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DISCUSSION PAPER

CONDITIONAL GROWTH CHARTS1

BY YING WEI AND XUMING HE

Columbia University and University of Illinois

Growth charts are often more informative when they are customized per
subject, taking into account prior measurements and possibly other covariates
of the subject. We study a global semiparametric quantile regression model
that has the ability to estimate conditional quantiles without the usual distrib-
utional assumptions. The model can be estimated from longitudinal reference
data with irregular measurement times and with some level of robustness
against outliers, and it is also flexible for including covariate information.
We propose a rank score test for large sample inference on covariates, and
develop a new model assessment tool for longitudinal growth data. Our re-
search indicates that the global model has the potential to be a very useful
tool in conditional growth chart analysis.

1. Introduction. Growth charts, also known as reference centile charts, have
been widely used to screen the measurements from an individual subject in the
context of population values. A growth chart consists of a series of smooth curves
plotted against time or another covariate, with each curve representing the trend of
a given percentile of the measurement in a population. With several chosen per-
centile curves, a growth chart displays the distribution of a certain measurement
within a certain range of time for a certain population. When a measurement is
extreme on the chart, the subject is often identified for further investigation. An
extreme measurement is likely to be a reflection of some unusual underlying phys-
ical condition.

The conventional method of constructing reference centiles is to get the empir-
ical percentiles from cross-sectional data at a series of time points, and then fit a
smooth polynomial curve to them. This method was used to develop the National
Center of Health Statistics (NCHS) Growth Chart in 1977; see [15]. Cole [5] has
become a classical work in the statistics literature on growth chart construction. In
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recent years, a number of different methods have been developed in the medical
statistics literature; see, for example, [1, 9, 22, 32, 34, 39, 42]. Wright and Roys-
ton [43] have reviewed some of these methods. Most authors explore the beauty
of normality to reduce quantile estimation to estimation of moments. Since most
physical measurements are known to be nonnormal in distribution, a transforma-
tion to normality is generally used. The Box–Cox power transformation remains
the most popular choice in this regard, as it can be found in a wide variety of
medical journals—[7, 8, 29, 30], just to name a few. Arguably the most sophis-
ticated transformation method is the LMS method of Cole [5]. It assumes that, at
any time t , the measurement Y(t) can be transformed to be approximately standard
normal by Z(t) = ((Y (t)/M(t))L(t) −1)/(L(t)S(t)), where L(t) is the best-fitting
Box–Cox power for Y(t), M(t) is the median of Y(t), and S(t) is the scale of the
transformed variable. The transformed variable Z(t) is also known as the z-score.
The penalized log-likelihood approach for estimating the L-M-S functions has been
proposed by Cole and Green [9].

Since conventional growth charts are usually developed from cross-sectional
data, they are most useful for examining a subject with one measurement at a spe-
cific time. If a subject has more than one measurement, it can be more informative
to study his growth path rather than a single measurement. Knowing a subject’s
prior growth path gives us a better understanding about his current growth status.
For example, if a subject who has been growing along the 75th percentile curve
suddenly drops below the median curve, it might be worth singling him out for
further investigation. If we simply compare the growth path against the reference
centiles generated from cross-sectional data, it would be hard to know how big
a drop should be deemed unusual. Another important reason arguing against this
approach is given in [6]. During both infancy and puberty, the subjects on the up-
per (or lower) centiles tend to grow toward the median at a faster growth rate than
others, which is known as “catch-up” growth. Their growth paths are thus likely to
move across the reference centiles during infancy or puberty. This is a normal phe-
nomenon, but tracking those subjects on a conventional growth chart may give us
an incorrect impression of abnormal growth. Clearly, one should compare a sub-
ject with the group of subjects with similar growth paths. In this paper, we focus
on developing conditional growth charts based on longitudinal data.

Several authors, including Royston [33], have considered models for conditional
reference centiles. Cole [6] considered the LMS-AR model Zt = at +btZt−1 + et ,
where Zt is the so-called z-score from a power transformation at time t , Zt−1 is
the lagged measurement at time t − 1 and et is distributed as N(0, σ 2

t ). In addition
to the assumption of normality, this method requires fixed measurement time inter-
vals. A more general model allowing varying measurement time intervals has been
proposed by Thompson and Fatti [38], but they assumed a multivariate normal dis-
tribution for the measurements and the covariates at all time points and used the
maximum likelihood estimator for the mean and variance functions. Scheike and
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Zhang [35] and Scheike, Zhang and Juul [36] considered a longitudinal regres-
sion model Yi,j = m(Yi,j−1, ti,j − ti,j−1) + εi,j for height or weight, where Yi,j is
the j th measurement of the ith subject at a random time ti,j , m(·) is an unknown
function of the prior measurement and the time duration from the prior measure-
ment, and εi,j is normally distributed. The reference centiles are constructed based
on an estimate of m and the normality of Yi,j .

In practice, the longitudinal data collected for constructing reference centiles
often exhibit the following features. First, the measurement time intervals are
somewhat random. Even under the standard guideline of taking measurements on
a nationally accepted schedule, say bimonthly for young children, the actual mea-
surement times deviate from the fixed schedule due to practical considerations.
A new subject to be screened for medical reasons is unlikely to follow the same
schedule as the reference group. Second, transformation to normality is often a rea-
sonable endeavor at a given time point, but the conditional models would require
more than marginal normality of the z-scores. Normality of the error distributions
in the conditional models can fail even if the marginal measurements are nearly
normal; see an example later in the paper. Third, it is often desirable to incorporate
subject-level covariates such as parent height in the conditional growth analysis.
Normality in the conditional models becomes a stronger requirement in the pres-
ence of covariates. The existing approaches to conditional reference centiles can be
ineffective in view of the data features discussed here. The semiparametric quan-
tile regression model proposed in [40] aims to better accommodate data of this
type; see illustrations in [41].

In this paper we further develop the global semiparametric approach to condi-
tional growth charts by providing asymptotic theory, inference tools and a model
assessment technique. Section 2 describes the global model and a simple estima-
tion procedure. Section 3 provides the large sample properties of the estimates,
and Section 4 gives a rank score test for covariate effects in the model. Section 5
compares the global model with the LMS-AR method of Cole [6] and illustrates
the difficulty in preserving normality in conditional models. We also provide a new
tool of model assessment for longitudinal growth data in Section 6. Some practi-
cal issues of using growth charts, both conditional and unconditional, are given in
Section 7, and the technical proofs of our theorems are given in Section 8.

2. A global model. Suppose that we have n subjects, and the ith subject
has mi measurements at times ti,1, ti,2, . . . , ti,mi

, which are not necessarily evenly
spaced. We denote as Yi,j the jth measurement of the ith subject, and Di,j,k =
ti,j − ti,j−k is the time distance between the j th and (j − k)th measurements. For
a given τ , we model Yi,j by

Yi,j = g0(ti,j ) +
p∑

k=1

(ak + bkDi,j,k)Yi,j−k + X�
i,j γ0 + ei,j (τ ),(2.1)
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where i = 1, . . . , n, j = p + 1, . . . ,mi , Xi,j = (Xi,j,1, . . . ,Xi,j,l)
� consists of l

covariates for the ith subject at time ti,j , and ei,j (τ ) is a random variable whose
τ th quantile, given the growth path up to the (j − 1)st measurement and Xi,j , is
zero. The conditional quantile of Yi,j given the p prior measurements and the co-
variate Xi,j includes g0 as a nonparametric intercept function of the current mea-
surement time, an autoregressive function of Yi,j−1, . . . , Yi,j−p whose coefficients
are linear functions of measurement time distances Di,j,k , and a linear function of
the covariate Xi,j .

In general, the subjects take measurements at irregular time intervals. It is nat-
ural to assume that the dependence between two measurements varies with their
measurement time distance. This motivates the choice of the autoregressive coeffi-
cients as functions of Di,j,k . If all the subjects take measurements at the fixed time
intervals, the coefficients simplify to constants. On the other hand, it is possible
to generalize the model by using a more general form as considered by Cai and
Xu [2]. We defer this discussion to Section 7.

