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NONANTICIPATING ESTIMATION APPLIED TO SEQUENTIAL
ANALYSIS AND CHANGEPOINT DETECTION

BY GARY LORDEN! AND MOSHEPOLLAK 2
California Institute of Technology and Hebrew University of Jerusalem

Suppose a process yields independent observations whose distributions
belong to a family parameterized Bye ®. When the process is in control,
the observations are i.i.d. with a known parameter véji&vhen the process
is out of control, the parameter changes. We apply an idea of Robbins and
Siegmund Proc. Sxth Berkeley Symp. Math. Satist. Probab. 4 (1972) 37—-41]
to construct a class of sequential tests and detection schemes whereby the
unknown post-change parameters are estimated. This approach is especially
useful in situations where the parametric space is intricate and mixture-type
rules are operationally or conceptually difficult to formulate. We exemplify
our approach by applying it to the problem of detecting a change in the shape
parameter of a Gamma distribution, in both a univariate and a multivariate
setting.

1. Introduction. In all but the simplest cases, the problem of detecting a
change involves at least one unknown post-change parameter. In the well-known
Shiryayev—Roberts detection scheme [11, 12], a change from parameter value
0 = 6p (possibly multidimensional) té = 01, say, in the distribution of a sequence
of i.i.d. observations(1, X2, ... is detected by a stopping rule

Ny =min{n|R, = A},

where

and
A= [ Sfou(Xi)/foo(Xi).

i=k,...,n

When the post-chang® is not known and it is desired to respond quickly to a
broad range of possible values, the Shiryayev—Roberts (SR) rule is in principle
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easy to modify: just introduce a mixing measu@) and define
Ank= /@ ( I1 (fe(Xi)/fso(Xi))))»(Q)dG-

As is well known [5], this approach preserves the martingale property of the
sequencéR, — n} under the “no change” probability measuRy,, so that

EOONA = EOORNA > Aa

a useful lower bound on the average run length (ARL) to false alarm. Moreover, it
is typically true that [5]

EsxNa/A— 1)y asA — oo,

wherey can be either evaluated by renewal-theoretic methods or simulated, which
suggests using the approximation

EoNg %A/)/.

In practice, however, it is usually difficult to carry out the computation @f.'s
unless the mixing measukecan be chosen as a natural conjugate prior. Moreover,
in many cases, particularly whéns multidimensional, it is conceptually difficult
to make natural choices af The present paper suggests an alternative approach,
based upon defining

Ank= [] fo,(X)/foo (X0,

i=k,...,

whered; i is an estimator of based uporXy, ..., X;_1. The same idea appears
in [9] in the context of sequential hypothesis testing and is applied to the
changepoint problem in [1, 3]. By requiring, » not to depend onX,, one
preserves the martingale property{@f, — n} and similarly the upper bound on
significance levels that Robbins and Siegmund rely upon. The potential advantage
of this approach in complicated settings is that simple estimators based on the
method of moments or maximum likelihood are usually much easier to choose
than appropriate mixtures, as well as substantially faster to compute.

Moreover, in many cases:

1. The asymptotic “overshoot correctiony’, is finite and can be evaluated
readily by simulating Robbins—Siegmund-type hypothesis tests rather than the
changepoint detection rules themselves.

2. The proposed Shiryayev—Roberts—Robbins-Siegmund (SRRS) detection rules
have reasonably good efficiency, that is, short post-change delays to detection,
nearly as good as mixture rules.
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Since the overshoot constamt is most easily evaluated in the context of
hypothesis testing, Section 2 and part of Section 3 are devoted to problems of
testing. Proofs of the asymptotic analysis of the operating characteristics of the
SRRS rules involve formidable calculations. Therefore, our approach in the present
paper is to illustrate the arguments in special cases, the testing of hypotheses
about the mean of a normal distribution (Section 2) and hypothesis testing
and changepoint detection for the shape paramétesf a Gamma distribution
(Sections 3-5). We believe that these special cases provide a good introduction to
the type of argument that will work in many other contexts.

Section 2 illustrates the pattern of the asymptotic behavior of the estimator
sequence and the determination pf It turns out that there is a natural
correspondence between choices of an estimator sequence and a choice of
mixture A, suggesting that, at least asymptotically, the two methods have a natural
relationship. In Sections 3 and 5 we give asymptotic results for the Gamma shape
example, showing in particular that the asymptotic efficiency of the estimator
sequence used in the SRRS scheme determines the coefficient of the second-
order term in the asymptotic expansion for the expected delay to detection. In
particular, an asymptotically efficient sequence of estimators yields a second-order
asymptotically optimal detection scheme. (For comparison, Dragalin’s [1] scheme
does not achieve this.) Section 4 gives results of Monte Carlo simulations of the
performance of the SRRS scheme using the method-of-moments and maximum
likelihood estimators of the Gamma shape parameter, as well as comparisons with
other changepoint detection rules. Section 5 illustrates the application of the SRRS
approach to multiparameter problems.

2. A first example: tests for the value of a normal mean. Let X1, X», ...
be a sequence of independé@ntu., 1)-distributed random variables, and suppose
one is interested in a power onrelevel test of Hy:u = 0 versusHy:u # 0.
Robbins and Siegmund [9] introduced the following sequential test: /et
be an F,_1 = F(X1,..., X,—1)-measurable estimate qgf (where Fp is the
trivial o-field), defineA, = exp{Y";—1 (i Xi — (11)?/2)}, T = min{n|n > 1,
A, > exp{b}} (1, = oo if Nno suchn exists); rejectHy if and only if 7, < co. By
using the martingale property of, underHo, Robbins and Siegmund showed that
a = Py, (1, < 00) < exp{—>b}. In this section, we will give an approximation for
« for a special case of the sequeripg } whenb is large.

Let uy = s/t (=0 if s =t =0) and uyp1 = WX, + 5)/(n + 1), where
Xy =Y,_1.,Xi/nand—oco <s <00, 0<t <ocors=t=0 are constants.
(This would be a natural estimate afaftern observations on test when prior to
testing there is a learning sampleraibservations whose sumsisit is also a way
of incorporating a prior distribution into the testing scheme.) In other words, after
every observation we update our estimatgofind exfu, X, — (1n)2/2} is the
estimated likelihood ratio for theth observation.
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Let G, betheN(s/t, Y i_1 o0 1/(i +1)?) c.d.f. (wheres/t = 0if s =t =0).
Letus =s/1, v2(1) = Y1 1/ +1)?and

.....

1) V(M)ZZM_ZGXD{—Z > n_1<1>(—%lu|\/ﬁ)}-

THEOREM 1. Asbh — oo, when u1 =s/t (=0if s =1 =0) and 11 =
(nX, + s)/(n + t), the Robbins-Segmund power one test of Hy:u = 0 versus
Hj : n # 0 has significance level

" o = Ppy(ty < 00) = (14 o(1))y exp{—b},
where y = /_ V)G

REMARK. A theorem analogous to Theorem 1 can be formulated for an
arbitrary sequencéu,}. Its practical value is usually as a statement of existence
of a limit, which one can evaluate by simulation. The analogtg is generally
very hard to compute.

PROOF OFTHEOREM 1. LetQ be the measure ofX1, X», ...} under which
the distribution ofX, conditional onX1,...,X,,_1is N(u,,1); n=1,2,....
[By abuse of notation, we will letQ(X1,...,X,) denote the distribution of
X1,...,X, under Q.] Let Pp and Ep denote probability and expectation,
respectively, under the measupe The proof requires two lemmas.

LEMMA 1. Under the measure Q, the sequence {u,} converges a.s. to a
random variable whose distribution is G ;.

PrROOFE Write X,, = u, + Z, whereZ; ~ N (0, 1) and are independent. Thus,
forn>2

.....

