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ON THE BOUNDARY OF FOURIER AND COMPLEX ANALYSIS:

THE POMPEIU PROBLEM

Der-Chen Chang

Dedicated to Professor Hwai-Chiuan Wang

Abstract. In this paper, we first survery some Pompeiu-type theorems in

Rn. As consequences of some of these results, we obtain some Morera-type

theorems in one and several complex variables. We also use the heat kernel

of the sub-Laplacian to obtain a Pompeiu-type theorem for Lp,q functions in

the Heisenberg group.

1. POMPEIU PPROBLEM IN Rn

We first recall the following general version of the Pompeiu problem. Let X

be a locally compact topological vector space, µ a nonnegavtive Radon measure on
X , {γj}N

j=1 a finite collection of compact subsets of X , and G a topological group

acting on X and leaving the measure µ invariant. Consider the Pompeiu transform:

P : C(X) → (C(G))N

defined by

(Pjf)(g) :=
∫

gγj

fdµ,

where Pj is the jth component of P and we denote g · x the action of the element
g ∈ G on the point x ∈ X . We say that the family {γj}N

j=1 has the Pompeiu

property if P is injective. Note that for this condition to be nontrivial one essentially
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needs the action of G to be transitive. The Pompeiu problem is to decide as

explicitly as possible whether the family has the Pompeiu property. One can also

consult the monograph written by Agranovsky [1] for a more functional analytical

view of this subject. Let us begin with a simple observation.

Let µr be the normalized surface measure on the sphere Cr(0) = {x ∈ Rn :
|x| = r}. Then we want to know whether

f ∗ µr = 0 ⇒ f ≡ 0.

f ∗ µr are called the spherical means of f .
If f ∈ Lp(Rn), 1 ≤ p ≤ 2, then by taking Fourier transform

f̂(ξ) = (2π)−
n
2

∫

Rn

e−ix·ξf(x)dx,

we have

f̂ ∗ µr = f̂ · µ̂r = 0 ⇒ f ≡ 0,

since µ̂ is an entire function of exponential type by Paley-Wiener theorem. Obvi-

ously, the sphere Cr(0) satisfies the Pompeiu property whenever f ∈ L2(Rn). This
is usually called a one radius theorem.

If we take

f(x) = φλ(x) = cn
Jn

2
−1(λ|x|)

(λ|x|)
n
2
−1

,

where Jα is the Bessel function of order α, then it is well known that

f ∗ µr(x) = φλ(r)φλ(x),

where φλ(r) stands for φλ(y) with |y| = r. Therefore, if

r ∈ R is such that Jn
2
−1(λr) = 0, then f ∗ µr = 0.

Note that φλ ∈ Lp(Rn) for p > 2n/(n− 1). Therefore, we have:

1. If p > 2n/(n− 1), one radius theorem is not true for Lp(Rn).

2. If 1 ≤ p ≤ 2n/(n− 1), Cr(0) indeed satisfies the Pompeiu property for any
r > 0 by a theorem of Thangavelu [40].

When n = 2, then by Green’s theorem,

f ∗ µr(ζ) =
∫

Cr(0)
f(z − ζ)dz = 2i

∫∫

Dr(0)

∂f

∂z̄
(z − ζ)dV (z)

for f ∈ C1(R2). Here Dr(0) = {z ∈ C : |z| ≤ r}. Therefore, in C, Pompeiu
property implies the analyticity of the function f .
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Let us recall the famous Morera theorem:

Theorem 1.1. Let f ∈ C(C). Then f is holomorphic in C if

∫

γ
f(z)dz = 0

for all piecewise C1 Jordan curves γ in C.

In fact, the condition for the Morera theorem is too strong. Of course, there is no

Lp entire function in C. Obviously, one radius is definitely not enough. However,
Zalcman [43, 44] had proved the following beautiful result.

Theorem 1.2. Let f ∈ C(R2) and suppose that there exist positive numbers
r1, r2 such that ∫

Cr(ζ)
f(z)dz = 0

for every ζ ∈ C and r = r1, r2. Then f is an entire function so long as

r1
r2

/∈ Q(J1) =
{
η

ξ
: J1(η) = J1(ξ) = 0

}
.

