
suplv(f)|, with f ranging over all Borel functions o6 with |f| < 1. The
following result follows easily from the uniform convergencegfto 1 and the
Schwarz inequality.

COROLLARY 1. If (H) holds in Theorem 2, then w, converges to the
normalized Haar measure! under the total variation norm, that is,

lws —llew — O ast — o0.

3. Lévy processes invariant under the inverse map. For a measure. on
G and a Borel measurable md@p G — G, let Fu be the measure o defined
by Fu(f) =u(f o F) for any f € C(G). The measure is said to be invariant
under the mapF or F-invariant if Fu = u. The Lévy procesg; will be called
invariant underF or F-invariant if Fu, = u, for all r € R;.. This means that the
processF (g;) has the same distribution as thatepf

In this section we will show that ig, is a Lévy process invariant under the
inverse map

J:G— G givenby g~ gt

and satisfying the hypothesis (H), then its distributiapn has anL? density
for t > 0 and converges exponentially to the normalized Haar medsa®
t — 0o. Some simple implications of thé-invariance of the Lévy procesgs are
summarized in the following proposition.
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PROPOSITION1. Let g, be a Lévy processin a compact Lie group G. The
statements (a) and (b) are equivalent. Moreover, they are also equivalent to
statement (c) if the Lévy measure has a finite first moment.

(a) g isinvariant under theinversemap J on G.

(b) L(U%*)(e) isaHermitian matrix for all § € Irr (G, C)..

(c) TheLévy measureTl is J-invariant and the generator L of g, is given by

d
18 LA@=} Y XX s+ [/ eh - feman

i,j=1

for g € G and f € C2(G).

PROOF  We note thatl (U%*)(e) is a Hermitian matrix for alb € Irr (G, C) .
if and only if As(r) = explt L(U*)(e)] is a Hermitian matrix for alb € Irr (G, C) .
and some (hence, all)> 0. SinceA;s(1)* = u,(U%) = u; (U o J) and{dal/zU;Sj}
is a complete orthonormal system dif(G), we see that the above is also
equivalent to the/ -invariance ofu, for all r > 0, that is, the invariance of the Lévy
processg; under the inverse map. This proves the equivalence of the statements
(a) and (b).

Suppose the Lévy measureof the Lévy procesg; has a finite first moment.
Then its generator is given by (8). Assume the ve&igin (8) vanishes. Then the
generatotl. takes the form (18). Using the notation in the proof of Theorem 2,

d
LWU*(e)=—3> YV — /(1 — U*)dIl
i=1

and (1/2) Y%, ¥Y; is a Hermitian matrix. It is easy to see that Iif is
J-invariant, then/ (I — U*)dII is a Hermitian matrix and, henc&(U*)(e) is a
Hermitian matrix. This shows that the procgsss J-invariant. Conversely, i; is
J-invariant, thenL(f o J)(e) = Lf (e) for any f € C%(G). SinceX'(f o J)(e) =
— X! f(e) forany X e g, by (8),

~Xof(e) +/[f(h) — f(©))JTI(dh) = Xo f(e) +/[f(h) — f(e)]Il(dh)

for any f € C%(G). This implies that/IT = IT and Xg = 0. This proves the
equivalence of (a) and (c).J

The main result of this section is the following theorem.

THEOREM 3. Let G be a compact connected Lie group and let g, be a Lévy
processin G invariant under the inverse map and satisfying the hypothesis (H).
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(a) For r > 0, thedistribution 1, of g; hasadensity p, € L?(G) andfor g € G,

(19) p(e) =1+ > dsTracqQsdiagexp(rir). ..., exp(ry,n105U° (g)},
Selrr(G,C) +
where the series converges absolutely and uniformly for (¢, g) € [, c0) x G for
any fixed n > 0, Qs isa unitary matrixand A5 < - - < Ags <0.
(b) Thereis a largest number —X < O in the set of negative numbers Af for
selr(G,C)+ and 1 <i <ds, and for any n > 0, there are positive constants c
and C such that for 7 > 7,

1P — oo <Ce™,  ce™™ <|p;—12<Ce™
and

ce™ < |\ — Iy < Ce™.