=((n—14+0Dun+pn+Zy)/(n+1)=pn+ Zp/(n +1).
Therefore

mn=p1+ Y. Zi/li+1).
i=1,...n—-1

Hence 1, converges a.s. a8 — oo t0 w1 + > ;_1 .~ Zi/( +t), whose
distribution isG;. O

LEMMA 2. Pp(tp <o0) =1.
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PROOR By virtue of Lemma 1, ,(uiX; — (1i)?/2) — 0o a.s.(Q) as
n — 0o, from which Lemma 2 follows. [

PROOF OF THEOREM 1—CONTINUED. Let A, = A,(X1,...,X,) =

.....

o0
a=PHo(Tb<OO)=Z/ "'/fHo(xl,...,xn)dxl---dxn
n=1

(3) :exp{—b}zf ---/exp{—(logAn —b)}dPo(X1, ..., Xn)
n=1"%="

=exp(—b}Egexp{—(logA, —b)}.

Thus what is left to be done is a renewal-theoretic analysis of the expectation in (3).
Let 0 < ¢ < 1. By virtue of Lemma 1, there exist Q d. < a, < oo such
that Po(de < |unl < ae for all n > 2) > 1 — . Note that ifY ~ N(u, 1), then
sup,.oP(Y —a > y|Y > a) — 0 asy — oo uniformly for all « in a compact
set. Therefore, there exists<Oc, < oo such that ifb > ¢ > ¢, thenPy(Ap ) >
1—2¢, whereAd, . ={logA,, . — (b—c) <c/2}.
Chooser > ¢, and writew = 75,_.. Note thatX 1 j = uw + 20 ... ji—1Zw+i/
(w+1i+1)+ Zyyj. Whenj remains fixed anéd — oo, theny_,_; j—1Zw+i/
(w + i) — 0 in probability. Leavinge fixed, whenpu,, ¢ (—de,d:), T — w =
T — Tp—c IS Stochastically bounded i@-probability ash — oo.

.....
.....

.....

b—c/2},

E<eXp=—< S (w(Zi+p) —pn?/2) - b) }‘FHM,};C> —v()
i=1

..... Hy,p

(4)

<é&

(v(w) of (1) is the renewal-theoretic limit of the expectation; cf. [13]).
Also, for fixedk

Yoo (i Xi 4 ) — 12/2)
i=w+1,...,w+j

P
— Z (p,w(X,-+Mw)—M§)/2)‘—>O asbh — oo.



NONANTICIPATING ESTIMATION 1427

Therefore, and because of the stochastic boundednesgs-ofw, for all large
enoughb, onAp . N{ds < |pw!| < ag}

Eg(exp{—(log Ay, — b)} | Fuy; piw = y; l0g Ay =2)

(5) - E(GXD{—(i21Z ((Zi +y) — ¥?/2) —b)]

seees Hy

<é€.

Yo 0 Zit+y) -y )=z
| )

i=1,...,w

Combining (4) and (5), one obtains thatan be fixed so that for all large enough
b,on Ab,c N{de < |uwl < ag}

|Eo(exp{—(log Az, — D)} Fy) — v(pw)| < 2.

Since the distribution oft,, converges aé — oo to G, ,, it follows that one can
fix ¢ so that there exists: . such that for alb > b, .

‘EQ(exp{—(IogATb —b)} — _/O;v(y)dGs,,(y)M < 6Be.

Lettinge — 0 concludes the proof of Theorem 1]

As the preceding analysis suggests, every stopping rule of the Robbins—
Siegmund type has a mixture analog. For example, the mixture-type analog of
the rule described in Theorem 1 is

Ty = min{n‘ f exp{y X;— nyz/Z} dGy,(y) > exp{b}}
i=1,...,n

= min{n‘ exp{ (s/t + 02(1) | > Xi)z/[sz(f)(nvz(f) + 1)]}

i=1,...,n

x (nv2() + 1) > exp{b}}

and [2] the asymptotic expression for its level of significalgg(7, < oo) is the
same as (2). For a given level of significanceboth rules have (approximately)
the same stopping threshold ¢xp

Robbins and Siegmund [10] noted that in the continuous-time (Brownian
motion) case the two rules are identical. In the discrete-time case a comparison
between them is of interest. Following the methods of Pollak and Siegmund [6],
Robbins and Siegmund [10], Lai and Siegmund [2] and Woodroofe [17], one
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can show that, for any fixeqw # 0, the difference between the expected
sample sizes of the two stopping rules@g1) asao — 0. Specifically, letting
re=lim,00(3 ;=1 , 1/ + 1) —logn), it can be shown that

E o — ELTy

= u—z{ [r, Y Y- 2Iog(

j=1,..,

j=1..,

+<u—s/z>2[1+t2 > oyG+nt-1/ ¥ 1/<j+z)2“

j=1,...,00 j=1...
+0(1)

12 {g(t) + (1 — s/1)%h()} + o(D).

Tedious calculations show thagtz) > 0 andi(z) > O for all + > 0. Thus the
mixture rule studied in this section is asymptotically uniformly fin better (by

at most an additive constant) than its Robbins—Siegmund analog. This extends a
result of Pollak and Yakir [8].

def

3. A second example: hypothesis testing and detecting a change of the
shape parameter of a Gamma distribution. As indicated in Section 2,
a mixture procedure seems preferable for the normal mean problem. However,
there are cases where mixtures are hard to apply, such as distributions that do not
admit a conjugate prior, especially when the parameter is multidimensional. In
such cases, a Robbins—Siegmund scheme would be of value. In this section, we
illustrate this by setting up a power one test and a changepoint detection scheme
for the shape parameter of a Gamma distribution. The considerations involved are
typical of more complex problems.

A power one test. Let X1, Xo,... be i.i.d. Gammé, 1)-distributed random
variables, and letHy:0 = 6y, H1:0 # 6o where 0< 6p < oo is fixed. This is
an example where there is no “natural” mixture; the Garggn®) family has no
conjugate prior.

Following the considerations of Section 2, we need to define a sequence of
estimates of that areF,,_1-measurable. A comparison of estimators will be made
in Section 4. In this section we consider a particularly simple yet flexible approach
based upon the method of moments. Let §, 1 < oo and defing, = s/t (= 6o if
s At=0)andb,.1= (nX, +s)/(n+1) for n > 1. Define a Robbins—Siegmund
type of test with

A= []IX7 T 00)/ T 6]
i=1
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as its test statistic and
p,=min{nln>1, A, > eb}

(tp = oo if no suchn exists) as its stopping time. For#£ 6 let

My
n®) = lim E exp{— [ S log(fo (Zi)/ fan(Z1)) — b} }

i=1
where Z;,Z»,... are iid. Gamm@, 1)-distributed random variables,
fo is the Gamm@, 1) density andM, = min{n|n > 1,3 ;1 ,100(fo(Z;)/
Joo(Zi)) = b}.

.....

THEOREM2. Whenfy=s/t (=6gifsAr=0)andb,11= X, +s)/(n+1)
for n > 1, there exists a probability measure G (that dependson 6y, s, ¢) on (0, co)
such that the Robbins—-Segmund test of Hp:6 = 6p, H1:6 # 6 has significance
level

(6) o = Pyy(tp < 00) = (1+0(1)) x y x exp{—b},
wherey = [n(y)dG(y) and 0o(1) — 0 asb — oco. The test has power one.

REMARK. Although the constanyy and the measur& do not admit an
analytic expression, they can be evaluated easily by Monte Carlo, as will be shown
in Section 4. This turns Theorem 2 into a practical tool, as the significance level can
be approximately regulated [by lettidg= log(y /)] oncey has been evaluated.
The choice of, ¢ influences the ASN whef # 6p, as discussed in Section 4.

SKETCH OF PROOF OFTHEOREM 2. Under Py, clearly 6, — 6 a.s. as
n — 00, SO the test has power one, as can be seen easily by the methods of Robbins
and Siegmund [9].
The proof of (6) goes along the same lines as that of Theorem 1QLeé
the measure ofiX1, X», ...} under which the distribution oX,, conditional on
X1, ..., X,—11is Gammad,, 1). We will prove an analog of Lemma 1. The rest of
the proof of (6) is essentially the same as that of Theorem 1, so we omit the details.

LEMMA 1*. Under the measure Q, the sequence {6,} cornverges a.s. to a
positive random variable whose distribution is G.

