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MINIMAX ESTIMATION OF LINEAR FUNCTIONALS
OVER NONCONVEX PARAMETER SPACES1

BY T. TONY CAI AND MARK G. LOW

University of Pennsylvania

The minimax theory for estimating linear functionals is extended to
the case of a finite union of convex parameter spaces. Upper and lower
bounds for the minimax risk can stillbe described in terms of a modulus
of continuity. However in contrast to the theory for convex parameter spaces
rate optimal procedures are often required to be nonlinear. A construction of
such nonlinear procedures is given. The results developed in this paper have
important applications to the theory of adaptation.

1. Introduction. Let Y be an observation from either the white noise model,

dY (t) = f (t) dt + n−1/2dW(t)(1)

whereW(t) is a standard Brownian motion, or the Gaussian sequence model

Y (i) = f (i) + n−1/2εi(2)

whereεi are i.i.d. standard normal random variables.
The minimax theory for estimating a linear functionalT has been studied in

great generality when it is assumed that the functionf belongs to a parameter
space which is convex. See, for example, Ibragimov and Has’minskii (1984),
Donoho and Liu (1991a, b) and Donoho (1994). In particular, the properties of
the minimax linear estimators can often be described precisely. In this case for any
linear functionalT write R∗

A(n;F ) for the minimum (over all linear procedures)
maximum mean squared error. Donoho and Liu (1991a) introduced a modulus of
continuity

ω(ε,F ) = sup
{|T (g) − T (f )| :‖g − f ‖2 ≤ ε, f ∈ F , g ∈ F

}
where the norm in this equation is theL2 norm in function space for the white
noise with drift model and thel2 norm in sequence space for the sequence model.
Donoho and Liu (1991a, b) and Donoho (1994) have shown that in either of these
two cases,

R∗
A(n;F ) = sup

ε>0
ω2(ε,F )

1/(4n)

1/n + ε2/4
(3)
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and that
1

8
ω2

(
2√
n
,F

)
≤ R∗

A(n;F ) ≤ 1

4
ω2

(
2√
n
,F

)
.

An earlier version of this result can also be found in Ibragimov and Has’minskii
(1984). Without the restriction to affine procedures writeR∗

N(n;F ) for the
minimax mean squared error for estimating the linear functionalT . Donoho and
Liu (1991b) have shown that

R∗
A(n;F )

R∗
N(n;F )

≤ 1.25.

Therefore the maximum risk of the optimal linear procedure is within a small
constant factor of the minimax risk when the parameter space is convex. Of equal
importance, Donoho and Liu (1991b) showed that the modulus can be used to
give a recipe for constructing an affine procedure which has the maximum mean
squared error attaining the bound given in (3).

Recent work on estimating linear functionals has focused on adaptive estima-
tion. The goal is to find a single procedure which is near minimax simultaneously
over a number of different parameter spaces. Pioneering work in this area began
with Lepski (1990). This work focused on particularly important examples such as
Lipschitz classes. In Efromovich and Low (1994) a general theory was developed
for the case of nested convex parameter spaces.

A general extension of this adaptive estimation theory to spaces which are not
nested must also include a minimax analysis for sets which are not convex. The
reason for this is that we need to first know the minimax risk over the union of the
original convex spaces and this space need not be convex unless the sets are nested.
This paper focuses on such an extension of the minimax theory for estimating
linear functionals over nonconvex parameter spaces. For applications to adaptive
estimation see Cai and Low (2002). Although as just mentioned our primary
motivation for this problem is the theory of adaptation the minimax theory itself
is in fact quite interesting. In particular in this setting optimal linear procedures
can sometimes have risks far from the optimal rate. In fact even if the parameter
space is only a union of two convex sets it is possible that the maximum risk of
the best linear estimator does not even converge even though the maximum risk
of the optimal nonlinear procedure converges quickly. Such examples are given in
Section 5.

Although optimal linear procedures need no longer be close to optimal we
show that the minimax rate of convergence is still determined by the modulus of
continuity over the parameter space when the parameter space is a finite union of
convex sets. On the other hand, in Section 4, it is shown that the minimax linear risk
is determined by the modulus of continuity over the convex hull of the parameter
space. Therefore affine procedures fail when, in terms of the modulus, the convex
hull is much larger than the parameter space itself. Such are the cases in the
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examples in Section 5. In these cases rate optimal estimators need to be nonlinear.
A general construction of such nonlinear procedures is given in Section 3.

One of the main tools for the construction of the general procedure is a
construction of linear procedures which have a given variance and precisely control
the bias over two different convex parameter spaces. Upper bounds are given on
the bias over one parameter space and lower bounds over the other. These linear
procedures can then be used to test which of the convex sets the function lies in
and then usual linear procedures can be used. The details of these arguments can
be found in Sections 2 and 3.

The theoretical results are complemented by several illustrative examples given
in Section 5 covering a range of cases. In the examples of estimating a linear
functional of a nearly black object the parameter space is the union of a growing
number of convex parameter spaces. In these cases the usual minimax lower bound
is no longer sharp and the minimax rate of convergence is derived explicitly using
a mixture prior and a constrained risk inequality.

2. Ordered modulus and bias variance tradeoffs. One of the main tools for
the construction of the general minimax procedure is the construction of linear
procedures which have a given variance and precisely control the bias over two
different convex parameter spaces. Upper bounds are given on the bias over one
parameter space and lower bounds over the other. The key technical tool which
allows for this construction is an ordered modulus of continuity between two
function spaces. It is a generalization of the modulus of continuity introduced by
Donoho and Liu (1991a) which has already been shown in Low (1995) to allow
for the construction of a procedure which minimizes the maximum squared bias
given a constraint on the maximum variance.

For a linear functionalT define an ordered modulus of continuity between two
classesω(ε, F ,G) by

ω(ε,F ,G) = sup
{
T g − Tf :‖g − f ‖2 ≤ ε;f ∈ F , g ∈ G

}
.

Note thatω(ε,F ,G) does not necessarily equalω(ε,G,F ). It is clear that the
modulusω(ε,F ,G) is an increasing function ofε and 0≤ ω(ε,F ,G) ≤ ∞ if
F ∩ G �= ∅. The between class modulus is also instrumental in the analysis of
adaptation over different parameter spaces [see Cai and Low (2002)].

WhenG = F , ω(ε,F ,F ) is the usual modulus of continuity overF and will
be denoted byω(ε,F ). The following result on the concavity of the modulus
is important in the bias variance tradeoffs and in the construction of the general
minimax procedure.