PROOF  Suppose first that, has a densityp, € L2(G) for r > 0. Because
L(U%)(e) is a Hermitian matrix for alls, As(t) = Qsdiadexp(ris), ...,
exp(r5, 1105, whereQ; is a unitary matrix, and} < --- < ) are the eigenvalues
of L(U%)(e). It now follows from Theorem 2 that a,u;S < 0 and the seriesin (19)
converges tq; (g) absolutely and uniformly.

The series in (19) also converges Irf(G). BecauseQ; is unitary, by the
Parseval identity,

ds
(20) lpe—115= > ds)_ exp:lr).

selrr(G,C)+  i=1

If (H) holds andg; is continuous, therp; is smooth and is given by (19).
Using the notation in the proof of Theorem 2, we will write = Ul n =ds,
0(z) = *L(U*)(e)z and Qo(z) = 2*[—(1/2) Ly Y Vilz = —(1/2) Xi4 [Yiz|?
for z € C" regarded as a column vector. Note thatl/2) Y%, Y;Y; is a
Hermitian matrix. By assumption, so IS U*)(e). Thus,Q1(z) = Q(z) — Qo(2)
is a Hermitian quadratic form. Letting/ | {e} in (17), we see thaD1(z) =
— [z*(I — U*)zdTl1, where the integral exists as the limit §f. z*(I — U*)zdIl
asV | {e}. Becauséz| > |z*Uz|, Q1(z) <0and, henceQ(z) < Qo(z) for z € C".

It is known that the eigenvaluegs < Ay < --- < A, of ann x n Hermitian
matrix A possess the following min—max representation:

(21) A;=min max z*Az forl<i<n,

Vi zeVi,lz|=1
where V; ranges over alli-dimensional subspaces d@", see, for example,
Theorem 1.9.1 in Chatelin (1993). Léf < --- <A, andx\g <... < /\2 be the
eigenvalues ofL(U*)(e) and —(1/2) °%_, YY;, respectively. Then; < A2 for
all ;.
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Now supposeg; is not necessarily continuous. Then the series in (20)
still converges becausg? can only become smaller and, hence, the series
in (19) defines a functiorp, € L?(G), which may also be written ap, =
1+ Y sds Tracdu,(U*)U%). Any f € L?(G) has Fourier serieg = I(f) +
> s ds Tracdl(fU%*)U?]. By the polarized Parseval identity,

I(fp) =1(f)- 14> dsTracdl(fU)u,(U%)]
)

=u 1)+ ds Tracdl(fU U1} = s (f).
8

This shows thap; is the density ojx; and proves (a).

By Theorem 2, if (H) holds, then?'s are all negative. From the convergence
of the series in (20), it is easy to see thétshould converge te-oo asé leaves
any finite subset of IiG, C) .. This implies that there is a largest number, denoted
by —A, in the set of negative numb@ré for§ € Irr(G,C)4 and 1<i < ds. By the
computation proving the absolute and uniform convergence of the series in (14)
in the proof of Theorem 2, replacing — I andn/2 there by IrtG, C), andn,
respectively, we can show that for- n > 0,

lpr—1< > ds|TracdAs()U°]|
Selrr(G,C) 4+

1/2
< lpyll2 > daTraCG{Aa(t—n)Aa(t—n)*]}
Selrr(G,C) 4+

ds 1/2
=lpylzy D> dsd exp2al(r - n)]}

Selr(G,C)y i=1

ds 1/2
< lIpyllaye 220 N gy Zexp(zx?m}
Selrr(G,C);  i=1

< e e pyll2ll py — L2,
where the last inequality above follows from (20). This proves the inequality for
| pr — Llloo in (b).

By this inequality, || p; — 1|l < Ce™* for t > . On the other hand, by (20),
Ilpe — 1115 > ds exp22%r) for anys e Irr (G, €)1 and 1< i < djs. This proves the
inequalities for|| p; — 1]|2.

By || p: — 1]l2 < Ce™*" and the Schwarz inequalitiyy; — ||, < Ce~*'. On the
other hand, sincg/?| < 1 andi(U}) = 0 for § € Irr(G, C) .,

ds
e = Ui = 1 (U = 1A5@)ii] = Y I(Qs)ijlzek-?t-
j=1
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For anyj, (Qs);; # 0 for somei and this completes the proof of (b)[J

4. Conjugate invariant Lévy processes. Forh € G, letc,:G — G be the
conjugation map defined hy,(g) = hgh~!. Its differential ate is the linear map
Ad(g) = DLg o DR,-1:g — g. This induces an action a on its Lie algebra
9: G x g3 (g, X))~ Ad(g)X € g, called the adjoint action a& on g and denoted
by Ad(G). For X € g, define the linear map &X):g — g by adX) = [X,Y].
Then AdeX) = 24X wheree24X) is the exponential of the linear map(@g.