Here J1 is the Bessel function of order 1. When r1/r2 ∈ Q(J1) then there exists a
function f such that f need not be holomorphic anywhere in C.

Similarly, let f ∈ C(Rn) and suppose there exist positive numbers r1, r2 such
that

f ∗ µr = 0

for r = r1, r2. Then f ≡ 0 as long as r1/r2 /∈ Q(Jn/2). From this, Theorem 1.2
can be generalized to Cn as follows (see Berenstein [6]):

Theorem 1.3. Let f ∈ C(Cn) and suppose that there exist positive numbers
r1, r2 such that ∫

Cr(0)
f(z − ζ)dz = 0

for every ζ ∈ Cn and r = r1, r2. Then f is an entire function so long as r1/r2 /∈
Q(Jn).

A different sort of variation is obtained by placing appropriate restrictions on

a Jordan curve γ0. In [17], Brown, Schreiber and Taylor obtained the following

theorem:
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Theorem 1.4. Let f ∈ C(C) and let γ0 be a “generic” Jordan curve. If

∫

σ(γ0)
f(z)dz = 0 for all σ ∈M(2),

then f is an entire function. Here M(2) is the Euclidean motion group in R2.

Remark 1. The notion of genericity used in Theorem 1.4 consists in the nonexis-

tence of positive eigenvalues α for the following overdetermined Neumann problem:

∆u+ αu = 0 in Ω,

u = 1,
∂u

∂~n
= 0 on ∂Ω = γ0.

Here Ω is the interior of the region bounded by γ0 such that Ωc = Rn \ Ω is

connected and ~n is the unit outward normal.

From the above discussion, we know that if Ω = ball, then γ0 fails to have the

Pompeiu property. However, from the work of Cafarelli, Williams [42] has proved

the following result:

Corollary 1.5. If γ0 is Lipschitz but not real analytic everywhere, then Ω has

the Pompeiu property in Rn (for the Euclidean motion groupM(n)).

Question 1. The hypothesis in Corollary 1.5 is only a sufficient condition. It
is known that

γ0 =
{
x2

a2
+
y2

b2
= 1, a 6= b

}

satisfies the Pompeiu property. However, γ0 is real analytic everywhere. It is

interesting to find a necessary and sufficient condition for γ0 so that γ0 satisfies

the Pompeiu property.

It turns out that the key element of the proof of the above theorems is the

reduction of the Pompeiu problem to the spectral synthesis problem in C∗(Rn), the
space of radially symmetric continuous functions in Rn.

If only translations are allowed, a single Jordan curve does not imply analyticity.

In 1977, Berenstein and Taylor [18] proved a result, the so-called three squares the-

orem, which asserts that any continuous function defined in the plane is completely

determined by its averages over a family of three squares γ1, γ2, γ3 of sides parallel

to the coordinate axes and size `1, `2, `3 if and only if `1/`2, `2/`3, and `3/`1 are

not rational numbers.

In fact, the above condition for `j is equivalent to

{ξ ∈ Cn : χ̂γ1(ξ) = χ̂γ2(ξ) = χ̂γ3(ξ) = 0} = ∅,(1)
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where χγj is the characteristic function of the square γj , χ̂γj its Fourier transform.

The Pompeiu property is just the statement that for any f ∈ C(Rn),

χ
γ1 ∗ f = χ

γ2 ∗ f = χ
γ3 ∗ f = 0 ⇒ f = 0.(2)

However, the failure of the spectral synthesis does not guarantee that (1) implies

(2) for characteristic functions of three arbitrary compact sets γ1, γ2, γ3. On the

other hand, it was first proved by Berenstein and Taylor [18] that if γ1 is a square

(or a rectangle) then (1) does imply (2) for any other collection γ2, γ3 (or more
generally, γ1, . . . , γN).

