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MINIMAX ESTIMATION OF LINEAR FUNCTIONALS
OVER NONCONVEX PARAMETER SPACES!

By T. ToNY CAI AND MARK G. Low
University of Pennsylvania

The minimax theory for estimating linear functionals is extended to
the case of a finite union of convex parameter spaces. Upper and lower
bounds for the minimax risk can stile described in terms of a modulus
of continuity. However in contrast to the theory for convex parameter spaces
rate optimal procedures are often required to be nonlinear. A construction of
such nonlinear procedures is given. The results developed in this paper have
important applications to the theory of adaptation.

1. Introduction. LetY be an observation from either the white noise model,
1) dY ()= f()ydt +n~Y2dwW (1)
whereW (¢) is a standard Brownian motion, or the Gaussian sequence model
2 Y (i) = f(i)+n"H2

whereg; are i.i.d. standard normal random variables.

The minimax theory for estimating a linear functiorfalhas been studied in
great generality when it is assumed that the functfobelongs to a parameter
space which is convex. See, for example, Ibragimov and Has'minskii (1984),
Donoho and Liu (1991a, b) and Donoho (1994). In particular, the properties of
the minimax linear estimators can often be described precisely. In this case for any
linear functionall” write R’ (n; ¥) for the minimum (over all linear procedures)
maximum mean squared error. Donoho and Liu (1991a) introduced a modulus of
continuity

w(e, F)=sufIT(¢) —T(NI:llg— flla<e, feF.,ge¥F}

where the norm in this equation is tlie& norm in function space for the white
noise with drift model and the norm in sequence space for the sequence model.
Donoho and Liu (1991a, b) and Donoho (1994) have shown that in either of these
two cases,

* o _ 2 1/(4n)
(3) RA(nv?)_fgopa) (8’?)1/714-82/4
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MINIMAX ESTIMATION OVER NONCONVEX SPACES 553

and that
}w2<£ 3«-*) <Ri(n; F) < }a)2<£ 3«-*)
g8 \Wn )= AT mam \ )

An earlier version of this result can also be found in Ibragimov and Has’minskii
(1984). Without the restriction to affine procedures wrRg (n; ¥) for the
minimax mean squared error for estimating the linear functi@hdbonoho and
Liu (1991b) have shown that

R (n; ) -

Ry(n; ) ~
Therefore the maximum risk of the optimal linear procedure is within a small
constant factor of the minimax risk when the parameter space is convex. Of equal
importance, Donoho and Liu (1991b) showed that the modulus can be used to
give a recipe for constructing an affine procedure which has the maximum mean
squared error attaining the bound given in (3).

Recent work on estimating linear functionals has focused on adaptive estima-
tion. The goal is to find a single procedure which is near minimax simultaneously
over a number of different parameter spaces. Pioneering work in this area began
with Lepski (1990). This work focused on particularly important examples such as
Lipschitz classes. In Efromovich and Low (1994) a general theory was developed
for the case of nested convex parameter spaces.

A general extension of this adaptive estimation theory to spaces which are not
nested must also include a minimax analysis for sets which are not convex. The
reason for this is that we need to first know the minimax risk over the union of the
original convex spaces and this space need not be convex unless the sets are nested.
This paper focuses on such an extension of the minimax theory for estimating
linear functionals over nonconvex parameter spaces. For applications to adaptive
estimation see Cai and Low (2002). Although as just mentioned our primary
motivation for this problem is the theory of adaptation the minimax theory itself
is in fact quite interesting. In particular in this setting optimal linear procedures
can sometimes have risks far from the optimal rate. In fact even if the parameter
space is only a union of two convex sets it is possible that the maximum risk of
the best linear estimator does not even converge even though the maximum risk
of the optimal nonlinear procedure converges quickly. Such examples are given in
Section 5.

Although optimal linear procedures need no longer be close to optimal we
show that the minimax rate of convergence is still determined by the modulus of
continuity over the parameter space when the parameter space is a finite union of
convex sets. On the other hand, in Section 4, it is shown that the minimax linear risk
is determined by the modulus of continuity over the convex hull of the parameter
space. Therefore affine procedures fail when, in terms of the modulus, the convex
hull is much larger than the parameter space itself. Such are the cases in the
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554 T. T. CAIAND M. G. LOW

examples in Section 5. In these cases rate optimal estimators need to be nonlinear.
A general construction of such nonlinear procedures is given in Section 3.

One of the main tools for the construction of the general procedure is a
construction of linear procedures which have a given variance and precisely control
the bias over two different convex parameter spaces. Upper bounds are given on
the bias over one parameter space and lower bounds over the other. These linear
procedures can then be used to test which of the convex sets the function lies in
and then usual linear procedures can be used. The details of these arguments can
be found in Sections 2 and 3.

The theoretical results are complemented by several illustrative examples given
in Section 5 covering a range of cases. In the examples of estimating a linear
functional of a nearly black object the parameter space is the union of a growing
number of convex parameter spaces. In these cases the usual minimax lower bound
is no longer sharp and the minimax rate of convergence is derived explicitly using
a mixture prior and a constrained risk inequality.

2. Ordered modulusand biasvariancetradeoffs. One of the main tools for
the construction of the general minimax procedure is the construction of linear
procedures which have a given variance and precisely control the bias over two
different convex parameter spaces. Upper bounds are given on the bias over one
parameter space and lower bounds over the other. The key technical tool which
allows for this construction is an ordered modulus of continuity between two
function spaces. It is a generalization of the modulus of continuity introduced by
Donoho and Liu (1991a) which has already been shown in Low (1995) to allow
for the construction of a procedure which minimizes the maximum squared bias
given a constraint on the maximum variance.

