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WAVELET THRESHOLDING FOR NONNECESSARILY
GAUSSIAN NOISE: FUNCTIONALITY

BY R. AVERKAMP1 AND C. HOUDRÉ2

Freiburg University, and Université Paris XII and
Georgia Institute of Technology

For signals belonging to balls in smoothness classes and noise with
enough moments, the asymptotic behavior of the minimax quadratic risk
among soft-threshold estimates is investigated. In turn, these results, com-
bined with a median filtering method, lead to asymptotics for denoising heavy
tails via wavelet thresholding. Some further comparisons of wavelet thresh-
olding and of kernel estimators are also briefly discussed.

1. Introduction. The model considered throughout these notes is the familiar
one. The data takes the form

Xi = fi + ei√
n
, i = 1, . . . , n, n = 2h, h ∈ N,(1.1)

where f = (fi) is the signal to estimate and where the noise e = (ei) is such
that the ei are zero mean i.i.d. random variables. One thinks of fi as fi = fn,i =
f (i/n)/

√
n, so it is assumed that the data is sampled from a signal at the rate 1/n

and then multiplied by 1/
√

n. Applying a discrete wavelet transform (associated to
an orthonormal wavelet basis, adapted to an interval and generated by a compactly
supported wavelet) to the data leads to the noisy wavelet coefficients

wk = θk + zk; k = 1, . . . ,2j0,(1.2)

and

wj,k = θj,k + zj,k; j0 ≤ j ≤ h − 1, k = 1, . . . ,2j ,(1.3)

where to simplify notation the dependence on n has been omitted (in particular,
a factor 1/

√
n is omitted). Thresholding is then applied to the transformed data and

the signal is recovered by applying an inverse transformation to the thresholded
data [8]. In contrast to the ideal framework [5], in the functional framework the
performance of estimators is no longer compared to a benchmark but instead the
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possible values of (θ·,·) are restricted to belonging to a ball in a smoothness class.
To be more precise, it is assumed that

(∑
k

|θk|p
)1/p

+
( ∑

j≥j0

(
2js

(∑
k

|θj,k|p
)1/p)q)1/q

≤ A,(1.4)

for some constant A, where s := m + 1/2 − 1/p and m > 1/p. The condition
m > 1/p ensures that we deal with well-defined real-valued functions (and not
generalized ones) in the Besov space Bm

p,q . [Recall that m is the degree of smooth-
ness of the function whose modulus of smoothness is locally quantified via (norms
involving) the parameters p and q .] Next, if the (θ·,·) are the wavelet coefficients
of f ∈ Bm

p,q and if the wavelet basis is sufficiently smooth, then ‖f ‖Bm
p,q

≤ C1A,
where C1 = C1(m,p, q) is a constant and 1 ≤ p,q ≤ +∞. Also, considering
quasi-norms rather than norms, similar results hold in the cases 0 < p < 1, or
0 < q < 1 (we refer the reader to [3] and [15] for a much more extensive and pre-
cise list of references and further information on wavelets (and functions spaces)).
We also note here that the Besov assumption can be replaced by a Triebel–Lizorkin
one throughout much of the paper. Indeed, it is well known that the equivalence
between the sequence space (quasi-)norm and the function space (quasi-)norm is
what matters here. In view of this equivalence, we will slightly abuse notation and
use ‖ · ‖Bm

p,q
for the norm on the sequence space.

In this framework, Donoho, Hall, Johnstone, Kerkyacharian, Picard, Silverman
and Yu compute minimax bounds of estimation [6–12], and show the correspond-
ing optimality of wavelet thresholding. In particular, if the ei (hence, the zi ) are
i.i.d. normal random variables, then the minimax rate in this model is n−2m/(2m+1),
that is,

inf
θ̂

sup
θ : ‖θ‖Bm

p,q
≤A

E‖θ̂ − θ‖2
2 ∼ Cn−2m/(2m+1),(1.5)

where the infimum is taken over all estimators and where C is a positive con-
stant which depends on the variance of the noise, as well as on m, p, q and A.
[Throughout these notes, ‖ ·‖2 is the Euclidean norm. From Parseval’s identity and
the equivalence between sequence and functional spaces, we thus see that (1.5) has
an equivalent formulation at the function space level.] Moreover, estimators based
on soft thresholding achieve this rate.

These early results were then extended to some classes of non-Gaussian noise
by Neumann and Spokoiny [16] and Delyon and Juditsky [4]. It is shown in [16]
that, for noise having finite moments of all orders (and L2-differentiable density),
soft thresholding achieves the same rate as soft thresholding for Gaussian noise.
Furthermore, the actual performance, not just the rate, is the same. In [4], it is
shown that, for more general distributions, soft thresholding can achieve the same
rate as soft thresholding in the Gaussian case. In addition, under somewhat stronger
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conditions, the ratio of the minimax risk for Gaussian noise and other types of
noise tends to one [16].

It is our purpose to further explore these topics here. Let us briefly discuss the
contribution of the present paper. First, in Section 2 we show that if the noise only
fulfills some moment conditions, soft thresholding actually achieves the same as-
ymptotic performance as soft thresholding in the Gaussian case. In fact, it is shown
that for soft thresholding the lim inf of the ratio of the minimax risk for Gaussian
noise and this type of noise is larger than one. These results are then used, in Sec-
tion 3, to tackle the estimation problem for noise with heavy tails. By first median
filtering the data, the previous moment conditions become satisfied and then ap-
plying wavelet thresholding, it is still possible to have the same minimax rate as
in the Gaussian case. To complete our study of wavelet thresholding methods, we
return to the normal framework and present some concluding remarks comparing
thresholding and kernel estimators with varying bandwidth.

2. Moment conditions. Our first statement is the core result of this section.
To prove it, a fair amount of technical preparation is needed and the main part of
the proof is postponed to the Appendix. However, we state and prove below some
preparatory lemmas and indicate their use in the proof of the theorem.

In the sequel � denotes the standard normal distribution function, and E� is
expectation with respect to �. Using the notation of [1], for any λ > 0, T S

λ denotes
the soft thresholding operator given by T S

λ (x) = (|x| − λ)+ sgn(x), x ∈ R. Also,
throughout the section the wavelet transform is as in [1], Section 4; in particular,
the wavelet is assumed to be Hölder continuous of index β > 0.

THEOREM 2.1. Let the model be given via (1.1)–(1.4), where p,q ≥ 1 and
m > 1/p and where the ei have variance one. Let also the ei have finite moments
of order L, where L is such that

L >
6

2m/(2m + 1)
if p ≥ 2,(2.1)

and

L >
6(m + 1/2 − 1/p)(2m + 1)

(m + 1/2 − 1/p)(2m + 1) − m
if 1 ≤ p ≤ 2.(2.2)

Moreover, let the ei be symmetric. Then

lim inf
n→∞

inf(λ)∈Rn supθ : ‖θ‖Bm
p,q

≤A E�

∑
j,k(T

S
λj,k

(wj,k) − θj,k)
2

inf(λ̃)∈Rn supθ : ‖θ‖Bm
p,q

≤A E
∑

j,k(T
S

λ̃j,k
(wj,k) − θj,k)2

≥ 1.(2.3)

Above, the requirement of symmetry is imposed for technical reasons (we pre-
serve the zero mean property of the wavelet transform of truncated noise). This
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requirement can be circumvented by more technical efforts in the proof. The
i.i.d. assumption on the noise e is not really needed either. Independence and
supi E|ei |L < +∞, where L satisfies either (2.1) or (2.2), will do, with also a
variance level of 0 < σ 2 = supi Ee2

i < +∞.
Let us illustrate the moment conditions to be satisfied: p > 2 ⇒ L = 12;

p = 2 ⇒ L > 12; p = 2,m → +∞ ⇒ L > 6; p = 1 ⇒ L > 18; p = 1,

m → +∞ ⇒ L > 6; p = 3/2,m = 1 ⇒ L > 10; p = 3/2,m = 2 ⇒ L > 7.7.
Note that L > 6 is the least moment condition imposed above.

First, a well-known lemma whose proof is omitted.

LEMMA 2.2. Let s := m + 1/2 − 1/p and let(∑
k

|θk|p
)1/p

+
( ∑

j≥j0

(
2js

(∑
k

|θj,k|p
)1/p)q)1/q

≤ A,

for some A > 0. Then for all l ≥ j0,

∑
j≥l

‖θj,·‖2
2 ≤

{
A2(2−2m)l/(1 − 2−2m) = O(n−2αm), if p ≥ 2,

A2(2−2s)l/(1 − 2−2s) = O(n−2αs), if 1 ≤ p < 2,

for any α such that 2l ≥ nα = 2αh.