In fact, the three squares theorem is closely related to the multisensor decon-

volution problem: Given a collection of compactly supported distributions {µj}N
j=1

on Rn, find a collection of compactly supported distributions {νj}N
j=1 such that

N∑

j=1

µj ∗ νj = δ.(3)

A theorem of Hörmander [28] asserts that (3) has a solution if and only if {µj}N
j=1

satisfies the strongly coprime condition

N∑

j=1

|µ̂j(ξ)| ≥ A(1 + |ξ|)−Me−B|Im ξ| for all ξ ∈ Cn,

for some constants A, B, M > 0.

Question 2. Can we generalize Hörmander’s theorem to nilpotent Lie groups

or symmetric spaces?

For n = 2, let µj = χγj , j = 1, 2, 3. Then (3) implies the “global” three squares
theorem since

3∑

j=1

(f ∗ µj) ∗ νj =
3∑

j=1

f ∗ (µj ∗ νj) = f ∗




3∑

j=1

µj ∗ νj


 = f ∗ δ = f.

On the other hand, by Fourier transform, (3) is equivalent to

µ̂1ν̂1 + · · ·+ µ̂N ν̂N = 1,(4)

so that

{ξ ∈ Cn : µ̂1(ξ) = · · · = µ̂N (ξ) = 0} = ∅(5)
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is clearly a necessary condition for (4). Once we pose the problem this way, we can

see that deconvolution is relevant to the Pompeiu problem for the translation group.

In fact, we have the following theorem:

Theorem 1.6. Let γ be a hyper-pyramid in Rn centered at the origin with

side length ` > 0. Then there exist rotations σ1, σ2, . . . , σn+1 ∈ U(n) with
σ1 = Identity map such that the family {σjγ}n+1

j=1 has the Pompeiu property, i.e., if
f ∈ C(Rn) satisfies for every j, 1 ≤ j ≤ n+ 1,

∫

y+σjγ
f(x)dx = 0, for all y ∈ Rn,

then f ≡ 0.

For example, when n = 2, let γ1 be an equilaterial triangle, and γ2 and γ3 the

triangles obtained by rotating γ1 through π/6 and π/4, respectively. If f ∈ C(C)
satisfies ∫

z+γj

f(ζ)dζ = 0, j = 1, 2, 3,

for all z ∈ C, then f is entire.
There are local versions of the above theorems too. For example, the following

results were proved by Berenstein-Zalcman [19] and Berenstien-Gay [9], respec-

tively:

Theorem 1.7. Let f ∈ C(D) and let γ0 be a generic Jordan curve contained

in D. If ∫

σ(γ0)
f(z)dz = 0 ∀ σ ∈ B,

then f is holomorphic in D. Here B is the Möbius group of conformal automor-
phisms of D.

Remark 2. The notation of genericity used in Theorem 1.7 is formally the same

as in Remark 1 except that the Euclidean Laplacian is replaced by the Laplace-

Baltrami operator on D (viewed as the hyperbolic plane). In fact, the conditions in

REMARK 1 may be restated as saying that if α > 0, then the equation

∆u+ αu = −χΩ

has no solution. Here χΩ is the characteristic function of the compact set Ω. It
remains the case that a sufficient condition for Theorem 1.7 to hold is that γ0 be

Lipschitz but not real analytic everywhere.
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Theorem 1.8. Let f ∈ C(D) and let γ0 be a piecewise smooth Jordan curve

in {z ∈ C : |z| < 1/2} which is not real analytic everywhere (for instance, a
rectangle). Suppose that ∫

γ
f(z)dz = 0

for all γ ⊂ D congruent to γ0 (in the Euclidean sense). Then f is holomorphic in
D.

The constant 1/2 in Theorem 1.8 is sharp. Indeed, suppose that the Jordan

region bounded by γ0 contains a circle of radius r > 1/2. Then the disc

∆ = {z ∈ C : |z| < 2r − 1}

contains no point of any curve congruent to γ0 which lies entirely in D. Thus f
may be prescribed arbitrarily inside ∆ which satisfies

∫

γ
f(z)dz = 0.