THEOREM 1. Assume that F , G are convex and that F ∩ G �= ∅. Let T be
a linear functional. Then the function ω(ε,F ,G) is a concave function of ε. In
particular it follows that, for D > 1,

ω(Dε,F ,G) ≤ Dω(ε,F ,G).
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PROOF. Suppose thatg1 ∈ G, g2 ∈ G andf1 ∈ F , f2 ∈ F with

‖gi − fi‖2 ≤ εi .

Then, for 0≤ λ ≤ 1,

‖λg2 + (1− λ)g1 − [λf2 + (1− λ)f1]‖2 ≤ λε2 + (1− λ)ε1

and

T
(
λg2 + (1− λ)g1 − [λf2 + (1− λ)f1])

= λ
(
T (g2) − T (f2)

) + (1− λ)
(
T (g1) − T (f1)

)
.

It then follows that

ω
(
λε2 + (1− λ)ε1,F ,G

) ≥ λω(ε2,F ,G) + (1− λ)ω(ε1,F ,G)

and soω is concave. �

As mentioned earlier in Low (1995) it was shown that in the white noise model
for any linear functional the modulus of continuity can be used to precisely trade
off various levels of bias and variance over a given convex parameter space.
The modulus of continuity between parameter spaces can be used to perform an
analogous trade. It can be used to give a linear procedure which has upper bounds
for the bias over one parameter space and lower bounds for the bias over the other
parameter space. The detailed results are given in Theorems 2 and 3 below.

We shall write 〈u, v〉 for the usuall2 inner product for either sequence or
function space. Specifically if we observe the white noise with drift model let

〈f,g〉 =
∫

fg

and if we observe the sequence model let

〈f,g〉 = ∑
figi .

For allV ≥ 0 let

B(V,F ,G) = 2−1 sup
ε>0

(
ω(ε,F ,G) − √

nV ε
)
.(4)

It will also be convenient to introduce an inverse ofB(V,F ,G) defined for all
B ≥ 0 by

V (B,F ,G) = sup
ε>0

1

nε2

([ω(ε,F ,G) − 2B]+)2
.(5)

We shall show in Theorems 2 and 3 that there is a linear estimator with variance
bounded byV , which has maximum bias overF less than or equal toB(V,F ,G)

and minimum bias overG greater than or equal to−B(V,F ,G). Theorem 2 covers
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the most usual situations where linear estimators can be easily described in terms
of the modulus. Theorem 3 extends the theory to cover the general case.

Our analysis is split into a number of cases. The most usual ones are covered by
cases 1(a) and 2(a). It is these cases which are in fact needed in the construction
of the general procedure in Section 3. We include the others for completeness.
First note that we shall always assume thatω(1,F ,G) > 0; otherwise the linear
functional is constant overF ∪ G and the estimation problem is thus trivial.

CASE 1. Suppose that 0< B(V,F ,G) < ∞. Then defineε(V,F ,G) by

ε(V,F ,G) = arg max
ε≥0

(
ω(ε,F ,G) − √

nV ε
)

(6)

whereε(V,F ,G) is the smallest value ofε for which the maximum in (4) is
attained. It will be convenient to break case 1 into two further cases, namely:

(a) 0< ε(V,F ,G) < ∞.
(b) ε(V,F ,G) = ∞.

CASE 2. B(V,F ,G) = 0 andB(V ′,F ,G) > 0 for all 0≤ V ′ < V . Note that
if B(V ′,F ,G) = 0 for someV ′ < V then we could reduce the variance of our
estimator without increasing the magnitude of the bias. Under this assumption
there are only two possibilities.

(a) ω(ε,F ,G) = √
nV ε on some interval 0≤ ε ≤ ε0 whereε0 > 0. We can

then defineε(V,F ,G) to be the largestε ≤ 1√
n

for whichω(ε,F ,G) = √
nV ε.

(b) ω(ε,F ,G) <
√

nV ε wheneverε > 0. It then follows from the concavity
of the modulus that 0< B(V ′,F ,G) < ∞ for someV ′ < V . In this case set
ε(V,F ,G) = 0.

The following technical lemma shows thatB(V,F ,G) is continuous inV

whenever it is finite.

LEMMA 1. Suppose F and G are closed and convex with F ∩ G �= ∅.
Then ε(V,F ,G) is nonincreasing in V . Assume B(V,F ,G) < ∞. Then
ε(V ′,F ,G) < ∞ if V ′ > V and

lim
Vm↓V

B(Vm,F ,G) = B(V,F ,G).(7)

If, in addition, B(V ′,F ,G) < ∞ for some V ′ < V , then

lim
Vm→V

B(Vm,F ,G) = B(V,F ,G).(8)
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PROOF. Note first that the monotonicity ofε(V,F ,G) and the fact that
ε(V ′,F ,G) < ∞ if V ′ > V follows from the concavity of the modulusω(ε,F ,G)

as shown in Theorem 1. Now assume thatB(V,F ,G) < ∞ and letVm ↓ V . Note
that

B(Vm,F ,G) ≤ B(V,F ,G) for Vm ≥ V ,

and that for anyε

B(Vm,F ,G) ≥ 2−1(ω(ε,F ,G) − √
nVmε

)
.

Taking limits yields

lim inf
Vm↓V

B(Vm,F ,G) ≥ 2−1(ω(ε,F ,G) − √
nV ε

)
for all ε and so taking the supremum over allε on the right-hand side shows that
the limit exists and is equal toB(V,F ,G). This proves (7).

Note thatB(V,F ,G) is a convex function of
√

V since it is a supremum of
a collection of convex functions of

√
V . HenceB(V,F ,G) is continuous inV

on any open interval over which it is finite. Hence ifB(V ′,F ,G) < ∞ for some
V ′ < V thenB(·,F ,G) is continuous atV and so (8) follows. �

We now state the bias—variance tradeoff theorem in the most easily understood
and most typical case where 0< ε(V,F ,G) < ∞ and the modulus is attained by
two functionsf ∈ F andg ∈ G.

