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A CHARACTERIZATION OF ABSOLUTE SUMMABILITY FACTORS

B. E. Rhoades and Ekrem Savaş

Abstract. Let A and B be two summability methods. We shall use the
notation λ ∈ (A, B) to denote the set of all sequences λ such that

∑
anλn

is summable B, whenever
∑

an is summable A. In the present paper we
characterize the sets λ ∈ (|N, pn|, |T |k) and λ ∈ (|N, pn|k, |T |), where T is
a lower triangular matrix with positive entries and row sums 1. As special
cases we obtain summability factor theorems and inclusion theorems for pairs
of weighted mean matrices.

1. INTRODUCTION

In a recent paper, Sarigöl and Bor [9] obtained necessary and sufficient condi-
tions for (|N, pn|, |N, qn|k) and (|N, pn|k, |N, qn|). The concept of absolute sum-
mability of order k was coined by Flett [3] as follows. A series

∑
an is summable

|C, δ|k, k ≥ 1, δ > −1 if

(1.1)
∞∑

n=1

nk−1|∆σδ
n−1|k < ∞,

where σδ
n denotes the nth term of the (C, δ) transform of the partial sums, sn, of

the series
∑

an.
In extending (1.1) to weighted mean methods, for example, Bor [1], Sarigöl [8],

and others, have used the definition

(1.2)
∞∑

n=1

(
Pn

pn

)k−1

|∆un−1|k < ∞
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where un is the nth term of the weighted mean transform of {sn}.
Let T denote a lower triangular matrix with positive entries and row sums 1.

Define

t̄nν =
n∑

i=ν

ani, n, ν = 0, 1, · · ·

and t̂nν = t̄nν − t̄n−1,ν , n = 1, 2, · · · .
Before stating our main results we shall note the following lemma.

Lemma 1.1. [5] Let 1 ≤ k < ∞. Then an infinite matrix T : � → �k if and
only if

sup
ν

∞∑
n=1

|tnν |k < ∞.

2. THE MAIN RESULTS

We shall prove the following.

Theorem 2.1. Let 1 ≤ k < ∞. Then λ ∈ (|N, pn|, |T |k), i.e.,
∑

an is
summable |N, pn|, then

∑
anλn is summable |T |k, if and only if

(i) |tννλν|Pν

pν
= O(ν1/k−1)

(ii)
( ∞∑

n=ν+1

nk−1|∆(t̂nνλν|k
)1/k

= O
( pν

Pν

)

(iii) (
∞∑

n=ν+1

nk−1|t̂n,ν+1λν+1|k)1/k = O(1).

Remark 1. The theorem of [6] is a corollary of Theorem 2.1.

Theorem 2.2. Let 1 < k < ∞. Suppose that T also satisfies

(2.1)
∞∑

n=ν+1

|t̂nν | converges for each ν = 1, 2, . . .

and

(2.2)
∞∑

n=ν+1

|t̂n,ν+1| converges for each ν = 1, 2, . . .

Then (|N, pn|k, |T |), i.e.,
∑

an summable |N, pn|k implies that
∑

anλn is sum-
mable |T |, if and only if
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(i)
∞∑

ν=1

1
ν

∣∣∣ ∞∑
n=ν+1

Pν

pν
(∆t̂nνλν) + t̂n,ν+1λν+1

∣∣∣k′
< ∞

(ii)
∞∑

ν=1

1
ν

∣∣∣tννPνλν

pν

∣∣∣k′
< ∞,

where k′ is the conjugate index of k.

Proof of Theorem 2.1. Let {xn} denote the sequence of (N, pn) means of the
series

∑
an. By definition,

xn =
1
Pn

n∑
ν=0

pνsν =
1
Pn

n∑
ν=0

(Pn − Pν−1)aν.

Thus

Xn := xn − xn−1 =
pn

PnPn−1

n∑
ν=1

Pν−1aν, n ≥ 1.

Define

(3.1) yn =
n∑

ν=0

n∑
i=ν

tnνλνaν =
n∑

ν=0

t̄nνλνaν

and

(3.2) Yn := yn − yn−1 =
n∑

ν=0

(t̄nν − t̄n−1,ν)λνaν =
n∑

ν=0

t̂nνλνaν.

By the hypothesis of the theorem, and applying (1.1) with σδ
n−1 replaced by Yn,

(3.3)
∞∑

n=1

nk−1|Yn|k < ∞

whenever

(3.4)
∞∑

n=1

|Xn| < ∞.