We have intentionally written the error term in model (2.1) as ei,j (τ ), which is
τ -specific. This helps distinguish the quantile regression model from most other
models of the same form. Model (2.1) allows the error term to be dependent on
the covariates as well, so ei,j (τ ) is merely a convenient notation for the difference
between Yi,j and its τ th conditional quantile function. If the error terms are in-
dependent of τ and of the covariates in the model, then models of this form have
been well studied in the longitudinal data analysis by many other authors, includ-
ing Chiang, Rice and Wu [4], Lin and Carroll [24], Lin and Ying [23] and Fan and
Li [11], to mention just a few.

For the sake of simpler presentation in the rest of the paper, we will convert to
the usual notation of writing ei,j (τ ) as ei,j , but it is always helpful to keep in mind
that this error term is τ -specific.

In (2.1), g0(t) is a nonparametric function with a certain degree of smoothness.
Suppose that the range of interest in time is t ∈ [tL, tU ]. Different smoothing
methods may be used to estimate g0, but Wei [40] used the convenient approach
of regression splines. Specifically, we approximate g0(t) by a linear combina-
tion of B-spline basis functions as in [18]. Given a set of knots, we denote
as π(t) = (π1(t),π2(t), . . . , πkn(t))

� the set of kn B-spline basis functions of,
say, order 4 (cubic). Let πi,j = π(ti,j ), X̃i,j = (Yi,j−1,Di,j,1Yi,j−1, . . . , Yi,j−p,

Di,j,pYi,j−p,X�
i,j )

�; we can then use π�
i,j α̂n + X̃�

i,j β̂n to estimate the τ th condi-

tional quantile function of Yi,j , where α̂n and β̂n are obtained by minimizing

n∑
i=1

mi∑
j=p+1

ρτ (Yi,j − π�
i,jα − X̃�

i,jβ),(2.2)

where ρτ (r) = r(τ − I (r < 0)) is the quantile objective function; we refer to [26]
for details.
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Obviously, other smoothing methods (e.g., kernel smoothing) may be used in
lieu of regression splines. One advantage of spline smoothing here is that in typ-
ical applications it is usually sufficient to preselect a set of knots in the interval
(tL, tU ) using our general understanding of growth patterns. For example, it would
be useful to place more knots during infancy and puberty than during other times.
In this paper, we do not go into the issue of automated knot selection.

Optimization of (2.2) can be performed efficiently by linear programming tech-
niques. In fact, the solution to (2.2) only requires software for quantile regression
in linear models. The R package quantreg contributed by Koenker and the SAS
PROC QUANTREG are handy for obtaining the estimates of α and β .

We further note that in model (2.1), even if the ei,j ’s are assumed to be indepen-
dent, the within-subject correlation may be captured by the autoregressive compo-
nent of the model. For a consistent estimate of the conditional quantile function,
we do not need the i.i.d. assumption on ei,j . The inference tools developed later in
this paper are proven under stronger assumptions but with good robustness against
common deviations from the i.i.d. assumption.

3. Large sample property. Under appropriate conditions, the intercept func-
tion estimate and the coefficient estimate for β converge to their true values at
the optimal rates. To state the conditions, we use ‖ · ‖ for the Euclidean norm,
and an ≈ bn to mean 0 < lim infn an/bn < lim supn an/bn < ∞. Throughout, we
assume that the number of measurements per subject is bounded, but the num-
ber of subjects grows. For the sake of convenience and without loss of gen-
erality, we assume that p = 1 in model (2.1), and consequently drop the sub-
script k from Di,j,k so that Di,j = Di,j,1. Also let ψ(x) = ρ′

τ (x) = τ − I{x≤0},
and ψ(ei) = (ψ(ei,2),ψ(ei,3), . . . ,ψ(ei,mi

))�. Since our results will be stated for
a given τ , we have dropped the dependence of ψ on τ here.

Following He and Shi [18], we assume a spline approximation to g0(t) as
π�

i,jα0, with Rnij = π�
i,jα0 − g0(ti,j ) as the approximation error. We state the as-

sumptions for this section.

ASSUMPTION 1. g0(t) has bounded r th derivative for some r ≥ 1.

ASSUMPTION 2. The numbers of measurements mi are uniformly bounded
for all n.

ASSUMPTION 3. The errors ei = (ei,2, . . . , ei,mi
)� have unspecified variance–

covariance structures but are independent across subjects.

ASSUMPTION 4. Ai = E[ψ(ei)ψ(ei)
�] > 0 for each i and supi ‖Ai‖ < ∞.

Let bi,j = fei,j
(0), where fei,j

is the conditional p.d.f. of ei,j given ti,j and X̃i,j .
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ASSUMPTION 5. 0 < infi,j bi,j < supi,j bi,j < ∞, and as s → 0,

supi,j |Eψ(ei,j + s) − bi,j s| = O(s2).

ASSUMPTION 6. There exists an (l + 2)-dimensional function η(t) = (η1(t),

η2(t), . . . , ηl+2(t)) with bounded r th derivative such that for any i and j ,

X̃i,j = η(ti,j ) + δi,j ,

where δi,j = (δi,j,1, δi,j,2, . . . , δi,j,l+2) are random vectors with mean zero and are
independent of ei,j given (i, j). Let X̃n = (X̃1,2, . . . , X̃1,m1, X̃2,2, . . . , X̃n,mn) be
the (l + 2) × N matrix with N = ∑n

i=1(mi − 1), and let 
n and Vn be defined in
a similar way using δi,j and η(ti,j ), respectively. Then we have X̃n = Vn + 
n,
where Vn is the mean of X̃n so that E
n = 0.

ASSUMPTION 7. supn n−1E‖
n‖2 < ∞.

Assumption 7 is readily satisfied if all the variables have finite supports. Note
that for any i, (ti,1, ti,2, . . . , ti,mi

) are order statistics of the time variable, thus ti,j−1
and Yi,j−1 are not independent of ti,j . Therefore, η1(ti,j ) is the conditional mean
of the prior measurement given the current time, and η2(ti,j ) is the conditional
mean of Di,j times Yi,j−1 given current time ti,j . Similarly, (η3, . . . , ηl+2) are the
conditional means of the covariates Xi,j given ti,j .

Let Zn = (π1,2, π1,3, . . . , πi,j , . . . , πn,mn)
�
N×kn

, Gn = Zn(Z
�
n Zn)Z

�
n and Bn =

diag(bi,j ), where {bi,j } is sequenced by indices i and j as in Zn. For additional
assumptions, we define X∗

n = (I − Gn)X̃n and Kn = X∗T
n BnX

∗
n. If we denote

as X
∗(i)
n the mi × (l + 2) submatrix of X∗

n corresponding to the ith subject, and
B(i) = diag(bi,2, . . . , bi,mi

), then Kn = ∑n
i=1 X

∗(i)T
n B(i)X

∗(i)
n . By the assumption

of between-subject independence, Kn can be regarded as an independent sum. Fur-
thermore, let �n = diag(A1, . . . ,An) and Sn = X∗T

n �nX
∗
n. Then we have

ASSUMPTION 8. There exists a positive definite matrix K such that
Kn/n → K in probability, and E(Kn/n) → K .

ASSUMPTION 9. There exists a nonnegative definite matrix S such that
Sn/n → S in probability.

Let ĝn(ti,j ) = π�
i,j α̂n; the following theorem summarizes the large sample prop-

erties of β̂n and ĝn.

THEOREM 3.1. (i) Under Assumptions 1–7, if the number of knots kn ≈
n1/(2r+1), then

‖β̂n − β0‖ = Op

(
n−r/(2r+1))(3.1)
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and

1

n

n∑
i=1

mi∑
j=p+1

(
ĝn(ti,j ) − g0(ti,j )

)2 = Op

(
n−2r/(2r+1)).(3.2)

(ii) With Assumptions 8 and 9 additionally, we have
√

n(β̂n − β0) → N(0,�),(3.3)

where � = K−1SK−1.