For a linear functional’ define an ordered modulus of continuity between two
classeso (e, £,4) by

w(Ee, F,.§)=supTg—Tf:llg— flla<e feF,gc§}

Note thatw (e, ¥, ) does not necessarily equale, §, ). It is clear that the
modulusw (¢, £, ) is an increasing function of and 0< w(e, ¥, §) < oo if
F NG # 2. The between class modulus is also instrumental in the analysis of
adaptation over different parameter spaces [see Cai and Low (2002)].

Wheng = ¥, w(e, F, F) is the usual modulus of continuity ovér and will
be denoted byw (e, ). The following result on the concavity of the modulus
is important in the bias variance tradeoffs and in the construction of the general
minimax procedure.

THEOREM 1. Assumethat ¥, § are convex and that ¥ N g # @. Let T be
a linear functional. Then the function w(e, ¥, §) is a concave function of . In
particular it followsthat, for D > 1,

w(De, F,6) < Dw(s, F,9).
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PROOF Supposethai; € G, g2 G andfi € &, fo € F with
lgi — fill2 = &i.
Then, for O< A < 1,
Ihg2+ (1 —21)g1 — [Afa+ (1 —2) falll2 < he2 + (1 —M)er
and
T(rg2+ QA —2g1—[Af2+ A —2)f1])
=MT(g2) — T (f2)) + (1= M(T(g2) — T ().
It then follows that
wre2+ (1 —Ne1, F,4) > w(e2, F,$)+ (L—Nw(e1, F,$)

and saw is concave. [

As mentioned earlier in Low (1995) it was shown that in the white noise model
for any linear functional the modulus of continuity can be used to precisely trade
off various levels of bias and variance over a given convex parameter space.
The modulus of continuity between parameter spaces can be used to perform an
analogous trade. It can be used to give a linear procedure which has upper bounds
for the bias over one parameter space and lower bounds for the bias over the other
parameter space. The detailed results are given in Theorems 2 and 3 below.

We shall write («, v) for the usuall; inner product for either sequence or
function space. Specifically if we observe the white noise with drift model let

(f. &) =/fg
and if we observe the sequence model let
(f.8)=Y_ figi-
ForallV >0 let
(4) B(V,¥.,9) :2—1su(|)o(w(s,5v,g) —VnVe).
£>

It will also be convenient to introduce an inverse BV, ¥, G) defined for all
B>0hby
1 2
(5) V(B,¥,%)= Sup—z([a)(s, F,9) — ZB]+) .
e>0NE
We shall show in Theorems 2 and 3 that there is a linear estimator with variance

bounded by, which has maximum bias ové¥ less than or equal t8(V, ¥, )
and minimum bias ovej, greater than or equal te B(V, ¥, §). Theorem 2 covers
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the most usual situations where linear estimators can be easily described in terms
of the modulus. Theorem 3 extends the theory to cover the general case.

Our analysis is split into a number of cases. The most usual ones are covered by
cases 1(a) and 2(a). It is these cases which are in fact needed in the construction
of the general procedure in Section 3. We include the others for completeness.
First note that we shall always assume th&l, ¥, ) > 0; otherwise the linear
functional is constant ovef U § and the estimation problem is thus trivial.

CAsSE1l. Supposethat@ B(V, ¥ ,4) < oco. Then define(V, ¥, 6) by

(6) e(V,¥,9)=argmaXw(e, F,4) — VnVe)
e>0

wheree(V, ¥, 6) is the smallest value of for which the maximum in (4) is
attained. It will be convenient to break case 1 into two further cases, namely:

(@) O<e(V,¥,4) <oo.
(b) e(V,F,4) =o0.

Case2. B(V,¥,4)=0andB(V',¥,4)>0forall 0<V’ < V. Note that
if B(V/,#,4)=0 for someV’ < V then we could reduce the variance of our
estimator without increasing the magnitude of the bias. Under this assumption
there are only two possibilities.

(@) w(e, F,9) =+/nVe on some interval & ¢ < gg wheregg > 0. We can

then definee(V, ¥, ) to be the largest < % forwhichw(e, ¥,4) = +/nVe.

(b) w(e, F,4) < +/nVe whenevers > 0. It then follows from the concavity
of the modulus that & B(V’, ¥,4) < oo for someV’ < V. In this case set
e(V,¥,4)=0.

The following technical lemma shows th&(V, £, 4) is continuous inV
whenever it is finite.

