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OPTIMAL PREDICTIVE MODEL SELECTION?

By MARIA MADDALENA BARBIERI AND JAMES O. BERGER
Universita Roma Tre and Duke University

Often the goal of model selection is to choose a model for future
prediction, and it is natural to measuthe accuracy of a future prediction by
squared error loss. Under the Bayesian approach, it is commonly perceived
that the optimal predictive model is the model with highest posterior
probability, but this is not necessarily the case. In this paper we show that,
for selection among normal linear models, the optimal predictive model is
often themedian proballity model which is defined as the model consisting
of those variables which have overall posterior probability greater than or
equal to ¥2 of being in a model. The median probability model often differs
from the highest probability model.

1. Introduction. Consider the usual normal linear model
(1) y=XB +e,

wherey is then x 1 vector of observed values of the response variables, the
n x k (k < n) full rank design matrix of covariates, amlis ak x 1 vector of
unknown coefficients. We assume that the coordinates of the random erroresector
are independent, each with a normal distribution with mean 0 and common
varianceo? that can be known or unknown. The least squares estimator for this
model is thug8 = (X’X)~1X'y.

Equation (1) will be called thdull model, and we consider selection from
among submodels of the form

(2 My =XB| +e,

wherel = (11, I, ..., ;) is the model index; being either 1 or 0 as covariatgis
in or out of the model (or, equivalently, #; is set equal to zero)X; contains
the columns ofX corresponding to the nonzero coordinated;adnd B, is the
corresponding vector of regression coefficients.

Upon selecting a model, it will be used to predict a future observation

3) yi=XB+e,
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wherex* = (x7, ..., x;) is the vector of covariates at which the prediction is to be
performed. The loss in predicting by y* will be assumed to be the squared error
loss

(4) LG* y) =0 =2

With the Bayesian approach to model selection it is commonly perceived that
the best model will be that with the highest posterior probability. This is true
under very general conditions if only two models are being entertained [see Berger
(1997)] and is often true in the variable selection problem for linear models
having orthogonal design matrices [cf. Clyde (1999) and Clyde and George (1999,
2000)], but is not generally true. Indeed, even when only three models are being
entertained essentially nothing can be said about which model is best if one knows
only the posterior probabilities of the models. This is demonstrated in Section 5,
based on a geometric representation of the problem.

For prediction of a singley* at a specificx*, one can, of course, simply
compute the posterior expected predictive loss corresponding to each model and
choose the model that minimizes this expected loss. In such a scenario, however,
choosing a specific model meklittle sense; one should, rather, base the prediction
on Bayesiarmodel averagingcf. Clyde (1999) and Hoeting, Madigan, Raftery
and \oliksky (1999)]. The basic use afodel selectiorfor prediction is when,
because of outside constraints, a single model must be selected for repeated use
in future predictions. (Note that we are assuming that these constraints preclude
use of the Bayesian model averaging answer.) It is natural to assume that these
future predictions will be made for covariat&$ that arise according to some
distribution. We further assume that thex £ expectation matrix corresponding
to this distribution,

(5) Q =E[(X")' (x")],

exists and is positive definite. A frequent choic&is= X’X, which is equivalent

to assuming that the covariates that will occur in the future are like those that
occurred in the data. (Strictly, this would yie@@ = %X/X, but constants that are
common across models can be ignored.)

In this scenario, one could still simply compute the expected predictive loss
corresponding to each model and minimize, but the expectation would now also
be overx*. This can add quite a computational burden, especially when there are
many models to consider. Bayesian MCMC schemes have been developed that
can effectively determine the posterior model probabilitRg3d4|y), but adding
an expectation over® and a minimization overcan be prohibitive [although see
Muller (1999)]. We thus sought to determine if there are situations in which it is
possible to give the optimal predictive model solely in terms of the posterior model
probabilities.

Rather general characterizations of the optimal model turn out to be frequently
available but, quite surprisingly, the characterizations are not in terms of the
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highest posterior probability model, but rather in terms of what we calibdian
probability model

DEFINITION 1. Theposterior inclusion probabilityor variablei is

(6) pi= Y. PMly),

1:;=1

that is, the overall posterior probability that variablis in the model.

If it exists, the median probability modelM," is defined to be the model
consisting of those variables whose posterior inclusion probability is at Igast 1
Formally,|* is defined coordinatewise by

1 if p;>32
7 z-*:{ : pi =2
(7) ! 0, otherwise.

It may happen that the set of covariates defined by (7) does not correspond to
a model under consideration, in which case the median probability model will not
exist. There are, however, two important cases in which the median probability
model is assured to exist. The first is in the problem of variable selection when
any variable can be included or excluded from the model (so that all vdcioes
possible).

The second case of particular interest is when the class of models under
consideration has a graphical model structure.

DEFINITION 2. Suppose that for each variable indeRkere is a corresponding
index setl (i) of other variables. A subclass of linear models besgphical model
structureif it consists of all models satisfying the condition “for eaglif variable
x; is in the model, then variables with j € 1 (i) are in the model.”

It is straightforward to show that if a subclass of linear models has graphical
model structure, then the median probability model will satisfy the condition in
the definition and, hence, will itself be a member of the subclass.

One common example of a class of linear models having graphical model
structure is the class of all models that can be constructed from certain main effects
and their interactions up to a certain order, subject to the condition that if a high
order interaction of variables is in a model then all lower order interactions (and
main effects) of the variables must be in the model.

A second example of a subclass having graphical model structure is a sequence
of nested models,

(8) M, j=0,...,k, wherel(j)=(,...,1,0,...,0),

with j ones andk — j zeroes. Examples of this scenario include polynomial
regression, in whiclj refers to the polynomial order used, and autoregressive time
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series, in whicly refers to the allowed lag. Note that for nested models the median
probability model has a simpler representatiodAg -, wherej* is such that

i=0 i=0

In other words, one just lists the sequence of posterior model probabilities and
sums them up until the sum exceed®1The model at which the exceedance
occurs is the median probability model.

The above special cases also define the scenarios that will be investigated in this
paper. The goal will be to provide cotidins under which the sdian probability
model is the optimal predictive model. The conditions are primarily restrictions
on the form of the predictors for*. The restrictions are fairly severe, so that the
results can best be thought of as applying primarily to default Bayes or empirical
Bayes types of procedures.