PROOF By direct calculation, note that und€r the sequencé, } is a mar-
tingale with expectatiofy = s/t (= 6g if s At =0). ThereforeE g (exp{—6,+1}|
Fu_1) > exp(—Eg(On+1]Fr-1)} = exp{—6,}. Thus exp—6,} is a bounded sub-
martingale undeQ and therefore it has an a.s. limit. Consequerly} has an
a.s. limit. It is left to prove that this limit is a.s. positive and finite. (If the limit
were concentrated on 0 and, then Theorem 2 would not be of practical value.)
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Note that
Varg 6, =Varg Eg(0,|F,—2) + Eg Varg (6, F,—2)

=Varg 6y—1+ Egbn—1/(t +n — 1)
=Varg 6,1+ 61/(t +n — 1),

so that

n o
Varg 6, = > (Varg6; — Varg 6;_1) < > [61/(t +i)?].

i=1 i=1

Therefore

[e.@]
P (6 > x) < {2[91/0 + i)Z]} [x—6? = 0,
so that the limiting distribution of,, does not have an atom &d.
Now considerg,(y) = Egexp{—y8,} for y > 0. To show that the limit-
ing distribution of 6, does not have an atom at O, it suffices to show that
[im, e 0n ()] - 0 asy — oo. Eachg,(y) is decreasing iny and by the
bounded convergence theorem is seen to be continuous and to have limit zero
at +oo. Denote the inverse function bzy,jl. If 0 < e <1 and the sequence
Iimnﬁoown(;pf;fl(s)) = ¢. It therefore suffices to show that, for each® < 1,
{¢;1(e)} is bounded above.
Recalling that (exp{—r x Gamma#d, 1)}) = (1 +r)~?,
on+1(y) = EgEg (exp{—y(s + Z Xi + Xn>/(t + n)} Fn—l)
= Eg(exp|—y0u(t +n—21)/(t +n) — 6, 109(1+ y/(t +n))})
=¢,(yt+n—21/@t+n)+log(l+y/ +n))).

i=1,...n—1

Definingy, = ¢, 1(¢) and settingy = y, 11 in the previous line yields
@n(Yn) =€ = Pnt1(Yn+1)
= @n(Vn+1(t +n—1)/(t +n) +109(1+ yu41/(t +n)))
and therefore
Y = Yna(t 1 —1)/(t +n) +109(1+ yp41/(t +n)).
It remains to show thdy, } is bounded above. Letting, 11 = y,+1/(¢t +n),

(7) Yn="Vn+1+ (Iog(l + Vn+l))/(t +n—1).
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Clearly,{y,} is decreasing and must have a limit- 0. Hence

q—Vy2= Mnt1— V) =— Z (Iog(1+ Vn-l—l))/(t +n—1) > —o0.

n=2,...,00 n=2,...,00

Since lod1 + y,+1) — log(1+ q), evidentlyg = 0. Thus
y2= Y (log(1+ yus1)/(t +n—1),

and since lo@l + y,+1) > (1/2)y,41 for largen,

(8) Z Yn+1/(t +n —1) < o0.

For alln
109(1 + Yut1) > Vot — Vo1
and by (7)
Vi > Va1 + ng1— v2 )/ +n— 1)
=Yui1t+n)/(t+n—1) =y 1/t +n—1).
Multiplying by r +n — 1,
Y > Ynt1 — V21 = Ynrt(l— vaga/(t + 1),

so that forn > k sufficiently large the right-hand side is positive and

Yi/Ym+1 = 1_[ Yn/Yn+1 > 1_[ (1 — Y1/ + ”))

n=k,..., n=k,....m

by (8). Thusy,,+1 is bounded above, as required.]

THEOREM 3. Definethe Fisher and Kullback—Leibler information numbers
1(0) = —Eg[3%(log f5(X))/86%] = d?(log T (0))/d6?,
1(0,¢) = Eglod[ fo(x)/fp(x)] = (0 — ¢)d(logT'(0))/d6 —log[T'(8)/ T (¢)].

Let {0,} be a sequence of F,_j-measurable estimators of 6 with asymptotic
efficiency « (9) in the sense that

Ey (0, —0)2:(1+0(1))/[n1(9)K(9)] asn — oo for all .
Assume that

Eg(6,—0)*=0n">  asn— oo
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and that there exists ¢ > 0 depending on 6 such that
> Epl(logs, HTL(6, < )] < o0.

Let 7, be defined by the estimator sequence {6,,}. Then for all 6, asb — oo
Egt, =1(6, 90)_1(b + (Iogb))/(ZK(G)) + o(logb).
SKETCH OF PROOF To make the writing easier, ugé as a shorthand far,.
Standard estimates show that
Eg |OgAN =b+ 0,

and lettingA? = fy(X1, ..., Xn)/foo(X1, ..., X,), it follows using Wald’s equa-
tion that

1(0,00)EgN =b + O(1) + Eg(log A}, —logAy).

Applying the martingale optional sampling theorem flog A% — logA, —
> k=1....n 10,6}, itremains to show that

EQ( > 1, ek)> = (logh)/(2«(0)) + o(logb).

k=1,...,.N

Fix 0 < ¢ < 6. To verify that there is ad > 0 such that for alp
[1(0.¢) — 5(6 —0)°1(0)] < Alp — 0>+ (logp™HT1(¢ < 0),

note the following: the inequality holds fer< ¢ < 6 + ¢ by Taylor expansion of
logT' (¢) abouty = 0; it holds for 0< ¢ < ¢ since

logT'(¢) =log'(1+ ¢) — log¢ < const+ (logp~1)*;
and it holds forp > 6 + ¢ since Stirling’s approximation yields @s— oo,
1(6,4) <¢log + 0(#) < 0(1$ —0°).
Thus

Eg Y (10,60 — 36— 0%!(@))‘

k=1,...,.N
< > (Al — 6P+ (ogb H 1 < 0)).
k=1,...,00

.....
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Routine modifications of the arguments used to prove Lemmas 13, 14 and 16 of
Robbins and Siegmund [10] establish that

EgN ~b/1(,60) asb— oo
and that by using the definition &f(9),

E9< > <9k—9>2>~ > E¢ (6 — 0)* ~ (Iogb)/[1 )k (6)].
k= k=1

,,,,, [b1(6.60)~1]
O

Detecting a change. Now we suppose that when the process being monitored
is in control, it yields i.i.d. Gamma-distributed observations, and when the
process is out of control the shape parameter changes. Formally stated, an
abrupt change may occur at timeg in which caseX1, X»,..., X,—1 are
i.i.d. Gamma#p, 1)-distributed random variables ani,, X,,1,... are i.i.d.
Gammao, 1)-distributed random variables (which are independent of the first
v — 1 observations). The initial shape parameigris assumed to be known,
but the post-change parameteas well as the changepointare unknown. We
will let P, and E,, denote probability and expectation under this scheme, where
v = oo denotes no change ever taking place. If the post-changere known,
the Shiryayev—Roberts changepoint detection scheme would define the sequence
of statisticsR,f = k=1..n JoXks ..., Xu)/ foo(Xk. ..., X,) and the associated
stopping timeNf‘ =min{n|R? > A}. The sequenceR? — n} is a P,,-martingale
with zero expectation, a structure used to evaluate the ARL to false alanf.of
When 6 is unknown, we propose to estimate it in a way that will preserve the
martingale structure. Again the idea is to substitjte;-measurable estimates for
thed used in the likelihood ratio oX,.

We present two examples. The first uses a method-of-moments estimador for
which leads to simple calculations and a correspondingly simple exposition of
the issues involved in proofs. Our second example uses maximum likelihood
estimation, which is asymptotically efficient but requires more calculation to apply
and more delicate mathematical analysis. We provide a Monte Carlo comparison
of the two methods in the next section.

EXAMPLE (An SRRS procedure based on estimation by the method of
moments). Givens, t > 0, define

en,k=< 3 Xi+s>/(n—k+t)
i=k
forn >k, wherety y =6pif s At =0,

9) Ank= TT [for(X)/fa(X0)],
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Rn= Z An,k7

k=1,...,n
Na =min{n|R, > A},

where the stopping threshollis fixed.

Results regarding the operating characteristics of this SRRS procedure are
stated in Theorem 4, whose proof is given in the Appendix. Part (iii) of Theorem 4
illustrates the effect of the asymptotic efficiency of the estimation procedure on the
delay to detection.