Similarly, we can generalize the above result to the following: Let r1, r2 > 0,
r1 + r2 < 1/2, r1/r2 /∈ Q(J1). Then if f ∈ C1(C) satisfies

∫

|w−z|=r1

f(z)dz = 0 for all w ∈ B(0; 1− r1)

and ∫

|w−z|=r2

f(z)dz = 0 for all w ∈ B(0; 1− r2),

then f is holomorphic in D. We also have a “local” three squares theorem as follows
(see Berenstein, Gay and Yger [14, 15]):

Theorem 1.9. Let γj , 1 ≤ j ≤ n + 1, be n + 1 cubes in Rn centered at the

origin with side length `j respectively and let R > `1 + `2 + · · ·+ `n+1. Then the

following are equivalent :

1. The collection {`j}n+1
j=1 satisfies `j/`k /∈ Q, j 6= k.

2. If f ∈ L2(QR(0)) satisfies for every j, 1 ≤ j ≤ n+ 1,
∫

y+γj

f(x)dx = 0 for max
1≤k≤n

|yk| < R− `j ,

then f ≡ 0. Here QR(0) is the cube [−R,R]n.
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Applying the above theorem, we immediately have the following result:

Corollary 1.10. Let 0 < `1 < · · · < `n+1 be n+1 numbers such that `j/`k /∈ Q
for j 6= k. Assume Ω is an open set in Rn with the property that for every x ∈ Ω
there is y ∈ Ω and Ry > 0 such that x ∈ QRy(y) ⊂ Ω and Ry > `1 + · · ·+ `n+1.

Then the only continuous function f in Ω that satisfies

∫

y+γj

f(x)dx = 0 for 1 ≤ j ≤ n + 1

and every y ∈ Ω such that y + γj ⊂ Ω, is f ≡ 0. Here QRy(y) =
∏n

k=1[−Ry +
yk , Ry − yk ].

Question 3. The reason for us to use cubes in Theorem 1.9 and Corollary
1.10 is a technical one since we know exactly what is the set which is generated
by n+ 1 cubes. In fact, we may replace cubes by other sets, e.g., hyper-pyramids.
How does Ω look like now?

2. POMPEIU PROBLEM ON THE HEISENBERG GROUP

The Heisenberg group Hn is the simplest noncommutative nilpotent Lie group

with underlying manifold Cn × R and the group law

(z, t) · (w, s) =


z + w, t+ s+ 2Im

n∑

j=1

zjw̄j


 .

In fact, Hn ≡ ∂Dn+1 (topologically), where

Dn+1 =



(z, zn+1) ∈ Cn+1 : Im zn+1 >

n∑

j=1

|zj |2




by means of the homeomorphism

Φ : Hn → ∂Dn+1, (z, t) 7→ (z, t+ i|z|2).

We endow Hn with the CR structure obtained by transporting the natural CR

structure of ∂Dn+1 to Hn via Φ. Then the left-invariant vector fields Zj and Z̄j

on Hn, j = 1, . . . , n, defined by

Zj =
∂

∂zj
+ iz̄j

∂

∂t
, Z̄j =

∂

∂z̄j
− izj

∂

∂t
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form a basis of the subbundle T (1,0)⊕T (0,1) of the complex tangent bundle CTHn.

It is easy to see that

[Zj ,Zk] = [Z̄j , Z̄k] = 0,

and

[Zj , Z̄k] = −2iδjk
∂

∂t
.

Denote T = ∂/∂t is the “missing” direction. A continuous function f ∈ C(Hn) is
a CR function if and only if Z̄jf = 0, j = 1, . . . , n, in the sense of distributions.

Before we go further, let us give some background of Laguerre calculus on Hn.

The readers can consult Berenstein-Chang-Tie’s book [8] for detailed discussions

on this subject. For f ∈ L1(Hn), denote by

f̃λ(z) = f̂(z, ·)(λ) =
1
2π

∫

R
f(z, t)e−iλtdt.

For f, g ∈ L1(Hn), define the convolution f ∗ g of f and g by

(f ∗ g)(x) =
∫

Hn

f(y)g(y−1 · x)dy.