Initially we had sought to find conditionsnder which the highest posterior
probability model was the optimal predictive model. It came as quite a surprise
to find that any optimality theorems we could obtain were, instead, for the
median probability model. Frequently, however, the median probability model will
coincide with the highest posterior probability model. One obvious situation in
which this is the case is when there is a model with posterior probability greater
than 1/2. Indeed, when the highest posterior probability model has substantially
larger probability than the other models, it will typically also be the median
probability model. Another situation in which the two coincide is when

k
(10) PMily) =[] pi@— p®o,

i=1
where thep; are the posterior inclusion probabilities in (6). This will be seen
to occur in the problem of variable selection under an orthogonal design matrix,
certain prior structures, and known variangé, as in George and McCulloch
(1993). [Clyde and Parmigiani (1996) and Clyde, DeSimone and Parmigiani
(1996) show that (10) can often be approximately satisfied witfeis unknown,
and it is likely that the median probability model will equal the maximum
probability model in such cases.]

That the median probability model is optimal (under restrictions) for both the
variable selection problem and the nested case, which are very different in nature,
suggests that it might quite generally be the optimal predictive model and should
replace the highest posterior probability model as the “preferred” predictive model
in practice. (We will see evidence of this later.) Note also that determination of the
median probability model is very straightforward within ordinary MCMC model
search schemes. In these schemes one develops a Markov chain to move between
the models, with the posterior probability of a model being estimated by the
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fraction of the time that the model is visited by the chain. To determine the median
probability model one need only record, for each variable, the fraction of the time
that the variable is present in the visited models; at the end of the MCMC one
chooses those variables for which the fraction exce¢@s Ihdeed, determining

the median probability model in this fashion will often be computationally simpler
than finding the highest posterior probability model. In the variable selection
problem, for instance, accurately determining whetrractions are above or
below 1/2 is often much easier than trying to accurately estimate the fractional
visiting times of 2 models. Note also that in the orthogonal design situation
mentioned above the posterior inclusion probabilities are actually available in
closed form.

The difference between predictive optimality and highest posterior model
probability also explains several misunderstandings that have arisen out of the
literature. For instance, Shibata (1983) shows that the BIC model selection
criterion is asymptotically inferior to AIC for prediction in scenarios such as
polynomial regression, when the true regression function is not a polynomial. This
has been routinely misinterpreted as saying that the Bayesian approach to model
selection is fine if the true model is among those being considered, but is inferior
if the true model is outside the set of candidate models. Note, however, that BIC is
essentially just an approximation to the log posterior probability of a model, so that
model selection according to BIC is (at best) just selecting the highest posterior
probability model, which is often not the optimal Bayesian answer. Indeed, as
discussed above, the optimal Bayesian predictive model in the situation of Shibata
(1983) is actually the median probabjlimodel. [There are also concerns with
the applicability of BIC as an approximation to log posterior probability here; see
Berger, Ghosh and Mukhopadhyay (2003) for further discussion.]

In Section 2, we set the basic notation for the prediction problem and give the
formula for predictive expected loss. Section 3 gives the basic theory concerning
optimality of the median probability model, and discusses application in nested
model and ANOVA scenarios. Section 4 generalizes the basic theory to deal with
problems in which all models have common nuisance parameters and the design
matrix is nonorthogonal. A geometric description of the problem is provided in
Section 5; this provides considerable insight into the structure of the problem.
Finally, Section 6 gives some concluding comments, primarily relating to the
limitations of the theory.

2. Preliminaries.

2.1. Posterior inputs to the prediction problemInformation from the data and
prior is summarized by providing, for dll
pr = P(My) the posterior probability of model,,
(11) (B, oly) the posterior distribution
of the unknown parameters ,.
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These inputs will often arise from a pure Bayesian analysis based on initial
specification of prior probabilities? (M) for the models, together with prior
distributions (B, o) for the corresponding unknown parameters. Then, given
the datay, the posterior probability o1 is given by

P(M)m(y)
12 =
(12) P =S PMme )
where
(13) mmy>=1/nwﬂhodﬁ<Wﬂhoodﬂ|da

is the marginal density of underM;, with fi(y|B,, o) denoting the normal density
specified byM,. Likewise, the posterior distributions; (B, c|y) are given by
straightforward application of Bayes theorem within each model.

We allow, however, for nontraditional determination of theandn(B,, o ly),
as can occur with use of default strategies. In particular, it is not uncommon
to use separate methodologies to arrive at pheand then (8, oly), the p
being determined through use of a default model selection tool such as BIC,
Intrinsic Bayes Factors [cf. Berger and Pericchi (1996a)] or Fractional Bayes
Factors [cf. O’'Hagan (1995)]; and the(B,, o |y) being determined from ordinary
noninformative priors, typically the reference priors, which are either constant in
the known variance case or given by

(14) (B 0) =~

o
in the unknown variance case. Of course, this may be incoherent from a Bayesian
perspective, since it essentially means using different priors to determipgahd
thenl(ﬂl’ aly).

The result of following such a mixed strategy also allows non-Bayesians to
connect with this methodology. In particular, the predictor that results from use of
the reference prior in mod@/, is easily seen to be the usual least squares predictor,
based on the least squares estimate

B = (X{XnX(y.
Thus, for instance, the common use of BIC together with least squares estimates
can be converted into our setting by definimgx ¢B'C.
Finally, the empirical Bayes approach is often used to obtain estimated versions

of the quantities in (11). Again, while not strictly coherent from a Bayesian
perspective, one can utilize such inputs in the following methodology.

2.2. Predictors and predictive expected losdt is easy to see that the optimal
predictor of y* in (3), under squared error loss and when the madel of
dimensionk;, is true, is given by

S;I* — X*HIBI’
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whereﬁl is the posterior mean @, with respect tor| (8, o |y) andH is thek x k;
matrix whose(i, j) entry is 1 ifl; =1 andj = Zizll, and is 0 otherwise. Note
thatH, is simply the matrix such thaH, is the subvector af corresponding to the
nonzero coordinates of that is, the covariate vector corresponding to madgl

.....

we will drop the subscript and simply denote it E)(as we have done witHi, the
least squares estimate for the full model).

The optimal Bayesian predictor of is well known to be the model averaging
predictor, given by

(15) F=x"B=x*>"pHB.
|

Note that “optimal” is defined in terms of expected loss over the posterior in (11);
if the posterior arises from an incoherent prior, as is allowed above, there is no
guarantee that the resulting procedure possesses any other optimality properties—
even “dutch books” against the procedunefequentist inadmissibility could
result.

The best single model for prediction can be found by the following lemma.