As indicated in the Appendix, the previous lemma shows that, if we want to
achieve the same minimax rate as in the Gaussian case, we need not worry about
the (finer wavelet) coefficients in the levels j ≥ l = αh, as long as α > 1/(2m+1),
if p ≥ 2, and α > m/((2m + 1)s) if 1 ≤ p ≤ 2. Indeed, the square of the �2-norm
of these coefficients is of order o(n−2m/(2m+1)). For p ≥ 2, let l be such that
2n1/(2m+1) ≥ 2l > n1/(2m+1). Then the simple estimator which discards the noisy
coefficients of indices l and above (keeping them otherwise) achieves the minimax
rate since∑

j≥l,k

θ2
j,k = O

(
n−2m/(2m+1)) and

∑
j<l,k

Ez2
j,k = O

(
n−2m/(2m+1)).

Recall now a classical exponential inequality due to Kolmogorov (see [19],
page 855).

LEMMA 2.3. Let Xi , i = 1, . . . , n, be zero mean, independent random vari-
ables. Let s2

n := ∑n
i=1 EX2

i , let supi ‖Xi‖∞ ≤ K , and let Sn = ∑n
i=1 Xi . Then for

all x > 0,

P(Sn ≥ snx) ≤




exp
(−x2

2

(
1 − xK

2sn

))
, if x ≤ sn/K ,

exp
(−xsn

4K

)
, if x ≥ sn/K .



2168 R. AVERKAMP AND C. HOUDRÉ

The next lemma is a simple application of the previous one. It is used in the
proof of Theorem 2.1 to upper estimate E(T S

λj,k
(zj,k + θj,k) − θj,k)

21{|zj,k |>bj,k},
for appropriately chosen λj,k and bj,k .

LEMMA 2.4. Let (Xi,n)i,n∈N be zero mean random variables such that, for
each fixed n, the Xi,n are independent. Let

∑
i EX2

i,n = 1 and let supi ‖Xi,n‖∞ ≤
Kn, where limn→∞ Kn = 0. Let Fn be the distribution function of

∑
i Xi,n, and

let (an) be a sequence of positive reals with an = o(1/Kn) and such that, for all
n ∈ N, kn := (1 − anKn/2) > 0. Then, for any a with 0 < a < an,

∫ ∞
a

x2Fn(dx) ≤ a2 + 2

kn

exp(−kna
2/2) + o

(
exp(−1/Kn)

)
.

PROOF. Using Lemma 2.3, we have∫ ∞
a

x2 dFn(x) = a2(
1 − Fn(a)

) + 2
∫ ∞
a

x
(
1 − Fn(x)

)
dx

≤ a2 exp(−kna
2/2) + 2

∫ ∞
a

x exp(−knx
2/2) dx

+ 2
∫ ∞

1/Kn

x exp
(−x/(4Kn)

)
dx

= a2 exp(−kna
2/2) + 2/kn exp(−kna

2/2)

− [
8Knx exp

(−x/(4Kn)
)]∞

1/Kn
+ 8Kn

∫ ∞
1/Kn

exp
(−x/(4Kn)

)
dx

= a2 exp(−kna
2/2) + 2/kn exp(−kna

2/2)

+ 8 exp
(−1/(4K2

n)
) + 32K2

n exp
(−1/(4K2

n)
)

≤ (a2 + 2)/kn exp(−kna
2/2) + o

(
exp(−1/Kn)

)
. �

We further need the following large deviation result, which is a simple extension
of Lemma 5.8 in [17]; the difference with this lemma is that the requirement of
identical distributions is dropped. The proof with the help of Esseen’s inequality
([17], Theorem 5.4) is essentially the same as for Lemma 5.8 in [17] (our C below
is A in [17]).

This lemma is used to show that, for a large class of noise, and midsize thresh-
olds, the soft thresholding risk converges to the Gaussian risk.

LEMMA 2.5. Let (Xi,n)i,n∈N be zero mean random variables such that,
for each fixed n, the Xi,n are independent. Let

∑
i EX2

i,n = 1 and let Mn :=∑
i E|Xi,n|3 < +∞. Then for all 0 < ε < 1 there exist βn with βn → 1 such that,
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for all x with |x| ≤ (1 − ε)
√

2 log(1/(CMn)),

βn ≤ P(
∑

i Xi,n ≤ x)

�((−∞, x]) ≤ 1/βn and βn ≤ P(
∑

i Xi,n > x)

�((x,+∞))
≤ 1/βn,(2.4)

where C is an absolute constant.

REMARK 2.6. From the end of the proof of Theorem 2.1, we infer that
the thresholds λ̃j,k can asymptotically be chosen as in the Gaussian case
(λ̃ = λ for λ < αn/2, while λ/λ̃ → 1 for λ ≥ αn/2). However, in this proof
the thresholds λ̃ are larger than the Gaussian ones (with the same variance). In
the Gaussian functional approach, the optimal minimax thresholds are of order
Cσ

√
(j − j0)+/

√
n, where C and j0 depend on m,p and q and where σ 2 is the

variance of the noise (e.g., see [4, 16]). For the ideal estimator approach, the op-
timal minimax rate is achieved with thresholds of uniform size ∼ σ

√
2 logn/

√
n,

and we also know (see Theorem 6.1 in [1]) that thresholds can be chosen level-
wise to still produce a minimax method. There, for the level j the thresholds were
chosen to be of size ∼ σ

√
2j log 2/

√
n. Now, using thresholds of size Cσ

√
j/

√
n

for the level j in the function space approach almost achieves the ideal minimax
rate; it is only worse by a factor O(logn). This discrepancy cannot be avoided in
general and, at least for p ≥ 2, no set of thresholds will achieve the optimal mini-
max rate in both contexts. Indeed, let Xi = fi + ei , i = 1, . . . , n, where the ei are
i.i.d. normal random variables with mean zero and variance 1/n, and let p�(·, ·)
be defined as in the Appendix (or as Theorem 2.1 in [1]). If λ ≥ θ ≥ 0, then

p�(λ, θ) ≥ θ2�
(
(−λ − θ, λ − θ)

) +
∫ −λ−θ

−∞
(x + λ)2�(dx) ≥ θ2

2
.(2.5)

Let λn,j (n is for the number of coefficients, while j is a particular level) be a set of
thresholds which achieve the optimal minimax rate in the ideal estimator context.
For a fixed α ∈ (0,1), the optimal thresholds for the level j = α log2 n have to be
at least of size ∼ √

2j log 2/
√

n = C
√

j/
√

n, where C is a constant. The reason is
that 2jp�(λj ,0) = O(logn/n) is needed to achieve the minimax rate for the ideal
estimator approach. Let now

j0 := min
j

{
j :

C
√

j√
n

≥ 2A
√

2−j (2m+1)

}
.

Simple computations yield that j0 ∼ (log2 n)/(2m + 1). If θj0,k = A
√

2−j0(2m+1),
k = 0, . . . ,2j0 − 1, and θj,k = 0 elsewhere, then clearly ‖θ‖Bm

p,q
≤ A. If n tends

to infinity, then for n larger than a certain bound, λn,j0 > A
√

2−j0(2m+1). Now,
it follows from (2.5) that the risk for thresholding the signal (θ·) at level j0 with
thresholds λn,j0 is at least as large as

2j0A22−j0(2m+1)/2 = A22−j02m/2.(2.6)
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Using the definition of j0, we obtain

22m+3A22−j0(2m+1) ≥ C2(j0 − 1)

n
.(2.7)

Combining the relations (2.6) and (2.7) shows that the risk for estimating (θ·) is as
large as

A22−j02m−1

≥ A2
(

C

A

)4m/(2m+1)

n−2m/(2m+1)(j0 − 1)2m/(2m+1)2−2m(2m+3)/(2m+1)−1.

Since j0 ∼ log2 n/(2m + 1), this is worse than the minimax rate for Bm
p,q .

3. Heavy tails and median filtering. To date, asymptotics for wavelet thresh-
olding seems to have been restricted to noise with higher moments. Next, we want
to try to apply wavelet thresholding to noise with heavy tails and study the corre-
sponding quadratic risks. By first applying a median filter to the data, the absence
of finite moments will be overcome. The downside of this approach, however, is
that it introduces an additional bias. Nevertheless, under these conditions wavelet
thresholding applied to the filtered data achieves at least the same minimax rate
as in the normal case, but the constants are larger. Various types of nonlinear
smoothers involving medians have proved useful in time series analysis (e.g., see
[14, 18, 20]). Another, wavelet inspired, approach to denoising heavy tails based
on a different preprocessing method is also developed in [10].