LEMMA 1. Suppose & and § are closed and convex with £ NG # @.
Then &(V,¥,4) is nonincreasing in V. Assume B(V,¥%,4) <oo. Then
e(V',¥,6) <o0if V>V and

(7 ‘JLTVB(Vm,?,ga)=B(V,?,9)-

If, inaddition, B(V’, ¥, §) < oo for some V' < V, then

(8) VlimvB(Vm,?,g)=B(V,?,g).
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PrROOF Note first that the monotonicity of(V, #,4) and the fact that
e(V',F,6) <ocoif V' > V follows from the concavity of the modulus(e, ¥, )
as shown in Theorem 1. Now assume tBav, ¥, §) < oo and letV,, | V. Note
that

BV, ¥,%9)<B(V,¥.%) for V,, >V,

and that for any

B(Vo, F,9) =2 o (e, F,9) — VnVpe).
Taking limits yields

Il‘r/nilnf BV, F,9) =2 Yw(e, F,9) —VnVe)
for all £ and so taking the supremum over albn the right-hand side shows that
the limit exists and is equal tB(V, ¥, 4). This proves (7).
Note thatB(V, ¥, 4) is a convex function ok/V since it is a supremum of
a collection of convex functions of/ V. HenceB(V, ¥, §) is continuous inV
on any open interval over which it is finite. HenceBfV’, ¥, §) < oo for some
V' <V thenB(-, ¥, §4) is continuous a¥ and so (8) follows. [J

We now state the bias—variance tradeoff theorem in the most easily understood
and most typical case whereQs(V, ¥, §) < oo and the modulus is attained by
two functionsf € ¥ andg € §.

THEOREM 2. Suppose £ and 4 are convex and closed with F N ¢ # @.
Assume that 0 < e(V, £, §) < oco. Suppose further that thereare f € ¥,g€ G
such that

9) lg— flla=e(V,F,§)=¢ey and Tg—-Tf=ow(y,F,§).
Writeu = % for the direction of the affine family joining ¢ and f. Let
(20) T(f—zi_g) VnV<u, ¥>

Then the estimator

(11) Ty =a+W/u(t)dY<z)
for the white noise with drift model and the estimator
(12) Tv=a+~nV > u@)Y (i)
for the sequence model have constant variance

(13) E(Ty — ETy)’=V
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and have biases bounded by

(14) SUpE Ty —Tf =B(V,¥,§)
feF

and

(15) inf E,Ty —Tg=—B(V,¥,9).
8€§

REMARK. If £ and§ are closed, convex and norm bounded with nonempty
intersection then the condition that the modulus is attained is guaranteed. The
extension to cases where either the modulus is not attained as well as for when
e(V,¥,9)=0ande(V, ¥, 4) = oo will be covered in Theorem 3.

PROOF OFTHEOREM 2. The proof of this theorem essentially follows that of
Theorem 2 in Low (1995). Note that the proofs of (14) and (15) are entirely similar
so we shall only give the details for the proof of (15).

Let f € ¥ andg € ¢ be extremal functions satisfying (9) which exist since
F andg are closed. Let be any other element ¢f. The affine family joining
g andh is given by(1—0)g +6h,0<6 <1. Let

J(G)=T((1—9)g+9h)—Tf—\/lﬁll(l—Q)g-l-Hh—sz.

It follows from the definition ofe(V, £, 4) given in (6) thatJ(6) < J(0) for
all 0 <6 <1 and since/(9) is clearly differentiable it follows that’’(0) < 0.
A simple computation shows that

(16) Th—Tg—~nV{u,(h—g))<O.

Now

(17) Efv—Tg=T<f—J2rg>+\/W<u,<g—f—J2“g)>—Tg
and

(18) Efv—Th=T<f—;“g)+W<u,<h—f—J2“g)>—Th.

It then follows from (16)—(18) that

(19) (ETy —Tg) — (ETy — Th) <O.
Finally note that a simple calculation yields
(20) ETy —Tg=—B(V,¥.§).

Equations (19) and (20) combine to show (15) and the proof is complete.

Theorem 2 treats the cases 1(a) and 2(a) under the additional assumption that
the modulus is attained by € £ and g € . The functionsf and g are used
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explicitly in the construction of the estimafg . In general, the modulus may not
be attained and in these cases the description of a linear estimator which trades
variance and bias is more involved. We describe the general case in detail in the
following theorem. Some of the details are similar to those given in Section 12 of
Donoho (1994).
DefineB(m) to be the closed.» ball with radiusn and let%,, = ¥ N B(m) and
Gm = 4 N B(m). It follows from Lemma 2 of Donoho (1994) that f&F;,, and§,,
the moduluso (¢, F,, ) can always be attained by sonjes %, andg € G,.
DefineV,,, &, fn andg,, in the following way.

CAsSE 1.

(@ 0<B(V,¥,49) <oo and O< e(V, F,4) < oo. In this case leV,, =V,
l(m) = m and defines,, = ¢(Vin, Fim), $1m))- Note that for largen, ¢, > 0.
Moreover, since botl¥,, and§,, are contained irB(m) it follows thate,, < 2m.
Since F(,,) and §;¢,) are closed and norm bounded it follows from Lemma 2
of Donoho (1994) that the modulus(e,,, Fium). $1om)) IS attained by a pair
Jm € \(Fl(m) andg,, € g’l(m)-

(b) e(V,F,4) = co. In this case letV,, > V be chosen wher&,, | V.
Then it follows from Lemma 1 thaB(V,,, ¥,4) — B(V, ¥,4). So for largem,

0 < B(Vy, ¥,4) < co. Now choose an increasing sequengg) — oo so that
BV, Fim), $im)) > 0. Now definee,, = e(V,, Fiom), $10ny) @and once again
note that for largen, 0 < ¢,, < 2m. Again #;.,, and 4., are closed and norm
bounded so the modulus(e,,, F1on), $10m)) IS attained by a paif,, € Fi¢,) and

&m € G1m)-

CASE 2.