THEOREM 2. Suppose F and G are convex and closed with F ∩ G �= ∅.
Assume that 0 < ε(V,F ,G) < ∞. Suppose further that there are f ∈ F , g ∈ G
such that

‖g − f ‖2 = ε(V,F ,G) ≡ εV and T g − Tf = ω(εV ,F ,G).(9)

Write u ≡ g−f
εV

for the direction of the affine family joining g and f . Let

a = T

(
f + g

2

)
− √

nV

〈
u,

f + g

2

〉
.(10)

Then the estimator

T̂V = a + √
nV

∫
u(t) dY (t)(11)

for the white noise with drift model and the estimator

T̂V = a + √
nV

∑
u(i)Y (i)(12)

for the sequence model have constant variance

E(T̂V − ET̂V )2 = V(13)
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and have biases bounded by

sup
f ∈F

Ef T̂V − Tf = B(V,F ,G)(14)

and

inf
g∈G

EgT̂V − T g = −B(V,F ,G).(15)

REMARK. If F andG are closed, convex and norm bounded with nonempty
intersection then the condition that the modulus is attained is guaranteed. The
extension to cases where either the modulus is not attained as well as for when
ε(V,F ,G) = 0 andε(V,F ,G) = ∞ will be covered in Theorem 3.

PROOF OFTHEOREM 2. The proof of this theorem essentially follows that of
Theorem 2 in Low (1995). Note that the proofs of (14) and (15) are entirely similar
so we shall only give the details for the proof of (15).

Let f ∈ F andg ∈ G be extremal functions satisfying (9) which exist since
F andG are closed. Leth be any other element ofG. The affine family joining
g andh is given by(1− θ)g + θh, 0≤ θ ≤ 1. Let

J (θ) = T
(
(1− θ)g + θh

) − Tf − √
nV ‖(1− θ)g + θh − f ‖2.

It follows from the definition ofε(V,F ,G) given in (6) thatJ (θ) ≤ J (0) for
all 0 ≤ θ ≤ 1 and sinceJ (θ) is clearly differentiable it follows thatJ ′(0) ≤ 0.
A simple computation shows that

T h − T g − √
nV 〈u, (h − g)〉 ≤ 0.(16)

Now

ET̂V − T g = T

(
f + g

2

)
+ √

nV

〈
u,

(
g − f + g

2

)〉
− T g(17)

and

ET̂V − T h = T

(
f + g

2

)
+ √

nV

〈
u,

(
h − f + g

2

)〉
− T h.(18)

It then follows from (16)–(18) that

(ET̂V − T g) − (ET̂V − T h) ≤ 0.(19)

Finally note that a simple calculation yields

ET̂V − T g = −B(V,F ,G).(20)

Equations (19) and (20) combine to show (15) and the proof is complete.�

Theorem 2 treats the cases 1(a) and 2(a) under the additional assumption that
the modulus is attained byf ∈ F andg ∈ G. The functionsf andg are used
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explicitly in the construction of the estimatêTV . In general, the modulus may not
be attained and in these cases the description of a linear estimator which trades
variance and bias is more involved. We describe the general case in detail in the
following theorem. Some of the details are similar to those given in Section 12 of
Donoho (1994).

DefineB(m) to be the closedL2 ball with radiusm and letFm = F ∩B(m) and
Gm = G ∩ B(m). It follows from Lemma 2 of Donoho (1994) that forFm andGm

the modulusω(ε,Fm,Gm) can always be attained by somef ∈ Fm andg ∈ Gm.
DefineVm, εm, fm andgm in the following way.

CASE 1.

(a) 0< B(V,F ,G) < ∞ and 0< ε(V,F ,G) < ∞. In this case letVm = V ,
l(m) = m and defineεm = ε(Vm,Fl(m),Gl(m)). Note that for largem, εm > 0.
Moreover, since bothFm andGm are contained inB(m) it follows thatεm < 2m.
SinceFl(m) and Gl(m) are closed and norm bounded it follows from Lemma 2
of Donoho (1994) that the modulusω(εm,Fl(m),Gl(m)) is attained by a pair
fm ∈ Fl(m) andgm ∈ Gl(m).

(b) ε(V,F ,G) = ∞. In this case letVm > V be chosen whereVm ↓ V .
Then it follows from Lemma 1 thatB(Vm,F ,G) → B(V,F ,G). So for largem,
0 < B(Vm,F ,G) < ∞. Now choose an increasing sequencel(m) → ∞ so that
B(Vm,Fl(m),Gl(m)) > 0. Now defineεm = ε(Vm,Fl(m),Gl(m)) and once again
note that for largem, 0 < εm < 2m. Again Fl(m) andGl(m) are closed and norm
bounded so the modulusω(εm,Fl(m),Gl(m)) is attained by a pairfm ∈ Fl(m) and
gm ∈ Gl(m).

CASE 2.

(a) B(V,F ,G) = 0,B(V ′,F ,G) > 0 for all V ′ < V andω(ε,F ,G) = √
nV ε

on some interval 0≤ ε ≤ ε0 for someε0 > 0. Let l(m) = m and note that at least
for m sufficiently large 0< B(0,Fl(m),Gl(m)) < ∞ and that sinceFl(m) ⊆ F and
Gl(m) ⊆ G it also follows thatB(V,Fl(m),Gl(m)) = 0. Lemma 1 shows that for all
sufficiently largem there exists aVm < V such that

0< B
(
Vm,Fl(m),Gl(m)

) ≤ 1

m
.

Now let εm = ε(Vm,Fl(m),Gl(m)). Then as before it follows that for largem,
0 < εm < 2m. Now sinceFl(m) and Gl(m) are closed and norm bounded, the
modulusω(εm,Fl(m),Gl(m)) is attained by a pairfm ∈ Fl(m) andgm ∈ Gl(m).

(b) B(V,F ,G) = 0, B(V ′,F ,G) > 0 for all 0 ≤ V ′ < V , ω(ε,F ,G) <√
nV ε wheneverε > 0.
Now let Vm < V be chosen whereVm ↑ V . Note that there exists someV0 ≥ 0

such that

0 < B(V ′,F ,G) < ∞
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for V0 ≤ V ′ < V . Then for largem,

0 < B(Vm,F ,G) < ∞.

So there is an increasing sequencel(m) → ∞ such that

0 < B
(
Vm,Fl(m),Gl(m)

)
< B(Vm,F ,G) < ∞.

We now defineεm = ε(Vm,Fl(m),Gl(m)). It follows once again that 0< εm < 2m

for largem. Now sinceFl(m) andGl(m) are closed and norm bounded the modulus
ω(εm,Fl(m),Gl(m)) is attained by a pairfm ∈ Fl(m) andgm ∈ Gl(m).