Below, given a1, . . . , a2k+1, let med(a1, . . . , a2k+1) be the real x such that
#{i :ai ≥ x} = k + 1 and #{i :ai ≤ x} = k + 1, with # denoting cardinality. To sim-
plify notation, we use the abbreviation med(ai,2k + 1) for med(ai−k, . . . , ai+k).
If i is smaller than k, then med(ai,2k+1) := med(a1, . . . , a2k+1); a similar bound-
ary correction is performed for the largest indices.

Our first lemma makes the advantage of the median filter clear as far as the exis-
tence of moments is concerned. It shows, for example, that the median of thirteen
independent Cauchy random variables has moments of order 7 − ε, ε > 0.

LEMMA 3.1. Let X1, . . . ,X2k−1, k ≥ 1, be independent random variables.
For any x > 0,

P
(
med(X1, . . . ,X2k−1) ≥ x

) ≤
(

2k − 1
k

)
max

i=1,...,2k−1

(
P(Xi ≥ x)

)k
.

In particular, if there exist constants C > 0, γ > 0 such that, for x large enough,
maxi=1,...,2k−1 P(|Xi | ≥ x) ≤ C

xγ , then med(X1, . . . ,X2k−1) has moments of order
r < kγ .
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PROOF.

{med(X1, . . . ,X2k−1) ≥ x} = ⋃
M⊂{1,...,2k−1}

#M=k

{Xi ≥ x : i ∈ M}.

Hence,

P
(
med(X1, . . . ,X2k−1) ≥ x

) ≤
(

2k − 1
k

)
max

i=1,...,2k−1

(
P(Xi ≥ x)

)k
. �

Let us now give the main result of this section. As before, the data is given
via (1.1), while Wn is a discrete wavelet transform as in the previous section
(in particular, it is generated by a compactly supported wavelet ψ which is
Hölder continuous of index β > 0, chosen later). Again, let θ = Wn(f ) and
let also med(X,2l + 1) := (med(Xi,2l + 1))1≤i≤n, where (using the notation
set above) med(Xi,2l + 1) := med(Xi−l , . . . ,Xi+l), for i − l ≥ 1 and med(Xi,

2l + 1) := med(X1, . . . ,X2l+1) otherwise.

THEOREM 3.2. Let the ei be symmetric with E|e1|γ < +∞, for some γ > 0.
Let A,B > 0. Then there exist an l = l(γ ) and thresholds λj,k such that

sup
‖θ‖Bm

p,q
≤A∑

i |fi−fi−1|2≤B/n

E
∑
j,k

∣∣T S
λj,k

(
Wn

(
med(X,2l + 1)

)
j,k

) − θj,k

∣∣2 = O
(
n−2m/(2m+1)).

We impose the condition
∑

i |fi − fi−1|2 ≤ B/n to have control over the
�2-norm of the bias, that is, on

n∑
i=1

(
med(Xi,2l + 1) − med(ei,2l + 1) − fi

)2
,(3.1)

which we introduce by median filtering the data. This condition is not that strong
and in most cases follows from the Besov norm condition. We will take another
look at this after the proof of the theorem.

Theorem 3.2 is more than just an existence result. Indeed, from its proof we infer
that the above thresholds λj,k can asymptotically be chosen as in the Gaussian
case, but with a new variance which is now at most 2D2σ 2

max, with σ 2
max given

below and with D = 2l + 1 (see also Remark 2.6).

PROOF OF THEOREM 3.2. Since the ei are symmetric, E med(ei,

2l + 1) = 0 (again l is chosen later). Let yj,k be the coefficient of index j, k of
Wn(med(e,2l + 1)), and let

(bj,k) := Wn

(
med(X,2l + 1)

) − Wn(f ) − (yj,k).



2172 R. AVERKAMP AND C. HOUDRÉ

First we prove that the influence of the random variables bj,k (the bias) is not too
large in our estimation problem:

E
(
T S

λj,k

(
Wn

(
med(X,2l + 1)

)
j,k

) − θj,k

)2

= E
(
T S

λj,k
(θj,k + bj,k + yj,k) − θj,k

)2

= E
(
T S

λj,k
(θj,k + bj,k + yj,k) − T S

λj,k
(θj,k + yj,k) + T S

λj,k
(θj,k + yj,k) − θj,k

)2

≤ 2Eb2
j,k + 2E

(
T S

λj,k
(θj,k + yj,k) − θj,k

)2
,

since |T S
λ (x1) − T S

λ (x2)| ≤ |x1 − x2|. Thus,∑
j,k

E
(
T S

λj,k
(θj,k + bj,k + yj,k) − θj,k

)2

≤ 2
∑
j,k

Eb2
j,k + 2

∑
j,k

E
(
T S

λj,k
(θj,k + yj,k) − θj,k

)2
.

Note that ∑
j,k

b2
j,k = ∑

j,k

(
Wn

(
med(X,2l + 1) − med(e,2l + 1) − f

))2
j,k

=
n∑

i=1

(
med(Xi,2l + 1) − med(ei,2l + 1) − fi

)2
.

But for l < i ≤ n − l,

|med(Xi,2l + 1) − med(ei,2l + 1) − fi |
≤ |med(ei−l + fi−l − fi, . . . , ei+l + fi+l − fi) − med(ei,2l + 1)|
≤ max

j=−l,...,l
|fi+j − fi |

≤
l∑

j=−l+1

|fi+j − fi+j−1|.

If i ≤ l or i > n − l, then, similarly, |med(Xi,2l + 1) − med(ei,2l + 1) − fi | ≤∑2l+1
j=2 |fj − fj−1|, respectively, ≤ ∑n

j=n−2l+1 |fj − fj−1|. Hence,

∑
j,k

b2
j,k ≤

n−l∑
i=l+1

2l

l∑
j=−l+1

|fi+j − fi+j−1|2

+ 2l2
2l+1∑
j=2

|fj − fj−1|2 + 2l2
n∑

j=n−2l+1

|fj − fj−1|2

≤ 8l2
n∑

i=2

|fi − fi−1|2 = O(1/n).
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This implies that, if we choose a fixed median filter, then
∑

j,k Eb2
j,k is negligible

compared to O(n−2m/(2m+1)). Thus, to finish the proof, it suffices to show that

sup
‖θ‖Bm

p,q
≤A

E
∑
j,k

(
T S

λj,k

(
Wn(f + ẽ)j,k

) − θj,k

)2 = O
(
n−2m/(2m+1)),

where ẽi := med(ei,D) and D = 2l + 1 is chosen such that E|ẽ1|L < ∞ and L

satisfies the moment conditions (which depend on γ ) of Theorem 2.1. If the ẽi

were independent, which they are not, we could apply Theorem 2.1 to conclude.
The next two lemmas deal with this new situation (the D-dependent case) and,
respectively, correspond to Lemma 2.3 and to Lemma 2.5 in the independent case.

LEMMA 3.3. Let X1, . . . ,Xn be zero mean bounded random variables, with
supi ‖Xi‖∞ ≤ K , and also D-dependent, that is, such that Xi1, . . . ,Xik are inde-

pendent if min1≤j �=r≤k |ij − ir | ≥ D. Let Sj = ∑[(n−1)/D]
i=0 XiD+j , j = 1, . . . ,D,

σ 2
j = ES2

j , and σmax = maxj=1,...,D σj . Then

P

(
n∑

i=1

Xi ≥ x

)
≤ D




exp
( −x2

4D2σ 2
max

)
, if x ≤ σ 2

maxD

K
,

exp
( −x

4KD

)
, if x ≥ σ 2

maxD

K
.

(3.2)

PROOF. Note that the Sj are sums of independent random variables:

P

(
n∑

i=1

Xi ≥ x

)
≤

D∑
i=1

P(Si ≥ x/D)

=
D∑

i=1

P
(
Si/σi ≥ x/(σiD)

)

≤
D∑

i=1




exp
( −x2

2D2σ 2
i

(
1 − xK

2Dσ 2
i

))
, if x ≤ σ 2

i D

K
,

exp
( −x

4KD

)
, if x ≥ σ 2

i D

K
,

≤
D∑

i=1




exp
( −x2

2D2σ 2
i

1

2

)
, if x ≤ σ 2

i D

K
,

exp
( −x

4KD

)
, if x ≥ σ 2

i D

K
,
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≤ D




exp
( −x2

4D2σ 2
max

)
, if x ≤ σ 2

maxD

K
,

exp
( −x

4KD

)
, if x ≥ σ 2

maxD

K
,

where the last inequality holds since for x ≤ σ 2
maxD

K
, x2

4D2σ 2
max

≤ x
4KD

. �

With the help of Lemma 3.3, it is also possible to prove a D-dependent version
of Lemma 2.4.