LEMMA 1. The optimal model for prediction of* in (3) under the squared
error loss(4), when the future covariates satigfy) and the posterior distribution
is as in(11), is the model that minimizes

(16) R(M) = (HiB — BYQ(HIB, - B),
whereg is defined in(15).

PrROOF For fixedx* a standard result [see, e.g., Bernardo and Smith (1994),
page 398] is that

E[G =y =C+ G — 792

whereC does not depend drand the expectation is with respect to the predictive
distribution ofy* giveny. Since

G — 7%= (HIB - BYX*'x*(HIB; — B),
taking the expectation ovei* and using (5) yields the result[]
3. Basicresultsand examples. Section 3.1 presents the basic theorem that is
used to establish optimality of the median probability model. Section 3.2 considers

the situation in which all submodels of the linear model are allowed. Section 3.3
deals with nested models and Section 3.4 considers the ANOVA situation.
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3.1. Basic theory. AssumeX’X is diagonal. Then it will frequently be the case
that the posterior mearg; satisfy

(17) B =HB.

that is, that the posterior mean @f is found by simply taking the relevant
coordinates of8, the posterior mean in the full model. Here are two common
scenarios in which (17) is true.

Caste 1. Noninformative priors for model parametetdse of the reference
priors in (14) (or constant priorsxvh@r? is known) results in the posterior means
being the least squares estimapgs BecauseX’'X is diagonal, it is easy to see
that (17) is then satisfied.

CASE 2. Independent conjugate normal priore1 the full model suppose
that(B|o) is Ni(m, o2A), the k-variate normal distribution with meam and
diagonal covariance matrix?A, with A given. Then it is natural to choose the
priors onp, in the submodels to b#}, (H{u, aZHI/AH|), wherek; is the dimension
of B,. It is then easy to verify that (17) holds for any prior @A or for o2 being
given (e.g., known, or estimated). Note that we do not necessarily recommend
using this conjugate form of the prior with unknows; see Berger and Pericchi
(2001) for discussion.

While A could be chosen subjectively, it is more common to utilize default
choices, such as thg-type normal priors [cf. Zellner (1986)A = n(X'X)~1
or A = ¢(X’X)~1, with ¢ chosen by an empirical Bayes analysis (e.g., chosen
to maximize the marginal density averaged over models). Papers which fall
under these settings include Chipmanp@e and McCullock{2001), Clyde and
Parmigiani (1996), Clyde, DeSimone and Parmigiani (1996), Clyde, Parmigiani
and Vidakovich (1998) and George and Foster (2000).

Note that one can use noninformative priors for certain coordinates and
independent conjugate normal priors for other coordinates. This is particularly
useful when all models under consideration have “common” unknown parameters;
it is then typical to utilize nomformative priors for the common parameters, while
using independent conjugate normal priors for the other parameters [see Berger,
Pericchi and Varshavsky (1998) for justification of this practice].

LEmMmMA 2. If Q is diagonal with diagonal elementg > 0 and (17) holds
then

k
(18) RM) =" Baili — p»).
i=1

wherep; is as in(6).
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Proor From(17) it follows that

B=> pHiB =) pHIH{B=D()B,
| |

where D(p) is the diagonal matrix with diagonal elements. Likewise, (16)
becomes

R(My) = (HiH{ B — D(p)B)' Q(H|H{8 — D(p)B)
= B'(D()) — D(p))Q(D() — D(p))B,
and the conclusion is immediatel]

THEOREM 1. If Q is diagonal with diagonal elemenis > O, condition(17)
holds and the models under consideration have graphical model struthee
the median probability model is the best predictive model

PrROOF To minimize (18) among all possible models, it is clear that one
should choosé; =1 if p; > 1/2 andl; = 0 otherwise, which is as in (7). As
mentioned earlier, the graphical model structure ensures that the model so defined
is actually in the space of models under consideration, completing the prfdof.

The above theorem did not formally use the condition %2 be diagonal.
However, if it is not diagonal, then (17) will not typically hold, nor w@ll usually
be diagonal.

3.2. All submodels scenario.Under the same conditions as in Section 3.1 the
following corollary to Theorem 1 gives the median probability model when all
submodels are considered.

CoRroLLARY 1. If Q is diagonal with diagonal elemenig > 0, condi-
tion (17) holds and any submodel of the full model is alloywen the best pre-
dictive model is the median probability model given(@y. In addition if o2 is
given in Case of Sectior8.1 and the prior probabilities of the models satisfy

k
(19) P(M) = [Ty @ - p)H*",

i=1
wherep? is the prior probability that variablex; is in the modelthen (10) is
satisfied and the median probability méde the model with highest posterior
probability.

PrRoOOF The first part of the corollary is immediate, since {all submodels}
clearly has graphical model structure.
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For Case 2 and gives?, computation as in Clyde and Parmigiani (1996) and
Clyde, DeSimone and Parmigiani (1996) shows that (10) is satisfied with

1 V20 + 2ui i — pid;

-1 8172 i M i i i i
=1 — —=1)1+xrd expy — ;
bi +< 0 )( i) p{ 202(1+ aid;) }

i
where the{d;} and{;} are the diagonal elements XfX andA, respectively, and
v=(v1,...,vk)/=X/y. ]

While many proposed choices of prior probabilities satisfy (19), others do
not. For instance, Jeffreys (1961) suggested that it might often be reasonable to
choose the prior probability of given model orders to be decreasing, for example,
P(orderj) < 1/j, with this probability then being divided up equally among all
models of sizej. Such an assignment of prior probabilities would not typically
satisfy (19), and the best predictive model (i.e., the median probability model)
would then not necessarily be the highest posterior probability model, even
in Case 2.

Finally, it should be noted that Corollary 1 also applies to the case where all
models under consideration have “common parameters.” One can simply define
p? = 1 for such parameters.

3.3. Nested models.We initially consider the orthogonal case, as in Sec-
tion 3.1. This is generalized to the nonorthogonal case at the end of the section.

3.3.1. Orthogonal case.

CoROLLARY 2. If Q is diagonal with diagonal elementg > 0, condi-
tion (17) holds and the models under consideration are negtesh the best pre-
dictive model is the median probability model given(Byor (9).

ProoF This is immediate from Theorem 3.1, because nested models have
graphical model structure.d

EXAMPLE 1. Nonparametric regressiofalso studied in Mukhopadhyay
(2000) for a different purpose]: The data consists of the paired observations
(xi, yi),i =1, ..., n, where for knowro2,

(20) vi=f(x)+e,  &~N@Oo?).