Recall that a functiorf on G is called conjugate invariant if o ¢, = f for
anyh € G. A measureu is called conjugate invariant if,u = u for anyh € G.
A Lévy process; in G with distributionsy, is called conjugate invariant if each
W IS conjugate invariant. This is equivalent to saying that for any G, the
processig,h~1 has the same distribution gs

Let g, be a conjugate invariant Lévy processGh Then its generatoL is
also conjugate invariant. This means thatfife D(L), the domain ofL, then
focpe D(L)andL(f ocp) = (Lf)ocy foranyh € G. In particular, this implies
that for anyf € C3(G) andh € G, [L(f ocp)]oc, - = Lf.

Note that forg,h € G, X e gand f € C1(G),

d
X'(foen)(cy () = (S0 cn)(h™tghe'™)

t=0

_ if(getAd(h)X)

dt
=[Ad(1) X1 f(g).

By (6), we can write dowrd ( f och)(c}jl(g)) for f € C%(G) explicitly as follows.

t=0

L(focp)(h™tgh)
d

02 - 3 Y ai[AdM X TTAA(M) X1 £ () + [Ad(h) Xol' f(g)
i,j=1

d
+ / [f(ga) — £(8) = Y [xi o ¢y @AM X; 1 f(g) { (chTD)(do).
i=1

Note that{Ad(h)X1,...,Ad(h)X,} is a basis ofg and x; o cgl are associated
coordinate functions. It is proved in Hunt (1956) that in the expression (6) of a
Lévy process generator, the Lévy measiireand the second-order differential
operatorzl?’,j:l al-lel.X? are completely determined by the generaiorand are
independent of the choice of the bagi¥,..., X;} of g and the associated
coordinate functions; . It follows that if the Lévy procesg; is conjugate invariant,
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thenc,IT =11 and

d d
(23) Y ai XX =" ay[Adm) X1 [Ad(h) X ;]

i,j=1 ij=1
for anyh € G. In particular, the Lévy measuie is conjugate invariant.

A Lie groupG is called simple if its Lie algebrg does not contain any proper
ideal. It is called semi-simple i does not contain any nonzero abelian ideal. The
center ofg is {0} in semi-simple case.

Recallys = xs/ds is the normalized character. In a neighborhood,afe may
use a set of coordinate functions, ..., x; as local coordinates and regafgl as
a smooth function of these variables. We may assume that in a neighborh@od of
the coordinate functions are given byg = exquzlx,- (2)X;]. Then they satisfy
xi(g™1) = —x;(g). The positive definiteness afs implies that Réys(g~1)] =
Reys(g)]. From this it follows that all the first-order partial derivatives of(i&g)
with respect toc; vanish ate. Becausa);s(e) = 1, this shows that

|Re(ys) — 1| = O(Ix[%),

therefore, by (7), the integrgl(1 — Reys) dI1 in the following theorem exists.
Becauséy;| < 1, this integral is in fact nonnegative.

THEOREM 4. Let G be a compact connected Lie group and let g, be a
conjugate invariant Lévy processin G satisfying the hypothesis (H).
(a) For r > 0, thedistribution 1, of g, hasa density p, € L?(G) andfor g € G,

@4) p@=1+ Y dasOxs(®)  Withas(r) = pe(Ps) = LI,
Selrr(G,C)+

where the series converges absolutely and uniformly for (¢, g) € [n, 00) x G for
any fixed n > 0, and

|a6(t)| — e—[)\5+f(1—Reg/f3)d1'I]t

with A5 = — Z:-{jzlaijxll'xﬂ'%(e) > 0.
(b) Let
A= inf{ [A(g + /(1 - Re%)dl‘l]; selrr(G, C)+}.
Then i = [As + /(1 — Reyy) dI1] > 0 for somes € Irr (G, C.), and for any n > 0,
there are positive constants ¢ and C such that for 7 > 7,
Ipr —Lloo < Ce™,  ce™ <|p;— 12 < Ce™
and

ce™ <y — 1y < Ce™.
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(c) If G issemi-simple and the Lévy measure IT has a finite first moment, then
as(t) = o ko[ (A=Vs)dTTlt
REMARK 2. The above expression fag(r), together with (30) and Theo-

rem 5 in the next section, is essentially a type of Lévy—Khintchine formula, similar
to that obtained on symmetric spaces by Gangolli (1964).