For λ ∈ R∗ = R \ {0}, we define the twisted convolution of f and g by

(f ∗λ g)(z) =
∫

Cn

f(z− w)g(w)e−2iλImz·w̄dm(w).

Here dm is the Lebesgue measure on Cn. Then we have (̃f ∗ g)λ = f̃λ ∗λ g̃λ.

The generalized Laguerre polynomials L
(p)
k (x) are defined by their usual generating

function formula:

∞∑

k=1

L
(p)
k (x)wk =

1
(1 − w)p+1

exp
{
− xw

1 − w

}

for p ∈ Z+, x ≥ 0, and |w| < 1. From the Laguerre polynomials, we can define
the Laguerre functions:

`
(p)
k (x) =

[
Γ(k + 1)

Γ(k + p+ 1)

] 1
2

x
p
2L

(p)
k (x)e−

x
2 ,

where x ≥ 0 and p, k ∈ Z+. It is well-known that {`(p)
k (x), k ∈ Z+} forms a

complete orthonormal basis of the space L2([0,∞)) for p = 0, 1, 2, . . . .
Let z = |z|eiθ and k, p ∈ Z+. Then we define the exponential Laguerre

functions as follows:

W̃(±p)
k (z, λ) = (±1)p 2|λ|

π
`
(p)
k (2|λ||z|2)e±ipθ.
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Let us first recall a result due to Ogden and V’agi [34]:

Theorem 2.1. Let p, k, q,m= 1, 2, . . . . Then

W̃(p−k)
p∧k−1 ∗|λ| W̃

(q−m)
q∧m−1 = δ

(q)
k · W̃(p−m)

p∧m−1,

and

W̃(p−k)
p∧k−1 ∗−|λ| W̃

(q−m)
q∧m−1 = δ(p)

m · W̃(q−k)
q∧k−1,

where a ∧ b = min(a, b).

LetW(p)
k (z, t),±p, k = 0, 1, 2, . . . , be the inverse Fourier transform of W̃(p)

k (z, λ)
with respect to λ, i.e.,

W(p)
k (z, t) =

1
2π

∫

R
eiλtW̃(p)

k (z, λ)dλ.

These are the kernels of the generalized Cauchy-Szegö projection operators on H1.

In particular,

W(0)
0 (z, t) = S+ + S−

where

S± =
1
π2

1
(|z|2 ∓ it)2

.

Let K induce a left-invariant convolution operator K on Hn,

K(φ)(x) =
∫

Hn

K(y)φ(y−1 · x)dy.

Now, K̃(z, λ) has a Laguerre series expansion:

K̃(z, λ) =
∞∑

|p|,|k|=1

K
(p)
k (λ)

n∏

j=1

W̃(pj)
kj

(zj , λ).

Define the Laguerre tensorM(K) of K:

M(K) = M+(K)⊕M−(K),

where

M+(K) =
(
K

(p)
k (λ)

)
, λ > 0,

and

M−(K) =
(
K

(p)
k (λ)

)T
, λ < 0.
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The following theorem is the cornerstone for Laguerre calculus on Hn, which was

first proved by Greiner (see [8]):

Theorem 2.2. Let F and G induce two convolution operators on Hn. M(F )
and M(G) denote the Laguerre tensors of F and G respectively. Then

M(F ∗G) = M+(F ) ·M+(G)⊕M−(F ) ·M−(G).

Corollary 2.3. The identity operator I on C∞
0 (Hn) is induced by the identity

Laguerre tensor

M±(I) =
(
δ
(p1)
k1

· · ·δ(pn)
kn

)
.

Let f ∈ Lp(Hn), 1 < p <∞. Then

lim
r→1−

∞∑

|k|=0

r|k|f ∗W(0)
k = f

in Lp-norm (see Chang-Tie [20] and Strichartz [38]).