Representf(-), an unknown function defined on the interal, 1), using an
orthonormal series expansion, as

f)=>"Bidi(x),

i=1
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where{¢p1(x), ¢2(x), ...} are the Chebyshev polynomials. Of course, only a finite
approximation to this series can be utilized, so define the mifglg) [see (8) for
notation] to be

J
Mijy:y=) Bidix)+e,  e~N(0,0?.
i=1
The problem is thus to choose among the nested sequence of linear models
My, j =1,.... Asis common in practice, we will choose an upper bokirh
the size of the model, so thad|, is the full model in our earlier terminology.

The function f(x) = —log(1 — x) was considered in Shibata (1983) as an
example for which BIC yielded considerably suboptimal models for prediction. It
is hence of interest to see how the median probability model fares in this situation.

We assume the; are observed at the covariates= Cosind[n — i + %]%),
i=1,...,n, and letX; = (¢,(x;)) be the resulting: x j design matrix with
indicated (i, m) entries,i =1,...,n andm = 1,..., j. From the definition of
Chebyshev polynomials it follows that; X ; = 51 ;, Wheielj is thej x j identity
matrix. It follows that the least squares estimatg@ofis g ; = %X/jy.

Assume that the models have equal prior probability,1and that, within
any modelM,; the g; have independen¥ (0, ci ~¢) prior distributions for some
constantg anda (which are the same across models). The choiceddtermines
how quickly the prior variances of thg, decrease (any., function must have
a > 1), and we shall consider three choices: 1, a = 2 (which happens to be the
rate corresponding to the test function) ang 3. For simplicity of calculation we
estimatec by an empirical Bayes analysis using the full mogigl;,, keeping the
estimatec fixed across models. Then@ is diagonal (as would thus be the case
for the natural choic® = X}, X;), Corollary 2 implies that the median probability
model will be the optimal Bayesian predictive model.

For nonparametric regression it is common to utilize the loss function

A 1 A 2
(21) L fr= (@ = f@)ax.

In the predictive context use of this loss is equivalent to prediction under squared
error loss when the future covariatesare thought to be uniformly distributed
on (—1,1). A standard computation shows thatf, f) = Z?il(ﬁ,- — Bi)?,
where §; stands for the estimator that is used for the true coeffigienSince
we have restricted the models under consideration to be of maximum krder
it follows that 8; = 0 for i > k in our problem and the loss arising from these
coordinates can be ignored in model comparison. The resulting loss is also easily
seen to be equivalent to the predictive loss we have previously usedwity, .

The optimality of the median probability model is with respect to the internal
Bayesian computation, which assumes that the true function is actually one of the
modelsM,y, j =1, ..., k. For the example considered by Shibata, however, the



OPTIMAL PREDICTIVE MODEL SELECTION 881

true model lies outside the collection of Bayesian models (since it can be shown
that none of theg; in the expansion for this function is zero). It is thus of interest
to see how the median probability model performs in terms of the loss (21) for the
(here known) function.

Under M,; the estimates of thg; are the (empirical) Bayes estimatgs=
(1 + 262i%/né)~1B; if i <k, and B; = O otherwise. Hence the predictive loss
under modelMj is ¥-/_; (Bi — Bi)? + X721 BZ, although we will ignore the
terms in the sum fof > k since they are common across all considered models.

In Table 1 we compare the expected predictive loss (the frequentist expectation
with respect to the data under the true function) of the maximum probability model
with that of the median probability model. We also include the model averaged
estimate arising from (15) in the comparison; this is the optimal estimate from
the internal Bayesian perspective. Finally, we also consider AIC and BIC. These
model selection criteria are most commonly used in conjunction with least squares
parameter estimates, and that choice is made for computing the expected predictive
losses in Table 1.

The entries in the table were computed by simulating data from the true
function, selecting a model, computing the corresponding function estimate,
and finally determining the actual loss. This was repeated a totaV ef
100Q 100Q 100 times, respectively, for the three cases in the table, with the

TABLE 1
For variousn ando2 the expected loss and average model size for the maximum
probalility model (MaxProl), the median prbability nodel (MedianProl),
model averagingModelAy, and BIC and AICin the Shibata example

Expected loss [average modédl size]

M axProb M edianProb M odel Av BIC AlIC

n=3002=1

a=1 099 [8] 0.89 [10] 0.84 1.14 [8] 1.09 [7]
a=2 0.88 [10] 0.80 [16] 0.81 1.14 [8] 1.09 [7]
a=3 088 [9] 0.84 [17] 0.85 1.14 [8] 1.09 [7]
n=10002=1

a=1 054 [14] 0.51 [19] 0.47 0.59 [11]  0.59 [13]
a=2 047 [23] 0.43 [43] 0.44 0.59 [11]  0.59 [13]
a=3 047 [22] 0.46 [45] 0.46 0.59 [11]  0.59 [13]
n=200Q02=3

a=1 0.34 [23] 0.33 [26] 0.30 0.41 [12]  0.38 [21]
a=2 0.26 [42] 0.25 [51] 0.25 0.41 [12]  0.38 [21]
a=3 0.29 [38] 0.29 [50] 0.29 0.41 [12]  0.38 [21]
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resulting averages forming the table entries. Note that the largest model sizes
considered for the three cases weee 29, 79, 79, respectively.

Our main goal was to compare the maximum probability model and the median
probability model. The median probability model is clearly significantly better,
even in terms of this frequentist expected loss. (Again, we know it is better in
terms of Bayesian predictive loss.) Indeed, the median probability model is almost
as good as the model averaging estimate (and in two cases is even better); since
model averaging is thought of as optimal, its near equivalence with MedianProb is
compelling.

Note that AIC does seem to do better than BIC, as reported by Shibata, but all of
the actual Bayesian procedures are considerably better than either. This is in part
due to the fact that the Bayesian procedures use better parameter estimates than
least squares, but the dominance of MedianProb and ModelAv (but not MaxProb)
can be seento hold even if the superior shrinkage estimates are also used with BIC
and AIC.

3.3.2. Nonorthogonal case.Corollary 2 presented a result for nested models
in the case of an orthogonal design matrix. It is not too surprising that such
results can be obtained under orthogonality. Quite surprising, however, is that the
orthogonality condion can be removed under the following two conditions:

CONDITION 1. Q =y X'X for somey > 0.

CONDITION 2. ﬁ| = bﬁh where b > 0, that is, the posterior means are
proportional to the least squares estimates, with the same proportionality constant
across models.