4. Rank score test. The asymptotic normality of β̂n enables us to make
large sample inference on the coefficients ak , bk and γ0. However, the variance–
covariance matrix � of Theorem 3.1 is not easy to estimate, as it involves the
densities of ei,j . Likelihood-based tests such as those discussed in [10] are harder
to develop for the quantile models than for conditional mean regression. The rank
score test given by Gutenbrunner, Jurěcková, Koenker and Portnoy [13] provided
an attractive alternative to hypothesis testing on quantile regression coefficients by
avoiding direct estimation of the error densities. In this section we extend the rank
score test to the semiparametric model (2.1). Fundamental theories of rank-based
inference can be found in [12, 14, 28].

As in [13], we assume ei,j to be i.i.d. in this section. Even so, the inclusion
of a nonparametric component g0 in the model complicates the derivation of the
limiting distribution of a rank score test statistic. Fortunately, the χ2 limiting distri-
bution initially derived from linear quantile regression models remains valid when
g0 is estimated by regression splines.

4.1. Test statistic and asymptotic distribution. Suppose that β01 is a q-dimen-
sional subset of β0 in (2.1), and X̃�

n1 is the N × q design matrix corresponding
to β01. Let β02 and X̃n2 be the remaining parameter vector and design matrix,
respectively; then the global model (2.1) has a partitioned form

Yn = g0(T ) + X̃�
n1β01 + X̃�

n2β02 + en.(4.1)

Suppose that we wish to test the null hypothesis H0 :β01 = 0, versus the alternative
hypothesis H1 :β01 �= 0. Using the spline approximation described in Section 2, we
further denote that

Zn = (
π�

1,2, π
�
1,3, . . . , π

�
1,m1

, . . . , π�
n,2, π

�
n,3, . . . , π

�
n,mn

)�
,

Wn = (Z�
n , X̃�

n2)
�,

Gn = W�
n (W�

n Wn)
−1Wn,

V�
n = GnX̃

�
n1,

φ0 = (α�
0 ,β�

02)
�,
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where α0 is defined in Section 3 and Wn is the pseudodesign matrix when H0 is
true.

Let vi,j be the column component of Vn that corresponds to the ith subject and
the j th measurement. Similarly, we denote wi,j as the column component of Wn

that corresponds to the ith subject and the j th measurement. The dimension of wi,j

is increasing in the dimension of the B-spline space.
Now, let Sn = n−1/2 ∑n

i=1
∑mi

j=2 ϕτ (Yi,j − w�
i,j φ̂n)vi,j , where φ̂n =

arg minφ

∑n
i=1

∑mi

j=2 ρτ (Yi,j − w�
i,j φ) and Vn = n−1τ(1 − τ)X̃n1(In − Gn)X̃

�
n1.

We define the rank score test statistics as

Tn = S�
n V −1

n Sn.(4.2)

To obtain the asymptotic distribution of Tn, we make additional assumptions as
follows.

ASSUMPTION D1. The random errors ei,j are independent of one another,
and there exists a constant b such that bi,j = fei,j

(0) = b, for all i and j .

ASSUMPTION D2. maxi,j ‖wi,j‖2 = Op(kn), E[maxi,j ‖vi,j‖2] < ∞ and
sup‖α‖≤1

∑n
i=1

∑mi

j=2 ‖vi,j‖2‖w�
i,j α‖2 = Op(n).

ASSUMPTION D3. There exists a constant κ such that supi,j |fYi,j |vi,j ,wi,j
| ≤ κ .

In Assumption D3, we assume the conditional density of Yi,j to be uniformly
bounded. Assumption D1 holds if the ei,j ’s are i.i.d. Besides Assumptions D1–D3,
we have a slightly stronger assumption on the smoothness of the function g0(t).
We modify Assumption 1 in Section 3 as

ASSUMPTION 1*. g0(t) has bounded r th derivative for some r > 2.

We now have the main theorem of this section, which allows, but is not limited
to, the choice of kn ≈ n1/(2r+1) given in Theorem 3.1. Using an 
 bn to mean
limn→∞ an/bn = 0, we have the following result.

THEOREM 4.1. Under Assumptions 1*, 2–7 and D1–D3, if the number of
knots kn for the B-spline space satisfies n1/4r 
 kn 
 n1/4 with r > 2, we have
Tn → χ2

q as n → ∞.

It is helpful to note that the limiting distribution of Tn is invariant over a wide
range of choices for kn. Practically speaking, the result suggests that the number of
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knots is not a critical issue for the rank score tests. In our empirical investigations,
the validity of the test appeared robust against violation of the i.i.d. assumption
on ei,j .

4.2. An assessment with Monte Carlo simulations. We may assess the perfor-
mance of the rank score test described in the preceding subsection by Monte Carlo.
A set of models is selected with different error distributions, percentile levels τ

and model structures. In each model, the number of subjects is 200, the number of
measurements from each subject is 10 and the percentile level is 0.5 or 0.95. The
number of Monte Carlo samples used for estimating the Type I error is 10,000 in
each scenario, so that the standard error of the estimate is around 0.2%.

MODEL 1. A semiparametric longitudinal model with i.i.d. random errors.
yi,j = h(ti,j )+ byi,j−1 + xi + ei,j , where yi,j is the j th measurement from the ith
subject at time ti,j , h(t) = 40t/(1 + 4t) is the intercept function, ei,j are i.i.d.
standard normal, xi , independent of ei,j , are normal with mean 10 and standard
deviation 1, and b is a parameter of interest. Here, h(t) has similar shape and scale
as a reference centile curve of infant weight. Without loss of generality, we as-
sume that, given i, the measurement times (ti,1, ti,2, . . . , ti,10) are order statistics
of ten uniformly distributed random variables on the interval [0,1]. The intercept
function h(t) is monotone increasing and is approximated by a cubic spline with
internal knots (0.25, 0.5, 0.75). Using the rank score test, we test the null hypoth-
esis: H0 :b = 0, that is, the significance of the autoregressor is of interest. Models
2 and 3 have the same structure as Model 1, but assume that the distribution of ei,j

is t3/σt3 and χ2
1 /σχ2

1
, respectively, where the variances of ei,j ’s are standardized

to 1.

MODELS 4–6. A longitudinal model with non-i.i.d. errors.

yi,j = h(ti,j ) + byi,j−1 + xi + (1/2 + yi,j−1/25)ei,j .

For these models, the conditional quantile function is a linear function of yi,j−1
with the autoregressive coefficient as bτ = b + Qτ(ei,j )/25, where Qτ(ei,j ) is the
τ th quantile of ei,j . With Models 4–6, we test the null hypothesis H0 :bτ = 0.

In all the models, the intercept function h(t) is approximated by a regression
cubic spline, which may vary with different knot selections. To see whether the
rank score test is sensitive to the number of knots, we estimate h(t) in Models 1–6
with one or two or three uniformly spaced knots. Table 1 gives the estimated Type I
errors when τ = 0.5 and τ = 0.95 for the two sets of models. All of them are close
to 0.05, the desired significance level.

A look at the estimated power curves (not presented in this paper) confirms that
the performance of the test does not depend heavily on the choice of kn and is quite
robust against modest deviations from the i.i.d. assumptions on the errors.
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TABLE 1
Type I errors for Models 1–6

τ = 0.5 τ = 0.95

# of knots Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

1 0.0524 0.0535 0.0531 0.0508 0.0572 0.0523
2 0.0494 0.0472 0.0488 0.0498 0.0551 0.0505
3 0.0513 0.0485 0.0479 0.0495 0.0550 0.0500

Model 4 Model 5 Model 6 Model 4 Model 5 Model 6
1 0.0534 0.0497 0.0563 0.0543 0.0672 0.0521
2 0.0506 0.0462 0.0505 0.0504 0.0662 0.0517
3 0.0510 0.0457 0.0523 0.0479 0.0684 0.0510

5. Example on infant weight. In this section we use the Finnish growth
data [31] to demonstrate the use of the global model for subject screening and
compare the results with the LMS-AR approach of Cole [6]. The data we use here
include measurements from a total of 1143 Finnish boys from birth to 2 years of
age.

5.1. Global model on infant weight. Monitoring the growth of weight during
infancy is clinically important. For example, there is evidence that the rapid rates
of weight gain during infancy could lead to obesity later in the childhood and may
also be related to cardiovascular diseases later in life [37]. We use weight as the
measurement for screening, but two prior measurements on weight and the current
height are included in the model. Approximately, the measurements were taken
monthly during this period of infancy, but few children were measured exactly on
a monthly schedule.