LEMMA 3.4. Let (Xi,n)i,n∈N be zero mean random variables such that, for
each fixed n, the Xi,n are D-dependent and such that Mn := ∑

i E|Xi,n|3 < +∞.
Let Sj,n = ∑

i XiD+j,n, j = 1, . . . ,D, let σ 2
j,n = ES2

j,n and let σmax,n =
maxj=1,...,D σj,n. Then for all 0 < ε < 1, there exist βn = βn(ε) with
lim supn→+∞ βn = D such that

sup
0≤x≤εDσmax,n

√
2 log(1/Mn)

P (
∑

i Xi,n ≤ −x)

�((−∞,−x/(σmax,nD)))
≤ βn

and

sup
0≤x≤εDσmax,n

√
2 log(1/Mn)

P (
∑

i Xi,n ≥ x)

�((x/(σmax,nD),+∞))
≤ βn.

PROOF. If x ≥ 0, then

P

(∑
i

Xi,n ≥ x

)
≤

D∑
j=1

P(Sj,n > x/D)

≤
D∑

j=1

P
(
Sj,n/σj,n > x/(σmax,nD)

)
.

A similar inequality holds for x ≤ 0. Since the Sj,n are sums of independent ran-
dom variables, the assertion follows from Lemma 2.5. �

Note that it is, moreover, trivial that, for x ≥ 0,

P(
∑

i Xi,n ≤ x)

�((−∞, x/(σmax,nD)))
≤ 2 and

P(
∑

i Xi,n ≥ −x)

�((−x/(σmax,nD),+∞))
≤ 2;

and this gives a version of the other half of Lemma 2.5 in the D-dependent case.
The rest of the proof of Theorem 3.2 is then quite similar to the proof of Theo-

rem 2.1. Let us return to it. Again, let ẽi := med(ei,D) be as defined above. First,
as in the proof of Theorem 2.1, we can assume that the ẽi are bounded by nδ
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for some δ > 0, since the upper estimate in Lemma A.1 holds for D-dependent
random variables with a constant depending now also on D.

Of importance in the proof of Theorem 2.1 was the distribution of the noise
in the wavelet coefficients. We denote the coefficients of the wavelet transform
by (cj,k,i), that is, θj,k = ∑

i cj,k,ifi . At the boundary we have the problem that
ẽ1 = · · · = ẽ(D+1)/2 and ẽn−(D−1)/2 = · · · = ẽn. But

yj,k =
(
ẽ1

(D+1)/2∑
i=1

cj,k,i

)
+

n−(D−1)/2−1∑
i=(D+1)/2+1

cj,k,i ẽi +
(
ẽn

n∑
i=n−(D−1)/2

cj,k,i

)
,

and this last expression, which is a sum of n − D + 1 random variables which
are D-dependent, thus satisfies (after reordering) the conditions of Lemmas
3.3 and 3.4. Anyway, only about O(logn) wavelet coefficients are affected by this
problem. If we do not threshold these coefficients, the risk would increase at most
by O((logn)/n) and this is negligible compared to the minimax risk. Let yj,k,r =∑

i cj,k,iD+r ẽiD+r . Then using the D-dependence condition, we see that yj,k,r is
a sum of independent random variables with, moreover, yj,k = ∑D

r=1 yj,k,r . Let
σ 2

j,k,r = Ey2
j,k,r and let σ 2

j,k,max = maxr σ 2
j,k,r . Then, clearly, σ 2

j,k,max ≤ Eẽ2
1 and

a version of Lemma A.1 holds for the yj,k , the upper constants depending now
also on D. Given this, as well as Lemmas 3.3 and 3.4, we can now proceed as
in the proof of Theorem 2.1. Hence, with the right thresholds, we can achieve
D times the performance of the Gaussian risk with variance 2σ 2

maxD
2, where

σ 2
max = maxj≤t,k σ 2

j,k,max, t being the finest level where the wavelet coefficient
is not discarded.

Also of importance in Lemmas 3.3 and 3.4 is the term σ 2
max; we show next that

in general,

σ 2
j,k,max ≈ Eẽ2

1/D.(3.3)

Let h = log2 n. Since the wavelet ψ is compactly supported and Hölder continuous
of index β , we know that (see, e.g., the proof of Theorem 4.1 in [1])∣∣2(h−j)/2cj,k,i − ψ(2j−hi − k)

∣∣ ≤ C12(j−h)β,

with also ∣∣ψ(2j−hi − k) − ψ
(
2j−h(i − 1) − k

)∣∣ ≤ C22(j−h)β,

for some constants C1,C2. Thus,

|cj,k,i − cj,k,i+1| ≤ (2C1 + C2)2
(j−h)(β+1/2)

and

|c2
j,k,i − c2

j,k,i+1| = |cj,k,i − cj,k,i+1||cj,k,i + cj,k,i+1|
≤ C32(j−h)/22(j−h)(β+1/2),
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since the |cj,k,i | are of order O(2(j−h)/2), C3 being a constant. But σ 2
j,k,r =

Eẽ2
1
∑

i c
2
j,k,iD+r and #{i : cj,k,i �= 0} = O(2h−j ) (again, # denotes cardinality)

since the wavelet is compactly supported. Indeed, recall that (see, e.g., [3])

φj,k =
2j0−j (N−1)∑

i=0

uj0−j,i+2j0−j kφj0,i(3.4)

and

ψj,k =
2j0−j (N−1)∑

i=0

vj0−j,i+2j0−j kφj0,i ,(3.5)

where u·,· and v·,· depend only on the scaling identities (whose size we set equal
to N ). This claim about the length of the filters (uj0−j ) and (uj0−j ) can be proved
via a simple induction argument. Actually (see [1]), maxi |uj0−j,i | = O(2(j0−j)/2)

and maxi |vj0−j,i | = O(2(j0−j)/2). Thus,

|σ 2
j,k,r − σ 2

j,k,r+1| =
∣∣∣∣∣Eẽ2

1

∑
i

(c2
j,k,iD+r − c2

j,k,iD+r+1)

∣∣∣∣∣
= O

(
2(j−h)β |Eẽ2

1|
)
.

Since
∑

r σ 2
j,k,r = Eẽ2

1
∑

i c
2
j,k,i = Eẽ2

1, all the σ 2
j,k,r have about the same

size and, thus, σ 2
j,k,max ≈ Eẽ2

1/D. This completes the proof of Theorem 3.2.
�

We now turn to the problem of finding out when the condition

n−1∑
i=1

|fi − fi+1|2 = O(1/n)(3.6)

follows from ‖θ‖Bm
p,q

≤ A. If m ≤ 1, then assume β ≥ m, where β ≤ 1 is the
Hölder continuity exponent of the wavelet (otherwise the characterization of
smoothness via wavelets does not make sense). Again, h = log2 n. Since for a
constant C1 > 0,

|cj,k,i − cj,k,i+1| ≤ C12(j−h)(1/2+β),

and #{i : cj,k,i �= 0} = O(2h−j ), it follows that

n−1∑
i=1

|cj,k,i − cj,k,i+1|2 ≤ C222β(j−h),

where C2 is another constant. Note that since the wavelet transform is an ortho-
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normal transformation, fi = ∑
j,k aj,kcj,k,i . Thus,

n−1∑
i=1

|fi − fi+1|2 =
n−1∑
i=1

(∑
j,k

aj,k(cj,k,i − cj,k,i+1)

)2

≤
n−1∑
i=1

h

h−1∑
j=0

(∑
k

aj,k(cj,k,i − cj,k,i+1)

)2

≤
n−1∑
i=1

h

h−1∑
j=0

C3
∑
k

(
aj,k(cj,k,i − cj,k,i+1)

)2
,

since #{k : cj,k,i �= 0 or cj,k,i+1 �= 0} = O(1), see (3.4) and (3.5), and with C3 a
constant

= hC3

h−1∑
j=0

∑
k

a2
j,k

∑
i

(cj,k,i − cj,k,i+1)
2

≤ hC3C2

h−1∑
j=0

22β(j−h)
∑
k

a2
j,k

≤ hC3C2A
2

h−1∑
j=0

22β(j−h)

{
2−2jm, if p ≥ 2,

2−2js, if p ≤ 2,

where the last inequality is proved by using arguments as in the proof of
Lemma 2.2. Thus, if β = 1 and m ≥ 1, respectively, s ≥ 1, then the last term is
equal to O(hn−2). If m ≤ β , respectively, s ≤ β , then the last term is equal to
O(hn−2m), respectively, O(hn−2s). Hence, for p ≥ 2 we obtain

n−1∑
i=1

|fi − fi+1|2 = O
(
logn/n(2m∧2)),(3.7)

and for p ≤ 2 we obtain

n−1∑
i=1

|fi − fi+1|2 = O
(
logn/n(2s∧2)).(3.8)

Thus, for p ≥ 2 the condition m > 1/2 will ensure that (3.6) holds. For p ≤ 2
the additional condition m > 1/p ensures that 2s > 1 and, thus, (3.6) is always
satisfied.