A left-invariant differential operator P on Hn is a polynomial P(Z, Z̄,T) with
constant coefficents. Then

P = PI =
∞∑

|k|=0

PW(0,...,0)
k1,...,kn

∗

where I =
∑∞

|k|=0 W
(0)
k ∗ is the identity operator on C∞

0 (Hn).
In particular, we have the following:

1. M(T) = iτ(δ(p1)
k1

· · ·δ(pn)
kn

).

2. M(Zj) = M+(Zj) ⊕M−(Zj), where

M−(Zj)
(p1,...,pn)
k1,...,kn

=
√

2|λ|pjδ
(p1)
k1

· · ·δ(pj+1)
kj

· · ·δ(pn)
kn

and M+(Zj) = M−(Zj)T .

3. M(Z̄j) = −M(Zj)T .

Example 1. When n = 1, we have

M+(Z1) =
√

2|τ |




0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
...

...
...

...
. . .


(6)
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and

M−(Z1) = [M+(Z1)]t.

Now we may set

M+(K) =
1√
2|τ |




0 0 0 0 · · ·
1√
1

0 0 0 · · ·
0 1√

2
0 0 · · ·

0 0 1√
3

0 · · ·
...

...
...

...
. . .




(7)

and

M−(K) = [M+(K)]t.

Thus

K̃±(z, τ) =
1√
2|τ |

∞∑

k=0

1√
k + 1

W̃(1)
±,k(z, τ).

Using the defintion of W̃(1)
±,k(z, τ), we sum the series

K̃(z, τ) =
2|τ |ze−|τ ||z|2

π

∫ 1

0

∞∑

k=0

rkL
(1)
k (2|τ ||z|2)dr.

But we know that
∞∑

k=0

rkL
(1)
k (x) =

ex

(1 − r)2
e−x/(1−r).

Therefore,

K̃(z, τ) =
1
π

e−|τ ||z|2

z̄

and

K(z, t) =
1

2π2z̄

∫

R
eitτ−|τ ||z|2dτ =

z

π2(|z|4 + t2)
.

This recovers the Greiner, Kohn and Stein Theorem [26] on the Heisenberg group:

Z1K = I−W(0)
−,0 = I− S−,

KZ1 = I−W(0)
+,0 = I− S+.

We define the sub-Laplacian on Hn as follows:

L =
(
−1

2

) n∑

j=1

(ZjZ̄j + Z̄jZj).
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This operator is a sum of squares of 2n “horizontal” vector fields, and it is therefore
not elliptic, but since the rank of the Lie algebra generated by {Z1, . . . ,Zn, Z̄1, . . . ,
Z̄n} equals 2n + 1 by a well-known result of Hörmander [29], we know that it is
hypoelliptic, i.e., the solution u of Lu = f is smooth whenever f ∈ C∞(Hn).

The Heisenberg group and its sub-Laplacian are at the cross-roads of many

domains of analysis and geometry: nilpotent Lie group theory, hypoelliptic second-

order partial differential equations, strongly pseudoconvex domains in complex

analysis, probability theory of degenerate diffusion process, sub-Riemannian geom-

etry, control theory and semiclassical analysis of quantum mechanics; see, e.g., [8,

10, 11, 12, 23, 24, 39, 40].

We define the joint Lp spectrum of the pair (L, iT) as the complement of the
set of (α, β) ∈ C2 for which there exist Lp bounded operators A and B with

A(αI− L) +B(βI − iT) = I.

This implies that the spectrum should be the set of (α, β) ∈ C2 for which neither

(αI− L) nor (βI− iT) is invertible. By using Laguerre calculus, we obtained the
Laguerre tensor for the operators αI−L and βI− iT have the following form (see

[8, 20, 38]):

M(αI− L) =
(
[α− |λ|(n+ 2|k|)]δ(p1)

k1
· · ·δ(pn)

kn

)
,

M(βI− iT) =
(
[β + λ]δ(p1)

k1
· · ·δ(pn)

kn

)
.