For k ≥ 1 we define

B = {{ai} :
∑

ai is summable |N̄, pn|}

C = {{ai} :
∑

aiλi is summable|T |k}.
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These are Banach spaces, if normed by

(3.5) ‖X‖ =
∑

|Xn|, ‖Y ‖ = (|Y0|k +
∑

nk−1|Yn|k)1/k,

respectively.
Since

∑
an is summable by |N, pn| implies that

∑
anλn is summable by

|T |k,by the Banach-Steinhaus theorem, there exists a constant M > 0 such that

(3.6) ‖Y ‖ ≤ M‖X‖

for all sequences satisfying (3.4).
Applying (3.1) and (3.2) to the sequence aν = eν , aν+1 = −eν+1, an = 0,

otherwise, where eν is the ν−th coordinate sequence, we obtain

Xn =




0, n < ν,
pν

Pν
, n = ν,

− pνpn

PnPn−1
, n > ν,

Yn =




0, n < ν,

t̂ννλν, n = ν,

∆(t̂nνλν), n > ν.

From (3.5),

‖X‖ =
2pν

Pν

and

‖Y ‖ = (νk−1|t̂ννλν |k +
∞∑

n=ν+1

nk−1|∆(t̂nνλν|k)1/k.

Hence it follows from (3.6) that

νk−1|t̂ννλν|k +
∞∑

n=ν+1

nk−1|∆(t̂nνλν)|k ≤ (2M)k(
pν

Pν
)k.

Since this inequality holds for every ν ≥ 1, we obtain

νk−1|t̂ννλν|k +
∞∑

n=ν+1

nk−1|∆(t̂nνλν)|k = O((
pν

Pν
)k).
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The above equality is true if and only if each term on the left side is O((pν/Pν)k).
Taking the first term gives

Pν

pν
|t̂ννλν| = O(ν1/k−1);

i.e., (i) is necessary. Taking the second term, we obtain

(
∞∑

n=ν+1

nk−1|∆(t̂nνλν)|k)1/k = O(
pν

Pν
),

which is condition (ii).
To prove the necessity of (iii) we again apply (3.1) and (3.2), this time to the

sequence with aν = eν+1. We then obtain

Xn =




0, if n < ν + 1,
Pνpn

PnPn−1
, if n ≥ ν + 1,

and

Yn =

{
0, if n < ν + 1,

tn,ν+1λν+1, if n ≥ ν + 1.

Using (3.5) we obtain
‖X‖ = 1,

and
‖Y ‖ = (

∞∑
n=ν+1

nk−1|tn,ν+1λν+1|k)1/k.

From (3.6) it follows that

(
∞∑

n=ν+1

nk−1|tn,ν+1λν+1|k)1/k = O(1),

which gives the necessity of (iii).
To prove the conditions sufficient, from (3.1) we have

Xn =
pn

PnPn−1

n∑
ν=1

Pν−1aν .

so,
PnPn−1Xn

pn
=

n∑
ν=1

Pν−1aν
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Pn−1Pn−2Xn−1

pn
=

n−1∑
ν=1

Pν−1aν

PnPn−1Xn

pn
− Pn−1Pn−2Xn−1

pn
= Pn−1an.

Thus

(3.7) an =
PnXn

pn
− Pn−2Xn−1

pn−1
.

Substituting (3.7) into (3.2) gives

Yn =
n∑

ν=0

t̂nνλνaν = t̂n0λ0X0 +
n∑

ν=1

t̂nνλν(
Pν

pν
Xν − Pν−2

pν−1
Xν−1)

= t̂n0X0λ0 + t̂nnλn
Pn

pn
Xn +

n−1∑
ν=1

(t̂nνλνPν − t̂n,ν+1λν+1Pν−1)
Xν

pν

=
n−1∑
ν=1

(t̂nνλνPν − t̂n,ν+1λν+1Pν−1)
Xν

pν
+ tnnλn

Pn

pn
Xn

=
n−1∑
ν=1

(
Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1)Xν + tnn

PnλnXn

pn
.

Set Y ∗
n = n1−1/kYn. Then

Y ∗
n = n1−1/k

n−1∑
ν=1

[Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1

]
Xν + tnn

Pn

pn
λnXn.

We may therefore write Y ∗
n =

∑n
ν=1 anνXν , where

anν =




n1−1/k(
Pν

pν
)∆(t̂nνλν) + t̂n,ν+1λν+1, if 1 ≤ ν ≤ n − 1,

n1−1/k Pn

pn
tnnλn, if n = ν,

0 if n > ν.

Then the statement that
∑

aνλν is summable |T |k, k ≥ 1 whenever
∑

an is
summable |N, pn|, is equivalent to

∑ |Y ∗
n |k < ∞ whenever

∑ |Xn| < ∞, or,
equivalently,

(3.8) sup
ν

∑
n

|anν|k < ∞
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by Lemma 1.1. From the definition of T it follows that

∞∑
n=ν

|anν|k = νk−1
(Pn

pn
|tnnλn|

)k

+
∞∑

n=ν+1

nk−1
∣∣Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1

∣∣∣k.