Note that Condition 2 is merely a special case of (17), so the generality here
is in Condition 1, allowing for nondiagon&). (Of courseQ = y X’X is diagonal
under orthogonality.)

There are two common scenarios in which Condition 2 is satisfied. The first is
when the reference priors (14) are used, in which case the posterior means are the
least squares estimates. The second is when gsipgenormal priors [cf. Zellner
(1986)], wherer|(B;|o) is Ny (0, caz(XfX|)—1), with the same constant> 0
for each model. (This constant could be specified or estimated in an empirical
Bayesian context.) It is then easy to verify that Condition 2 holds with
c¢/(1+ c) (irrespective of the prior fos ).

THEOREM 2. For a sequence of nested models for which Conditibasd 2
hold, the best predictive model is the median probability model giveimbgr (9).

PrROOF From (16) and using Conditions 1 and 2,
(22) R(Mi(j)) = yb*(HiBicjy — B) XX (HicjBigj) — B)-
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Noting thatXH(;y = Xj(;, and definingP, = X|(X|/X|)—1X/, it follows that

k 2
R(Mij)) = Vbzy/<Pl(j) - PI(i)PI(i)> y.
i=1

Note thatPI2 = Py and P;Pi;) = Pimin(i, j;)- Hence, expanding the quadratic
in (22) yields

k 2
R(My(j)) = Vbzy/(z PI(i)PI(i)> y
i—1

j—1 k
+yb?y (Pw) -2 poPiiy —2)_pi (,-)P|(‘,-))y.
i=1 i=j
It follows that
k
R(Migj+1)) — R(Mij)) = J/b2<1 -2y p|(,-)>y/(P|(j+1) —Piij))y-
i=j+1

Sincey' (Py(j+1) — Pij))y >0 and the(1 — 225-{:#1 Pii)) are inc_reasing iy
from —1 to +1, moving to a larger model will reduce the risk until —
sz:jﬂ Pii) first turns positive. The conclusion is immediaté.l

An example of a nested model in the nonorthogonal case will be given in
Section 4.

3.4. ANOVA. Many ANOVA problems, when written in linear model form,
yield diagonalX’X and any such problems will naturally fit under the theory of
Section 3.1. In particular, this is true for any balanced ANOVA in which each
factor has only two levels.

To see the idea, it suffices to consider the case of two factors A and B each with
two levels. The full two-way ANOVA model with interactions is

Yijk =K +a; +bj+ab;j + &k

with i =1,2, j =1,2, k =1,2,...,K and &, independentV (0, c?), with
a2 unknown. In our earlier notation, this can be written

y=XB +e¢,
where

/
Y= (Y111 -+ +» Y11Ks Y121 - - - » V12K Y211, - - - » Y21K » Y221, - - - » Y22K)

B = (u,a1, b1, ab1n)’
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andX is the 4K x 4 matrix

[E
[EEN
=

AR
=
[
AR
|
AR

1 -1 1 -1
1 -1 -1 1

1 -1 -1 1
where the last column is the product of the second and the third, ginee-as-,
b1 = —by, ab11 = aby» = —aby» = —aby1. Computation then shows thxtX =
4K 14, so that the earlier theory will apply.

There are several model comparison scenarios of interest. We use a slight
modification of the previous model notation for simplicity, for exam@,o11
instead ofM(1,0,1,1), representing the model having all parameters exegpt

SCENARIO 1. All models with the constant: Thus the set of models under
consideration is

{M1000 M1100 M1010 M1001. M1101. M1011. M1110 M1111}.

SCENARIO 2. Interactions present only with main effecesd  included
The set of models under consideration here{#1000 M1100 M1010 M1110
M1111}. Note that this set of models has graphical structure.

SCENARIO 3. An analogue of an unusual classical tdst classical ANOVA
testing itis sometimes argued [cf. Scheffé (1959), pages 94 and 110] that one might
be interested in testing for no interaction effect followed by testing for the main
effects, even if the no-interaction test rejected. (It is argued that the hypotheses of
zero main effects could still be accepted, which would imply that, while there are
differences, the tests do not demonstrate any differences in the levels of one factor
averaged over the levels of the other.) The four models that are under consideration
in this process, including the constantn all, are{M1101, M1011, M1110 M1111}.

We do not comment upon the reasonableness of considering this class of
models, but are interested in the class because it dogsave graphical model
structure and yet the median probability model is guaranteed to be in the class.
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To see this, consider the possibility thathas posterior inclusion probability less
than /2, and so would be excluded from the median probability model. Clearly
this can only happen #1011 has posterior probability greater thaf2] but then
M1p11would automatically be the median probability model. Arguing similarly for
b1 andab11, one can conclude tha1111 will be the median probability model,
unless one of the other models has posterior probability greater fl2amiwhich
case it will be the median probability model.

EXAMPLE 2. Montgomery [(1991), pages 271-274] considers the effects of
the concentration of a reactant and the amount of a catalyst on the yield in
a chemical process. The reactant concentration is factor A and has two levels,
15% and 25%. The catalyst is factor B, with the two levels “one bag” and “two
bags” of catalyst. The experiment was replicated three times and the data are
given in Table 2. Note that the classical ANOVA tests of “no A effect,” “no B
effect” and “no interaction effect” resulted ip-values of 0.00008, 0.00236 and
0.182, respectively. The Bayesian quantities that would be used analogously are
the posterior variable inclusion probabilitigs, p3 andps. (Strictly, 1— p; would
be the analogue of the correspondpmgalue.)

To carry out the Bayesian analysis, the reference prigt, o) % was used
for the common parameters, while the standsi@, 02) g-prior was used fou,
b1 andab11. In each scenario the models under consideration were given equal
prior probabilities of being true. The conditions of Section 3.1 are then satisfied,
so that we know that the median probability model will be the optimal predictive
model. For the three scenarios described above the results of the Bayesian analysis
are given in Tables 3-5. In all three scenarios the median probability model
indeed has the lowest posterior expected loss (as was known from the theory).
Interestingly, the median probability model equals the maximum probability model
in all three scenarios and is the modé{110 The variable inclusion probabilities
show clearly that an “A effect” and a “B effect” should be in the model (with
inclusion probabilities exceeding 0.99 and 0.95, respectively), while the interaction
effect has a moderately small probability (abog8)Lof being in the model.