Hence αI− L is invertible if and only if α− |λ|(n+ 2|k|) 6= 0 for all k ∈ (Z+)n,

λ ∈ R, and βI− iT is invertible if and only if β +λ 6= 0 for all λ ∈ R. Hence the
joint spectrum of (L, iT) is the union of

{
(α, β) ∈ C2 : α = |β|(n+ 2|k|) and β ∈ R

}

over the set k ∈ (Z+)n, i.e.,

σ(L, iT) = ∪k∈Z+

{
(α, β) ∈ C2 : α ≥ 0, ε = ±1, β =

εα

n + 2k

}
.

This set is called the Heisenberg fan.

Next we will find the eigenfunction corresponding to (α, β) ∈ σ(L, iT), i.e.,
we want to find the function φ

(α)
k,ε (z, t) such that

(α− L)φ(α)
k,ε (z, t) = 0, (β − iT)φ(α)

k,ε(z, t) = 0,

where

β =
εα∑n

j=1(2kj + 1)
= εαn+ 2|k|
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with ε = ±1 andα ≥ 0. From Theorem 2.2, we have

(α− L̃)
n∏

j=1

W̃(0)
kj

(zj , λ) =


α− |λ|

n∑

j=1

(2kj + 1)




n∏

j=1

W̃(0)
kj

(zj , λ)

and

(β − ˜iT)
n∏

j=1

W̃(0)
kj

(zj , λ) = (β + λ)
n∏

j=1

W̃(0)
kj

(zj , λ).

Hence, if we set β = −λ and α = |λ|
∑n

j=1(2kj+1) = |λ|(2|k|+n) = |λ|(2k+n),
then

(α− L̃)
n∏

j=1

W̃(0)
kj

(zj , λ) = 0 and (β − iT̃)
n∏

j=1

W̃(0)
kj

(zj , λ) = 0.

This yields that

φ̃
(α)
k,ε(z, λ) = δ

(
λ+

εα∑n
j=1(2kj + 1)

)
·

n∏

j=1

W̃(0)
kj

(zj , λ).

This satisfies the condition (α− L̃)φ̃(α)
k,ε(z, λ) = 0 and (β + λ)φ̃(α)

k,ε(z, λ) = 0.
Therefore the eigenfunction corresponding to (α, β) ∈ σ(L, iT) is just the

inverse Fourier transform of φ̃
(α)
k,ε in λ:

φ
(α)
k,ε(z, t)=

1
2π

∫ ∞

−∞
eitλφ̃

(α)
k,ε (z, λ)dλ

=
1
2π

∫ ∞

−∞
eitλδ

(
λ+

εα∑n
j=1(2kj + 1)

)
×

n∏

j=1

W̃(0)
kj

(zj , λ)dλ

=
1
2π

exp

{
− iεαt∑n

j=1(2kj + 1)

}
n∏

j=1

W(0)
kj

(
zj ,−

εα∑n
j=1(2kj + 1)

)
.

Applying the definition of W̃(0)
kj

(zj , λ),

W̃(0)
kj

(zj , λ) =
2|λ|
π
e−|λ||zj |2L

(0)
kj

(2|λ||zj|2),

to the last formula, one first obtains

n∏

j=1

W(0)
kj

(
zj ,

−εα∑n
j=1(2kj + 1)

)

(8)

=
(

2α
π
∑n

j=1(2kj + 1)

)n

exp
{

−α · |z|2∑n
j=1(2kj + 1)

} n∏

j=1

L
(0)
kj

(
2α|zj |2∑n

j=1(2kj + 1)

)
.
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Substitutes (8) into the last formula for φ
(α)
k,ε (z, t). Then this yields

φ
(α)
k,ε (z, t) =: φ(α)

k,ε (z, t)=
(2π)−n−1αn

[n+ 2k]n
e−

α(|z|2+iεt)
n+2k

n∏

j=1

L
(0)
kj

(
2α|zj |2

n+ 2|k|

)

=
αn

(2π)n+1[n+ 2k]n
e−

α(|z|2+iεt)
n+2k L

(n−1)
k

(
2α|z|2

n + 2k

)
.