ForVm, εm, fm andgm as just defined letum = gm−fm

εm
and let

am = T

(
fm + gm

2

)
− √

nVm

〈
um,

fm + gm

2

〉
.

For the white noise with drift model let

T̂m = am + √
nVm

∫
um(t) dY (t)(21)

and for the sequence model let

T̂m = am + √
nVm

∑
i

um(i)Y (i).(22)

The estimatorT̂m corresponds to the estimatorT̂V defined in Theorem 2 for
V = Vm, F = Fl(m) andG = Gl(m). In the general case we need to take a limit of
the estimatorŝTm.

Note that‖um‖2 = 1 and so there exists a subsequence which converges weakly
to some functionu where‖u‖2 ≤ 1.

Now let h ∈ F ∩ G. Then since‖h‖2 ≤ m0 for somem0 < ∞ it follows that
h ∈ Fl(m) ∩ Gl(m) for all m ≥ m1 wherel(m1) ≥ m0.

Form ≥ m1 note it follows from Theorem 2 that

|EhT̂m − T h| ≤ B
(
Vm,Fl(m),Gl(m)

) ≤ 1

m

in case 2(a), and in all other cases

|EhT̂m − T h| ≤ B
(
Vm,Fl(m),Gl(m)

) ≤ B(Vm,F ,G).

Note thatB(Vm,F ,G) is bounded since it converges toB(V,F ,G). Note also that

ET̂m = am + √
nVm〈um,h〉

and since the norm ofum is equal to one it follows thatam is bounded. Hence
there is a subsequence of the subsequence used to defineu which converges to
some finitea. Denote this subsubsequence bym∗

k .
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For the white noise with drift model let

T̂V = a + √
nV

∫
u(t) dY (t)(23)

and for the sequence model let

T̂V = a + √
nV

∑
u(i)Y (i).(24)

The following theorem shows that this estimatorT̂V which has been formed as a
limit of T̂m trades bias and variance in the general case.

THEOREM 3. Suppose F and G are convex and closed with nonempty
intersection. Then the estimator defined by (23) for the white noise with drift model
and (24) for the sequence model satisfies

E(T̂V − ET̂V )2 ≤ V(25)

and has biases bounded by

sup
f ∈F

Ef T̂V − Tf ≤ B(V,F ,G)(26)

and

inf
g∈G

EgT̂V − T g ≥ −B(V,F ,G).(27)

PROOF. Note that (25) follows immediately from the fact that the norm ofu is
bounded by 1. We shall only give the proof for (26) since the proofs for the other
cases are analogous.

First note that the estimator̂Tm as defined in (21) and (22) satisfies the bounds
given in Theorem 2. Iff ∈ Fl(m) then

ET̂m − Tf ≤ B
(
Vm,Fl(m),Gl(m)

)
.

Let m∗
k be the subsubsequence along whicham and um converge toa and u,

respectively. Now for anyf ∈ F , f ∈ Fl(m∗
k)

for largek. So

ET̂V − Tf ≤ lim sup
k→∞

ET̂m∗
k
− Tf

≤ lim sup
k→∞

B
(
Vm∗

k
,Fl(m∗

k ),Gl(m∗
k)

)
≤ lim sup

k→∞
B

(
Vm∗

k
,F ,G

)
≤ B(V,F ,G).

The last step follows from Lemma 1.�
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REMARK. Using the Cramér–Rao inequality arguments found in Low (1995)
it can be shown that the linear estimator which attains the bounds in the theorem
is in fact unique and must actually attain the inequalities. It then follows that
the sequenceum which was used to define the estimatorT̂V actually converges
strongly tou and that the sequenceam actually converges.

3. Minimax estimator over a finite union of convex sets. Let F = ⋃k
i=1 Fi

where fori = 1, . . . , k, Fi are closed convex spaces with nonempty intersections,
that is,Fi ∩ Fj �= ∅ for all i, j . Our objective is to construct an estimator which
is rate optimal for estimating a linear functionalT over the parameter spaceF .
Standard two-point testing arguments as, for example, contained in Donoho and
Liu (1991a) or Brown and Low (1996) show that the minimax risk for estimating
a linear functionalTf overF is bounded from below by

inf
T̂

sup
f ∈F

E(T̂ − Tf )2 ≥ 1

8
ω2

(
1√
n
,F

)
.(28)

Let T̂i be linear estimators which satisfy

sup
f ∈Fi

E(T̂i − Tf )2 ≤ M2ω2
(

1√
n
,Fi

)
(29)

for someM > 0. As mentioned in the introduction ifM ≥ 1 such linear estimators
are guaranteed to exist and can be constructed by the recipe given in Donoho
(1994). In the following discussionC will denote generic constants whereas
M will always refer to the bounds given in (29).

For i �= j , let Vi,j = ω2( 1√
n
,Fi ,Fj ). Then it follows from the concavity of the

modulus thatB(Vi,j ,Fi ,Fj ) as defined by (4) satisfies

B(Vi,j ,Fi,Fj ) = 2−1 sup
ε>0

(
ω(ε,Fi ,Fj ) − √

nVi,j ε
)

= 2−1 sup
ε≤1/

√
n

(
ω(ε,Fi ,Fj ) − √

nεω

(
1√
n
,Fi,Fj

))

≤ 2−1ω

(
1√
n
,Fi,Fj

)
.

Hence eitherB(Vi,j ,Fi,Fj ) = 0 or 0< B(Vi,j ,Fi ,Fj ) ≤ 2−1ω( 1√
n
,Fi ,Fj ).