THEOREM 4. For a Shiryayev—Roberts—Robbins-Segmund scheme defined
by (9),

() EcoNg>Aforal0< A < o0,
(i) Im s— 00 ExcxcNa/A =1/y,where y isthe sameasin Theorem 2,
(iii) sup, Eg,y(Na — v + 1Na > v) = {logA + i(oglogA)/k(®)
+ o(loglogA)}/ Eg 10g(fo (X)/ foo (X)),

where« (0) =1/(601(0)) and I(6) isFisher information.

REMARK. Theorem 4 provides a basis for applying this Shiryayev—Roberts—
Robbins—Siegmund changepoint detection scheme. If one requires an ARL to false
alarm of at leasB, one can obtain a (conservative) scheme by seftiag B, or,
after evaluating/, a scheme that approximately satisfies the condition by setting
A = By. It is possible to obtain asymptotic expressions for the expected delay
to detection, but they have constants which have to be evaluated by Monte Carlo
separately for each post-change parameter v@juand since the expressions do
not yield good enough approximations for cases of applied inteBest the order
of magnitude 18-10), we do not present them here.

ExAMPLE (An efficient estimating sequence). Theorem 3 implies that better
performance can be realized if the estimating sequence is efficient. In this
subsection, we apply the (efficient) maximum likelihood estimator sequence
instead of the method-of-moments type of sequence studied in the previous two
sections. In Theorem 5 we give a formal definition of the procedure and state
results regarding its operating characteristics. Proofs appear in the Appendix.

Let Q" be the measure ofX1, Xo, ...} under whichX, ~ Gammaddg, 1) and
for n > 1 the distribution ofX,, conditional onXy, ..., X,,—1 is Gamma&¥g,, 1),
where ¢, = the solution of(}_,_; _,_1109X;)/(n — 1) = EglogX, which is
easily seen to be the maximum likelihood estimaté based onXy, ..., X,,—1.

THEOREMS5. (a@)Under the measure Q”, the sequence {6, } converges a.s. to
a positive random variable whose distribution we denote by G.
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(b) For a Shiryayev—Raoberts—Robbins—S egmund scheme defined by

Qn,k:solutionof< > IogX,-)/(n—k):EglogX
; 1

for n > k, where 6 ;. = 6o,

Anr= ] [fou(X)/foo(XD)],

i=k,...,n

Rn: Z An,ka
k=1,...,n

Na=min{n|R, > A},

the following hold:

(i) EcoNg>Aforal0< A < oo.
(i) iMm om0 EscoNa/A =1/y, Where y = [1(0)dG () [n(-) is defined in
Section 3].
(iii) sup, Eg,y(Na — v+ 1Ng >v) ={logA + %(IoglogA) + o(loglogA)}/
Eglog(fo(X)/f00(X)).

REMARK. For the maximum likelihood procedure, one can retain the flexi-
bility of the method-of-moments produced by introducing the parameterby
definingf, x = solution of(s +>";_x . ,_1109X;)/(t +n —k) = Eglog X. Also,
it may make sense to bound the allowable sét®fo be bounded away from 0 and
from oo, and perhaps also frofy. Although this may make the expected delay
to detection inefficient for the truncated parameter values, one can argue that they
are not of practical interest, whereas their truncation will improve this scheme’s
performance for the retained set of parameter values.

REMARK. For all SRRS changepoint detection procedures designed for the
case that the’,-distribution is known, SupEg (N4 — v + 1|N4 > v) is attained
atv = 1. The reason for this is that thig— j-behavior off3 ", _; , Auktn=j....c0
conditional onF’;_1 is the same as the,_;-behavior of{} ;1 , Apiln=1,. . c0-

.....
.....

.....

on{N4 > j}, sothatforallj > 1

Ey—1(No—141) = E,_iNy = E,—j (N’ — j + 1|N4 > j)
> Ey—j(Na—j+1Na=>j}
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4. Monte Carlo. In this section we present a numerical illustration of the
methods proposed in the previous section. We suppose that the pre-change
distribution is standard exponential, thatds = 1. First, we consider the schemes
defined byd1 =1, 6,.1= X, +1)/(n+1) (i.e.,s =) fort =0, 0.5, 1.

The first step is to evaluate the constan{see Theorem 2). For each value
of ¢, 5000 replications of eXp-(log(A,) — b)} were run for several ranges bf
with {X;} distributed under the measug@ of Lemma X. The average of these
replications is our estimate ¢f. The results are summarized in Table 1. (See the
Appendix for a detailed description of the method of simulation.)

It seems that for 16< b < 25 the expectation of exp-(Iog(A,) — b)} is
nearly constant and hence presumably close to its limiting value. We obtain
that y ~ 0.425,0.547,0.606 for: = 0, 0.5, 1, respectively. Next, we ran 10,000
replications to calibrate the Shiryayev—Roberts—Robbins—Siegmund detection
scheme to have 500, 750, 1000 as the ARL to false alarm. The results are
summarized in Table 2. By Theorem 3, the raticdofo the ARL to false alarm is
asymptotically equal t, and, judging by Table 2, the valuesAteem to be large
enough for the asymptotics to yield good approximations. In other words, setting
A =y x (desired ARL to false alarm) will achieve the desired ARL to within very
few percent. This makes Theorem 3 a practical tool: rather than calibratfog
each ARL separately (which is computationally demanding), it is enough to run a
simulation to evaluatg (which takes just a minute or two) and multiply the result
by the desired ARL.

Table 3 presents a comparison of the (maximal) expected delay to detection of
three methods-of-moments-based procedures of the kind described in Theorem 4
(s =t andtr = 0,0.5,1) calculated as the average of 10,000 run lengths to
detection (when the change is in effect from the start) for each of the post-change
parameter valueg = 0.35,0.5,0.65,0.8,1.25,1.5,1.75, 2,25, 3, for ARL to
false alarm 1000. The differences are not dramatic, though the cheideseems
to give overall performance slightly better than the others.

Also included in Table 3 is a simulation study of the maximum-likelihood-
based scheme. The maximume-likelihood-based scheme performs slightly better
overall, though it has larger delays to detection when the post-changdess

TABLE 1
Monte Carlo estimates of y for three values of 7, averaged over threeintervals

b-interval t=0 t=0.5 t=1

[Bg B1] est. y s.e est. y S.e. est. y S.e.

[10 15] 0.4290 0.0044 0.5472 0.0039 0.6065 0.0035
[15 20] 0.4256 0.0044 0.5502 0.0039 0.6050 0.0036

[20 25] 0.4215 0.0044 0.5430 0.0040 0.6061 0.0036
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TABLE 2
Levels A (evaluated by Monte Carlo) designed to achieve desired ARLs to false alarm
and their relation to y, for various values of ¢

t 0 0.5 1
ARL to false

alarm 500 750 1000 500 750 1000 500 750 1000
A 221 320 440 275 410 555 309 456 578
A/ARL 0.442 0.427 0.440 0.550 0.547 0.555 0.618 0.608 0.578
y 0.425 0.547 0.606

than 1. The calculation of the many maximum likelihood estimates required to
perform the SRRS procedure is of course considerably slower than the calculation
of the method-of-moments estimators. For eadndn the estimate is obtained

by solving numerically for the value @f such thaf™’(9)/ ' (9) equals the average

of log(Xy), ..., log(X,).

A central question to be answered is how well do the procedures proposed here
compare with simple schemes. For example, since the problem we have been
considering is a two-sided problem (the post-change valug wiay be either
larger or smaller thamdg), a simple alternative method is to choose two values
0 < 01 < 6g < 62 < 00, put a prior probability of 50% oA and ond,, and apply

TABLE 3
P-M P-M P-M

Procedure t=0 t=0.5 t=1 MLE (0.8, 1.25) (0.65, 1.5) (0.5, 2)
Truea

0.35 102 92 95 9.6 154 101 82
0.50 189 176 177 182 254 175 153
0.65 402 380 37.2 386 437 336 334
0.80 1127 1049 1016 1085 949 94.0 1223
1.25 1076 1084 1059 982 932 944 1503
1.50 408 416 411 394 480 360 401
1.75 236 24.3 24.3 233 348 236 205
2.00 166 170 171 163 287 185 142
2.50 102 106 108 103 224 138 9.6
3.00 75 7.8 80 7.6 193 116 7.6
A 440 555 578 632 838 700 565

Monte Carlo: Each cell 10,000 rung; = ARL to false alarm= 1000. (Worst) Average delay for
various procedures and various values of (twue)

Estimation:6,, y = (X j=k k+1...n—1Xi +1)/(n —k+1).