TABLE 2
Data for the2?2 ANOVA example

Treatment Replicates
combination I I [l
A low, B low 28 25 27
A high, B low 36 32 32
A low, B high 18 19 23

Ahigh,Bhigh 31 30 29
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TABLE 3
Scenariol (all model3. Posterior probalfiities and eyected
losses for the model$he posterior inalsion pobabilities
are pp = 0.9977,p3 = 0.9514and p4 = 0.3621;
thus M1110is the median probability model

Posterior Posterior
Model probability expected loss
M1000 0.0008 235.47
Mi100 0.0342 58.78
M1010 0.0009 177.78
M1001 0.0003 237.43
M1110 0.6019 1.083
M1101 0.0133 60.73
Mio11 0.0003 179.74
M1111 0.3483 3.04

TABLE 4

Scenario2 (graphical models Posterior pobabilities and
expected losses for the moddife posterior inclusion
probalilities are p» = 0.9982, p3 = 0.9644and
p4 = 0.3532;thus M1110is the median
probalility model

Posterior Posterior
Model probability expected loss
M1000 0.0009 237.21
Mi100 0.0347 60.33
M1010 0.0009 177.85
M1110 0.6103 0.97
M1111 0.3532 3.05

TABLE 5

Scenario3 (unusual classical modélsPosterior pobalilities

and expected losses for the mod@lse posterior inclusion

probalilities are p» = 0.9997, p3 = 0.9862and p4 = 0.3754;
thus M1110is the median probability model

Posterior Posterior
M odel probability expected loss
M1011 0.0003 180.19
Mi101 0.0138 64.93
Mi110 0.6245 1.01

Mi1111 0.3614 2.78
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TABLE 6
Scenario3 (unusual classical modelwiith g-prior for (). Posterior
probalilities and eyected losses for the modeThe posterior
inclusion pobabilities are p» = 0.876, p3 = 0.714and
p4 = 0.544;thus M1111is the median probability model

Posterior Posterior
Model probability expected loss
M1011 0.124 143.03
M1101 0.286 36.78
Mi110 0.456 10.03
M1111 0.134 9.41

We also carried out an analysis with th&0, co2) g-prior for a1, b1 andabis,
but with ¢ being estimated by maximizing the overall marginal den{s@l m(y),
where the individual marginal densities (y) are given by (13) and. is the
number of models under consideration. The conditions of Section 3.1 are still
satisfied, so that we know that the median probability model will be the optimal
predictive model. The results did not significantly change from the above analysis,
however, and so are not reported.

Had o2 been known in Scenario 1, Corollary 1 would have established that the
median probability model would equal the maximum probability model. Héiie
unknown, however, and it will not alwayze the case that the median probability
model equals the maximum probability model. Indeed, we also carried out the
analysis of the example utilizing th& (0, o2) g-prior for u, as well as foray,
b1 andab11, and found that the median probability model then differed from the
maximum probability model in all three scenarios. Table 6 gives the results for
Scenario 3; note that the median probability model is nearly the lowest probability
model! (We do not, however, recommend this analygigriors should not be used
for parameters common to all models.)

4. Common nonorthogonal nuisance parameters. Frequently all models
will contain “common” parameterg ;) = (B1, ..., B,)- A typical example is
when all models contain an overall me#&a [or, equivalently, when the first
column of each model design matrix &, ...,1)]. For the orthogonal case
discussed earlier this caused no difficulties. For the nonorthogonal case, however,
this considerably complicates the analysis. Still, we will see that the median
probability model remains optimal under mild modifications of the previously
considered conditions.

To present the results, it is convenient to slightly change notation, writing
the regression parameters bfi as (ﬂ/(l), B))’, with corresponding design ma-
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trix (X(yX)). Also, define

Qu =1 =X X{pXm) Xy,
Pl = QX1 (X(Qw X)) X[ Q7.

The necessary conditions are:

(23)

CONDITION 1. Q= yX'X for somey > 0.

_ ConbiTioN 2. For some fixed > O the posterior means g are of the form
B = b(X[QyXNIX[Qy.

CONDITION 3. m(B (1), Bilo) = m(Blo) (i.e., the prior density foB 4, in
each model is constant).

A g-type prior for which Condition 2 holds is
m(Bilo) = N (0, co?(X{QuXi) ™),

with the same constant > 0 for each model. It is then easy to verify that
Condition 2 holds withb = ¢/(1 + ¢) (irrespective of the prior os). Note that
if X{1)Xi =0, thenX{Q)Xi = X|X|, so this would be a standagetype prior.

THEOREM 3. Under Conditionsl-3 the best predictive model under squared
error loss minimizes

(24) RM)=C+ beW/(P| — 22p|* P|.|*>W,
I*

wherew = QY/2y, C is a constant andl- I* is the dot-product of and*.

PROOF Write x* = (x;‘l),x’("z)) and X = (X1, X(2)), and defineU =
(x’(l)x(l))—lx’(l) andV| = (X[Q)X1)~1X[Q1. Note that the noncommon vari-
ables inM, are X’(“Z)H|2, whereH, is the matrix consisting of the rows &,
from k1 + 1 to k. With this notation note that

(25) 31\|* = X?l)ﬁ(l) + X?Z)H|ZB| .
Using Condition 3, it is straightforward to show that

E[B)ly. Bi] =Uy — XiB)),
so that

By =E[Bwly] = Uy — X(ELBIyD).
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Using this in (25), together with Condition 2, yields
= X’(kl)U(l —bX VDY + bX’(kz)H|2V|y
_ o (VU =DXV))
=X < bH, V| ) y.

Defining

it follows (using Condition 1 in the third equality) that

2
12X o _ . .
(26) - [X (W' 2. M
= ybzy/ <W| — Zp|*W|*) X/X <W| — Zp|*W|*>y.
I*

|*

Note that

—UX
XW) = (x(l),x(z))< o I>V|

= —X(]_)UX|V| +X\V| = Q(I{)2P|Q(1{)2

Together with (26) this yields
R(M)) = ybzy/Q(l{)2<P| -y p|*P|*)Q(1) (P| -y p|*P|*>y
I I

2
= ybzw/ (Pl _ ZPI*PI*> W,
I*

the last step utilizing (23) and the fact tf@yy, is idempotent.
BecausdP, is the projection onto the columns @%{)ZX| that correspond to the

nonzero elements df it is clear thatP|2 = P; and PP = Pp+. Expanding the
quadratic in (27) with

(27)

2
C= beW/<Zp|* P|*) W

|*

yields the result. (J

COROLLARY 3 (Semi-orthogonal case).Suppose Condition$-3 hold and
that X{,, Q)X (2) is diagonal with positive entriesvhere the full design matrix
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is X = (XX (2)). Then if the class of models under consideration has graphical
model structurethe best predictive model is the median probability model given

by (7).