In the first case whenB(Vi,j ,Fi,Fj ) = 0 it follows from the definition of
ε(Vi,j ,Fi ,Fj ) given for case 2(a) thatε(Vi,j ,Fi,Fj ) = 1√

n
. On the other hand

if 0 < B(Vi,j ,Fi ,Fj ) ≤ 2−1ω( 1√
n
,Fi ,Fj ) then 0< ε(Vi,j ,Fi ,Fj ) ≤ 1√

n
. Hence

we know in both cases that 0< ε(Vi,j ,Fi ,Fj ) ≤ 1√
n
. It follows that when using

Vi,j = ω2( 1√
n
,Fi,Fj ) that we are in either case 1(a) or case 2(a) of Section 2.
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For i �= j let T̂i,j be the estimator defined as in Theorem 2 when (9) is attained
whereF = Fi , G = Fj andV = Vi,j = ω2( 1√

n
,Fi,Fj ). When (9) is not attained

the estimatorT̂i,j is defined as in Theorem 3. This linear estimator has variance

bounded byω2( 1√
n
,Fi ,Fj ) and bias which satisfies

−2−1ω

(
1√
n
,Fi,Fj

)
≤ inf

f ∈Fj

(
E(T̂i,j ) − Tf

)
(30)

and

sup
f ∈Fi

(
E(T̂i,j ) − Tf

) ≤ 2−1ω

(
1√
n
,Fi,Fj

)
.(31)

Now based on the linear estimatorŝTi,j and the linear estimatorŝTi , which
satisfy (29), definêzu

i,j , ẑl
i,j andẑi,j by

ẑu
i,j = T̂i,j − T̂i

ω( 1√
n
,Fi,Fj ) + Mω( 1√

n
,Fi)

,

ẑl
i,j = T̂i − T̂j,i

ω( 1√
n
,Fj ,Fi ) + Mω( 1√

n
,Fi)

and

ẑi,j = max(ẑu
i,j , ẑ

l
i,j ).

Note thatẑu
i,j andẑl

i,j are normally distributed and satisfy

max
(
Var(ẑu

i,j ),Var(ẑl
i,j )

) ≤ 1.(32)

Finally define the estimator of the linear functionalT as

T̂ ∗ = T̂
î

with î = arg min
i

(
sup
j �=i

ẑi,j

)
.(33)

The analysis of the mean squared error ofT̂ ∗ is facilitated by the following lemma
which bounds the probability that̂T ∗ = T̂j when the magnitude of the bias ofT̂j

is large.

LEMMA 2. Suppose f ∈ Fi and for some j �= i, |ET̂j −Tf | ≥ γMω( 1√
n
,F )

where γ ≥ 3. Then

P (î = j) ≤ 2k exp
(
−(γ − 3)2

32

)
.
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PROOF. Note that iff ∈ Fi andj �= i, then from (29) and (31),

Eẑu
i,j = E(T̂i,j − Tf ) − E(T̂i − Tf )

ω( 1√
n
,Fi,Fj ) + Mω( 1√

n
,Fi)

≤ 1(34)

and from (29) and (30),

Eẑl
i,j = E(T̂i − Tf ) − E(T̂j,i − Tf )

ω( 1√
n
,Fj ,Fi ) + Mω( 1√

n
,Fi )

≤ 1.(35)

Now suppose thatf ∈ Fi . We shall only give details of the proof when

ET̂j − Tf ≥ γMω

(
1√
n
,F

)

as the case when

ET̂j − Tf ≤ −γMω

(
1√
n
,F

)

is handled in a similar way. WhenET̂j − Tf ≥ γMω( 1√
n
,F ) then it follows

from (31) that

Eẑl
j,i = E(T̂j − Tf ) − E(T̂i,j − Tf )

ω( 1√
n
,Fi ,Fj ) + Mω( 1√

n
,Fj )

≥
γMω( 1√

n
,F ) − 1

2ω( 1√
n
,Fi ,Fj )

ω( 1√
n
,Fi ,Fj ) + Mω( 1√

n
,Fj )

≥ γ − 1

2
.

(36)

Now without loss of generality suppose thati = 1 and thatj = 2. Then if î = 2
note that̂z2,1 ≤ supr �=1(ẑ1,r ) and sincêzl

2,1 ≤ ẑ2,1 it follows that

P (î = 2) ≤
k∑

r=2

P (ẑl
2,1 − ẑ1,r ≤ 0)

≤
k∑

r=2

{
P (ẑl

2,1 − ẑl
1,r ≤ 0) + P (ẑl

2,1 − ẑu
1,r ≤ 0)

}
.

Now by (32) ẑl
2,1 − ẑl

1,r and ẑl
2,1 − ẑu

1,r both have normal distributions with
variance less than or equal to 4 and by (34)–(36) means greater than or equal
to γ−3

2 and the lemma now follows from the bound on a standard normal random
variableZ,

P (Z > t) ≤ exp
(
− t2

2

)
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which holds for allt ≥ 0. �

Although our main focus is on mean squared error we shall consider the more
general case ofpth power loss. Such general cases are important in the theory of
adaptation [see Cai and Low (2002)]. Lemma 2 can be used to bound the risk
of the estimatorT̂ ∗ defined by (33) as in the following theorem.

THEOREM 4. Suppose either the white noise model (1) or the sequence
model (2) is given. Let F = ⋃k

i=1Fi where k ≥ 2 and Fi are closed convex sets
with Fi ∩ Fj �= ∅ for all i, j . Let T̂ ∗ be the estimator of the linear functional T

defined as in (33). Then for p ≥ 1,

sup
f ∈F

E|T̂ ∗ − Tf |p ≤ C(p)Mp(ln k)p/2ωp

(
1√
n
,F

)
(37)

where the constant C(p) is independent of M , k and n.

REMARK. Note that we can always find linear estimatorsT̂i for whichM ≤ 1
in (29) and so the theorem yields an upper bound on the minimax risk overF
which only depends on the modulus and the numberk. There is also a minimax
lower bound for thepth power loss analogous to that given in (28),

inf
T̂

sup
f ∈F

E|T̂ − Tf |p ≥ b(p)ωp

(
1√
n
,F

)
(38)

for some constantb(p) > 0. By comparing the upper bound in (37) with this bound
it is clear that for fixed finitek the estimatorT̂ ∗ is rate optimal overF . It is also
worth noting that sometimes the lower bound is not asymptotically sharp when
k is finite but grows withn. In Section 5 we give examples wherek grows withn

and the optimal rate is given by the upper bound in equation (37).
In the theory of adaptation the goal is to find a procedure which is simultane-

ously near minimax over a collection of parameter spaces. If a collection of convex
parameter spaces is not nested then the largest of the minimax risks for each con-
vex parameter space may be smaller than the minimax risk over the union of the
convex parameter spaces [see, e.g., Cai and Low (2002)]. In such cases an appro-
priate benchmark for the maximum risk of an adaptive estimator is given by the
bound in Theorem 4.

The proof of Theorem 4 is based on Lemma 2 and the following bound on the
tail probabilities of a maximum of Gaussian random variables.