Pair-Mixture: (a*, a**); P(a = a*) = P(a = a™*) = 1/2.
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the corresponding Shiryayev—Roberts rule; that is, the control statistic is
R(n) = 5Re,(n) + 3Re,(n),

where Ry, (n) are the usual simple Shiryayev—Roberts statistics designed for
detecting a change frompy to 6; (j =1, 2); that is,

Ro;(n)= Y Agg;(n), =12
k=1,....n

where

Aro, ) =X %@/ TO)1, =12
i=k

and the stopping time is
Sa=min{n|R(n) > A}.

Based on 10,000 runs, we calibratddto yield ARL to false alarm 1000
for each of the three pair¢0;, 62) = (0.8, 1.25), (0.65,1.5), (0.5,2) (with
6o = 1), and ran 10,000 simulations of delay to detection (when the change
is in effect from the start) for each of the post-change parameter values
9 =0.35,05,0.65,0.8,1.25, 15,175, 2, 25,3, as above. The results are in-
cluded in Table 3. Not surprisingly, the farther apéstand 6, are, the shorter
the expected delay to detection for extreme values of the post-change parameter
and the longer the delay for values clos&§oOf the three examples chosen, the
one with (61, 82) = (0.65, 1.5) seems most similar to the SRRS= 1) scheme,
which for the values 06 chosen requires about 15% longer delaydanear6g
and about 10—-30% shorter delay for extreme valuegs of

Finally, in Figure 1 we present histograms of the distribut@rof the limit
asn — oo of 6, under the measur@ (for t = 0, 0.5, 1). The intervals on the
horizontal(9) axis have width 0.1. Thi& can be regarded as a “natural” prior on
the post-change, which could have been used as a mixing measure had mixtures
been technically feasible.

It is important to note that we are not trying to make a case for the SRRS
procedure as the method of choice for the specific problems considered in this
section and the preceding section. Rather, these sections are meant to introduce
the SRRS schemes, show how to apply them, illustrate issues related to proofs
of their asymptotics and indicate that they can be effectively used in situations
where mixtures are difficult to handle, resulting in at most a slight decrease
in efficiency. For single-parameter problems like the Gamma shape parameter,
even simpler procedures may show quite acceptable performance (though not
asymptotic efficiency), as illustrated by the simulation results for well-chosen
mixtures of two simple Shiryayev—Roberts statistics. However, in multiparameter
problems such approaches lose their simplicity and transparency, and mixtures are
often intractable, in which case the SRRS approach offers worthwhile advantages.
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Fic. 1. Histogramsof simulation of G.

5. A multiparameter example. Consider a situation where one monitors
simultaneouslym independent processes, th of which yields independent
Gammafy = 1, B;)-distributed observations when the processes are under control
(B; are known), and, either by design or by the nature of the problem, the
observations are taken omnevector at a time, the first being observations taken
simultaneously from the processel. .., m, the second starting with a second
set of observations from the processes. 1, m, and so on. A change, if it takes
place, may affect some or all of the parameter values, which may be different for
the different processes.

For illustration’s sake, imagine that the observations are taken one a day, and,
when everything is under control, the distribution of an observation is exponential
with a parameter that depends on the day of the week in which the observation
was made. After standardization, all of the observations have a Génm4, 1)
distribution (pre-change). If there is a changepoint, then subsequent observations
are assumed to have a Gamhdl) distribution, where the post-change shape
parameter depends on the day of the week. In other words, changes may be in
the # value for one of the days, for some of them, or even for all of them, and
the post-change parameter values may differ for different days. (The observations
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are all assumed to be independent.) We assume that the observations are obtained
weekly, and a change may take place only between weeks./hef&, and the
observations are vectol§, whereX;; denotes the observation on tiith day of

theith week. For a method-of-moments approach, define

9,,,,{,,=< 3 Xij+s)/(n—k+t)
i=k

forn >k, wherefy ; j =6p=1if s A1t =0,

Ang = I1 [foir; (Xij)/ foo(Xij)],
i=k,...n;j=1,..7
Rn = Z AVL ks
k=1,....n

Nas =min{n|R, > A}.

For a maximum-likelihood approach, takg,, ; = solution of EglogX = (s +
Yiek...n—1100X;j)/(n —k +1) for n > k, andby x,; = 6o = 1.

Analogs of Theorems 4 and 5 are valid, the only change being/thais to be
recalculated (by Monte Carlo, in a manner analogous to Section 4). The application
of the schemes is straightforward, requiring a short computer program.

In this example, even a discrete mixture is impractical. The simplest reasonable
choice would put a prior of A3, 1/3, 1/3 on 6p = 1 and somef; and 6>,
independently for each of the seven days of the week, leading to a discrete mixture
of 3" = 2187 points [deleting, perhaps, the poiég, o, . . ., Ho)]. (One needs at
least thre&’s to allow for the fact that there may be a change in only a subset of
the parameters.) Schemes that put weight on more than dfgege even more
cumbersome. Schemes that reduce the number of points will be inefficient for
detecting certain constellations of change. On the other hand, the SRRS scheme is
intuitive and fairly easy to implement. Furthermore, it has the flexibility of easily
accommodating prior knowledge of the region where post-change parameters may
be. For example, if the only possibility of a change is for the shape parameter
to increase, the estimator can be restricted te 6p. Or, if for some reason it
is clear that the post-change shape parameter will be larger on weekdays than
on weekends, then the estimators may be modified to reflect this. This may be
a reason to consider SRRS schemes even in problems where in the nonrestricted
settings mixtures are feasible; if restrictions are added, integration with respect to a
conjugate prior may prove to be much less tractable than in an unrestricted context.

6. Remarks. 1. Intuitively, one would expect the Robbins—Siegmund type
of rule to do somewhat worse than its mixture counterpart. For example, in the
Gamma shape parameter problem, if one takesO, then the parameter value
used for the first likelihood ratio equals the initial pre-change parameter value, so



NONANTICIPATING ESTIMATION 1441

that the (estimated) likelihood ratio of the first observation is unity no matter what
the value of the first observation is. In other words, one “loses” an observation,
something which does not occur when employing the mixture analog. The decision
whether or not to stop sampling at théh stage is based on a sufficient statistic
under the mixture rule but not under the Robbins—Siegmund rule. Nonetheless, the
latter method seems to perform nearly as well as the mixture rule, as indicated
by Theorem 2 and the discussion at the end of Section 2. We ran a simulation to
compare the SRRS and its mixture analog for detecting a change of a normal mean.
(Here mixtures are easy to implement; we just wanted to see how the methods
compare in a “standard” context.) We assumed the variance of the observations to
be 1 and the pre-change mean to be 0. By numerical calculations of the variance
of G, of Section 2,Gs—0,/=0.42626= N (0, 1). We constructed the SRRS scheme
(with s =0, t = 0.42626) in the same manner as is done in (9) for the Gamma
example and compared it by simulation to the mixture rule witi(@, 1) mixing
measure. The results are recorded in Table 4. (The,cas@ gives the simulated
ARLs to false alarm. Fop > 0 v was taken to be 1.)