(@) B(V,¥,4)=0,B(V',¥,9)>0forall V' < V andw(e, F,4) = vnVe
on some interval & ¢ < gg for somegg > 0. Let!(m) = m and note that at least
for m sufficiently large O< B(0, Fi(n), $10n)) < oo and that sincef;(,,y € ¥ and
Gi10m) € § it also follows thatB(V, Fiin). $1omy) = 0. Lemma 1 shows that for all
sufficiently largem there exists &, < V such that

1
0 < B(Viu, Fitm), $iomy) < —

Now let &,, = €(Vin, Fiom), G1em))- Then as before it follows that for large,
0 < &, < 2m. Now since %,y and §;.,) are closed and norm bounded, the
modulusw (&, Figm), $1om)) IS attained by a paif,, € Fign) andg, € $ion)-

(b) B(V,%,6) =0, B(V,F,4)>0foral 0<V <V, wEF,Q <
VnVe whenevee > 0.

Now let V,,, < V be chosen wher&,, 1+ V. Note that there exists son¥g > 0
such that

0<B(V',F.,9) <00
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for Vo < V/ < V. Then for largen,
0< BV, F,§) < oo.
So there is an increasing sequeh@e) — oo such that
0 < B(Vin, Fimy, $imy) < B(Vin, F, §) < 0.

We now defines,, = &(Vi, Fiom), $10my)- It follows once again that & ¢, < 2m
for largem. Now since#;(,, and$,.») are closed and norm bounded the modulus
o (Em, Fiom), $10my) 1S attained by a paif,, € Fion) andgm € Giom)-

ForV,,, em, fm andg,, as just defined lat,, = g'"e;f'" and let

Ay = T(L-;gm) _ /an<Mm7 @>

For the white noise with drift model let
(21) T = tm + V1V / (1) dY (1)
and for the sequence model let

(22) 7Awm =am+VanZum(i)Y(i).

The estimator7,,, corresponds to the estimatdy defined in Theorem 2 for
V=V, F = Fion) and$ = Gim). In the general case we need to take a limit of
the estimatord,,.

Note that||u,, |2 = 1 and so there exists a subsequence which converges weakly
to some functiork where|u|> < 1.

Now let € ¥ N G. Then since|i|l2 < mg for somemg < oo it follows that
h € Fign) N Gign) for all m > mq wherel(my) > mo.

Form > m1 note it follows from Theorem 2 that

3|,

|EnTn — Thl < B(Viu, Fimy- Giom) <
in case 2(a), and in all other cases
\EpTy — Th| < B(Vis Fimy» $im) < BV, F.9).
Note thatB(V,,, ¥, &) is bounded since it convergeskgV, ¥, §). Note also that
ETy = dm + V1V (U, h)

and since the norm af,, is equal to one it follows that,, is bounded. Hence
there is a subsequence of the subsequence used to defihich converges to
some finitez. Denote this subsubsequencehy.
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For the white noise with drift model let
23) Ty =a+m/u(t)dy<z)
and for the sequence model let
(24) Ty =a+nVY u@)Y ().

The following theorem shows that this estimafgr which has been formed as a
limit of T, trades bias and variance in the general case.

THEOREM 3. Suppose & and ¢ are convex and closed with nonempty
intersection. Then the estimator defined by (23) for the white noisewith drift model
and (24) for the sequence model satisfies

(25) E(Ty —ETy)?><V

and has biases bounded by

(26) SUpE;Ty —Tf <B(V,F.9)
feF

and

(27) gng; E, Ty —Tg > —B(V, F,9).

PROOF Note that (25) follows immediately from the fact that the norma o
bounded by 1. We shall only give the proof for (26) since the proofs for the other
cases are analogous.

First note that the estimatdi, as defined in (21) and (22) satisfies the bounds
given in Theorem 2. Iff € F() then

ETy —Tf < B(Vin: Figm)» Gitm))-

Let m} be the subsubsequence along whigh andu,, converge toa andu,
respectively. Now for any € F, f € Fiim for largek. So

ETy — Tf <limsupET,: — Tf

k— 00

< imsupB(Vyur, Fiomz)» $10np))

k—o0

<limsupB(V,:, %, §)

k—o0

=B(V.¥.9).

The last step follows from Lemma 1]
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REMARK. Using the Cramér—Rao inequality arguments found in Low (1995)
it can be shown that the linear estimator which attains the bounds in the theorem
is in fact unique and must actually attain the inequalities. It then follows that
the sequence,, which was used to define the estimaftyr actually converges
strongly tou and that the sequeneg, actually converges.

3. Minimax estimator over afinite union of convex sets. Let F = _; %
where fori =1, ..., k, ¥; are closed convex spaces with nonempty intersections,
that is,#; N ¥; # @ for all i, j. Our objective is to construct an estimator which
is rate optimal for estimating a linear functioriBlover the parameter spade.
Standard two-point testing arguments as, for example, contained in Donoho and
Liu (1991a) or Brown and Low (1996) show that the minimax risk for estimating
a linear functionall f over ¥ is bounded from below by

N 1 1
28 inf SUpE(T — T )Zz—a)z(—,}‘).
e g =117 (G

Let 7; be linear estimators which satisfy

(29) SUp E(T; — Tf)? < M2w2<i, ff‘)
feFi v
for someM > 0. As mentioned in the introduction M > 1 such linear estimators
are guaranteed to exist and can be constructed by the recipe given in Donoho
(1994). In the following discussiol® will denote generic constants whereas
M will always refer to the bounds given in (29).
Fori#j,letV;; = wz(%, Fi, ;). Then it follows from the concavity of the

modulus thaB(V; ;, ;, ¥;) as defined by (4) satisfies

B(Vi;, Fi, Fi) =2 tsupw(e, Fi, Fj) — VnVi je)

e>0
-1 T O 1 T T
=2"" sup (w(e, Fi, Fj) — Vneo| —=, Fi, F;
e<1/yn v
1
—1 = o
52 a)(ﬁ,fl,f])