Let Wi,j and Hi,j be the j th weight and height, respectively, of the ith subject
at age ti,j . The global model (2.1) for the τ th quantile can be further specified as

Wi,j = gτ (ti,j ) +
2∑

k=1

(ak,τ + bk,τDi,j,k)Wi,j−k + cτHi,j + ei,j .(5.1)

Note that the error variables ei,j are τ -dependent in the model. A set of quantiles
with τ ∈ {0.03,0.1,0.25,0.5,0.75,0.9,0.97} is chosen for consideration. In the
example, we use cubic splines with evenly spaced internal knots (0.5, 1, 1.5).

Table 2 lists the estimates of ak,τ , bk,τ (k = 1,2) and cτ for the seven τ ’s. The
numbers in parentheses are the corresponding p-values based on the rank score
test. They suggest that the second prior weight is not significant at several τ levels.
Even when it is statistically significant, the small magnitudes of the coefficients
mean that the contribution to the conditional quantiles would be small relative to
that from the first prior weight. Height is a significant factor in the model.
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TABLE 2
Estimated parameters for infant weight

τ

0.03 0.10 0.25 0.50 0.75 0.90 0.97

a1,τ 0.787 0.823 0.810 0.801 0.737 0.612 0.482
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

b1,τ 0.163 0.216 0.279 0.308 0.332 0.334 0.346
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

a2,τ 0.012 −0.015 −0.016 −0.032 −0.048 −0.056 −0.037
(0.496) (0.103) (0.015) (0.000) (0.000) (0.002) (0.295)

b2,τ 0.045 0.020 0.008 0.023 0.021 0.043 0.071
(0.004) (0.083) (0.547) (0.080) (0.223) (0.012) (0.040)

cτ 0.038 0.043 0.051 0.059 0.080 0.109 0.138
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

The numbers in the parentheses are p-values.

Also note that a1,τ decreases, but b1,τ and cτ increase with τ . This means that
the measurement time distance and height play larger roles for heavier boys than
for lighter boys.

A boy’s growth status can be assessed by comparing his current weight with
a set of conditional quantiles estimated from model (5.1). By bootstrapping sub-
jects, we can also get confidence intervals on the conditional quantiles.

The left panel in Figure 1 displays the weight growth path of one subject in
the Finnish growth data. The growth path is plotted against the conventional (un-
conditional) centile curves of weight. We note that the weight of this subject had
been growing along the 0.25th quantile but jumped to about the median level at
age 0.61 year. A rapid weight gain could be a warning signal for obesity. There-
fore, it is worthwhile to single him out early at age 0.61.

We apply model (5.1) to screen the weight at 0.61 year as the “current” mea-
surement age. The right panel in Figure 1 shows the screening results from the
global model, with the circle dots as the estimated conditional quantiles at age
0.61 from the global model. The boy’s current weight is 9.35 kg, which is higher
than the 0.97th conditional quantile, suggesting that he might be overweight given
his prior path and current height. The gray band represents the pointwise 90% con-
fidence band for the conditional quantiles obtained from the bootstrap method. The
subject’s current height is higher than the upper bound of the 0.97th conditional
quantile, which reinforced our conclusion that, from ages 0.46 to 0.61, the boy had
been gaining weight at an excessive rate, even though his weight was still below
the 0.75th quantile at age 0.61 based on the conventional growth chart.

5.2. Comparison with the LMS-AR model. Cole [6] suggested using the LMS
method to transform data to normality and then applying an autoregressive model
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FIG. 1. An example of conditional screening based on the global model.

to the z-scores to estimate the conditional quantiles. To use the LMS-AR model,
we interpolate the data to have measurements on fixed time intervals. More specifi-
cally, we first transform the infant weight using the LMS method with the effective
dimensions 7, 10 and 7 for the functions L, M and S, respectively. We denote as zt

the z-score at age t . An AR(2) model is then used at 0.61 year, with the first two
lags at 0.46 year and 0.37 year as autoregressors:

z0.61 = α0 + α1z0.46 + α2z0.37 + e,(5.2)

where e ∼ N(0, σ 2).
The estimated quantiles from the LMS-AR(2) model, together with those from

the global model using the same covariates, are plotted in the left panel of Figure 2.
The two sets of conditional quantiles agree fairly well at the lower percentiles, al-
though the former are slightly higher than the estimates from the global model.
However, for the upper quantiles we observe considerably large differences be-
tween the two estimates: the estimates from the LMS-AR(2) model are much lower
than the ones from the global model, and the difference widens as τ increases.

To understand the differences, we note that the LMS-AR approach implicitly
assumes joint normality of the z-scores at three measurement times. The right
panel of Figure 2 gives the normal QQ-plots of the z-scores for these four vari-
ables. While the LMS transformation does a pretty good job in achieving marginal
normality at these three measurement times, it is clear that the distribution of the
residuals deviates substantially from normality, and thus the joint normality is not
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FIG. 2. A comparison between the global model and the LMS-AR model.

achieved. The QQ-plot of the residuals shows clearly a heavy upper tail, which
explains why the LMS-AR(2) method underestimates the upper quantiles.

6. Model diagnosis. To use the global model for subject screening, one has
to have some faith in the adequacy of the global model. Does the model fit the data
well? Can a more parsimonious model fit the data almost as well? These questions
lead us to consider model assessment tools for the conditional model.

Goodness-of-fit tests developed for linear quantile regression models by
Koenker and Xiao [27] and He and Zhu [20] may be extended to semiparamet-
ric models, but they are not made for model assessment over a set of quantiles. In
this section, we propose an assessment tool tailored to our conditional models by
trying to compare the empirical distribution of Y with the simulated distribution
from the model.

Because of the irregularity in measurement times, we would not have enough
data for model assessment at any given time. However, we view Yi,j , the j th mea-
surement of the ith subject, as a random variable of interest for any fixed j . We
allow ti,j to be random, and consider the distribution of the j th measurement for
any group of subjects.

Given the quantile models, there is a nice way to generate Yi,j from its condi-
tional distribution. Specifically, we draw U from the uniform distribution on (0, 1),
and then generate Y as the U th quantile from the (estimated) model. A resulting
random sample follows the model-based conditional distribution.
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For a given j , we randomly draw a subject from those who have at least j

measurements. Given this subject’s Y(tj−1) and X(tj−1), we draw Y(tj ) from the
quantile models as described above. When this process is repeated many times,
we obtain a simulated sample for the j th measurement. The size of the simulated
sample could be as large as we wish, but 5000 is used in our example below. If
the model fits the data well, the distribution of the simulated Y(tj ) should match
the distribution of the observed j th measurements. It is a weak requirement that the
two marginal distributions should match; instead we would expect a good match
for any subgroup of subjects defined by the covariates in the model, which forms
the basis of our model assessment tool.

To have a quick idea of how well the empirical and the simulated distribu-
tions match, we may use the familiar QQ-plot. Another useful option is to look
at

√
n(τ̂ − τ)/(τ (1 − τ))1/2 for a set of τ ’s, where τ̂ is the proportion of the ob-

served Yi,j that fall below the τ th quantile of the simulated distribution, and n is
the number of the observed Yi,j .

For the infant weight example in the previous section, we display the QQ-plots
in Figure 3 for j = 2,4,6 and 8. The reference line in each plot is y = x. These
QQ-plots suggest a good match between the two distributions. The upper half of
the figure plots the standardized τ̂ − τ for 10 equally spaced τ ’s from 0.05 to 0.95.
No differences are worrisomely large, except that the match at j = 2 was not as
satisfactory as the others.

FIG. 3. Checking goodness-of-fit at the j th measurement, where N stands for the number of ob-
servations whose median measurement age (in year) is also displayed.
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However, it is more meaningful to assess the agreement for subgroups of sub-
jects. When all the subjects are included, we are only concerned with the marginal
distributions, so even an unconditional model would do well.