Table 4 indicates that the time to detection is, as to be expected, somewhat
longer for the SRRS rule, but the difference is not very great.Fer0.25 the
difference is insignificant, and for the other valuespothat were investigated,
over the rangeu = 0.5 to u = 3 there is a remarkably consistent pattern: the
ARLs of the SRRS rule are about 0.4 or 0.5 larger than those of the mixture rule.
(The ARLSs to false alarm for the two rules are roughly equal for eadh the
range investigated, with the mixture rule having an ARL about 1-2% larger than

TABLE 4
Smulated ARLs for detecting a change of a normal mean, 40,000runs

A n=0 n=0.25 n=0.5 n=0.75 n=1 n=15 n=2 n=3
400 587 108 385 209 1357 755 511 318
599 1047 381 205 1313 711 468 273
450 661 102 396 213 1382 7.66 517 321
673 1090 391 209 1338 722 474 276
500 739 110 405 217 14.05 776 523 324
748 1129 401 213 1360 7.32 480 278
550 813 1165 413 221 1425 7.84 528 326
823 1163 409 217 1380 741 485 281
600 886 1197 421 224 1444 7.93 533 329
900 1197 416 220 1397 7.49 490 283
650 961 1238 428 227 1462 800 537 331
973 1227 423 223 1414 757 494 285
700 1037 12% 434 230 1477 807 541 332
1052 124 430 226 1430 7.64 498 287

s.e. 043 035 011 005 003 0014 Q008 Q004

(For eachA, first row= SRRS, second row mixture.)



1442 G. LORDEN AND M. POLLAK

the SRRS. This difference is small, and adjusting for it hardly changes the picture.
The overshoot effecti8cNa/A ~ 1/y ~1.5)

2. Although we conjecture that the SRRS scheme is never better than its mixture
analog, the following example indicates that it is in some cases no worse.

Let X; ~ Binomial(1, p) i.i.d.; Ho: p = po, H1:p # po. Supposep1 = s/t,

Pny1l = (s + > ;=1 , Xi)/(t +n) where O< s <t < oo are constants. Note
that the behavior of the sequen&a, X, ... [with the conditional distribution
of X, given the past being Binomid, p,,)] is identical to that of the sequence
X1, X2, ..., where, conditioned omp, the X; are i.i.d. Binomia{l, p) variables
and there is a Beta, ¢ — s) prior on p. In this setting clearlyp, — p a.s. as
n — oo. HencegG is Betds, r — s) (the same as the prior gm). In this example
SRRS is identical to its mixture counterpart.

3. When there is a suitable invariance structure, the Robbins—-Siegmund
technique can be applied also when the baseline is unknown. To illustrate
this, consider again the change of normal mean problem as in Remark 1, but
suppose that the initial baseline (the pre-change mean) is unknown. Invariance
considerations would base changepoint detection on the seq{ignce {X; —

X1} instead of the original sequend#;} (see [7]). The unknown post-change
parametelFY, can be estimated by¥y +--- + Y,—1)/(n — k).

4. Usually there is no obvious natural prior for a mixture rule, whereas there are
natural estimates. At least in theory, in such cases the estimates can be regarded
as inducing a natural prior. For instance, in the example treated in Section 2,
if X is considered to be a natural estimate of the mean, therr = 0 and
Gs=0.1=0= N (O, 72/6). So one can argue that a natural mixture rule is one with a
N (0, 2/6) prior onpu.

5. For a practical application, it is not imperative to prove an analog of
Lemma 1 (though its validity is an ingredient in ensuring asymptotic optimality).
Heuristically, the overshoot correction can be expected to be nearly a constant
function of A onceA is reasonably large, and the constant can be estimated by the
simulation methods discussed in Section 4.

6. Another approach to evaluation ¢f, the limit value of the overshoot
correction, has been proposed by Yakir and Pollak [19]. That method has the
potential to allow error estimates, but in the problem of detecting a change in
the shape parameter of the Gamma distribution, the error estimates proved to be
difficult to apply.

7. Deleting the last observation from use in the estimation process preserves the
martingale structure of the Shiryayev—Roberts statistic. Initially, it seems unnatural
to exclude the last observation: after all, this seems to entail a slight loss of
efficiency and foregoing sufficiency. The following example shows that there is
more involved than mere preservation of a mathematical (martingale) property:
at least in the hypothesis testing case, inclusion of the last observation in the
estimation sequence can wreak havoc with the level of significance.
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As in Section 2, consider a power one testhf. X; ~ N (0, 1) versusHy : X; ~
N(u, 1), whereX; are i.i.d. random variables andAu € (—oo, o0). Here the

.....

.....

.....

implies thatPy, (N4 < oo) = 1 regardless of the value df, so that one loses the
capability of having a nontrivial probability bound on the level of significance.

One stands to lose even if one usesittiemaximum likelihood estimator for the
nth likelihood ratio only—that is, write\,, = exp{>_;_1 (i X; — 12/2)} with
wi =3 j=1,.iX;/i, and defineN4 = min{n|A, > A}. One can show that here,
t00, Pr,(Na < 00) = 1 regardless of the value df. (Sketch of proof: Show that
Enolog A, = 3(logn)(1+ o(1)) and Vagy, A, = 3(logn)2(1+ o(1)) asn — oco.

Argue that for O< ¢ < 1, asymptoticallyPy,{log A, > & x %Iogn} > § for some

§ > 0. Then break the time axis into intervgls n1], [n1+ 1, n2], [n2+ 1, n3], ...
large enough so that lag,, are “almost” independent, and conclude that for any
fixed A, Py {A, > A for some 1<n < oo} =1.)

This phenomenon is not as marked in the changepoint detection context.
See [15].

8. In the multiparameter case, our methods are more flexible than indicated.
For example, reconsider Section 5. Our methods can be designed for the case that
observations are taken on a daily basis, and the change may occur between days
rather than only between weeks.

Let the observations be label&d, wherei is number of days since the onset of
changepoint detection, and defthg. = (s + X7+ Xyn—14+- -+ Xpn—7,)/({t +71)

[or defined, «,; = solution of EglogX = (s + logX,,—7 + l0ogX,—14 + --- +
09 X,,—7:)/(t +r)l wherer =r(n,k) = [(n —k)/7] and A, x, R, and Ny are
asin (9).

Here, too, analogs of Theorems 4 and 5 are valid, withhaving to be
recalculated (by Monte Carlo, in a manner analogous to Section 4). The application
of the schemes is straightforward, requiring a short computer program.

9. The argument used to prove Theorem 5(a) can serve as a model for dealing
with many similar problems. The essential ingredients are that the estimigtgrs
satisfy an equation of the form

Eg+ T(X)=I[T(X1)+---+T(Xn)l/n

n+1

and that an analog of (15) holds, that is,
Vary T (X) §a+b(E9T(X))2 for all 6.

7. Conclusion. We propose that the SRRS scheme is an efficient detection
scheme, and should be useful wherever mixture rules are desired but hard to
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implement. The construction and application of an SRRS rule is simple: all
one needs is a sequence of (preferably efficient) estimators for the post-change
parameter based on the first- 1 observations. Each such estimator will be used to
construct an estimated likelihood ratio of tt#h observation. The likelihood ratios

are used to construct a Shiryayev—Roberts statistic, as done in Section 3. In order
to achieve an ARL to false alar, a conservative rule will stop and declare a
change to be in effect when the Shiryayev—Roberts statistic first ex@eddaule

that attainsB approximately as its ARL to false alarm will stop and declare a
change to be in effect when the Shiryayev—Roberts statistic first exgeedBy .

The constany has to be evaluated (usually) by simulation of tests of hypotheses
as in Section 4, but this is the only simulation required, and it takes very little
computer time.

APPENDIX
A.1l. Sketch of proof of Theorem 4.

SKETCH OF PROOF OF THEOREM 4(i). Note that {R, — n} is a
Px-martingale with zero expectation, and by the optional sampling theorem
Es(Ry, — Na)=0. Since by definitionRy, > A, this implies thatE,Na =
E«(Ry,) > A, which establishes (i).

SKETCH OF PROOF OFTHEOREM 4(ii). We follow along the lines of the
proof of Yakir [18], Theorem 3 (and Theorem 1). Before introducing notation in
(11) below, we sketch the ideas of the proof.