Hence eitheB(V; ;, #;, ¥;) =00r 0< B(V; ;, ¥, ;) < 2—10)(%, Fi, Fj).
In the first case whem(V; ;, #;, ;) = 0 it follows from the definition of
e(V, j, i, ;) given for case 2(a) that(V; ;, i, F;) = % On the other hand
if0 < B(Vij, Fi. F)) < 2 ‘(. Fi. F)) then 0< e(V; ;. 7, F;) < . Hence
we know in both cases that9e(V; ;, 7, Fj) < % It follows that when using

Vij= a)z(%, Fi, ;) that we are in either case 1(a) or case 2(a) of Section 2.
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Fori # j let f‘,, be the estimator defined as in Theorem 2 when (9) is attained
whereF =7, §=F; andV =V, ; = a)z(%, Fi, ;). When (9) is not attained
the estimatofT; ; is defined as in Theorem 3. This linear estimator has variance
bounded byuz(%, Fi, ¥j) and bias which satisfies

1 R
_o1 [ = = ¢ i oy
(30) 2 \/,_Z,fl,f])sf@;i(E<Tl,]> Tf)
and
. 1
31 sup(E(T;.j))—T 52—160(—,};-,3?-).
( ) f@g( J f) \/’7 J

Now based on the Iinear estimatofs; and the linear estimator$;, which
satisfy (29), defing! L zl J andz; ; by

sU J
ek D+
Al T, —Tj,

VR —
(=, Fj F) + Mo (=, F7)

Frod
i

e

9|
=

3

w(

&

L]
and
A au sl
Zij=maxz;;, z ;)

Note thatz“ andz jare normally distributed and satisfy

(32) max(Var(z!' ), Var(z ;) <

Finally define the estimator of the linear functiorfabhs

(33) T*=T. withi=arg mir(sup%i,j).
i j#i

The analysis of the mean squared erro:féﬁs facilitated by the following lemma
which bounds the probability thdt* = 7; when the magnitude of the bias of
is large.

LEMMA 2. Suppose f € F; andfor some j #1, |Ef,- —Tf|> yMw(%, F)
wherey > 3. Then

P(z—])<2kexp( = 3))
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PROOF Note thatif f € ; andj # i, then from (29) and (31),
E(d;—Tf)—E(di = Tf)

(34) Ezl = <
Fi F)) + Mo )

Lj =

(.

and from (29) and (30),
E(T;—Tf)—E(T;; —T

(35) pr - EG-TH BT —Th

Now suppose thaf € ;. We shall only give details of the proof when
. 1

as the case when
R 1

is handled in a similar way. Wheﬁf"j —-Tf > yMa)(%, F) then it follows
from (31) that

| _ ET;=Tf)—ET,; —Tf)
o Fio Fj) + Mo (. F)

E% T
w(ﬁa
yMo (5o, F) = 305 Fi. )
Fi Fj) + Mo (. F))

(36)

(=
r—1
- 2
Now without loss of grerality suppose that= 1 and thatj = 2. Then ifi = 2
note thattz 1 <sup._;(21,) and since&) ; < 25 1 it follows that

k
Pi=2<) P(h,—21,<0)
r=2

k
<> {PGhy—2), <0+ Py — 24, <0).
r=2
Now by (32)25, — 24, and2}, — Z;, both have normal distributions with

variance less than or equal to 4 and by (34)—(36) means greater than or equal
to V—53 and the lemma now follows from the bound on a standard normal random

variableZ,
12
P(Z>1)< exp(—E)
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which holds for all: > 0. O

Although our main focus is on mean squared error we shall consider the more
general case ghth power loss. Such general cases are important in the theory of
adaptation [see Cai and Low (2002)]. Lemma 2 can be used to bound the risk
of the estimatofl* defined by (33) as in the following theorem.

THEOREM 4. Suppose either the white noise model (1) or the sequence
model (2) is given. Let F = Uﬁ-‘zlff",- where k > 2 and ¥; are closed convex sets
with 7 N F; # @ for all i, j. Let T* be the estimator of the linear functional T
defined asin (33). Thenfor p > 1,

A 1
37) SUPE|T* —Tf|P < C(p)Mp(Ink)P/za)P(—, fi—’)
fe¥F Jn

where the constant C(p) isindependent of M, k and n.

REMARK. Note that we can always find linear estimatdrgor which M < 1
in (29) and so the theorem yields an upper bound on the minimax risk#®ver
which only depends on the modulus and the nunmibérhere is also a minimax
lower bound for thepth power loss analogous to that given in (28),

(38) inf supE|f—Tf|sz(p)a)P(i,5t)

T feF N
for some constarit(p) > 0. By comparing the upper bound in (37) with this bound
it is clear that for fixed finitek the estimatof/™ is rate optimal ovetF . It is also
worth noting that sometimes the lower bound is not asymptotically sharp when
k is finite but grows withn. In Section 5 we give examples whéergrows withn
and the optimal rate is given by the upper bound in equation (37).