LEMMA 3. Let Xi , i = 1, . . . ,m, be normal random variables with means µi

and standard deviations σi ≤ σ . Suppose that |µi − µ| ≤ γ for i = 1, . . . ,m, and
c > 0 is a constant. Then

P

(
max

1≤i≤m
|Xi − µ| ≥ γ + √

c lnmσ

)
≤ m1−c/2.(39)
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PROOF. We shall assume thatm ≥ 2 and thatc ≥ 2, since otherwise the bound
is trivial. Denote byZ a standard Gaussian random variable. Then

P

(
max

1≤i≤m
|Xi − µ| ≥ γ + √

c lnmσ

)
≤

m∑
i=1

P
(|Xi − µ| ≥ γ + √

c lnmσ
)

≤ mP
(|Z| ≥ √

c lnm
)

≤ m1−c/2.

The last inequality follows from standard bounds on tail probabilities of Gaussian
distributions once we note thatc lnm ≥ 1 whenc ≥ 2 andm ≥ 2. �

PROOF OFTHEOREM 4. Let λ ≥ 1 andDλ = 3 + √
32λ ln2k3 and we will

write Dp whenλ = p. Then it is easy to check from Lemma 2 that if|ET̂i −Tf | ≥
DλMω( 1√

n
,F ) thenP (î = i) ≤ 1

k3λ−1 .
Let

I1 =
{
i : |ET̂i − Tf | ≥ DpMω

(
1√
n
,F

)}
,

I2 =
{
i : |ET̂i − Tf | < DpMω

(
1√
n
,F

)}
.

We then have

E|T̂ ∗ − Tf |p
= ∑

i∈I1

E
(|T̂i − Tf |p1(î = i)

) + ∑
i∈I2

E
(|T̂i − Tf |p1(î = i)

)

≤ ∑
i∈I1

(
E(T̂i − Tf )2p

)1/2(
P (î = i)

)1/2 + E

(
max
i∈I2

|T̂i − Tf |p
)
.

(40)

Now note that, ifX has a normal distribution with meanµ and varianceσ 2 and
p ≥ 1, then a straightforward calculation shows that

(EX2p)1/2 ≤ 2p(|µp| + a
1/2
2p σp)

whereaj = E|Z|j for Z a standard Gaussian random variable. Ifi ∈ I1, then for
someλ ≥ p,

|ET̂i − Tf | = DλMω

(
1√
n
,F

)
,

and so fori ∈ I1 and such a choice ofλ ≥ p,

(
E|T̂i − Tf |2p)1/2(

P (î = i)
)1/2 ≤ 2pMp(a

1/2
2p + D

p
λ )ωp

(
1√
n
,F

)
1

k(3λ−1)/2 .
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Now note that, ifk ≥ 2,

sup
λ≥p

D
p
λ

k(3λ−1)/2
= D

p
p

k(3p−1)/2
≤ D

p
p

k
,

and hence∑
i∈I1

(
E|T̂i − Tf |2p

)1/2(
P (î = i)

)1/2 ≤ 2pMp(a
1/2
2p + Dp

p)ωp

(
1√
n
,F

)
.(41)

Let m be the cardinality of the setI2. Now note that, ifm ≤ 1, then

E

(
max
i∈I2

|T̂i − Tf |p
)

≤ B(p)ωp

(
1√
n
,F

)
(42)

and the theorem now follows from (40)–(42). Ifm ≥ 2, then

E

(
max
i∈I2

|T̂i − Tf |p
)

≤ (
Dp + √

3 lnm
)p

Mpωp

(
1√
n
,F

)

+ Mpωp

(
1√
n
,F

)

×
∞∑
l=3

{(
Dp + √

l lnm
)p

× P

((
Dp + √

(l − 1) lnm
)
Mω

(
1√
n
,F

)
≤ max

i∈I2
|T̂i − Tf |

≤ (
Dp + √

l lnm
)
Mω

(
1√
n
,F

))}

≤ (
Dp + √

3 lnm
)p

Mpωp

(
1√
n
,F

)

+ Mpωp

(
1√
n
,F

)

×
∞∑
l=3

{(
Dp + √

l lnm
)p

× P

(
max
i∈I2

|T̂i − Tf | ≥ (
Dp + √

(l − 1) lnm
)
Mω

(
1√
n
,F

))}
.

Note that it follows from the definition ofI2 and the fact that the variance ofT̂i is
bounded byM2ω2( 1√

n
,F )) and Lemma 3 that

P

(
max
i∈I2

|T̂i − Tf | ≥ (
Dp + √

(l − 1) lnm
)
Mω

(
1√
n
,F

))
≤ m−(l−3)/2.(43)
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Hence

E

(
max
i∈I2

|T̂i − Tf |p
)

≤
[(

Dp + √
3 lnm

)p +
∞∑
l=3

(
Dp + √

l lnm
)p

m−(l−3)/2

]
Mpωp

(
1√
n
,F

)

≤ B(p)(ln k)p/2Mpωp

(
1√
n
,F

)
.

(44)

The theorem now follows on combining (40), (41) and (44).�

4. Linear estimators. We now consider the performance of linear proce-
dures. As mentioned in the Introduction, the optimal linear procedure is within
a small constant factor of the minimax risk when the parameter space is convex.
The following theorem considers the case when the parameter space is nonconvex.
Let F denote a parameter set and let C.Hull(F ) denote the convex hull ofF .

THEOREM 5. Consider the white noise model (1) or the sequence model (2).
The minimax linear risk over a parameter set F is the same as the minimax linear
risk over the convex hull of F , that is,

R∗
A(n;F ) = R∗

A

(
n;C.Hull(F )

)
.

This theorem is a direct consequence of the following result.

THEOREM6. Let T̂ be a linear estimator of Tf where T is a linear functional.
Then for any F

sup
f ∈F

Ef (T̂ − Tf )2 = sup
f ∈C.Hull(F )

Ef (T̂ − Tf )2.(45)

PROOF. SinceF ⊆ C.Hull(F ), it is obvious that

sup
f ∈F

E(T̂ − Tf )2 ≤ sup
f ∈C.Hull(F )

E(T̂ − Tf )2.

Let f ∈ C.Hull(F ) andf = ∑
i λifi with fi ∈ F , λi ≥ 0 and

∑
i λi = 1. Then the

squared bias

(Ef T̂ − Tf )2 =
(∑

i

λi

(
Efi

T̂ − Tfi

))2

≤
(∑

i

λi

∣∣Efi
T̂ − Tfi

∣∣)2

≤ max
i

∣∣Efi
T̂ − Tfi

∣∣2 ≤ sup
f ∈F

(Ef T̂ − Tf )2.