Break up the time axis (the positive integers) into pieces of mizand show
that the Py -distribution of N4 can be approximated by using the distribution of
the first block (ofm observations) where stopping occurs. More precisely, given
an integerj, the idea is to define (wheré\ B denotesA N B¢)

Sim=1{jm < Na}, Sim=Sjm\ Sj+Lm,
and to show that
(10) 1-e)ym/A < Poo(Sj,mﬁj,m) <A+e)ym/A.
This enables approximation of4 by
m x {a Geometri¢cp = ym/A)-distributed random variabje

fromwhichE,oNs ~m/(ym/A) = A/y follows.
In order to carry out this program, it turns out that one needs

logA <m < A.
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The key ingredient for proving (10) is a measure transformation that will be shown
to yield

Poo(SO,m|§0,m) = Poo(Na <m)

= > Er(exp{—(logRn, —l0gA)}; {k < Na <m})/A.
k=1,....m

Since logA « m, for “most” k’'s P{k < No <m} = 1. Also, a renewal-theoretic

argument will show that the asymptoticA — oo) behavior (underp;) of

(logRy, —l0gA) is the same as that of the log-likelihood ratio statistic in the

context of the power one test. TherefoRs, (S, |So.m) ~ my/A. The argument

is extended to generaﬂw(sj,mﬁj,m) by induction on;.

In order to make the analogy to Yakir [18] more transparent, note that
the Gamm&, 1) family can be transformed into an exponential family with
canonical form: ifX ~ Gammad, 1), then a reparameterization=6 — 6 and
an appropriate affine transformatiofn® of log X yield a family of probability
measures ok * with densities

fy(x) =explyx — ¥ (y)} folx), y € (=6, 00),

where ¢ (0) = /(0) = 0. With this notation, the estimatoy(n, k) (for the
parameter of thath observation under the putative= k) dictated by (9) is

>
=k,...,n

1

y(n,k):( X,-—i—s)/(n—k—H)—@o
1

forn >k, wherey, y =0if s At =0.

Roughly emulating Yakir's notation, let
Z; =yX; =y,

dey("’k)/dPoo=exp{ 3 z,.y("”‘)},

i=k,...,n

= Y ar"Psap,,
k=1,...,n

Ry= ) exp{ > Zl.y("’k)}

k=1,...,n i=k,...,n
Na =min{n|R, > A},
a=IogA,

M(A):minin‘ Z Ziy(i’l)zlogA}:rAs

QO = measure analogous to tiiemeasure of the proof of Theorem 1,
appropriate to the Gamnia 1) context dictated by (9), applied
(11) to X5, Xiq. ...
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H = asymptotic distribution (under the meas@lg_1)
of the overshoot

y = /exp{—x}dH(x).

We obtain an analog of Yakir's [18] Lemma 1:

LEMMA Y1. Letm =m(A) bea sequence that satisfies
A/m— oo and (logA)/m — 0 asA — oo.
Then
12) Poo(No <m)/Po(M(A/m) <m)—1 as A — oo.

SKETCH OF PROOF For any stopping time&v,

Letr(n) =logR,. Now
13 dp; NP R =f exp{—(r(Na) —a)l dQx/A.
(13) {ksNAgm}( k /RN) (k=N =m] p{—(r(Na) —a)}dQx/

By an argument analogous to the proof of Theorem 1, the denominator in (12) can
be shown to be

Poo(M(A/m) <m) = (ym/A)(1+ 0(1)),

sincem grows faster than lod. Therefore, it will suffice to show that, for most of
thek’s, the value of the integral on the right-hand side of (13) is approximately
Note that

A

Ri—14n = @Xiknk—Lin

y(@.J) Yk _ 5y@.))
: [ Z eXizjnk-1Zi " o= Nickok—14n(Zi =277 4
e

’

ik G j ik
+ Z e~ Li=k,...j-1 Z{w )eZi:_j,,.,,k—1+n(Zi" ¢ j)—Z,vw ))i|
j=k41,...k—1tn
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so that

rk=14+m— S 22D Logiwok, n) + 1+ Wik, n)].
i=k,...k—1+n

Observe that for > ¢ > b
y(lvc)_y(lvb)

=< 3 Xu+s>/(i—c+t)—<u_z Xu+S>/(i—b+t)

u=c,...,i—1 =b,..., i—1

=|:(c—b)s+(c—b) >
x[(—c+0)i—b+0D]1,

and argue thaWy(k, n) — Wy(k, c0) and W1(k,n) — Wi(k,00) a.s.(Qx) as
n — 0o, where bothWy(k, 00) and W1(k, oo) are a.s(Qy) finite. Also note that
forr >0,u1>0,u2 >0,

[log(r + 1+ u1) —log(r + 1+ u2)| < [log(l+ u1) — log(1 + u)|.

These relations imply that Theorem A.7 of Siegmund [14] applies, uniformty in
and in the value oR;_1. So (nonlinear renewal theory implies that) the overshoot
r(Na) — a, given the value ofR;_1, has the same asymptotic distribution as the

Xy—(G—c+1) Y Xu}
1 c—1

u=

.....

An argument identical to that of Yakir ([18], first half of page 276, verbatim),
after replacing Yakir'sR(j,y), r(j. y), N(A,y), dP andy by R;, r(j), Na,

a’Pky(N’k) andy, completes the proof of Lemma Y1. With the same replacements,
the rest of the argument of Yakir (verbatim, from the middle of page 276 until the
end of Section 2 on page 278) accounts for our Theorem 4(ii).

SKETCH OF PROOF OFTHEOREMA4(iii). One has to check that the conditions
of Theorem 3 are satisfied. It is straightforward to check tHat, — 6)* =
0(1/n?). As for the other condition, take = 6/2, write m = n — 1 and note
that

Eg(log™ (6, 1)1(6, < ©)
<logln —1+1)Py(6, <6/2)

.....

x]l( > X,-+S§n—1+t)1< > X,-+S§l),

i=1,...,n—1 i=1,...m
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and, sincelogx| <1/x forO<x <1,

.....

le< Xi+S§”l—1+l‘>]l< 3 X,-+S§1>
i=1,...,n—1

i=1,...m
< / (1/x)(x%"=1/ T (@m))e™ dx
= (1/(6m)) P(Gammadm — 1,1) < 1).
Apply standard manipulations of the Gamma distribution to obtain

Y Eg(logt @, 1)1(6, <0/2) < oo.

n=1,...m

A.2. Sketch of proof of Theorem 5. Once (a) is proved, the rest follows
along the same lines of the proofs in the cases considered in the former sections.

PROOF OFTHEOREM5(a). LetY,=}";_;  ,(logX;)/n and note that
Egp-(log Xy 11|Fy) = Eg; 109X =Y.

Because(Y,} is a Q"-martingale, general martingale considerations imply that
Vary Y, increases im [since 0< EpEp((Yy41 — Y)2|F,) = Varg Y41 —
Var,-Y,]. Since

Eg[(10gX,11 — Y,)?| ] = Varg; , logX,
by writing
Ynp1="Yn + (09 Xpt1 —Yu)/(n + 1),
squaring both sides and taking conditional expectations one obtains
(14) Eg (Y2, 1|Fy) = Y2 + [Varg, , logX]/(n + 1)2.
For X ~ Gamma®, 1), one obtains by standard considerations that
OEglogX - —1 and #°VaplogX -1  asf — 0,

so there is &@* > 0 such that Varlog X < 2(Eylog X)2 for 6 < 6*. Also, since
0 Varglog X — 1 asf — oo and Vap log X is continuous irf, there is a constaiat
such that Vaylog X < ¢ for 6 > 6*. Thus

(15) VarglogX <c+2(EglogX)?  forall 6.
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Combining (14) and (15) and taking expectations, one obtains
EgY21 < Eg Y2+ Eglc+ 2(Eq,, 10gX)%]/(n + 1)
= EgY?+ Eglc+2Ep Y2/ (n +1)°

=(142/(n+1) )EQAYn +c/(n+ 1%
Since Vag ¥, was shown to be an increasing sequence,
EgY?>Vary Y, >Vary Y1 > ¢/8
for somes$ > 0, and hence
EyY, n+1 <[1+@+8)/(n+1)? 1E g Y2,

This shows thatE - n+l} is bounded, since the infinite produid,_; »  [1+
(24 8)/(n + 1)2] converges. Hencgvar,- Y, } is bounded (and, being monotone,
is convergent). It follows that the martingdlg,} has an a.s.Q") finite limit, and
consequentlyd,+1} has a finite positive limit.