In the theory of adaptation the goal is to find a procedure which is simultane-
ously near minimax over a collection of parameter spaces. If a collection of convex
parameter spaces is not nested then the largest of the minimax risks for each con-
vex parameter space may be smaller than the minimax risk over the union of the
convex parameter spaces [see, e.g., Cai and Low (2002)]. In such cases an appro-
priate benchmark for the maximum risk of an adaptive estimator is given by the
bound in Theorem 4.

The proof of Theorem 4 is based on Lemma 2 and the following bound on the
tail probabilities of a maximum of Gaussian random variables.

LEMMA 3. LetX;,i=1,..., m, benormal random variableswith means u;
and standard deviations o; < o. Supposethat |u; — u| <y fori=1,...,m, and
¢ > Oisaconstant. Then
(39) P(m_ax |Xi—u|2y+«/c|nm0) <m1=/?,

1<i<m
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PrRooOE We shall assume that > 2 and that > 2, since otherwise the bound
is trivial. Denote byZ a standard Gaussian random variable. Then

1<i<m

m
P( max | X; —u| >y +VC|nmo) < ZP(|X,- —ul =y ++clnmo)
i=1
<mP(|Z| > Vclnm)

< ml—c/Z'

The last inequality follows from standibounds on tail probaliies of Gaussian
distributions once we note thatnm > 1 whenc > 2 andm > 2. O

PROOF OFTHEOREM 4. Leti > 1 andD; =3+ +/321In2k3 a[ld we will
write D, wheni = p. Thenitis easy to check from Lemma 2 thaltif7; — 7'f| >

Dy Mo(S-, F) thenP( =i) < oty
Let

I = {i |ET; — Tf| > DpMa)( }‘)}
n

SpEep

b= {i NET; — Tf| < DpMa)( }‘)}
n

We then have

E|T* —Tf|P
=Y E(T; - Tf1P1G =) + Y E(T; — TfIP1( = 1))
(40) iel i€l
< (B - 1) V2(PG =)+ E(maxid; 7417,
ielp €2

Now note that, ifX has a normal distribution with mean and variance 2 and
p > 1, then a straightforward calculation shows that

(EX?)M2 <20 (|uP| + ag)fo?)

wherea; = E|Z|/ for Z a standard Gaussian random variable.df 1, then for
somei > p,

R 1
ET, —T7] =DAMw(ﬁ,sf),
and so fori € I; and such a choice of > p,

. 212, p A n1/2 12 | Ap 1 1
(ElT;—Tfl p) (P(l—l)) Sszp(azp +D}‘)wp<ﬁ’?>m
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Now note that, ifk > 2,

Dl’ Dp Dl’
sup <7
k(SA 1)/2 k(3p l)/2 k-’
and hence
N A 1
@1)  SO(EIT - TP) (PG =) <2 MP (a3 + Dp)a)p<7 }‘).
; n
ielh

Letm be the cardinality of the sdb. Now note that, ifn < 1, then
N 1
42 Elmax|T; —Tf|?)<B Pl —, F
42) (maxifs ~7717) = Bpo? (. 7)
and the theorem now follows from (40)—(42)sif> 2, then
E(maxm — Tf|P>
ielp
7)

< (D, +/3Inm )pMpa)P<

+Mpa)p(%,?>
X i{(D,,JM/W)P

=3

e

P((D,+VT=1) Inm_)Ma)<7, F) =maxif, - 1)

< (D,,+W)Mw<%,3~'))}
< (D,,+\/W)PM%P<%,3~'>

n

1
Mpp—,.?'>
+ a)(ﬁ
[e.e]

X Z{(Dp +IlInm)?

=3
X P(rl)gtzxm —~Tf|> (D, +m)Ma)(%, }‘))}

Note that it follows from the definition of; and the fact that the variance ﬁ-f is
bounded b)MZa)z(%, F)) and Lemma 3 that

(43) P(m?xﬁ",- —Tf|> (D, +/I -1 Inm)Mw(%, 3«7)) <m~ =372,
1€l n
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Hence

E(max|f“,- —Tf|p)
iely

- T\ .- V=372 | ygp 1
(44) _[(Dp—i-«/SIn ) +IZZB(DP+«/lIn ) }MP P(ﬁ,f)

1
< B(p)(In k)”/szw”<ﬁ, 3«7).

The theorem now follows on combining (40), (41) and (44)]

4. Linear estimators. We now consider the performance of linear proce-
dures. As mentioned in the Introduction, the optimal linear procedure is within
a small constant factor of the minimax risk when the parameter space is convex.
The following theorem considers the case when the parameter space is nonconvex.
Let £ denote a parameter set and leHGII (£) denote the convex hull of .

THEOREM5. Consider the white noise model (1) or the sequence model (2).
The minimax linear risk over a parameter set ¥ isthe same asthe minimax linear
risk over the convex hull of #, that is,

R (n; F) = R} (n; CHull(¥)).
This theorem is a direct consequence of the following result.

THEOREM6. Let T bealinear estimator of T f whereT isalinear functional.
Then for any &

(45) SUPE (T —Tf)>= sup E (T —Tf)>
feF feC.Hull(F)

PrROOR Sincef C C.Hull(¥), itis obvious that

SUpE(T —Tf)?>< sup E(T—Tf)>
fe¥F feC.Hull(F)
Let f e CHuUll(¥) andf =3, A; fi with f; € ¥, 1; > 0and}_; A; =1. Then the
squared bias
2 2
(EfT —Tf)>*= (in(Eﬁ.T - Tf,-)) < (in|EﬁT - Tﬁ-|>
i i
A 2 A 2
<maxE;T —Tfi|" < sup(E;T — Tf)".
L ) feF
It then follows from the fact that a linear estimator has constant variance that
sup E(T —Tf)?><supE(T —Tf)>.
feC.Hull(F) feF O
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Note that equation (45) is not necessarily true for nonlinear procedures. The
following corollary is a direct consequence of Theorem 5.