We now consider some subgroups based on birth weight or current height and
compare three models: the unconditional model, the global model (5.1) and a
smaller global model obtained by dropping the second lagged term as well as
height. Figure 4 gives the QQ-plots and the standardized (τ̂ − τ) plots for two
subgroups: Group 1 subjects whose birth weights are below the first quartile, and
Group 2 subjects whose current heights are below the first quartile. Here, model ad-
equacy is evidently different. The unconditional model, as expected, would overes-
timate the lower quantiles for Group 1 and Group 2. The smaller conditional model
would fit the data better than the unconditional model, but the global model (5.1)
does much better. The improvement due to lag-2 weight and due to height infor-
mation is clearly demonstrated through the model assessment plots proposed in
this section.

By examining the model checking plots for various subgroups defined by co-
variates, we find that global model (5.1) is a good fit to the Finnish infant data for
the purpose of conditional weight screening. Here, we choose not to specify a de-
fault for formations of subgroups; rather we leave it to the individual researcher
to slice and detect. The model assessment ideas presented here are applicable to

FIG. 4. Model assessment for Groups 1 and 2.
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conditional quantile models in other applications, and formal lack-of-fit tests may
be developed from these ideas. We defer them to future work.

7. Further discussion. It is clear that the conditional growth charts that we
propose in this paper are not a set of charts in the usual sense. Screening based on
the global model on longitudinal growth data needs to be done with customized
charts for each subject. However, such customized charts can be generated easily
given the estimated models, and all one needs is to input the information on a given
subject under screening, making the clinical use of the conditional growth charts
really practical on any desktop.

In this section we discuss some limitations of and generalizations to the
model (2.1). We hope that our work will stimulate future research on longitudi-
nal growth charts.

7.1. Generalization. Fixed measurement intervals are usually assumed in
an autoregressive model. By assuming that the AR coefficients are linear in the
time spacings, the global model (2.1) has some flexibility to deal with irregular
measurement times. We can further generalize the model as

Yi,j = g0(ti,j ) +
p∑

k=1

bk(Di,j,k)Yi,j−k + X�
i,j γ0 + ei,j ,(7.1)

where the AR coefficients are some unknown functions of measurement time
spacings. In fact, for small measurement time spacings, ak + bkDi,j,k works rea-
sonably well as a linear approximation to the general function bk(Di,j,k). The
estimate of bk(Di,j,k) in model (7.1) can be obtained by either a parametric or
a nonparametric approach. For a parametric approach, we may specify a para-
metric coefficient function, such as ak + bkDi,j,k + ckD

2
i,j,k . To choose between

ak + bkDi,j,k + ckD
2
i,j,k and ak + bkDi,j,k , we can simply test the hypothesis

H0 : ck = 0. For a nonparametric approach, one may use the varying-coefficient
models explored by Kim [25] or the dynamic models of Cai and Xu [2].

Another restrictive feature of the global model is that the AR coefficients do
not depend on the measurement times, but only on their spacings. An alternative
model can be set up as

Yi,j = g0(ti,j ) +
p∑

k=1

[ak(ti,j−k) + bk(ti,j−k)Di,j,k]Yi,j−k + X�
i,j γ0 + ei,j ,(7.2)

where we allow the parameters ak and bk to be functions of prior measurement
times ti,j−k . Time series models studied by Xu [44] may also be considered. In
practice, the flexibility of the models becomes an advantage only when the sample
size is large.
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7.2. Localization. If all the subjects have measurements on a series of fixed
time points, say (t0, t1, t2, . . . , tp), then ak and bk in the global model are no longer
identifiable. To model the conditional quantiles of the measurement at time t0 given
the prior path and other covariates, one may use

Yt0,i = β0 +
p∑

k=1

βkYtk,i + γ �Xi + ei, i = 1, . . . , n,(7.3)

where Yt,i is the measurement of the ith subject at time t , (t1, t2, . . . , tp) are p

prespecified earlier time points, which are not necessarily evenly spaced, Xi is
an l-dimensional covariate and ei are i.i.d. random variables with zero τ th quantile.
It follows that the conditional τ th quantile of Yt0,i is a linear combination of p prior
measurements Yt1,i , Yt2,i , . . . , Ytp,i , and the other covariate Xi .

7.3. Conditional versus marginal growth charts. We have focused on the con-
ditional growth charts in the present paper, because conditional charts are highly
valuable in evaluating recent growth status of subjects. However, we do not suggest
that we should do away with marginal growth charts, which are most commonly
used by health professionals today.

The conditional growth charts may be unsuccessful in screening out subjects
with gradual but persistent slowdown in growth. Further studies are needed to ad-
dress issues related to the “longitudinal” use of growth charts over time. If a subject
consistently falls below the 25th conditional percentile for several time periods, it
might signal a growth problem. At the present time, the marginal growth charts
may be used in conjunction with conditional charts.

7.4. Monotonicity. The growth charts from model (2.1) require estimation of
a series of conditional quantile functions. It is not guaranteed that the estimated
quantiles are monotone in τ . For a discussion of constrained quantile regression
that avoids this crossing problem, see [16].

8. Technical proofs.

8.1. Proof of Theorem 3.1. First we write model (2.1) in matrix form as

Yn = g0(T ) + X̃�
n β0 + en,(8.1)

where T = (ti,j )N×1 = (t1,2, . . . , t1,m1, t2,2, . . . , t2,m2, . . . , tn,2, . . . , tn,mn)
�, Yn =

(Yi,j )N×1, X̃n = (X̃�
i,j )N×(l+2), en = (ei,j )N×1 and β0 = (a0, b0, γ

�
0 )�. The in-

dices (i, j) in the vectors Yn and en and the matrix X̃n are arranged in the same
way as in T . Here N = ∑n

i=1(mi − 1) is the total number of observations used
for the estimation. Note that mi are uniformly bounded for all n, O(N) = O(n).
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Recall that Zn = (π1,2, π1,3, . . . , πi,j , . . . , πn,mn)
�
N×kn

and Gn = Zn(Z
�
n Zn)Z

�
n .

We further define

H 2
n = knZ

�
n Zn, zn = (zn1, zn2) = (

k1/2
n ZnH

−1
n , n−1/2(I − Gn)X̃n

)
,

θ(α,β) = (
θ1(α,β)�, θ2(α,β)�

)� =
(

k
−1/2
n Hnα + k

1/2
n H−1

n Z�
n X̃nβ

n1/2β

)
.

Note that zn �= Zn in our notation; Zn is the matrix of the spline basis functions,
and zn is the whole design matrix after normalization and orthogonalization. We
split zn into two parts: the matrix zn1 is the normalized design matrix of the spline
bases, and zn2 is the normalized design matrix of the linear components that is
orthogonal to zn1. Also, we denote zn1,ij and zn2,ij as the column components
associated with the ith subject and the j th measurement. Similar partitions and
standardizations were used in [21].

With this notation, model (8.1) can be further written as

Yn = zn1θ1(α0,β0) + zn2θ2(α0,β0) + Rn + en

(8.2)
= znθ(α0,β0) + Rn + en.

The orthogonality between zn1 and zn2 will not affect the estimation of
α0 and β0, but could simplify our proof. Using this orthogonalized model format,
let

Ci,j (θ) = ρτ (ei,j − zn,ij θ − Rnij ) − ρτ (ei,j − Rnij ) + zn,ij θψ(ei,j ),

Di,j (θ1, θ2) = ρτ (ei,j − zn1,ij θ1 − zn2,ij θ2 − Rnij )

− ρτ (ei,j − zn1,ij θ1 + Rnij ) + zn2,ij θ2ψ(ei,j ).

The proof of Theorem 3.1 relies on the following three lemmas.

LEMMA 8.1. Under Assumptions 1–7, for any sequence {Ln} such that 1 <

Ln < k
δ0
n for some δ0 ∈ (0, r/10), we have

sup
‖θ‖<Lnk

1/2
n

k−1
n

∣∣∣∣∣
n∑

i=1

mi∑
j=2

(
Ci,j (θ) − E[Ci,j (θ)])

∣∣∣∣∣ = op(1),(8.3)

and for any M1 > 0 and M2 > 0, we have

sup
‖θ1‖≤M1k

1/2
n ;‖θ2‖≤M2

∣∣∣∣∣
n∑

i=1

mi∑
j=2

(
Di,j (θ1, θ2) − E[Di,j (θ1, θ2)])

∣∣∣∣∣ = op(1).(8.4)

PROOF. The uniform convergence of (8.3) and (8.4) can be proven following
arguments similar to those used in [19]. We skip the details to save space. �
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LEMMA 8.2. Under the same conditions of Lemma 8.1, we have, as n → ∞,

P

(
inf|θ |=1

k−1
n

∣∣∣∣∣
n∑

i=1

mi∑
j=2

(
E[Ci,j (Lnk

1/2
n θ)]

(8.5)

− Lnk
1/2
n zn,ij θψ(ei,j )

)∣∣∣∣∣ > 1

)
→ 1.