PROOF OFTHEOREM4. Suppose that the distribution gfhas an.2 density
p: for t > 0. Thenp, is conjugate invariant and, hence, by (5), may be expanded
into a Fourier series in terms of irreducible characters as in (2&%isense with
as(t) = [ p:(g)¥s(g)dg = u; (s ). By the conjugate invariance of; and (4),

as(t + ) = s (Ys)
= [ Voo @y (dv)

= [ VsCoug o) @ (dv) dg

_ / Vo G0 (V) () 5 (dv)
=ags(t)as(s).

This combined with lim_ gas(t) = ¥s(e) = 1 implies thatas(r) = ¢ for some
complex numbep. We havey = (d/dt) (Vs )|i—0 = Ls(e) and, henceys (1) =

expltL(¥s)(e)].
As in the proof of Theorem 2, for fixed € Irr(G, C)., write U = U; and
n =ds, and letX = X/(U*)(e) for X € g and letY; be defined in (9). By (16),

_ 1
L(ys)(e) = - TracdL(U™)(e)]

(25) 1 1 -~ -
= —Tracqg —— E Yi*Yi+YV—/ (I—U*)dn+rv ,
n 2i:1 Ve

wherery — 0 asV | {e}. SinceYy is skew-Hermitian, Traa@y) is purely
imaginary. It follows that

las(t)| = explt RELL(Y5) ()]}

1 .
(26) :exp{—[zzTrace{Yi*Yi)+/(l— Rex//g)dl'[}t}

:exp{—[kg +/(1— Rex//g)dl'l]t},
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where

d d

As = —% X_j aij X; X' s (e) = % Z:Trace(Yi*Y,-)
i,j=1 i=1

is nonnegative and is zero only wh&= 0 for all i. Under the hypothesis (H)

and the irreducibility o8 € Irr (G, C)., someY; is nonzero. Thereforé,s > 0.

If g; is continuous and satisfies the hypothesis (H), then its distributjdmas
a smooth density, for ¢ > 0, for which (24) holds inL2 sense. By the Parseval
identity, | p:l|13 = 1+ Ysd2las()|?> = 1+ Y5 d?|as(21)|. Sincexs(e) = ds, the
series in (24) evaluated atis equal to 1+ ) 5 d(sza(s(t). We see that it actually
converges absolutely at As a positive definite function o@, | xs(g)| < xs(e) for
any g € G, it follows that the series in (24) converges absolutely and uniformly
onG. In this case, the integral term in (26) does not appear bedauzsé.

Now assume thdil is not equal to zero, but the hypothesis (H) is still satisfied
by the second-order differential operator part of the generattve can still write
down the series in (24) with;s(r) = expzL(U%*)(e)]. Because R — ) > 0,
we see thatas(r)| becomes smaller wheH # 0, hence, the series in (24) still
converges absolutely and uniformly @h Let p, be its limit. As in the proof of
Theorem 3, we can show that is the density of«; using the polarized Parseval
identity. By (26), it is easy to see that the series in (24) also converges uniformly
inz for t > n > 0. We have proved (a).

The convergence of the series in (24) atimplies that [xs + [(1 —
Reys) dT1] — oo asé leaves any finite subset of (&, C),.. In particular, this
implies that the set of positive numbdis + /(1 — Rey;) dI1], § € Irr (G, C) 4,
has a smallest numbgr> 0.

For: >n >0, |p — 1 < e 70 Yy dslas(m) xs) < e Y5dflas(n)| <
e =M p, 5|13, this proves the inequality fdfp1 — 1« in (b), and from which
the upper bounds fotp, — 1|2 and||u; — ||y follow. The lower bounds follow
from I, — 113 = dflas@®)|* and [l — Ll = |1:(¥s)| = las(@)]. Part (b) is
proved.

If TT has a finite first moment, then the generafors given by (8). The
equation (22) now takes form

L(focp)(htgh)
d
=1 3 a;[Ad() X, TIAD() X1 £ (g) + [Ad() Xol' £ (2)
i,j=1

+ / Lf (g0) — F()I(cnT)(do).