It then follows from the fact that a linear estimator has constant variance that

sup
f ∈C.Hull(F )

E(T̂ − Tf )2 ≤ sup
f ∈F

E(T̂ − Tf )2.
�
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Note that equation (45) is not necessarily true for nonlinear procedures. The
following corollary is a direct consequence of Theorem 5.

COROLLARY 1.

R∗
A(n;F ) = sup

ε>0
ω2(n,C.Hull(F )

) 1/(4n)

1/n + ε2/4
(46)

and

1

8
ω2

(
2√
n
,C.Hull(F )

)
≤ R∗

A(n;F ) ≤ 1

4
ω2

(
2√
n
,C.Hull(F )

)
.(47)

Thus the minimax linear risk is determined by the modulus of continuity over
the convex hull ofF , not overF itself. In the case thatω(ε,C.Hull(F )) �
ω(ε,F ), linear procedures will perform poorly. Examples which illustrate this
point are contained in the next section.

5. Examples. In this section we discuss examples where the modulus of
continuity over the convex hull of the parameter space is much larger than the
modulus of continuity over the parameter space. Since the performance of
the optimal linear procedure is determined by the modulus of the convex hull of the
parameter space linear procedures perform badly in these cases. On the other hand,
the nonlinear procedure introduced in Section 3 is within a constant factor of the
minimax risk.

5.1. Estimating functions at a point. Suppose we observe the white noise
model (1) over the interval[−1

2, 1
2] and we wish to estimateTf = f (0).

We recall that a function is Lip(α) (0 < α ≤ 1) over an interval[a, b] if

|f (x) − f (y)| ≤ |x − y|α for all x, y ∈ [a, b].
Let

F1 = {
f :f is continuous on

[−1
2, 1

2

]
with maximum at 0 andf is Lip(1) over

[−1
2,0

]}
and

F2 = {
f :f is continuous on

[−1
2, 1

2

]
with maximum at 0 andf is Lip

(1
2

)
over

[
0, 1

2

]}
.

Let F = F1 ∪ F2. The parameter spacesF1 andF2 are both convex, butF is
nonconvex. It is easy to see that

C.Hull(F ) = {
All continuous functions over

[−1
2, 1

2

]
with maximum at 0

}
.
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The convex hull ofF is “much larger” thanF . By straightforward calculations it
is easy to verify that forTf = f (0) and smallε > 0,

ω(ε,F1) = ω(ε,F2,F1) = 31/3ε2/3,

ω(ε,F2) = ω(ε,F1,F2) = 21/4ε1/2(1+ o(1)
)

soω(ε,F ) = 21/4ε1/2(1+ o(1)). But ω(ε,C.Hull(F )) = ∞.

It follows from Theorem 4 that the minimax mean squared error rate of
convergence for estimating the linear functionalTf = f (0) is n−1/2. However, the
maximum risk of any linear estimator overF is not even bounded. [This follows
from the fact thatω(ε,C.Hull(F )) = ∞.] In other words, linear estimators do not
work at all in this case.

5.2. Estimating a linear functional of nearly black objects. In this example we
consider the Gaussian sequence model

yi = fi + n−1/2zi, i = 1, . . . , n,(48)

wherezi
i.i.d.∼ N(0,1). The size of the vector,n, is assumed large; we are interested

in asymptotics in which the number of variables is large. We assume that the vector
f is sparse: only a small fraction of components are nonzero, and the indices, or
locations of the nonzero components are not known in advance.

Denote the�0 quasi-norm by‖f ‖0 = Card({i :fi �= 0}). Fix kn, the collection
of vectors with at mostkn nonzero entries is

F = �0(kn) = {f ∈ R
n :‖f ‖0 ≤ kn}.

Following Donoho, Johnstone, Hoch and Stern (1992), we call a setting nearly
black when the fraction of nonzero componentskn/n ≈ 0, by analogy with night-
sky images. In this example we assume thatkn is known andkn ≤ Cnε where
ε < 1/2.

A motivation for this model is provided by wavelet analysis, since the wavelet
representation of many smooth and piecewise smooth signals is sparse and nearly
black in this sense [see, e.g., Donoho, Johnstone, Kerkyacharian and Picard
(1995)]. For estimating the whole object, this model has also been studied in
Donoho, Johnstone, Hoch and Stern (1992) and Abramovich, Benjamini, Donoho
and Johnstone (2000).

In the present paper we are interested in estimating the linear functional of the
unknown vectorf given by

Tf =
n∑

i=1

fi.

LetI(k, n) be the class of all subsets of{1, . . . , n} of k elements and forI ∈ I(k, n)

let

FI = {f ∈ R
n :fj = 0 ∀j /∈ I }.
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Note thatFI is akn-dimensional subspace spanned by the coordinates inI . These
are obviously convex andF = ∪FI where the union is taken overI in the set
I(kn, n). From now on we shall assume thatI is in the setI(kn, n).

Linear procedures perform poorly overF . In fact it is easy to see that the convex
hull of F is the whole ofRn and

ω
(
ε,C.Hull(F )

) = ω(ε,R
n) = √

nε.

It then follows from Theorem 5 that any linear estimator must have maximum
mean squared error overF of at least 1. In fact it is easy to see that the best linear
procedure is simplŷT = ∑n

i=1 yi .
Nonlinear procedures can perform much better. Our general construction given

in Section 3 starts with linear estimators constructed assuming thatf ∈ FI . In this
case it is natural to start witĥTI the minimax estimator overFI since this estimator
is linear, unbiased overFI and has variance equal tokn

n
. T̂I is in fact just the sum of

yj with j ∈ I . In this example equation (29) holds for allI ∈ I(kn, n) with M = 1
andω2( 1√

n
,FI ) = kn

n
.

The construction of̂T ∗ is also based on the modulusω(ε,FI ,FJ ) betweenFI

andFJ . Note that a least favorable pair of parameters is given by one parameter
which has thekn coefficients inJ all equal to some given valuea > 0 and the rest
zero and the second parameter has the coefficients inJ \ I equal to−a and the
rest zero. By choosinga so that thel2 distance between these parameters is equal
to ε it is easy to check that

ω(ε,FI ,FJ ) = √
Card(I ∪ J )ε

and consequently

ω(ε,F ) = √
2knε.

Now let T̂I,J be defined as in Section 3. It is easy to see in this case that

T̂I,J = ∑
l∈I∪J

yl.

Let N be the number of parameter spaces. ThenN is equal ton choosekn and
it is easy to see that

N =
(

n

kn

)
≤ nkn.