PROOF. First, under the condition of ‖θ‖ = 1 and dn < W5, it follows from

Assumption 5 that E[Ci,j (θ)] = E[∫ −Lnk
1/2
n zn,ij θ−Rnij

−Rnij
(bi,j s+Bns

2) ds], where Bn

is a bounded sequence. Let d̃n = maxi,j (Lnk
1/2
n ‖zn,ij‖ + |Rnij |); we have

k−1
n

n∑
i=1

mi∑
j=2

E[Ci,j (Lnk
1/2
n θ)]

≥ k−1
n

n∑
i=1

mi∑
j=2

E

[
bi,j

2
(−Lnk

1/2
n zn,ij θ − Rnij )

2 − bi,j

2
(Rnij )

2
]

− E

[
Bnd̃

2
nk−1

n

n∑
i=1

mi∑
j=2

|Lnk
1/2
n zn,ij θ |

]
(8.6)

=
[
L2

n/2
n∑

i=1

mi∑
j=2

E[bi,j (zn,ij θ)2]

+ Lnk
−1/2
n

n∑
i=1

mi∑
j=2

E(bi,jRnij zn,ij θ)

]
+ o(1).

To see the last step of (8.6), we first note that E‖zn,ij‖ = O(n−1/2k
1/2
n ),

‖θ‖ = 1, and thus k
−1/2
n

∑n
i=1

∑mi

j=2 E|zn,ij θ | < ∞. Meanwhile, d̃2
nLn ≤ dn =

op(1). It follows from the dominated convergence theorem that E[d̃2
nLnk

−1/2
n ×∑n

i=1
∑mi

j=2 |zn,ij θ |] = o(1), and therefore the last step of (8.6) holds.
Since bi,j is uniformly bounded away from zero and infinity due to As-

sumption 5, it is easy to see that
∑n

i=1
∑mi

j=2 E[bi,j (zn,ij θ)2] is bounded away
from 0 and from infinity, uniformly in ‖θ‖ = 1. On the other hand, we have
k
−1/2
n

∑n
i=1

∑mi

j=2 E(bi,jRnij zn,ij θ) = O(Ln). Therefore, we conclude that

k−1
n

n∑
i=1

mi∑
j=2

E[Ci,j (Lnk
1/2
n θ)] ≥ cL2

n,(8.7)
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for some c > 0, which implies that we only need to show

Lnk
−1/2
n

n∑
i=1

mi∑
j=2

zn,ij θψ(ei,j ) = op(L2
n)(8.8)

to prove Lemma 8.2.
By Theorem 4 of [3], the eigenvalues of knZ

�
n Zn/n are bounded away

from zero and infinity when n is sufficiently large. Assumption 4 implies
that the eigenvalues of n−1ψτ (en)ψτ (en)

� are also bounded. Based on these
facts, if we denote ψτ (en) = (ψτ (e1,1), . . . ,ψτ (en,mn))

�, then ψτ (en)
�ψτ (en) =

diag(ψτ (ei)
�ψτ (ei)). Let λi be the largest eigenvalue of ψτ (ei)

�ψτ (ei); supi λi =
Op(1) by Assumption 4. It thus follows that

sup
‖θ‖=1

Lnk
−1/2
n

n∑
i=1

mi∑
j=2

zn,ij θψτ (ei,j )

= sup
‖θ‖=1

Lnk
−1/2
n [θ�z�

n ψτ (en)ψτ (en)
�znθ ]1/2

(8.9)
≤ sup

‖θ‖=1
sup

i

λiLnk
−1/2
n [θ�z�

n znθ ]1/2

=
(

sup
i

λi

)
Lnk

−1/2
n = Op(Lnk

−1/2
n ).

Therefore, (8.8) holds, and the proof of Lemma 8.2 is complete. �

LEMMA 8.3. Under Assumptions 1–9, we have

sup
‖θ1‖≤Lk

1/2
n ;‖θ2‖≤M

∣∣∣∣∣
n∑

i=1

mi∑
j=2

E[Di,j (θ1, θ2)] − n−1 1
2θ�

2 Knθ2

∣∣∣∣∣ = op(1).(8.10)

PROOF. First of all, we note that

sup
‖θ1‖≤Lk

1/2
n ;

‖θ2‖≤M

∣∣∣∣∣
n∑

i=1

mi∑
j=2

E[Di,j (θ1, θ2)] − 1
2n−1θ�

2 Knθ2

∣∣∣∣∣

= sup
‖θ1‖≤Lk

1/2
n ;

‖θ2‖≤M

∣∣∣∣∣
n∑

i=1

mi∑
j=2

E

{
Ee

[∫ −zn1,ij θ1−zn2,ij θ2−Rnij

−zn1,ij θ1−Rnij

ψ(ei,j + s) ds

∣∣∣zn,ij

]}
− n−1 1

2θ�
2 Knθ2

∣∣∣∣∣(8.11)

= sup∣∣θ2‖≤M

∣∣1
2 [E(θ�

2 z�
n2Bnzn2θ2) − θ�

2 z�
n2Bnzn2θ2] + E(θ�

2 zn2rn)
∣∣

+ o(1),
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where rn is the n × 1 vector with elements (bi,jRnij ).
Assumption 8 implies that

sup
‖θ2‖≤M

|E(θ�
2 z�

n2Bnzn2θ2) − θ�
2 z�

n2Bnzn2θ2| = op(1).(8.12)

On the other hand, sup‖θ2‖≤M θ�
2 z�

n2rn ≤ k−r
n sup‖θ2‖≤M θ�

2 z�
n21n, and it follows

that

sup
‖θ2‖≤M

E[θ�
2 z�

n2rn] = o(1).(8.13)

Combining (8.11)–(8.13), we arrive at (8.10). Lemma 8.3 is thus proven. �

With Lemmas 8.1 to 8.3, the proof of Theorem 3.1 can be outlined as follows:

PROOF OF THEOREM 3.1. Model (8.1) can be reconstructed as

Yn = zn1θ1(α0,β0) + zn2θ2(α0,β0) + Rn + en

= znθ(α0,β0) + Rn + en.

We define

θ̃n = (θ̃�
n1, θ̃

�
n2)

�
(8.14)

= (
θ1(α̂n, β̂n) − θ1(α0,β0), θ2(α̂n, β̂n) − θ2(α0,β0)

)�
.

The objective function (2.2) can be written as
n∑

i=1

mi∑
j=2

ρτ (ei,j − zn,ij θn − Rnij ),(8.15)

and we have the fact that β̂n minimizes (2.2) and θ̃n minimizes (8.15).
Directly from the definition of θ̃n, we have

‖β̂n − β0‖ = ‖n−1/2θ̃n2‖ = Op(n−1/2‖θ̃n2‖),(8.16)

which implies that ‖θ̃n2‖ = Op(k
−1/2
n ) is a sufficient condition for (3.1). On the

other hand,

1

n

n∑
i=1

mi∑
j=2

(
ĝn(ti,j ) − g0(ti,j )

)2

≤ 2

n

n∑
i=1

mi∑
j=2

(
πi,j (α̂n − α0)

)2 + 2W 2
3 k−2r

n

(8.17)
≤ 2[n−1‖θ̃n1‖2 + n−1‖H−1

n k1/2
n Z�

n X̃n(β̂n − β0)‖2] + 2W 2
3 k−2r

n

= Op(n−1‖θ̃n1‖2) + O(‖β̂ − β0‖) + O(k−2r
n ).
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The last step of (8.17) is due to the fact that n−1‖GnX̃n‖2 ≤ n−1‖X̃n‖2 < ∞ under
Assumption 7. Combining (8.16) and (8.17), we conclude that it is sufficient to
show ‖θ̃n‖ = Op(k

−1/2
n ).