REMARK 3.5. Above, and also in view of the proof of Theorem 2.1, the
i.i.d. assumption on e can be weakened and replaced by independence with
supi E|ei |γ < +∞, for some γ > 0. The previous proofs also show how to
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deal with noise (with or without higher moments) that is not independent, but
D-dependent, where D is a fixed constant. Indeed, Lemmas 3.3 and 3.4 are ap-
plicable, and then it is easy to mimic the proof of Theorem 3.2 and the minimax
rate for this problem is again as in the Gaussian case. To obtain such a result,
the noisy wavelet coefficients need not converge in distribution to a normal ran-
dom variable. Only the bounds of Lemma 3.4 and of Lemma 3.3 are needed. This
approach via large deviation results is also possible for other kinds of correlated
noise. Under appropriate weak dependence conditions, the law of the noisy wavelet
coefficients is asymptotically normal with a variance possibly bigger than the vari-
ance of the original noise. Wavelet thresholding has also been investigated for
stationary Gaussian noise; for example, see [12, 21]. Let us finally mention that it
would be interesting to transfer the “ideal framework with quadratic risk” to heavy
tail noise via median filtering.

REMARK 3.6. The upper bounds obtained in Theorems 2.1 and 3.2 can often
be complemented with lower bounds of the same order for various types of noises.
In turn, these bounds often represent the order of the minimax rate among all
estimators (see the various references cited in the introductory section). However,
different nonlinear estimators can outperform wavelet thresholding for still other
types of noise. Let us briefly present such an estimator. The model is the usual
one, Xi = fi + ei/

√
n, i = 1, . . . , n = 2h, where the ei are zero mean i.i.d. random

variables with finite second moment. Our estimator of fi based on the Xi is

f̂i := max
j=0,...,M−1

Xi+j − E maxi=1,...,M ei√
n

, i = 1, . . . , n − M + 1,(3.9)

and for i > n − M + 1,

f̂i = f̂n−M+1,(3.10)

where M := M(n) will be chosen later. Let cM := E maxi=1,...,M ei . Thus, for
i ≤ n − M + 1,

f̂i − fi = max
j=0,...,M−1

(
fi+j − fi + 1√

n
(ei+j − cM)

)
.

Hence,

|f̂i − fi | ≤ max
j=0,...,M−1

|fi+j − fi | + 1√
n

∣∣∣∣ max
j=0,...,M−1

ei+j − cM

∣∣∣∣
and

E|f̂i − fi |2 ≤ 2

(
M−1∑
j=1

|fi+j − fi+j−1|
)2

+ 2

n
E

(
max

j=0,...,M−1
ei+j − cM

)2

≤ 2M

M−1∑
j=1

|fi+j − fi+j−1|2 + 2

n
E

(
max

j=0,...,M−1
ei+j − cM

)2

.
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A similar computation for i > n − M + 1 gives

E|f̂i − fi |2 ≤ 2M

n∑
j=m−M+1

|fj − fj−1|2 + 2

n
E

(
max

j=0,...,M−1
ei+j − cM

)2

.

Hence,

E

n∑
i=1

|f̂i − fi |2 ≤ 4M2
n−1∑
i=1

|fi+1 − fi |2 + 4 var
(

max
j=1,...,M

e1

)
.(3.11)

From (3.7) and (3.8) and taking β = 1, we know that
∑

i |fi+1 − fi |2 is ei-
ther of order O(n−(2m∧2) logn) or O(n−(2s∧2) logn), according to p. Thus,
var(maxj=1,...,M ej ) and an optimal choice of M control the right-hand side
of (3.11).

If the ei are i.i.d. standard normal random variables, then var(maxj=1,...,M ej )

is of order 1/2 logM . Hence, and say, for p ≥ 2, minimizing in M (M =
nm∧1/(logn)2) gives a rate of order O(1/ logn), coming short of the threshold-
ing rate.

Now, using arguments similar to the ones in the proof of [1], Theorem 4.1, it
is easy to show that, for i.i.d. (symmetric) bounded noise, soft thresholding has
the same minimax rate as it would have for Gaussian noise with the same vari-
ance. This can come short of the rate achieved by the estimator presented above.
Indeed, if e1 is a symmetric Bernoulli random variable with law (δ−1 + δ1)/2, then
var(maxj=1,...,M ej ) = 1/2M−2 − 1/22M−2. Hence, for p ≥ 2,

sup
‖θ‖Bm

p,q
≤A

E

n∑
i=1

|f̂i − fi |2 ≤ C
(
M2n−(2m∧2) logn + 2−M)

,(3.12)

where C is a constant. The right-hand side in (3.12) is now minimized by choosing
M = 2 log2 n and, thus,

sup
‖θ‖Bm

p,q
≤A

E

n∑
i=1

|f̂i − fi |2 = O

(
(logn)3

n2m∧2

)
.(3.13)

For p ≤ 2, the right-hand side of (3.13) should be replaced by O(
(logn)3

n2s∧2 ). In both

cases the rate is better than O(n−2m/(2m+1)), which is the minimax rate for soft
thresholding in the Gaussian model.

For another example, let the ei be uniformly distributed on [−1,1]. Then
var maxj=1,...,M ej = 4M/(M + 1)2(M + 2) is of order O(1/M2); hence, for
p ≥ 2,

sup
‖θ‖Bm

p,q
≤A

E

n∑
i=1

|f̂i − fi |2 ≤ C
(
M2n−(2m∧2) logn + M−2)

(3.14)
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[resp. ≤ C(M2n−(2s∧2) logn+M−2) for p ≤ 2], again C is a constant. For p ≥ 2,
taking M = n(m∧1)/2/ 4

√
logn [resp. M = n(s∧1)/2/ 4

√
logn for p ≤ 2] gives

sup
‖θ‖Bm

p,q
≤A

E

n∑
i=1

|f̂i − fi |2 = O

(√
logn

nm∧1

)
(3.15)

[resp. O(
√

logn

ns∧1 )]. These rates are better [only for p > 1/(m+1/2−2m/(2m+1)),

when s ∧ 1 = s] than O(n−2m/(2m+1)). In view of [16] and of [1], Theorem 5.1,
the smoothness of the density of the compactly supported noise might help thresh-
olding reach the minimax rate among all estimators.

4. Concluding remarks on block thresholding and kernel estimators.
Block thresholding, which applies thresholding to a whole block of wavelet co-
efficients, has been developed by Cai [2] as well as Hall, Kerkyacharian and Pi-
card [11], to deal with signals exhibiting a correlation in the size of their wavelet
coefficients which are above each other. More precisely, a block of noisy wavelet
coefficients θ1 + z1, . . . , θk + zk , is kept if

∑
(θi + zi)

2 is larger than a threshold,
otherwise the whole block is set to zero (one could also keep a block if one of
the coefficients in it is larger than a threshold). As defined, block thresholding
shares the minimax properties of soft thresholding, in both the ideal and functional
frameworks.

In block thresholding the blocks are horizontal, that is, made up of the coef-
ficients with indices (j, k), . . . , (j, k + K). Below, we briefly present a vertical
block thresholing methodology (the blocks are vertical and not disjoint) which
also shares the same minimax properties as the horizontal block thresholding es-
timator. More importantly, we show that (for the Haar wavelet) this thresholding
estimator is nothing but a kernel estimator with locally varying bandwidth. This is
another instance of the well-known fact that thresholding rules represent a method
of adaptive local selection of bandwidth (see [7]).

First we introduce some terminology. We say that an index (j ′, k′) (or the
wavelet coefficient with this index) is above the index (j, k) if j ′ ≤ j and
|[2j ′−j k]−k′| ≤ J , where J ∈ N is a positive constant. In vertical block threshold-
ing, if |θj,k + zj,k| is larger than a threshold, then the coefficient itself is kept and,
moreover, all the coefficients above it are also kept. A variation of this method
is to keep the coefficients with the indices (j, k′), |k − k′| ≤ J (for some other
constant J ), as well as all the coefficients above them.