The conjugate invariance @fimplies that the elemerXg satisfies Adh) Xo = Xo
for anyhs € G and, henceXg belongs to the center gf which is{0} if G is semi-
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simple. In this case,

_ 1 4 L. _ _
LT =5 izlerace{Yim + /(% _DdTl= 3 — /(1— 75 dTl.
This proves (c). O

5. Application of Weyl’s character formula. We will now describe Weyl's
character formula which provides important information about irreducible repre-
sentation of a compact Lie grou. The reader is referred to Brocker and Dieck
(1985) for more details. Lef be a maximal torus of;, that is, a maximal con-
nected abelian subgroup 6f, with Lie algebrat. It is known that anyg € G is
conjugate to an element @f, thatis,3% € G such that;,(g) € T. The normalizer
and the centralizer of" are the closed subgroups(7T) = {g € G; co(T) =T}
andC(T) ={g € G; cy(t) =t for all t € T} of G, respectively. It is known that
C(T)=T.ThequotientgroupV = N(T)/T is finite and is called the Weyl group
of G associated to the maximal tortlis The Weyl groupW actsonl’ viaW x T >
(8T, u) = cg(u) e T and ont via W x t> (w, X) = w(X) = Ad(g)X € t with
w=gT.

Forg € G andX € g, the linear maps A@) and adX) extend naturally to the
complexificationgc of g. Let t' be the dual oft, the space of real-valued linear
functionals ont. There is a finite subset of nonzero elements of t', called real
roots, such thag¢ = {X € gc; ad H)X = 2ria(H)X for any H € t} is nonzero,
wherei = v/—1. Moreoverge = tc ® Y e g% (direct sum). Note that i& € A,
then Adef) X = e27i@(H) X for H € tandX e g&.

The hyper-planes determined by the equatiens 0 for « € A divide t into
several convex conic regions, called the Weyl chambers. Fix a Weyl chamber
A real rootw is called positive itx > 0 ont. Let A be the set of all positive real
roots. Note that ifx € A is not positive, then it must be negative, thatig, € A ;.

The integral latticed is the kernel of the exponential map restrictedtfo
that is, 4 = {X € t; exp(X) = ¢}. The latticed’ of integral forms is the set of
elementsp € t' that mapsd into the setZ of integers, that isp({) C Z. Let
(-, ) be an AdG)-invariant inner product op. Its restriction tot induces an inner
product ont’, denoted also by, -), given by (o, 8) = (H,, Hg) for o, p € t',
where H, € t representsy in the sense thak(H) = (H, Hy,) for H € t. Let
Ifr ={B € 4’; Hg € t;}, wheret, is the closure of, in t. Note that!” and hence,

3 are countable.

Letp = (1/2) Y yea, @, the famous half sum of positive roots. FoE ¢, let
_ Zwew det(w)eZ”i(ﬁ-i-p)Ow

e2mip HO{EA+ (1-— g—Zﬂia) ;

where detw) is the determinant ofv regarded as a linear transformation on
and is equal tat1 becausdV is known to be generated by the reflections about

(27) I
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the hyper-planes = 0 for @ € A. This is a function defined of off the set
= Uaerorl(Z), where both the denominator and the numerator in (27) vanish.
It can be shown that for any € 4, there is a unique continuous functiép on T
such thatFg(e*) = fz(X) for X € t — I'. Moreover, if 8 € TJF, then Fg is the
restriction to7" of an irreducible characteqys of G.

The Weyl character formula provides a one-to-one correspondence between

the setsﬂr and IrnG, C), where the latter may be identified with the set of the
irreducible characters. The correspondence is given by

(28) 1,38 8€lm(G,C)  with x5 = xs.

The complex dimensiods of § € Irr(G, C) corresponding t@ € Ifr will be
denoted by/g and is given by

(29) dg = n M.

weh, (% P)

Note that Oc Ifr corresponds to the one-dimensional trivial representation with
xo=1.

It is known that a Lie groug’ is semi-simple if and only if its Killing form,
defined byB(X, Y) = Tracdad(X) adY)], a bilinear form ory, is nondegenerate.
The Killing form is always invariant under any Lie algebra automorphisngon
When G is compact and semi-simple, its Killing form is negative definite, and,
hence, induces an Ad)-invariant inner productX,Y) = —B(X,Y) on g. This
inner product ong = T,G induces a left invariant Riemannian metric ©h
under which the Laplace—Beltrami operator is givenfy= Zj’zl Xf.Xf, where
{X1,..., X4} is an orthonormal basis @f

PROPOSITION2. Let G be acompact connected simple Lie group and let g,
be a conjugate invariant Lévy process in G. Then the second-order differential
operator part of the generator, (1/2) Z?{jzlain£X3, is equal to cA for some
constant ¢ > 0.