According to Lemmas 8.1 and 8.2, for any ε there exists Lε such that

P

{
inf

‖θ‖>Lεk
1/2
n

n∑
i=1

mi∑
j=2

ρτ (ei,j − zn,ij θ − Rnij ) >

n∑
i=1

mi∑
j=2

ρτ (ei,j − Rnij )

}
> 1 − ε.

Since θ̃n minimizes
∑n

i=1
∑mi

j=2 ρτ (ei,j − zn,ij θ − Rnij ) over the space Rpn , we

have P(‖θ̃n‖ < Lεk
1/2
n ) > 1 − ε, and thus ‖θ̃n‖ = Op(k

1/2
n ).

With the consistency of the global model, we can take a further step to show the
asymptotic normality of the coefficient estimate β̂n.

We denote by z
(i)
n2 the submatrix of zn2 corresponding to the ith subject; in other

words, zn2 = (z
(1)T
n2 , z

(2)T
n2 , . . . , z

(n)T
n2 )�. Let θ∗

n2 = nK−1
n

∑n
i=1 z

(i)T
n2 ψ(ei). Due to

Assumptions 8 and 9, θ∗
n2 is asymptotically normally distributed with asymptotic

variance–covariance matrix K−1SK−1. Since θ̃n2 = n1/2β̂n, if we can show that

‖θ̃n2 − θ∗
n2‖ = op(1),(8.18)

then (3.3) holds.
Due to the definition of θ∗

n2 and the consistency of θ̃n, we know that P(θ∗
n2 <

M) → 1 and P(‖θ̃n1‖ < Lk
1/2
n ) → 1 for any L > 0 and M > 0. Let

D̃i,j (θ2, θ
∗
2 ) = ρτ (ei,j − zn1,ij θ̃n1 − zn2,ij θ2 − Rnij )

− ρτ (ei,j − zn1,ij θ̃n1 − zn2,ij θ
∗
2 − Rnij ).

It follows from Lemma 8.4 that, for any given δ > 0,

sup
‖θ2−θ∗

2n‖≤δ

∣∣∣∣∣
n∑

i=1

mi∑
j=2

{D̃i,j (θ2, θ
∗
n2) − zn2,ijψ(ei,j )(θ2 − θ∗

n2)

− E[D̃i,j (θ2, θ
∗
n2)]}

∣∣∣∣∣ = op(1).

Furthermore, by Lemma 8.3 we have

sup
|θ2−θ∗

2n‖≤δ

∣∣∣∣∣
n∑

i=1

mi∑
j=2

[D̃i,j (θ2, θ
∗
n2)]

+ (θ2 − θ∗
n2)

�
n∑

i=1

z
(i)T
n2 ψ(ei) − n−1 1

2θ�
2 Knθ2 + n−1 1

2θ∗�
2n Knθ

∗
n2

∣∣∣∣∣
= sup

|θ2−θ∗
2n‖≤δ

∣∣∣∣∣
n∑

i=1

mi∑
j=2

[D̃i,j (θ2, θ
∗
n2)](8.19)
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+ n−1[
(θ2 − θ∗

n2)
�Knθ

∗
2 − 1

2θ�
2 Knθ2 + 1

2θ∗�
2n Knθ

∗
n2

]∣∣∣∣∣
= sup

|θ2−θ∗
2n‖≤δ

∣∣∣∣∣
n∑

i=1

mi∑
j=2

[D̃i,j (θ2, θ
∗
n2)] − n−1 1

2(θ2 − θ∗
n2)

�Kn(θ2 − θ∗
n2)

∣∣∣∣∣
= op(1).

For sufficiently large n, n−1(θ2 − θ∗
n2)

�Kn(θ2 − θ∗
n2) > 0 when ‖θ2 − θ∗

n2‖ > δ.
Then (8.19) implies that

lim
n→∞P

(
inf

‖θ2−θ∗
2 ‖≥δ

n∑
i=1

mi∑
j=2

ρτ (ei,j − zn1,ij θ̃n1 − zn1,ij θ2 − Rnij )

(8.20)

>

n∑
i=1

mi∑
j=2

ρτ (ei,j − zn1,ij θ̃n1 − zn1,ij θ
∗
2 − Rnij )

)
= 1.

Since θ̃n1 minimizes
∑n

i=1
∑mi

j=2 ρτ (ei,j − zn1,ij θ1 − zn1,ij θ2 − Rnij ) over Rl+2,

(8.20) implies that for any δ, P(‖θ̃n2 −θ∗
n2‖ > δ) → 0, that is, ‖θ̃n2 −θ∗

n2‖ = op(1).

The proof of Theorem 3.1 is hence complete. �

8.2. Proof of Theorem 4.1. Recall that Sn = n−1/2 ∑n
i=1

∑mi

j=2 ψτ (Yi,j −
w�

i,j φ̂n)vi,j . Since the vi,j ’s are the least squares residuals from regressing X̃n1

on Wn, they differ from v
(0)
i,j = X̃n1,ij − E{X̃n1,ij |Wn,ij } by Op(k−r

n ). It is easy

to show that the limiting distribution of Tn = S�
n V −1

n Sn will not change if vi,j are

replaced by v
(0)
i,j ; the latter enjoy intersubject independence and are often easier to

handle mathematically. To simplify notation, we will simply prove the results in
this section by assuming that the vi,j ’s are intersubject independent.

First, we give the following two lemmas.

LEMMA 8.4. Let ui,j (φ,φ0) = ϕτ (Yi,j −w�
i,j φ)vi,j −ϕτ (Yi,j −w�

i,j φ0)vi,j −
Eϕτ (Yi,j − w�

i,j φ)vi,j + Eϕτ (Yi,j − w�
i,j φ0)vi,j . Under the assumptions of Theo-

rem 4.1, for any L > 0, we have

sup
‖φ−φ0‖≤L(kn/n)1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

ui,j (φ,φ0)

∥∥∥∥∥ = Op(n1/4k3/4
n (ln(n))1/2)

(8.21)
= op(n−1/2).

PROOF. Lemma 8.4 can be viewed as a special case of He and Shao [17],
which considered the asymptotic behavior of M-estimators with increasing dimen-
sion.
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Since ϕτ (t) = 1 − τI{t<0} is a constant function with a jump at t = 0, we have

[ϕτ (Yi,j − w�
i,j φ) − ϕτ (Yi,j − w�

i,j φ0)]2‖vi,j‖2

(8.22)
≤ 4‖vi,j‖2I{|Yi,j−w�

i,j φ|≤|w�
i,j (φ−φ0)|}.

Under Assumption D3,

E

n∑
i=1

∥∥∥∥∥
mi∑

j=2

ui,j (φ,φ0)

∥∥∥∥∥
2

≤ 8κ

(
sup

i

mi

)
E

n∑
i=1

mi∑
j=2

‖vi,j‖2|w�
i,j (φ − φ0)|,(8.23)

which, together with Assumption D2, implies

An = sup
‖φ−φ0‖≤L(kn/n)1/2

n∑
i=1

Eφ

∥∥∥∥∥
mi∑

j=2

ui,j (φ,φ0)

∥∥∥∥∥
2

= O((nkn)
1/2).(8.24)

Moreover, since ϕτ (t) is bounded and maxi,j ‖vi,j‖2 = Op(1), it follows from
Lemma 2.2 of [17] that

Bn = sup
‖φ−φ0‖≤L(kn/n)1/2

n∑
i=1

∥∥∥∥∥
mi∑

j=2

ui,j (φ,φ0)

∥∥∥∥∥
2

= Op((nkn)
1/2).(8.25)

Finally, combining (8.23) and Assumption D2, we note that condition (C1) of
Lemma 3.3 of [17] is satisfied, and (8.21) holds consequently, where the right-
hand side comes from Op((ln(n)kn)

1/2(n−2 + A
1/2
n + B

1/2
n )). �

LEMMA 8.5. Under the assumptions of Theorem 4.1,

sup
‖φ−φ0‖≤L(kn/n)1/2

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

Eϕτ (Yi,j − w�
i,j φ)vi,j

(8.26)

− Eϕτ (Yi,j − w�
i,j φ0)vi,j

∥∥∥∥∥ = o(1).