This new method achieves (as quickly shown below) the optimal minimax rate
in the ideal estimator context (a similar result holds for the function space approach
too, but the proof is left out). In our usual model, let the noise be i.i.d. standard
normal random variables and let λn be such E1{|zj,k |>λn−1}(1 + z2

j,k) = 1/n. With
the background and methods of the present paper and its companion [1], it is easy
to see that λn ∼ √

2 logn. Let J be as above. Note that the number of coefficients
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above a coefficient is less than (2J + 1) log2 n, since in each level there are only
2J + 1 coefficients above a fixed coefficient. Next, set Y = Wn(X) and define the
estimator θ̂j,k for the coefficient θj,k by

θ̂j,k :=



Yj,k, if |Yj,k| ≥ λn

or ∃ (j ′, k′), (j, k) is above (j ′, k′) and |Yj ′,k′ | ≥ λn,

0, elsewhere.

We then have ∑
j,k

E(θ̂j,k − θj,k)
2

≤ ∑
j,k

E
(
1{|Yj,k |≥λn}z2

j,k + 1{|Yj,k |<λn}θ2
j,k

+ 1{(j,k) above a |Yj ′,k′ |≥λn}z2
j,k

)
(4.1)

≤ ∑
j,k

E

(
1{|Yj,k |≥λn}z2

j,k + 1{|Yj,k |<λn}θ2
j,k

+ 1{|Yj,k |≥λn}
∑

(j ′,k′) above (j,k)

z2
j ′,k′

)
.

If |θj,k| < 1, then

E1{|θj,k+zj,k |≥λn}z2
j,k ≤ E1{|zj,k |≥λn−1}z2

j,k ≤ 1

n
,

E1{|θj,k+zj,k |≤λn}θ2
j,k ≤ θ2

j,k

and

E1{|Yj,k |≥λn}
∑

(j ′,k′) above (j,k)

z2
j ′,k′ ≤ (2J + 1) log2 nE1{|zj,k |≥λn−1}Ez2

j,k

≤ (2J + 1) log2 n

n
.

If |θj,k + zj,k| < λn, then |θj,k| < |λn| + |zj,k|; thus

E1{|θj,k+zj,k |<λn}θ2
j,k ≤ 2|λn|2 + 2Ez2

j,k.

Moreover,

E1{|Yj,k |≥λn}
∑

(j ′,k′) above (j,k)

z2
j ′,k′ ≤ (2J + 1) log2 n

and

E1{|θj,k+zj,k |≥λn}z2
j,k ≤ 1.
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Hence

E(1{|Yj,k |≥λn}z2
j,k + 1{|Yj,k |<λn}θ2

j,k + 1{|Yj,k |≥λn}
∑

(j ′,k′) above (j,k) z
2
j ′,k′)

1/n + min(θ2
j,k,1)(4.2)

≤ C logn,

for some constant C. Combining (4.1) and (4.2), we obtain∑
j,k E(θ̂j,k − θj,k)

2

1 + ∑
j,k min(θ2

j,k,1)
≤ C logn,

proving our claim on the minimaxity of the method.
Another interest of the vertical block thresholding method is the fact that it is

close to a kernel estimate with locally varying bandwidth (this is precisely proved
below in the case of the Haar wavelet). Indeed, a simple first-order approximation
of the noisy wavelet coefficients is given by (since 2j is small compared to n)

θ̃j,k := ∑
i

ψj,k(i/n)√
n

Xi,

where, as usual, ψj,k and φj,k are, respectively, translations and dilations of the
wavelet ψ and of the scaling function φ.

If we estimate fi by discarding the levels below the level j0, then by a first-order
approximation, as above,

f̂i := ∑
j≥j0,k

θ̃j,k

ψj,k(i/n)√
n

= ∑
j≥j0,k

(∑
l

ψj,k(l/n)√
n

Xl

)
ψj,k(i/n)√

n

= 1

n

∑
l

Xl

∑
j≥j0,k

ψj,k(l/n)ψj,k(i/n)

= 1

n

∑
l

K(l/n, i/n)Xl,

where K(x,y) = ∑
j≥j0,k

ψj,k(x)ψj,k(y). If we also keep the level j0 + 1, then
K(x,y) has to be replaced by K(2x,2y)/2. Thus, the parameter 2−j0 corresponds
to the bandwidth of a classical linear kernel estimator (see also [7]).

Figure 1 shows for an artificial signal which wavelet coefficients are kept with
different methods [the artificial signal is just a random signal; the coefficient with
level j, k is a random variable with distribution N(0,2−αj )]. (Nothing else but
these coefficients is present in the signal.) The dark rectangles correspond to co-
efficients which are kept. The top picture shows the coefficients kept for a hard
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FIG. 1. Hard thresholding, vertical block thresholding and kernel estimate.
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thresholding estimator, while the bottom one shows which coefficients are kept for
a kernel estimator. The middle picture illustrates why the vertical block threshold-
ing can be viewed as a kernel estimator with locally varying bandwidth (we keep
some neighboring coefficients as well).

This analogy between the vertical block thresholding estimator and kernel esti-
mators with locally varying bandwidth becomes even more transparent by choos-
ing the underlying wavelet basis to be the Haar basis. Then for vertical block
thresholding, each estimate f̂i is the mean of some neighboring Xj . For the Haar
wavelet, the scaling identities have the forms

φj,k = 1√
2
(φj+1,2k + φj+1,2k+1) and ψj,k = 1√

2
(φj+1,2k − φj+1,2k+1).

With this in mind, and for an input signal X0, . . . ,Xn−1, n = 2h, the discrete
wavelet transform is given by

c0 = 1√
n

n−1∑
i=0

Xi and dj,k := 1√
2h−j

2h−j−1−1∑
i=0

f2h−j k+i −
2h−j−1∑

i=2h−j−1

f2h−j k+i .

The inverse transformation is then given by

fi = 1√
n
c0 + ∑

j

dj,[i/2h−j ]

{
1, if i/2h−j − [i/2h−j ] < 1/2,

−1, if i/2h−j − [i/2h−j ] ≥ 1/2.

To compute an estimate of fi , and discarding the levels below j0, we have

f̂i = 1√
n
c0 +

j0∑
j=0

dj,k

{
1, if i/2h−j − [i/2h−j ] < 1/2,

−1, if i/2h−j − [i/2h−j ] ≥ 1/2,

= 1

2h−j0−1

[i/2h−j0−1]2h−j0−1+2h−j0−1−1∑
l=[i/2h−j0−1]2h−j0−1

Xl,

where the last equality follows from a simple induction argument on j0. Thus, if
we discard the levels below j0, then f̂i is the mean of a block of 2h−j0−1 Xl’s.

We claim now that, if in vertical block thresholding the coefficient with in-
dex (j1, [i/2h−j1]) is kept because the coefficient with index (j, k) is larger than
the threshold and |[i/2h−j1] − [k/2j−j1]| ≤ J , then for all j2 < j1, |[i/2h−j2] −
[k/2j−j2]| ≤ J , that is, the coefficients with indices (j2, [i/2h−j2]), j2 < j1, are
also kept.

Since for x ∈ R and k ∈ N, [x/k] = [[x]/k], it is clear that

|[i/2h−j1]/2j1−j2 − [k/2j−j1]/2j1−j2 | ≤ J/2j1−j2,

hence

J ≥ ∣∣[[i/2h−j1]/2j1−j2
] − [[k/2j−j1]/2j1−j2

]∣∣
= |[i/2h−j2] − [k/2j−j2]|.
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Thus, for vertical block thresholding, we also obtain

f̂i = 1

2h−j0−1

[i/2h−j0−1]2h−j0−1+2h−j0−1−1∑
l=[i/2h−j0−1]2h−j0−1

Xl,

but where now j0 depends on i and (Xl), that is, it is a kernel estimator with locally
varying bandwidth.

Lepski, Mammen and Spokoiny [13] have already presented a kernel estimator
with locally varying bandwidth which achieves the same minimax rate as a wavelet
thresholding estimator. There the local bandwidth is chosen from a set a−jh1,
a,h1 > 0 constants and j = 0,1, . . . . For the simple kernel estimator based on
wavelets, the bandwidth is 2−j , j = 0,1, . . . , and j is the last level of wavelet
coefficients that is kept. The results of Lepski, Mammen and Spokoiny [13] show
that kernel estimates with a locally varying bandwidth selection can be as good
as wavelet thresholding in a minimax sense. The performance of vertical block
thresholding also makes this plausible.

APPENDIX

Let us start with a simple lemma important in transferring part of the proof to a
truncated noise setting.

LEMMA A.1. Let Xi , i = 1, . . . , n, be independent random variables such
that EXi = 0, EX2

i = 1, and m4 := EX4
i < +∞. Let Y := ∑n

i=1 aiXi , where∑n
i=1 a2

i = 1. Then min(3,m4) ≤ EY 4 ≤ max(3,m4).

PROOF.