Therefore the conditions (i)–(iii), and Minkowski’s inequality imply that

∞∑
n=ν

|anν |k = O(1)

as ν → ∞. This completes the proof.

Proof of Theorem 2.2. Solving (3.1) for an and substituting into (3.2) gives

Yn =
n−1∑
ν=1

[Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1

]
Xν +

tnnλnPnXn

pn
.

With X ∗
n = n1−1/kXn,

Yn =
n∑

ν=1

anνX∗
ν ,

where

anν =




(Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1

)
ν1/k−1, if 1 ≤ ν ≤ n − 1,

tnnλn
Pn

pn
n1/k−1, if ν = n,

0, if ν > n.

The condition that
∑

anλn is summable |T | whenever
∑

an is summable
|N, pn|k is equivalent to

∑ |Yn| < ∞ whenever
∑ |X∗

n|k < ∞. Necessary and
sufficient conditions for this are that

(3.9)
∞∑

n=ν

anνzν < ∞ for each bounded sequence z, ν = 1, 2, . . .

and

(3.10)
∞∑

ν=1

∣∣∣ ∞∑
n=ν

anνzν

∣∣∣k′
< ∞ for each bounded sequence z.
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To verify (3.9),

∞∑
n=ν

anνzν = tννλν
Pν

pν
ν1/k−1zν

+
∞∑

n=ν+1

[Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1

]
ν1/k−1zn.

∞∑
n=ν+1

∣∣∣Pν

pν
∆(t̂nνλν)ν1/k−1zn

∣∣∣ ≤ MPνν1/k−1

pν

∞∑
n=ν+1

|t̂nνλν − t̂n,ν+1λν+1|

≤ MPνν1/k−1

pν

[
|λν|

∞∑
n=ν+1

|t̂nν |

+ |λν+1|
∞∑

n=ν+1

|t̂n,ν+1|
]

= O(1),

by using (2.1) and (2.2), where M is a bound for z. Therefore the series is conver-
gent.

Also
∞∑

n=ν+1

∣∣∣t̂n,ν+1λν+1ν
1/k−1zn

∣∣∣ ≤ Mλν+1ν
1/k−1

∞∑
n=ν+1

|t̂n,ν+1|

= O(1),

and (3.9) is satisfied.
Therefore, from (3.10), the necessary and sufficient condition for the conclusion

of the theorem is

(3.11)

∞∑
ν=1

∣∣∣tννλν
Pν

pν
ν1/k−1zν

+
∞∑

n=ν+1

[Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1

]
ν1/k−1zν

∣∣∣k′
< ∞,

for each bounded sequence z. It follows from (3.11), by choosing zn = 1 for each
n, that

(3.12)
∞∑

ν=1

∣∣∣tννλν
Pν

pν
ν1/k−1

∣∣∣k′
= O(1)
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and

(3.13)
∞∑

n=ν+1

∣∣∣Pν

pν
∆(t̂nνλν) + t̂n,ν+1λν+1

]
ν1/k−1

∣∣∣k′
= O(1),

which are conditions (i) and (ii).
To show that (i) and (ii) are sufficient, one needs only to use the inequality

(a + b)k′ ≤ 2k′
(ak′

+ bk′
), a, b ≥ 0,

along with (3.12) and (3.13), since (3.11) holds for every bounded sequence zn =
O(1).

4. ADDITIONAL RESULTS

For any sequences {an}, {bn}, the statement an � bn means an = O(bn) and
bn = O(an).

Theorem 4.1. Let 1 ≤ k < ∞, {qn} a positive sequence satisfying

(4.1)
( ∞∑

n=ν+1

nk−1
( qn

QnQn−1

)k)1/k � O
( 1

Qν

)
.

Then λ ∈ (|N, pn|, |N, qn|k) if and only if

(i) λn = O(1)

(ii) ∆λn = O
( pn

Pn

)

(iii) λn = O

(
pnQn

qnPn

1
n1/k′

)
.