PROOF. Under the condition ‖φ −φ0‖ < L(kn/n)1/2, we first expand the con-
ditional mean E[ϕτ (Yi,j − w�

i,j φ)vi,j |vi,j ,wi,j ] around φ0 for each i and j . Note
that, for a real-valued random variable u E[ϕτ (u)] = τ − Fu(0), where Fu is the
distribution of u, we have

E{[ϕτ (Yi,j − w�
i,j φ) − ϕτ (Yi,j − w�

i,j φ0)]vi,j |vi,j ,wi,j }
= fei,j

(0)vi,jw
�
i,j (φ − φ0)(8.27)

+ 1
2f ′

ei,j
(0)vi,j (φ − φ0)

�wi,jw
�
i,j (φ − φ0) + o(n−1).
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The remainder term in (8.27) is o(n−1) because ‖φ − φ0‖ < L(kn/n)1/2 and kn =
o(n1/4). It follows from (8.27) that the left-hand side of (8.26) is

sup
‖φ−φ0‖≤L(kn/n)1/2

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

Eϕτ (Yi,j − w�
i,j φ)vi,j

−Eϕτ (Yi,j − w�
i,j φ0)vi,j

∥∥∥∥∥
= sup

‖φ−φ0‖≤L(kn/n)1/2
n−1/2‖bEV�

n Wn(φ − φ0)(8.28)

+cE(φ − φ0)
�Wn[diag(vi,j )]W�

n (φ − φ0)‖
+ o(1),

where b = fei,j
(0) and c = f ′

ei,j
(0). Note that Vn and Wn are orthogonal to each

other, that is, V�
n Wn = 0, the first term in (8.28) is zero. Moreover,

sup
‖φ−φ0‖≤L(kn/n)1/2

|E(φ − φ0)
�Wn[diag(vi,j )]W�

n (φ − φ0)|

≤ L2(kn/n)E

[
max
i,j

vi,j‖Wn‖2
]

= O(k2
n).

The last equation holds due to Assumption D2 and the fact that E‖Wn‖2 =
O(nkn). When kn = o(n1/4),

n−1/2cE(φ − φ0)
�Wn diag(vi,j )W

�
n (φ − φ0) = o(1).(8.29)

Thus, (8.26) follows from (8.28) and (8.29). �

PROOF OF THEOREM 4.1. In Theorem 3.1 we have shown the consistency
of φ̂n given kn ≈ n1/(2r+1), which, however, is not the necessary condition for
the consistency. In fact, for any kn = o(n1/3), the consistency of φ̂n holds at the
convergence rate (kn/n)1/2, that is, ‖φ̂n − φ0‖ = Op(n−1/2k

1/2
n ). Therefore, we

can derive from Lemmas 8.4 and 8.5 that, when kn = o(n1/4),

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

{ϕτ (Yi,j − w�
i,j φ̂n)vi,j

(8.30)

− ϕτ (Yi,j − w�
i,j φ0)vi,j }

∥∥∥∥∥ = op(1).

Denote S∗
n = ∑n

i=1
∑mi

j=2[ϕτ (ei,j )vi,j ]; then the summands
∑mi

j=2[ϕτ (ei,j )vi,j ] are
independent of each other and have mean zero. Due to the between-subject inde-
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pendence,

Var(S∗
n) =

n∑
i=1

Var

(
mi∑

j=2

[ϕτ (ei,j )vi,j ]
)

=
n∑

i=1

V�
i Var(ϕτ (ei))Vi

= τ(1 − τ)

n∑
i=1

V�
i Vi = τ(1 − τ)X̃n1(In − G)X̃�

n1,

where Vi is the mi × mi submatrix of Vn corresponding to the ith subject, and
ϕτ (ei) is the same as defined at the beginning of Section 3. In the i.i.d. case,
Var(ϕτ (ei)) = τ(1−τ)Imi

. Let Vn = n−1τ(1−τ)X̃n1(In −G)X̃�
n1; it follows from

the CLT that

n−1/2
n∑

i=1

mi∑
j=2

[ϕτ (ei,j )vi,j ] is AN(0,Vn).(8.31)

Combining (8.30) and (8.31), it is clear that all we need to show Theorem 4.1 is

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

[ϕτ (Yi,j − w�
i,j φ̂n)vi,j − ϕτ (ei,j )vi,j ]

∥∥∥∥∥ = op(1).(8.32)

However, it is hard to show (8.32) directly for some kn, more specifically, for
n1/4r 
 kn 
 n1/2r including kn ≈ n1/2r+1. Instead, we take an intermediate step.

Let Kn be the set of knots used in our global model estimation. We assume that
the dimension of Kn ≈ n1/(2r+1); the same proof goes through for other values
of Kn. Under H0, let Yi,j − w�

i,j φ0 = Rnij + ei,j , where Rnij is the bias from the
B-spline approximation using the set of knots Kn. The bias will go to zero with
supi,j |Rnij | ≤ W3k

−r
n , where W3 is defined in Assumption 1. By adding more

knots into Kn, we have a new set of knots K̃n with its dimension, denoted as k̃n,
approximately nα , where 1/(2r) < α < 1/4. We also assume that the knots are
added in such a way that the extended set of knots is quasiuniform. Using the new
set of knots, we define W̃n, w̃i,j , Ṽn, ṽi,j , φ̃, φ̃0 and R̃nij the same way as Wn,
wi,j , Vn, vi,j , φ̂n, φ0 and Rnij in the original setting.

Note that vi,j is the residual of a spline estimate for the (i, j)th element of
E[X̃n1|Wn], using Kn as the set of knots; while ṽi,j is the residual of a spline
estimate for the (i, j)th element of E[X̃n1|W̃n], using K̃n as the set of knots.
Therefore, by the same arguments used for Theorem 3.1, 1

n

∑
i

∑
j ‖vi,j − ṽi,j‖2 =

Op(k−2r
n ) + Op(k̃n/n). In the meantime, by definition, Ṽn is orthogonal to both

W̃n and Wn. Based on the facts above, following the similar arguments used
for (8.30), we can show that, for n1/2r 
 k̃n 
 n1/4 and r > 2,

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

{ϕτ (Yi,j − w�
i,j φ̂n)vi,j − ϕτ (Yi,j − w̃�

i,j φ̃)ṽi,j }
∥∥∥∥∥ = op(1)(8.33)
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and

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

{ϕτ (Yi,j − w̃�
i,j φ̃)ṽi,j − ϕτ (Yi,j − w̃�

i,j φ̃0)ṽi,j }
∥∥∥∥∥ = op(1).(8.34)

Moreover, noting that, given vi,j , Eϕτ (Yi,j − w̃�
i,j φ̃0) = Eϕτ (R̃nij + ei,j ) =

O(R̃nij ), we also have

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

{ϕτ (Yi,j − w̃�
i,j φ̃0)vi,j − ϕτ (Yi,j − w̃�

i,j φ̃0)ṽi,j }
∥∥∥∥∥ = op(1).(8.35)

Combining (8.33)–(8.35), we have

n−1/2

∥∥∥∥∥
n∑

i=1

mi∑
j=2

{ϕτ (Yi,j − w�
i,j φ̂n)vi,j − ϕτ (Yi,j − w̃�

i,j φ̃0)vi,j }
∥∥∥∥∥ = op(1).(8.36)

Under Assumption D3, and the fact that |ϕτ (ei,j +R̃nij )−ϕτ (ei,j )| ≤ I{|ei,j |≤|R̃nij |},
we have

n−1/2E

n∑
i=1

mi∑
j=2

‖ϕτ (Yi,j − w̃�
i,j φ̃0)vi,j − ϕτ (ei,j )vi,j‖

(8.37)

≤ 2qn−1/2E

n∑
i=1

mi∑
j=2

|R̃nij |‖vi,j‖ = O(k̃−r
n n1/2) = o(1).

The result (8.32) follows immediately from (8.30) and (8.37). The proof of Theo-
rem 4.1 is thus complete. �
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