PROOF  Writing X/(Z)Q(l)x(z) = D(d), the diagonal matrix with diagonal
elements’; > 0, P; can be expressed as

1/2 - i
Pl = Q1 X@H1(Hi, X2 QX @Hi,) Hi, X5 Q)
1/2 - &
= Q1) X@Hio(H,D(eHE) " Hi,X (5 Q)
s 4 1/2
- Q({) X@2(D-1)) X/(Z)Q({) :

Hence, definingl = X/(Z)Q(lf)zw, (24) becomes

R(M)) =C + ybzu/|:D(d ™t =23 p-Dd-1- I*)_l}u
|*
k
=C+yb?> u?d (1 -2 ) p|*>,
i=1 I*:F=1

and the conclusion is immediateJ

Note that X{, QX2 will be diagonal if either (i)X’X is diagonal or
(i) X{2X(2) is diagonal an{ X 2) = 0.

CoROLLARY 4 (Nested case).Suppose Condition§—3 hold and that the
My, j =0,...,k, are a nested sequence of moddisen the best predictive
model is the median probability model given@y or (9).

PrROOF For the nested case (24) becomes

j—1 k
(28) R(Mj)=C+ J/bZW/<PI(j> -2 PPy —2) PI(i)PI(j))W-
i=0 i=j

It follows that

R(Mi(j+1)) — R(M(j))

k
= yb2<l— 2 Z PI(i))W/(P|(j+1) — Pigjy)w.
i=j+1
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Sincew'(Pi(j+1) — Pi(j))w > 0 and the(1 — 22;‘:”1 pii)) are increasing iry
from —1 to +1, moving to a larger model will reduce the risk until —
sz:jﬂ Pii) first turns positive. The conclusion is immediaté.l

ExAMPLE 3. Consider Hald's regression data [Draper and Smith (1981)],
consisting ofrn = 13 observations on a dependent variapl@ith four potential
regressorsti, x2, x3, x4. Suppose that the following nested models, all including
a constant term, are under consideration:

My :{c, xa}, M2 :{c, x1, x4},
M3y :{c, x1, x3, x4}, M4 :{c, x1, x2, x3, X4},

again using the notation in (8). We choose the reference prior (14) for the
parameters of each model, which effectively means we are using least squares
estimates for the predictions and ensures that Conditions 2 and 3 are satisfied.
(Here, the models have two common parameters, the constant term and the
parameter corresponding to variahlg) ChoosingQ = X’X, it follows that the
posterior predictive loss of each model is given by (24).

Two choices of model prior probabilities are considerBd)M,;)) = 1/4, i =
1,2,3.4, and P*(Mi;)) = it/ ¥9_; 71 [the latter type of choice being
discussed in, e.g., Jeffreys (1961)]. Ddfgposterior probalities of each model
are then obtained using the Encompassing Arithmetic Intrinsic Bayes Factor,
recommended in Berger and Pericchi (1996a, b) for linear models. The resulting
model posterior probabilities? (M,;)|y) and P*(M,;)ly), for the two choices of
prior probabilities, respectively, are given in Table 7. The table also presents the
normalized posterior predictive logg M ;) — C for each model.

Since these models are nested, Corollary 4 ensures that the median probability
model is the optimal predictive model. Using (9), it is clear from Table 7 that
M,3) is the median probability model for both choices of prior probabilities. And,
indeed, the posterior predictive lossMf 3, is the smallest. Note thal s, is the
maximum probability model for the first choice of prior probabilities, whifg)

(which is suboptimal) is the maximum probability model for the second choice.

TABLE 7
Posterior proballities and predictive losses for Hald data

M1y M) M3 M4

P(Myply) 00002 03396 05040  0.1562
R(Mi;)—C 0  —808.81 -—816.47 —814.43

P*(M)ly) 0.0005 0.4504 0.4455 0.1036
R(Mjiy) —C 0 —808.32 —-810.67 —808.31
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5. A geometricformulation. Itwas stated in the Introduction that, in general,
knowing only the model posterior probabilities does not allow one to determine
the optimal predictive model. This is best seen by looking at the problem from a
geometric perspective which, furthermore, provides considerable insight into the
problem.

Assuming the matriXQ in (5) is nonsingular and positive definite, consider its
Cholesky decompositio® = A’A, whereA is ak x k upper triangular matrix.

The expected posterior loss (16) to be minimized can then be written as

(29) R(M)) = (a) — @)’ () — @),

where a) = AH|E| is a k-dimensional vector andt = A = Y p|AH|E|.
[If Q=X'X and B, = B, one can define; asa; = XH8; = X;(X/X))"1 Xy,
the projection ofy on the space spanned by the columnXpfF It follows that the
preferred model will be the one whose correspondinig nearest t@ in terms of
Euclidean distance.

The geometric formulation of the predictive problem follows by representing
each modeM, by the pointx|. The collection of models thus becomes a collection
of points ink-dimensional space. The convex hull of these points is a polygon
representing the set of possible model averaged estimatssthep, vary over
their range. Hence any point in this polygon is a possible optimal predictive model,
depending on the,, and the goal is to geometrically characterize when each single
model is optimal, given that a single model must be used.

Consider the simple situation in which we have two covariateandx, and
three possible models:

Mio:{x1}, Moz :{x2}, M1 {x1, x2},

again writing, for exampleMp; instead ofM ;). These can be represented as
three points in the plane. (If the three models had a constant, or intercept, term,
then the three points would lie on a plane in three-dimensional space, and the
situation would be essentially the same.)

Depending on the sample correlation structure, the triangle whose vertices
areags, «1p anda11 can have three interesting distinct forms. These three forms
are plotted in Figure 1. Subregions within each plot will be denoted by the
vertices; thus, in Figure 1(d¥o1, F, C] denotes the triangle whose vertices are
agy, F andC.