It then follows from Theorem 4 that if̂T ∗ is defined by (33), then

sup
f ∈F

E(T̂ ∗ − Tf )2 ≤ C
k2
nlnn

n
.(49)

The following theorem shows that the estimatorT̂ ∗ is in fact rate optimal.
The theorem gives a minimax lower bound based on using a mixture prior and
a constrained risk inequality introduced in Brown and Low (1996).
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THEOREM 7. Let Tf = ∑n
i=1 fi . Suppose that n ≥ 4 and that kn < nε with

ε < 1/2. Then

inf
T̂

sup
f ∈F

E(T̂ − Tf )2 ≥ 1

121

k2
n

n
ln

(
n

k2
n

)
.(50)

REMARK. Comparing the minimax lower bound (50) with the risk upper
bound forT̂ ∗, for kn < Cnε with ε < 1/2, the estimator̂T ∗ is within a constant
factor of the minimax risk. For example, forkn = nε with ε < 1/2, the risk ofT̂ ∗
converges at the rate ofn−(1−2ε) logn which is optimal.

PROOF OF THEOREM 7. In the proof we will omit the subscript inkn and
simply writek for kn. Let ψµ be the density of a normal distribution with meanµ

and variance1
n
. And for I ∈ I(k, n) let

gI (y1, . . . , yn) =
n∏

j=1

ψfj
(yj )

wherefj = ρ√
n
1(j ∈ I ). Finally let

g = 1(
n

k

) ∑
I∈I(k,n)

gI

andf = ∏n
j=1f0 be the density ofn independent normal random variables each

with mean 0 and variance1
n
. Note that a similar mixture prior was used in Baraud

(2000) to give lower bounds in a nonparametric testing problem. Now note that if

EgI

(
δ − k

ρ√
n

)2

≤ C

for all I ∈ I(k, n) then it follows that

Eg

(
δ − k

ρ√
n

)2

≤ C.

We will now apply the constrained risk inequality of Brown and Low (1996). First
we need to calculate a chi-squared distance betweenf and g. This is done as
follows. Note that ∫

g2

f
= 1(

n

k

)2

∑
I∈I(k,n)

∑
I ′∈I(k,n)

∫
gI gI ′

f

and simple calculations show that∫
gI gI ′

f
= exp(jρ2)
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wherej is the number of points in the setI ∩ I ′. It follows that∫
g2

f
= E exp(Jρ2)

whereJ has a hypergeometric distribution

P (J = j) =
(

k

j

)(
n − k

k − j

)
(

n

k

) .

Now note that from Feller [(1968), page 59],

P (J = j) ≤
(

k

j

)(
k

n

)j(
1− k

n

)k−j(
1− k

n

)−k

.

Now suppose thatn ≥ 4 and thatk < n1/2. Then(
1− k

n

)−k

≤ 4k2/n ≤ 4

and hence

P (J = j) ≤ 4
(

k

j

)(
k

n

)j(
1− k

n

)k−j

.

It now follows that ifn ≥ 4 andk < n1/2 then∫
g2

f
= E exp(Jρ2)

≤ 4
(

1− k

n
+ k

n
eρ2

)k

.

Now takeρ =
√

ln n
k2 and it follows that

∫
g2

f
≤ 4

(
1+ 1

k

)k

≤ 4e.

It then follows from the constrained risk inequality in Brown and Low (1996) that
if

Ef (δ − 0)2 ≤ c1
k2

n
ln

n

k2
(51)

then

Eg

(
δ − k

ρ√
n

)2

≥ k2

n
ln

n

k2 − 4e
k√
n

√
ln

n

k2

√
c1

k2

n
ln

n

k2

= k2

n
ln

n

k2

(
1− 4e

√
c1

)
.

(52)
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The theorem now follows on takingc1 = 1+ 8e2 − 4e
√

1+ 4e2. �

5.3. Structured nearly black objects. We will now consider an example under
the Gaussian sequence model (48) where most of the coordinates are zero but
where we shall also assume that thekn nonzero coordinates appear consecutively
and that 0≤ kn ≤ nε for someε < 1. Againkn is assumed to be known. Let

F (a, kn) = {
f ∈ Rn :fi = 0 unlessa ≤ i ≤ a + kn − 1

}
and

F =
n−kn⋃
a=1

F (a, kn).

We call members ofF structured nearly black objects. It is easy to see that the
convex hull ofF is again the whole ofRn. It thus follows from Theorem 5 that
linear procedures perform poorly for estimatingTf overF .

Let T̂a = ∑a+kn−1
i=a yi . ThenT̂a,b as defined in Section 3 is given by

T̂a,b = ∑
yi1

(
i ∈ [a, a + kn − 1] ∪ [b, b + kn − 1]).

Note thatF is a union of onlyn − kn convex sets and so it then follows from
Theorem 4 that ifT̂ ∗ is now defined by (33) then

sup
f ∈F

E(T̂ ∗ − Tf )2 ≤ C
knlnn

n
.(53)

Equation (53) gives an upper bound for the minimax risk. We shall now show that
this upper bound is rate sharp. In fact we shall show that ifn ≥ 4 andkn < nε with
ε < 1, then

inf
T̂

sup
f ∈F

E(T̂ − Tf )2 ≥ 1

18

kn

n
ln

(
3n

kn

)
.(54)

This can be seen as follows. Denote the index setsIa = {i :a ≤ i ≤ a + kn − 1}
and letI(kn, n) = ⋃n−kn

a=1 Ia . As in the previous example letψf be the density of a
normal distribution with meanf and variance1

n
. And for I ∈ I(kn, n) let

gI (y1, . . . , yn) =
n∏

j=1

ψfj
(yj )

where fj = ρ√
n
1(j ∈ I ). Finally let g = 1

n−kn

∑n−kn

I=1 gI and f = ∏n
j=1f0 be

the density ofn independent normal random variables each with mean 0 and
variance1

n
. Following the argument in the previous example we note that

∫
g2

f
= E exp(Jρ2)
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where this timeJ satisfies

P (J = 0) = n − kn

n

and for 1≤ i ≤ kn,

P (J = i) = 1

n
.

Hence ∫
g2

f
≤ 1+ kn

n
exp(knρ

2).

Now set

ρ =
√

1

kn

√
ln

(
3n

kn

)
.

Then
∫ g2

f
≤ 4 and (54) now follows as in (51) and (52).
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