PROOF We may assume the bagi¥1, ..., X4} is orthonormal. Then Ag)
is an orthogonal transformation om By (23), the symmetric bilinear form
Qx,y) = ngl-zla,-jx,-yj on g = R? is Ad(G)-invariant. Becausé is simple,
g contains no proper Ady)-invariant subspace, hence, this action is irreducible.
By Appendix 5 in Kobayashi and Nomizu (1963), any symmetric bilinear form
onR? that is invariant under an irreducible action of a subgroup of the orthogonal
group O(d) is equal to a multiple of the standard Euclidean inner produdton
It follows that the symmetric matriXa;;} is equal to a multiple of the identity

matrix . This proved. = cA for somec > 0. 0O
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By (16) in Helgason (2000), V.1, iy is semi-simple and simply connected,
thenforg e 1,

(30) Axg=—{B+p.B+p)—{(p.p))xp-

Note that(8 + p, B+ p) — (p, p) = (B, B) + 2(B, p) > 0 because > 0 ont,.

The formula (30) in fact holds without the simple connectedness assumption.
To see this, note that any compact connected Lie g@up covered by a simply
connected; which has the same Lie algelyaThe roots are determined iywith
a choice of a maximal abelian sub-algelordhe Weyl group is also determined
by g because it is generated by the reflections about the walls of Weyl chambers.
Through the covering map, any irreducible representatiot @fan be lifted to
be such a representation 6f hence, in a neighborhood of e, an irreducible
characteryg of G may be regarded as one f6r. Therefore, (30) holds i and
thus must hold on the whol@ because a Lie group is an analytic manifold. Note
that G and G, in general, have different, £’ andﬂr, but this will not affect
validity of (30) onG.

It is now easy to obtain the following result.

THEOREMS5. In Theorem4(c), assume (1/2) Z?’j:laijxfx; = ¢ A for some
constant ¢ > 0. Note that by Proposition 2 this assumption is automatically
satisfied if G issimple. Then

As=c({(B+p.B+p)—(p,P)),
where 8 Ifr correspondsto § € Irr (G, C) 4 in Weyl’ s character formula.

EXAMPLE. Let G = SU(2), the group of 2x 2 unitary matrices of deter-
minant 1. This is a simple Lie group with Lie algebgeconsisting of traceless
2 x 2 skew-Hermitian matrices. A direct computation shows that the Killing form
is B(X,Y) = —4TracéXY*). We will take (X,Y) = 4TracéXY*) to be the
Ad(G)-invariant inner product ory. The representation theory 6tU(2), as a
special case of that aSU (n), is discussed in Brocker and Dieck (1985), VI.5.
The setT = {diage?"?, e=27i?); 9 € R} is a maximal torus with Lie algebra
consisting ofH = 2ri diag®, —0) for 6 € R. The roots areta with a(H) = 26.
We havep = (1/2)a, whered consists of theséf with integerd andJ{’ = {kp;

k € Z}. Becaused = p(H) = (H, Hy,) = 4TracéH H}), it is easy to see that
H, =idiag1, —1)/(16r) and

(kp + p,kp + p) — (p, p) = [(k + 1% — 11(p, p)
(k+1)2-1
3272 '

It also follows thatIfr ={kp;k=0,1,2,...}. The irreducible representations
are indexed by integer > 0 with dimensiond;, = k + 1 and characteg; () =
sin[2r (k + 1)0]/ sin(2r6).

=[(k+1)*— 1] -4 TracdH, H}) =
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It follows from Theorems 4 and 5 that #; is a continuous Lévy process in
G = SU(2) with generatol. = cA for some constant > 0, then its distribution
u; has a density, for ¢+ > 0, which may be regarded as a functigsi6) of 6, and

= c(n? — 1) 7sin2rno)
(31) pt(e)_’;nexp[— 3272 }sin(ZnG)'

This formula can also be obtained by a direct and elementary computation, which
is contained in author’s forthcoming book an Lévy processes in Lie groups.
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