E

(∑
i

aiXi

)4

= ∑
i

a4
i EX4

i + 3
∑

i,j,i �=j

a2
i a

2
jEX2

i EX2
i

= m4
∑
i

a4
i + 3

∑
i

a2
i

∑
j,j �=i

a2
j

= m4
∑
i

a4
i + 3

∑
i

a2
i (1 − a2

i )

= (m4 − 3)
∑
i

a4
i + 3

= m4 + (m4 − 3)

(∑
i

a4
i − 1

)
.

The assertion now follows from
∑

i a
4
i ≤ 1. �
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PROOF OF THEOREM 2.1. Let us describe the general strategy of proof. The
risk given by the denominator of (2.3) is split into two sums going from coarser
to finer noisy wavelet coefficients. First the coefficients from a certain index up-
ward, that is, the finer wavelet coefficients, are discarded because their �2-norm
is asymptotically negligible compared to the minimax risk. Next, in view of the
moment conditions imposed on e and from a proper choice of the thresholds, we
can reduce the proof to a truncated noise case. The rest of the proof then deals with
the core of the estimation problem which corresponds to the sum containing the
coarser coefficients and truncated noise. There, the right thresholds can achieve the
same minimax performance as in the Gaussian case.

Choose α, ε > 0 such that

α >

{ 1/(2m + 1), if p ≥ 2,

m/(2,+1)s, if 1 ≤ p < 2,
and L >

6

(1 − α) − 2ε
.

This is certainly possible given the conditions of Theorem 2.1. Then let l = l(α,n)

be such that 2l ≤ nα < 2l+1. In view of Lemma 2.2, it follows that

sup
‖θ‖Bm

p,q
≤A

∑
j>l,k

θ2
j,k = o

(
n−2m/(2m+1)).(A.1)

But [see (1.5) and the references given there] the numerator in (2.3) is
∼ Cn−2m/(2m+1). Thus, choosing λ̃j,k = ∞ for j > l, it suffices to show that

lim inf
n→∞

inf(λ)∈Rn supθ : ‖θ‖Bm
p,q

≤A E�

∑
j,k(T

S
λj,k

(wj,k) − θj,k)
2

inf
(λ̃)∈R2l supθ : ‖θ‖Bm

p,q
≤A E

∑
j≤l,k(T

S

λ̃j,k
(wj,k) − θj,k)2

≥ 1.

Let An := {maxi |ei | ≤ cn}, where cn = n−ε2(h−l)/2 ≤ 2n−ε+(1−α)/2, and let
also ẽi := ei1An . Note that σ̃ 2

n , the variances of the ẽi , are smaller than 1, but
converge to 1 (if the ei are not identically distributed, the convergence to 1 will
hold uniformly). Finally, let z̃j,k := (W(ẽ/

√
n ))j,k .

On An, ei = ẽi , hence, denoting by Tj,k the soft-thresholding operators with
thresholds λ̃j,k smaller than logn/

√
n, for j ≤ l, we have

E
∑

j≤l,k

|Tj,k(θj,k + zj,k) − θj,k|2

= E

( ∑
j≤l,k

|Tj,k(θj,k + zj,k) − θj,k|21An

+ ∑
j≤l,k

|Tj,k(θj,k + zj,k) − θj,k|21Ac
n

)

= E
∑

j≤l,k

|Tj,k(θj,k + z̃j,k) − θj,k|21An(A.2)
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+ E
∑

j≤l,k

|Tj,k(θj,k + zj,k) − θj,k|21Ac
n

≤ E
∑

j≤l,k

|Tj,k(θj,k + z̃j,k) − θj,k|21An

+ ∑
j≤l,k

√
E|Tj,k(θj,k + zj,k) − θj,k|4P(Ac

n)

≤ E
∑

j≤l,k

|Tj,k(θj,k + z̃j,k) − θj,k|2

+ 2nα
√

8(M + d4
n)

√
P(Ac

n),

where dn = O(logn/
√

n ), using the elementary inequality (a + b)4 ≤ 8(a4 + b4),
and using Lemma A.1 [Ez4

j,k ≤ M := max(3,Ee4
1)/n2, since Eei = 0 and

Ee2
i = 1].
We will now show that the rightmost term in (A.2) is of order o(1/n), which is

again asymptotically negligible compared to the minimax risk in (2.3). Indeed, the
ei have moments of order L; hence (using the i.i.d. assumption)

P(Ac
n) = P

(
max

1≤i≤n

∣∣ei2
−(h−l)/2∣∣ ≥ n−ε

)
≤ nP

(|e1|2−(h−l)/2 ≥ n−ε)
≤ nE|e1|Ln−L(1−α)/2nεL

≤ E|e1|Ln1−L((1−α)/2−ε).

This implies that P(Ac
n) = O(1/n2) if 1 − L((1 − α)/2 − ε) ≤ −2, that is, if

L ≥ 6

(1 − α) − 2ε
,(A.3)

and this proves our claim on the size of the rightmost term in (A.2). Thus, we will
be done if we prove that

lim inf
n→∞

inf(λ)∈Rn supθ : ‖θ‖Bm
p,q

≤A E�

∑
j,k(T

S
λj,k

(wj,k) − θj,k)
2

inf
(λ̃)∈R2l

‖λ̃‖∞≤logn/
√

n

supθ : ‖θ‖Bm
p,q

≤A E
∑

j≤l,k(T
S

λ̃j,k
(w̃j,k) − θj,k)2

≥ 1.(A.4)

Note that in (A.4) the symmetry assumption on e ensures that Eẽi = 0 for all i

and, thus, Ez̃j,k = 0 for all j, k.
Consider the coefficients in the levels l and above with 2l ≤ nα < 2l+1. Let z̃

be the noise part in one of these coefficients. Then (see the proof of Theorem 4.1
in [1]) with n = 2h,

z̃ =
n∑

i=1

vi

ẽi√
n

and max
i

|vi | ≤ C12−(h−l)/2 ≤ C1

√
nα−1,(A.5)
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where C1 depends only on the type of the wavelet transform used. Note also that,
by the scaling identities (e.g., see [3]),

#{vi :vi �= 0} ≤ C2n
1−α and, thus,

∑
i

|vi |3 ≤ C1C2

√
nα−1,(A.6)

where again C2 depends only on the wavelet transform.
Since ‖ẽi2−(h−l)/2‖∞ ≤ n−ε , i = 1, . . . , n, the noise terms in the wavelet coeffi-

cients are sums of independent random variables which are smaller than n−ε/
√

n,
which in view of (A.5) and of (A.6) satisfy the conditions of Lemmas 2.4 and 2.5.

In the sequel, for a law µ, and for λ ≥ 0 and θ ∈ R, we set pµ(λ, θ) :=∫ +∞
−∞ (T S

λ (x + θ) − θ)2µ(dx). Let now µ̃j,k denote the law of the random vari-
able z̃j,k , that is, the distribution of the noise in the coefficient of index (j, k). [Re-
call that if the ei/

√
n are i.i.d. N(0,1/n) random variables, then the distribution

of the noise in each coefficient is �n := N(0,1/n). Recall also that Ez2
j,k = 1/n

and, thus, Ez̃2
j,k ≤ 1/n, and that, finally, l, µ̃j,k and λj,k depend on n, but that for

simplicity we choose not to indicate this in the notation.]
Let λn be the threshold such that p�n(λn,0) = 1/n2, and let θ ≥ 0. If λ > λn,

then (
T S

λn
(x + θ) − θ

)2
<

(
T S

λ (x + θ) − θ
)2 for x ∈ (−λn − θ, λn).

Moreover,
∫ ∞
λn

(x − λn)
2�n(dx) = p�n(λn,0)/2 and

∫ −λn−θ

−∞
(
(x + λn + θ) − θ

)2
�n(dx) ≤

∫ −λn

−∞
(x + λn)

2�n(dx) = p�n(λn,0)/2.

Hence

p�n(λn, θ) ≤
∫ λn

−λn−θ

(
T S

λ (x + θ) − θ
)2

�n(dx) +
∫ ∞
λn

(
T S

λn
(x + θ) − θ

)2
�n(dx)

+
∫ −λn−θ

−∞
(
T S

λn
(x + θ) − θ

)2
�n(dx)

≤ p�n(λ, θ) + 1/n2.