Proof. With tnk = qk/Qn, condition (i) of Theorem 2.1 becomes∣∣∣qνλν

Qν

∣∣∣Pν

pν
= O(ν1/k−1),

which is equivalent to condition (iii) of Theorem 4.1.
Then

(4.2)

t̂nν = t̄nν − t̄n−1,ν =
1

Qn

n∑
i=ν

qi − 1
Qn−1

n−1∑
i=ν

qi

=
1

Qn
(Qn − Qν−1) − 1

Qn−1
(Qn−1 − Qν−1)

=
−Qν−1qn

QnQn−1
.
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Substituting into condition (iii) of Theorem 2.1 we have

( ∞∑
n=ν+1

nk−1
∣∣∣Qνqnλν+1

QnQn−1

∣∣∣k)1/k
= O(1)

or

|λν+1|Qν

( ∞∑
n=ν+1

nk−1
( qn

QnQn−1

)k)1/k
= O(1),

which, using (4.1), implies condition (i) of Theorem 4.1.

(4.3)
∆(t̂nνλν) = − Qν−1qn

QnQn−1
λν +

Qνqn

QnQn−1
λν + 1

= − qn

QnQn−1
∆(Qν−1λν).

Substituting into condition (ii) of Theorem 2.1 yields

( ∞∑
n=ν+1

nk−1
∣∣∣ qn

QnQn−1
∆(Qν−1λν)

∣∣∣k)1/k
= O

( pν

Pν

)
,

or

|∆(Qν−1λν)|
( ∞∑

n=ν+1

nk−1
( qn

QnQn−1

)k)1/k
= O

( pν

Pν

)
,

which, using (4.1) implies that

|∆(Qν−1λν)| 1
Qν

= O
( pν

Pν

)
.

Thus, since λν is bounded,

∆(Qν−1λν) = Qν−1λν − Qνλν+1

= Qν∆λν − qνλν

= O
(

Qνpν

Pν

)
or

∆λν =
qν

Qν
λν + O

( pν

Pν

)
= O

( pν

Pν

)
,

which is condition (ii) of Theorem 4.1.

Remark 2. The theorem of [7] is a special case of Theorem 4.1.

Theorem 4.2. Let 1 < k < ∞. Then λ ∈ (|N, pn|k, |N, qn|) if and only if
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(i)
∞∑

ν=1

1
ν

∣∣∣ Pνqν

pνQν
λν

∣∣∣k′
< ∞

(ii)
∞∑

ν=1

1
ν

∣∣∣Pν∆(Qν−1λν)
pν

+ Qνλν+1

∣∣∣k′
< ∞.

Proof. Since again tnk = qk/Qn, using (4.2),

∞∑
n=ν+1

|t̂nν | =
∞∑

n=ν+1

Qν−1qn

QnQn−1

= Qν−1

∞∑
n=ν+1

qn

QnQn−1

= Qν−1

∞∑
n=ν+1

( 1
Qn−1

− 1
Qn

)

=
Qν−1

Qν
≤ 1,

and (2.1) is satisfied. So also is (2.2).
Substituting the value of tνν into condition (ii) of Theorem 2.2 yields condition

(ii) of Theorem 4.2, and substituting (4.3) into condition (i) of Theorem 2.2 gives
condition (i) of Theorem 4.2.

We now establish some summability factor theorems for the case k = 1.

Corollary 4.1. λ ∈ (|N, pn|, |T |) if and only if

(i) λν = O
( pν

Pνtνν

)

(ii)
∞∑

n=ν+1

|∆(t̂nνλν| = O
( pν

Pν

)

(iii)
∞∑

n=ν+1

|t̂n,ν+1λν+1| = O(1).

To prove the corollary, simply substitute k = 1 in Theorem 2.1.

Corollary 4.2. λ ∈ (|N, pn|, N, qn|) if and only if

(i) λn = O(1),
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(ii) ∆λn = O
( pn

Pn

)

(iii) λn = O
(pnQn

qnPn

)
.

To prove this corollary, use Theorem 4.1 with k = 1, recognizing that 1/k′ = 0.

Corollary 4.3. {pnQn/qnPn} ∈ (|N, pn|, |N, qn|) if and only if

pnQn

qnPn
� O(1)

Corollary 4.3 is proved by combining parts (i) and (iii) of Corollary 4.2.

Remark 3. Corollary4.3 is an improvementof a result of Kishore and Hotta [4].
Summability factor theorems also lead to inclusion theorems.

Corollary 4.4. |N, pn| and |N, qn| are equivalent if and only if

pnQn

qnPn
� O(1)

Proof. Suppose that
∑

an summable |N, pn| implies that
∑

an is summable
|N, qn|. Then, from Corollary 4.2, with λ = 1 we obtain qnPn/pnQn = O(1).
Interchanging the roles of {pn} and {qn} gives pnQn/qnPn = O(1).

Remark 4. Corollary 4.4 was first proved by Sunouchi [8] and Bosanquet [2]

Remark 5. Corollaries 4.2– 4.4 are identical to Corollaries 4.1–4.3, of [7]
since (1.1) and (1.2) are the same for k = 1.
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