COROLLARY 1.
1/(4n)
N N 2 T
(46) R (n; F) _ijga) (n, C.Hull(¥ ))71/’1 24
and

@7 gw (E,C.Hull(?)> < Ry F) < Jo <ﬁ,C.HuII(?)>.

Thus the minimax linear risk is determined by the modulus of continuity over
the convex hull of 7, not over ¥ itself. In the case thaw (s, C.HUll(F)) >
w(e, F), linear procedures will perform poorly. Examples which illustrate this
point are contained in the next section.

5. Examples. In this section we discuss examples where the modulus of
continuity over the convex hull of the parameter space is much larger than the
modulus of continuity over the parameter space. Since the performance of
the optimal linear procedure is determined by the modulus of the convex hull of the
parameter space linear procedures perform badly in these cases. On the other hand,
the nonlinear procedure introduced in Section 3 is within a constant factor of the
minimax risk.

5.1. Estimating functions at a point. Suppose we observe the white noise
model (1) over the intervdl-3, 3] and we wish to estimatéf = £ (0).
We recall that a function is Lifx) (O < @ < 1) over an intervala, b] if

fx) = fDMI<Ix—y/* forallx,yela,b]
Let
F1={f: f is continuous of—3, 3]
with maximum at 0 andf is Lip(1) over[—3, 0]}

and
Fo={f: f is continuous orﬁ—%, %]

with maximum at 0 andf is Lip(3) over[0, 1]}.

Let # = #1 U F>. The parameter spacgg and #> are both convex, buf is
nonconvex. It is easy to see that

C.Hull(#) = {All continuous functions ovef—3, 3] with maximum at §.
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The convex hull off is “much larger” than# . By straightforward calculations it
is easy to verify that fof’ f = f(0) and smalk > 0,

(e, F1) = w(e, Fa, F1) =333,
w(e, F2) = w(e, F1, F2) = 2Y%V2(1 + 0(2))

sow(e, F) =2Y41/2(1 + 0(1)). Butw(e, C.HUll(F)) = oo.

It follows from Theorem 4 that the minimax mean squared error rate of
convergence for estimating the linear functiofigl = £ (0) is n~1/2. However, the
maximum risk of any linear estimator ovér is not even bounded. [This follows
from the fact thato (¢, C.Hull(¥)) = co.] In other words, linear estimators do not
work at all in this case.

5.2. Estimating a linear functional of nearly black objects. In this example we
consider the Gaussian sequence model

(48) yvi=fi+n"Y?, i=1,...,n,

wherez; Mg N(0, 1). The size of the vecton, is assumed large; we are interested
in asymptotics in which the number of variables is large. We assume that the vector
f is sparse: only a small fraction of components are nonzero, and the indices, or
locations of the nonzero components are not known in advance.

Denote thefg quasi-norm by f|lo = Card{i : f; # 0}). Fix k,, the collection
of vectors with at most,, nonzero entries is

F =totky) ={f €R": || fllo < kn}-

Following Donoho, Johnstone, Hoch and Stern (1992), we call a setting nearly
black when the fraction of nonzero componebisgn ~ 0, by analogy with night-

sky images. In this example we assume thais known andk, < Cn® where

e <1/2.

A motivation for this model is provided by wavelet analysis, since the wavelet
representation of many smooth and piecewise smooth signals is sparse and nearly
black in this sense [see, e.g., Donoho, Johnstone, Kerkyacharian and Picard
(1995)]. For estimating the whole object, this model has also been studied in
Donoho, Johnstone, Hoch and Stern (1992) and Abramovich, Benjamini, Donoho
and Johnstone (2000).

In the present paper we are interested in estimating the linear functional of the
unknown vectorf given by

Tf=>_f.

i=1
Let {(k, n) be the class of all subsets{df ..., n} of k elements and fof € 4(k, n)
let

Fi={feR": fj=0Vj¢l}.
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Note that#; is ak,-dimensional subspace spanned by the coordinateslihese
are obviously convex an@ = U ¥; where the union is taken ovérin the set
I (k,,n). From now on we shall assume thais in the setl(k,, n).

Linear procedures perform poorly over. In fact it is easy to see that the convex
hull of # is the whole ofR" and

w(g, CHUIl(F)) = w(e, R") = /ne.

It then follows from Theorem 5 that any linear estimator must have maximum
mean squared error ovér of at least 1. In fact it is easy to see that the best linear
procedure is simply” =>"7"_; y;.