SKETCH OF PROOF OFTHEOREM 5(b)(i). As in previous case$R, — n} is

a P,.-martingale with zero expectation, and Theorem 5(b)(i) is established by the
optional sampling theorem. To see that the conditions of this theorem are met,
it suffices to show thatv4 is bounded from above by consa geometrically
distributed random variable. Note that

n

Z Angk>App-1= in

k=1
Since6, ,_1 depends only orX,_1, clearly ¢, depends only orX,_; and X,,.
Therefore,&o, &4, &6, ... are i.i.d. random variables undét,,, and thusN4 <
min{n|n = 2m, &, > A}, which is 2x a geometrically distributed random variable.

0T 00)/ T Onn-1) Fhi

PROOF OFTHEOREM5(b)(ii). The proof follows along the same lines as that
of Theorem 4(ii) and is therefore omitted.

SKETCH OF PROOF OFTHEOREM 5(b)(iii). It suffices to show that the
conditions of Theorem 3 are met.

Let ¢(y) = EylogX = [dI"'(y)/dy]l/T'(y), and let ;1 denote the inverse
function of ¢. Observe thatt(y) = logy + O(1) as y — oo, that ¢'(y) =
d¢(y)/dy = VarylogX = (14 o(1))/y asy — oo and that VaslogX is a
decreasing function of. Therefore, sincé: ~1(¢)/dt = 1/¢' (¢ ~1(z)), there exists
a finite constant, > 0 such that for > E4,log X

0<¢71 ) — ¢ Y(Eglog X)
(16) < (1 — Egylog X)d¢ (1) /dt
< (t — Egylog X)c1e'.
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Forp >0, lets > 9(’)’. Sinced; 1 = ¢~ 1(logX ) (wherelog X = Y qlogX;/n),
Egyl0n+1— 6ol”

(17) 5 o
_ fo Pag(1051— B0l” > 1) di + /8 Pyo(16311— 6ol? > 1) dt.

The standard derivation of the asymptotic distribution of the maximum likelihood
estimator coupled with large deviation analysis yields that

)
(18) fo Poo(16n+1— 60l” > 1) dt = (1+0(1)EIN (0, D)|? (n1 (0)x (6)) "/~

As for the second integral in (17), let> 0. It follows from (16) that there exists a
constant, > 0 independent of ands such that

o0
/5 Pay(16711— 60l? > 1) di

o0 [
5/ Pyy((Tog X — Eg,log X)Pe?09% P > 1) dr
5

o0
:/ Peo((—IOQX — Eg,log X)Pep[(IogX—EgologX)+EgologX]Ci7 > t) dt
8

oo
5/ Py, (log X > Egylog X + c2logr) dt
5

n S
= /OO P90(<1_[X1> > E(EGO |OgX+02|og[)ns) d[’
1)

i=1

< /oo((EGOXs)/e(sEgo |OgX))nt—czns dt
8

§—(cans—1)
e
Combining this with (17) and (18), after settididarge enough so that
(EQOXS)/[SczseSE"O IOgX] <1
yields
Egol6n — 0017 = (14 o(1)EIN (0, 1)|” (nI (0)k (9)) " "/2.

Thus the first two conditions of Theorem 3 (with= 2 andp = 4) are satisfied.
It is left to show that for some > 0

(19) > Ego[(log(@)7Y) 16, < )] < 0.

Since¢z(y) = —(1+ 0(1))/y asy — 0, it follows that there exists a constant
0 < ¢* < 1 A 6p such that, for any &< ¢ < ¢*, logX < 0 on {0,11 < ¢}, and
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for any suchc there exists a constamt > 0 such thatd,,1 = ¢~ 1(logX) >
c3/(—logX) on {6,.1 < c}. The closer to zero that one choosesthe closer
to 1 one can set3. Choose O< s < 0g and ¢ and definecs to be such that
c3/c>[1+T (6 —s)/ T ()Y = ca. Now

E@O[(|0g((92+1)*1))+1(92+1 < c)]
(20) < Ego{[(—logca)™ + (log(=10g X)) "J1(0h+1 < o))
< (_ |OQC3)+P90(9,2+1 < C) =+ E@O{Iog(m)'ﬁ‘l(e;_'_l < C)}

Since ¢ < 6p, standard considerations of large deviation analysis yield that
Pgo(0n+1 < ¢) is exponentially bounded, so that,_; . Poy(On1 < ¢) < 00.
As for the last term in (20), recall thatfs < 6 and note that

Egy{log(—T0g X )T 1(6p11 < ©)}

w —
< / Pgoflog(—log X ) > t}dt + (logca) Poy (641 < ©).

loges

The last term on the right-hand side sums to a finite result by the same argument
just given, and the integral equals

w —
[ Py,{ —logX > ¢'}dt

0gca

= > Pgoiexp( Z slog(l/Xi)>>eXp(sne’)}dt

logcq i=1,...,n
n
- /OO (Egy exp(s log(1/X))) dr
logca expisnet)

_ n
< (F(QO S)) /OO e—sne’dt
l—‘(90) logcy

- (M)"f“ —
I"(6o) logcs

B (F(Qo — s)>” e
~\ TI'(6o) sn

from which (19) follows using the definition @f.

’

A.3. Description of Monte Carlo. Lety (b) = E exp{—(log(A,) — b)}.

We wish to estimatey = lim,_,» ¥ (b) by simulating exp—(log(A,,) — b)}
r times for a largeéh and averaging the results. It is obviously efficient to use the
same simulation runs to estimatgb) for a chosen set of valuds, ..., b;,. We
want to choose largg;’s, large enough so that the simulation result&®;) are
approximately equal, in which case it is reasonable to assume that they are close to
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the limiting valuey . The accuracy of simulation results is improved by “averaging
over intervals ob-values”: define

_ By
7 (Bo, By) = /B ¥ (b)db/(By — Bo)
0

B
_ /B avg(expi—&(b)}) db/(B1 — Bo).

where £(b) denotes the overshoot ¢fogA,} over b, and “avg” denotes the
(sample) mean of the results for theimulation runs.
Interchanging the operations of integration and averaging,

_ B1
(By — Bo) (Bo. By = ave( [ " (expl—£(5)))db).
0
Consider the ladder variables (successive “record values”) of the prdogss, },
and define for a given ruhip=Bg <1 <I2 <--- <T,-1 < B1 < I, as the
m > 1 ladder variables iiBg, B1] and the first one overshootirgy. Then

By m - ra;
/; (exp(—&(b)})db = Z/ exp{—(I'; — b)}db,
0 j=1Y4%-1

whereag=T9o=Bg, a1 =T1,...,ay-1=Ty_1 anda,, = B1. It is easy to
calculate the integrals, yielding

m
(B1— Bo)¥ (Bo, B1) = an(Z(l —exp{li—1 —Ti}) + exp{B1 — '} — 1)-
i=1

This formula is easily applied by accumulating on each simulation run the terms
coming from the “ladder steps]’; — I';_1, and using also the valuds, — B
when By is first exceeded, ending the run.

For each of the cases= 0, 0.5, 1, three simulations of = 5000 runs each were
performed, usingBo, B1] = [10, 15], [15, 20] and[20, 25]. The results, shown in
Table 1, indicate thab > 10 (corresponding tex < ¢~10~ 1/22 000) is large
enough in the present example to provide a stable estimate of

The simulation runs were truncated aftemax= 50,000 observations when
[Bo, B1] = [10, 15], and after 75,000 and 100,000 observations in the other two
cases. In 1-2% of the runs, the boundAgywas not reached before truncation (due
to 6 estimates close to the null valu®,= 1). In most of these instanceBy was
not reached either. In the latter cases, the results for those runs were divided not
by B1 — Bg but by “the largest observed ladder variableBs- When Bg was not
reached, the value 1 was used as the output of the run in computing the averages
over ther runs. Both of these adjustments seem appropriate and have a small
effect on the tabulated results, presumably causing a very slight positive bias of
the estimates gf , much smaller than their standard errors.
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The simulations reported in Table 3 were speeded up using linear interpolation
in a table of 30,000 values of the maximum likelihood estimator over the range
[—10, 10] for the average of the lo§’s, a tactic which should not be needed when
the SRRS procedure is applied to a single observed sequence.
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