From the above inequality (and a similar one for θ < 0), it thus follows that

lim inf
n→∞

inf(λ)∈Rn supθ : ‖θ‖Bm
p,q

≤A

∑
j,k p�(λj,k, θj,k)

inf (λ)∈Rn

‖λ‖∞≤λn

supθ : ‖θ‖Bm
p,q

≤A

∑
j,k p�(λj,k, θj,k)

≥ 1,(A.7)

since
∑

j≤l,k

1

n2 ≤ 1

n
= o

(
n−2m/(2m+1)),
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and again, n−2m/(2m+1) is the minimax rate in the Gaussian case. This shows
that, without loss of generality and in the Gaussian case, we can assume that

supj≤l,k λj,k ≤ λn ∼
√

2 logn√
n

. If z̃j,k had variance 1/n, it would be enough in or-

der to complete the proof of the theorem (since also supj≤l,k λ̃j,k ≤ logn/
√

n ) to
show that

lim inf
n→∞ inf

j≤l,k
inf

λ≤λn

sup
λ̃≤logn/

√
n

inf
θ

p�n(λ, θ)

pµ̃j,k
(λ̃, θ)

≥ 1.(A.8)

However, ẽi (and so
√

nz̃j,k) has variance σ̃ 2
n , which is smaller than 1 (but con-

verges to 1) and so a further little adjustment is needed. Let µj,k be µ̃j,k rescaled
to have variance 1/n. A simple differentiation under the integral shows that

pµj,k
(λ̃/σ̃n, θ) ≥ pµ̃j,k

(λ̃, θ).

Hence, taking the sup over a larger set, in place of (A.8), it is enough to prove

lim inf
n→∞ inf

j≤l,k
inf

λ≤λn

sup
λ̃≤logn/

√
n

inf
θ

p�n(λ, θ)

pµj,k
(λ̃, θ)

≥ 1.(A.9)

NOTE. From now on, we set µn := µj,k and also set pn := pµj,k
. Moreover,

since performing computations with the factor 1/n is cumbersome, we will multi-
ply the random variables and thresholds by

√
n, and the risks by n. The size of the

fraction in (A.9) is unchanged by this transformation.

Next, we need two simple inequalities. First,

p�(λ, θ) = θ2�(−λ − θ < x < λ − θ)

+
∫ +∞
λ−θ

(x − λ)2�(dx) +
∫ +∞
λ+θ

(x − λ)2�(dx)

(A.10)
≥ θ2�(−λ − θ < x < λ − θ)

+ p�(λ,0) + p�(λ + θ sgn(θ),0)

2
.

For the second, let λ ≥ 1. Then

p�(λ,0) ≥ 2�(x > λ + 1)

≥ 2√
2π

(
1

λ + 1
− 1

(λ + 1)3

)
exp

(−(λ + 1)2/2
)

(A.11)

≥ 1√
2π(λ + 1)

exp
(−(λ + 1)2/2

)
,

where the second inequality follows from a classic lower estimate on the standard
normal distribution function (see [19], page 850).
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Let us now proceed to prove (A.9). By Lemma 2.5, there exists a sequence
(βn) converging to 1 and ε1 > 0 [in view of (A.6) one can choose ε1 = (1 −α)/2],
independent of the index of the wavelet coefficient such that, for αn := √

ε12 logn,
and all c such that |c| < αn,

βn ≤ �((c,+∞))

µn((c,+∞))
and βn ≤ �((−∞, c))

µn((−∞, c))
.(A.12)

We distinguish two cases to prove (A.9), λ < αn/2 and λ ≥ αn/2. Assume first
that λ < αn/2, and choose λ = λ̃. For fixed λ, let rθ (x) := (T S

λ (x + θ) − θ)2.
To spare us some further distinction of cases, assume that θ ≥ 0 (the case θ < 0
leads below to similar results). Then rθ is a function with one local minimum with
value 0 at x = λ, moreover, if θ = 0, then the minimum is attained at [−λ,λ].
Hence, r ′

θ (x) ≥ 0 for x ≥ λ and r ′
θ (x) ≤ 0 for x ≤ λ. Thus, from∫ +∞

−∞
rθ (x) d�(x) =

∫ λ

−∞
(−r ′

θ (x))�(x) dx +
∫ +∞
λ

r ′
θ (x)

(
1 − �(x)

)
dx,

and [integrating by parts with also rθ (λ) = 0]∫ αn

−αn

rθ (x) dµn(x) ≤
∫ λ

−αn

(−r ′
θ (x))µn((−∞, x]) dx

+
∫ αn

λ
r ′
θ (x)µn([x,∞)) dx,

and inequality (A.12), it easily follows that∫ +∞
−∞ rθ (x) d�(x)∫ αn−αn

rθ (x) dµn(x)
≥ βn.(A.13)

Moreover, by Lemma 2.4 (with Kn = n−ε and an = logn),∫
{|x|>αn}

rθ (x) dµn(x) ≤
∫
{|x|>αn}

(λ + |x|)2 dµn(x)

≤
∫
{|x|>αn}

4x2 dµn(x)

≤ 4
(
(α2

n + 2)/cn exp(−α2
nkn/2) + o(exp(−nε))

)
= o(p�(λ,0)),

where kn = 1 − n−ε logn/2 and where the last identity is obtained using (A.11)
and λ < αn/2. Since p�(λ,0) ≤ p�(λ, θ), (A.9) holds for λ < αn/2.

Now, in the second case, λ ≥ αn/2, choose the smallest λ̃ such that

p�(λ + 1,0) ≥ pn(λ̃,0) and λ̃ ≥ λ.(A.14)

It is a simple consequence of Lemma 2.4 and of the relation (A.11) that λ/λ̃ → 1
uniformly for λ ≥ αn/2 (recall that we assumed λ ≤ λn ∼ √

2 logn ). Again we
distinguish two cases.
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First, let |θ | ≤ 1. Since pn(λ̃, θ) ≤ θ2 + pn(λ̃,0) and from (A.10), it follows
that

inf|θ |≤1

p�(λ, θ)

pn(λ̃, θ)
≥ inf|θ |≤1

θ2�((−λ,λ)) + (p�(λ + 1,0) + p�(λ,0))/2

θ2 + pn(λ̃,0)

≥ �
(
(−αn/2, αn/2)

) −→ 1,

using (A.14) and λ ≥ αn/2.
The case |θ | > 1 is more complicated. Assume that θ > 1 (θ < −1 is treated in a

similar fashion). Then, since p�(λ, θ) ≥ p�(λ,1), it follows that p�(λ, θ) > 1/2
and, thus, p�(λ̃, θ) > 1/2, if αn is sufficiently large. Moreover,∫

{|x|>αn}
(
T S

λ̃
(x + θ) − θ

)2
µn(dx) ≤

∫
{|x|>αn}

4(x2 + λ̃2)µn(dx)

= o(1),

since λ̃ ∼ λ ≤ λn ∼ √
2 logn. As in obtaining (A.13), it is easy to see that

inf
λ≥αn/2

inf
θ>1

∫ +∞
−∞ (T S

λ (x + θ) − θ)2�(dx)∫ αn−αn
(T S

λ (x + θ) − θ)2µn(dx)
−→ 1,

thus

lim inf
n→∞ inf

λ≥αn/2
inf
θ>1

p�(λ̃, θ)

pn(λ̃, θ)
≥ 1.

To finish the proof, and using λ̃ satisfying (A.14), we show that

lim inf
n→∞ inf

λ≥αn/2
inf
θ>1

p�(λ, θ)

p�(λ̃, θ)

= lim inf
n→∞ inf

λ≥αn/2
inf
θ>1

∫ +∞
−∞ (T S

λ (x + θ) − θ)2�(dx)∫ +∞
−∞ (T S

λ̃
(x + θ) − θ)2�(dx)

(A.15)

≥ 1.

First, recall that

(
T S

λ (x + θ) − θ
)2 =




(x + λ)2, if x ≤ −λ − θ ,

θ2, if −λ − θ ≤ x ≤ λ − θ ,

(x − λ)2, if x ≥ λ − θ ,

and thus, if x ≤ λ − θ , then (T S
λ (x + θ) − θ)2 ≥ (T S

λ̃
(x + θ) − θ)2. Hence, for

λ > λ̃/2,

inf
θ≥1

inf
x≤λ̃/2

(T S
λ (x + θ) − θ)2

(T S

λ̃
(x + θ) − θ)2

≥ inf
θ≥1

inf
x≤λ̃/2

(x − λ)2

(x − λ̃)2

= (λ̃/2 − λ)2

(λ̃/2 − λ̃)2
,
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which converges to 1 since λ/λ̃ → 1. Finally, since∫ +∞
λ̃/2

Tλ̃

(
(x + θ) − θ

)2
�(dx) ≤

∫ +∞
λ̃/2

(x − λ̃)2�(dx)

≤
∫ +∞
λ̃/2

x2�(dx)

≤
∫ +∞
αn/4

x2�(dx) = o(1),

and since p�(λ, θ) > 1/2, the relation (A.15) holds. �
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