Nonlinear procedures can perform much better. Our general construction given
in Section 3 starts with linear estimators constructed assumingtha;. In this
case it is natural to start withy the minimax estimator ovef; since this estimator
is linear, unbiased ovef; and has variance equal -’gg—) Ty is in fact just the sum of
y; with j € I. In this example equation (29) holds for ale £ (k,, n) with M =1
ando?(L, 7)) =%

The construction of * is also based on the moduluse, 7, ¥;) between;
and ¥;. Note that a least favorable pair of parameters is given by one parameter
which has the,, coefficients inJ all equal to some given value> 0 and the rest
zero and the second parameter has the coefficients\ih equal to—a and the
rest zero. By choosing so that thd, distance between these parameters is equal
to ¢ itis easy to check that

(e, F1, F1) = V/CardI U J)e
and consequently
w(e, F) = /2kpe.
Now let f” be defined as in Section 3. It is easy to see in this case that

Tro= Y .

leluJ
Let N be the number of parameter spaces. Theis equal ton choosek,, and

it is easy to see that
n k
= < n
N (kn ) <n",

It then follows from Theorem 4 that if* is defined by (33), then

. k2In

(49) SUpE(F* — )2 <.

feF n
The following theorem shows that the estima®t is in fact rate optimal.

The theorem gives a minimax lower bound based on using a mixture prior and

a constrained risk inequality introduced in Brown and Low (1996).
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THEOREM 7. LetTf =737, fi. Supposethat n > 4 and that k, < n® with
e <1/2.Then

1k2 n
50 fSUpE(T — T 2n( = ).
(50) ﬁlﬁf ( )?> Z 51 n<%)

REMARK. Comparing the minimax lower bound (50) with the risk upper
bound for7*, for k, < Cn® with & < 1/2, the estimatof* is within a constant
factor of the minimax risk. For example, féy = n® with ¢ < 1/2, the risk of T*
converges at the rate of 1=2) Jogn which is optimal.

PROOF OF THEOREM 7. In the proof we will omit the subscript ik, and
simply writek for k,,. Lety,, be the density of a normal distribution with mean
and variancet. And for I € 1(k, n) let

gLy =[] %50

j=1

where f; = %]l(j € I). Finally let

g=<n%> > &

Ied(k,n)

andf = 1‘[’}:l fo be the density ofi independent normal random variables each

with mean 0 and varianc#. Note that a similar mixture prior was used in Baraud
(2000) to give lower bounds in a nonparametric testing problem. Now note that if

0 \2
Ew<8—k;§) <C

for all I € 4(k, n) then it follows that

5 \2
E(s—k=) <c.
g( ﬁ) .

We will now apply the constrained risk inequality of Brown and Low (1996). First
we need to calculate a chi-squared distance betweamd g. This is done as
follows. Note that

/g

and simple calculations show that

8181
f

Z Z /8181'

Iel(k n) I'ed(k,n)

= exp(jp?)
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where; is the number of points in the st I’. It follows that

/ s = E exp(Jp?)
f
whereJ has a hypergeometric distribution
k n—k
(x)
Now note that from Feller [(1968), page 59],
J k—j —k
o= (5) () (-2)(-8)
J n n n

Now suppose that > 4 and thak < n%/2. Then

—k
(1— 5) <4/m<4
n

o)) 62

It now follows that ifn > 4 andk < n'/2 then

and hence

g2 )
S — EexpJp?)
/5
k k k
54(1——+—e02> :
n n

Now takep = In and it follows that
k
JFeee

It then follows from the constrained risk inequality in Brown and Low (1996) that
if

K2 n
51 Ef(8—0)2<c1—In—
(51) £( )" =c1 n k2

then

2 2 2
P k k n k n
E,[6—k— >—|n——4e— In— —In—
52) g( ﬁ) = AN eV ez
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The theorem now follows on taking = 1+ 8¢2 — 4ev/1+4¢2. [

5.3. Structured nearly black objects. We will now consider an example under
the Gaussian sequence model (48) where most of the coordinates are zero but
where we shall also assume that #yenonzero coordinates appear consecutively
and that O< k,, < n® for somee < 1. Againk, is assumed to be known. Let

Fla,ky)={f€eR": fi=0unlesst <i <a+k, — 1}

and
n—ky
F=J F@a k.
a=1

We call members off structured nearly black objects. It is easy to see that the
convex hull of ¥ is again the whole oR”. It thus follows from Theorem 5 that
linear procedures perform poorly for estimatifig over ¥ .

Let 7, = > =1y, Thenf, , as defined in Section 3 is given by

i=a
Top =Y yilli €la,a+ky —1U[b,b+k, —1]).
Note that¥ is a union of onlyn — k, convex sets and so it then follows from
Theorem 4 that i * is now defined by (33) then
k,Inn

(53) SUpE(T* = Tf)?><C .
feF n

Equation (53) gives an upper bound for the minimax risk. We shall now show that
this upper bound is rate sharp. In fact we shall show thatif4 andk,, < n* with
¢ <1, then

- 1k 3
(54) inf supE(T—Tf)zz——”ln(—n).
T feF 18n \k,

This can be seen as follows. Denote the index égts {i :a <i <a + k, — 1}
and letd (k,,n) = UZ;IE" 1,. As in the previous example lgi; be the density of a
normal distribution with mearf and variancenl. And for I € 4(k,,n) let

n
gy =[] ¥ 00
j=1
where f; = %ﬂ(j € I). Finally let g = ﬁZ?;]{" gr and f = H;lefo be
the density ofn independent normal random variables each with mean 0 and
variance%. Following the argument in the previous example we note that

gZ
/ Sk exp(Jp?)
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where this time/ satisfies

PJ=0="""n

and for 1<i <k,,
P(J=i)=-

Hence

g2

/— <1+ " explkyp?)

f n

Now set

Then /[ gTZ <4 and (54) now follows as in (51) and (52).
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