Each triangle can be divided into optimality subregions, namely the set of
thosea which are closest to one of thg. These are the regions defined by the
solid lines. Thus, in Figure 1(a), the triangte;o, F, C] defines those points that
are closer tax1g than to the other two vertices; hencegaifwere to fall in this
region the optimal single model would k0. If @ were to fall in the triangle
[ao1, B, E] the optimal single model would b#y; and, if @ were to fall in the
region between the two solid lines the optimal single model would/he It is
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aq1
&1 Qo B a1
I \
A S
>
Qi a0 Q)
() (b) (©)

Fic. 1. Three possible scenarios for the graphical representation of predictive model selection
from amongMig: {x1}, Mo1:{x2} and M11:{x1, x2}.

easy to see that these optimality regions are formed by either (i) connecting the
perpendicular bisectors of the sides of the triangle, if all angles are less than or
equal to 90, or (ii) drawing the perpendicular bisectors of the adjacent side of an
angle that is greater than Q0

In each plot,A, B andC are the midpoints of the line segmef®xg1, o111
and ager1, respectively, whileO is the midpoint of the triangle. These are of
interest because they define regions such thatliés in the region, then the model
corresponding to the vertex in the regibas the largest posterior probability.
Thus, in Figure 1(a), ik lies in the polygonaig, A, O, C], then M19 must be
the maximum posterior probability model.

Note that the maximum posterior probability regions do not coincide with the
optimal predictive model regions. As a dramatic illustration of the difference,
consider Figure 1(a) and suppose thdies on the line segmerﬁ. ThenMq; is
the optimal predictive model, even though it has posterior probability 0. Also,
either M1g or Mp; has posterior probability at least2 on this line segment, yet
neither is the best predictive model.

The dashed lines form the boundaries defining the median probability models.
Thus, ifa lies in the triangldea 10, A, C], thenM;o will be the median probability
model, while ifa lies in the polygoriC, A, B, a«11], thenM11 will be the median
probability model. To see why this is so, note that the line segm_e)htonsists
of the points for whichP (M1oly) = 1/2 (i.e., for which M9 has posterior
probability 1/2). But then clearly the inclusion probability for variahle is
also equal to 212 on this line segment, sing® = P(Mo1ly) + P(M11]y) =1 —

P (Maoly). Similarly, AB consists of the points for which the inclusion probability
for variablex; is equal to ¥2. It is immediate that the median probability model
in (7) is defined by the indicated regions.
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Figures 1(a) and (b) thus show that the median probability model will not
always equal the optimal predictive model. Indeed, the two are the same only in
the situation of Figure 1(c). In a sense, the theory in the preceding sections arose
out of efforts to characterize situations in which the predictive risk representation
would be as in Figure 1(c). We found that this is sXiX is diagonal and (17)
holds, as in Section 3.1. We also found this to be true in the nested model case
discussed in Section 3.3. [Indeed, the resulting figure is simply a rotated version
of Figure 1(c).] Subsequently we were able to develop the more general algebraic
theories in those sections, but they were based on insights obtained through the
geometric formulation.

One can seek alternative theories based on observations in the geometric
formulation. For instance, notice that if the triangle in Figure 1(b) were equilateral,
then O and G would coincide and the maximum probability model would equal
the optimal predictive model. Unfortunately, we could not find any useful general
conditions under which the triangle would be equilateral.

6. Concluding comments.

6.1. When the theory does not applyl'he conditions of the optimality theory
for the median probability model are quite strong and will often not apply.
Nevertheless, the fact thahly the median probability model seems to have any
optimality theory whatsoever suggests that it might quite generally be successful,
even when the optimality theory does not apply.

ExampPLE 3 (Continued). Suppose that all models (including at least the
constant term) are considered for Hald’s data. This does not formally satisfy
the theory in Section 4, since the models are not nested and the conditions of
Theorem 3 do not apply. But here the situation is simple enough that we can
directly compute the posterior predictive losses corresponding to each of the
possible models, using (16) and assuming equal prior probabilities of the models.
The results are given in Table 8.

TABLE 8
Posterior probabilities and posterior expected losses for Haldata

Model  P(M|ly)  R(M)) Model  P(Mly) R(M))
¢ 0.000003 2652.44 c¢,2,3 0.000229 353.72
¢,1 0.000012 1207.04 c¢,2,4 0.000018 821.15
¢,2 0.000026 854.85 ¢,3,4 0.003785 118.59
¢,3 0.000002 1864.41 ¢,1,2,3 0.170990 121
c¢,4 0.000058 838.20 ¢,1,2,4 0.190720 0.18

c,1,2 0.275484 8.19 c,1,3,4 0.159959 171
¢,1,3 0.000006 1174.14 ¢,2,3,4 0.041323 20.42
c,1,4 0.107798 29.73 ¢,1,2,3,4 0.049587 0.47
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Computation of the posterior inclusion probabilities yields
pi= Y P(My)=0.954556 p2= Y_ P(Mily)=0.728377

=1 I:1p=1
p3= »_ P(My)=0.425881 pa= Y P(Mily)=0.553248
I:l3=1 l:l4=1

Thus the median probability model {s, x1, x2, x4}, which from Table 8 clearly
coincides with the optimal predictive model. Note that the risk of the maximum
probability model{c, x1, x2} is considerably higher than that of the median
probability model.

This example is typical; in our experience the median probability model
considerably outperforms the maximum probability model in terms of predictive
performance. At the very least this suggests that the median probability model
should routinely be determined and reported along with the maximum probability
model.

6.2. When does the medigorobability nmodel fail? Suppose that the only
models entertained are those with a constant term and a single coveriate
i=1,...,k, with k > 3, as well as the model with only a constant term. All
models have equal prior probability of & + 1). Furthermore, suppose that all
covariates are nearly perfectly correlated with each other and yitthen the
posterior probability of the constant model will be near zero, and that of each of
the other models will coincide with the posterior inclusion probabilities of each
of the x;, and will be approximately Jk. Since these posterior inclusion
probabilities are less thary2, the median probability model will be the constant
model, which will have very poor predictive performance compared to any of the
other models.

One might be tempted to conclude from this that the median probability model
might be problematical if there are highly correlated covariates. We have not yet
observed such a difficulty in practice, however. Indeed, the Hald example given
in the previous section is an example in which there is high correlation between
covariates, yet we saw that the median probability model was still the best.

6.3. Use of posterior inclusion probabilities.In addition to being key to
defining the median probability model, the posterior inclusion probabilities in (6)
can be important tools in assessing the effect of covariates, as indicated in
the ANOVA example. One can, furthermore, define joint posterior inclusion
probabilities of covariates; these can be very useful in unraveling the effects on
model selection of correlations among covariates. See Nadal (1999) for examples.
Finally, posterior inclusion probabilities are a key element in some of the most
effective search strategies in model space; compare Berger and Molina (2002).
The importance of posterior inclusion probabilities was emphasized in Mitchell
and Beauchamp (1988).
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