More precisely, we have

Lf ∗ φ(α)
k,ε = αf ∗ φ(α)

k,ε ,

−iTf ∗ φ(α)
k,ε =

εα

n + 2k
f ∗ φ(α)

k,ε .

We now consider the pointwise spectral projection induced by the eigenfunction

φ
(λ)
k,ε :

Φ(α)
k,ε (f)(z, t)= f ∗ φ(α)

k,ε

=
∫

Hn

φ
(α)
k,ε ((w, s)−1 · (z, t))f(w, s)dm(w)ds, for f ∈ Lp(Hn).

The variables t and z in φ(α)
k,ε are separated, and we can write φ

(α)
k,ε = ψ1(t)ψ2(z)

with

ψ1(t) = e−iµt and ψ2(z) =
1

(2π)n+1
|µ|ne−|µ|·|z|2

n∏

j=1

L
(0)
kj

(2|µ||zj|2),

where

µ =
αε

n+ 2k
, with k =

n∑

j=1

kj.

To simplify the problem, we consider f(z, t) ∈ Lp(Hn) such that f = f1(t)f2(z)
with f1(t) ∈ Lp(R) and f2(z) ∈ Lp(Cn). Then we obtain:

Φ(α)
k,ε (f)(z, t)=

∫

R
f1(s)e−iµ(t−s)ds

∫

Cn

f2(w)ψ2(z− w)e−iµ〈z,w〉dm(w)

= f̃1(−µ)e−iµt[(f2 ∗µ ψ2)(z)],

where f̃1 is the Fourier transform of f1 and [(f2 ∗µ ψ2)(z)] is exactly the twisted
convolution of f2 and ψ2. The identity |Φ(α)

k,ε (f)(z, t)| = |f̃1(−µ)||[(f2 ∗µ ψ2)(z)]|,
which is independent of the variable t, yields that Φ(α)

k,ε (f)(z, t) cannot be in Lp(Hn)
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for any finite p. Therefore, the pointwise spectrum projection is not bounded on

Lp(Hn) for any 1 ≤ p <∞.
Instead, we may consider the projection operator on the ray α > 0:

Pk,ε(f)(z, t) =
∫ ∞

0
f ∗ φ(α)

k,ε (z, t)dα.

It can be calculated that the kernel Kk,ε of the projection operator Pk,ε is

Kk,ε(z, t)=
∫ ∞

0
φ

(α)
k,ε (z, t)dα

=
n+ 2k

[2π(|z|2 + iεt)]n+1

k∑

|l|=0

(n+ |l|)!
n∏

j=1

(
− 2|zj|2

|z|2 + iεt

)lj

.

The kernel Kk,ε ∈ C∞(Hn \ {0}) is homogeneous of degree −2n − 2 with
respect to the Heisenberg dilations:

δ · (z, t) 7→ (δz, δ2t).

Moreover, ∫

(|z|4+t2)1/4=1
Kk,ε(z, t)dσ(z, t) = 0.

Therefore,

Pk,ε : Hp(Hn) → Hp(Hn)

for 0 < p <∞, k ∈ Z+, ε = ±1.
For f ∈ L2(Hn), we have the following Plancherel formula:

‖f‖2
L2 = 2π

∞∑

k=0

(n+ 2k)
∫ ∞

0

∣∣∣f ∗ [φ(α)
k,+1 + φ

(α)
k,−1](z, 0)

∣∣∣
2
dm(z)dα

= 2π
∞∑

k=0

(n+ 2k)
∫ ∞

−∞

∣∣∣f ∗ φ(α)
k (z, 0)

∣∣∣
2
dm(z)dα.

For f ∈ Lp(Hn), 1 < p <∞, we have

f(z, t)= lim
r→1−

∞∑

k=0

rk

∫ ∞

−∞
f ∗ φ(α)

k (z, t)dα

= lim
r→1−

∞∑

k=0

rkf ∗Pk(z, t)

= lim
r→1−

∞∑

k=0

rkf ∗ [Kk,+1 +Kk,−1](z, t),
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where the limit is in the Lp-norm.

Let µr be the surface measure on the sphere {(z, 0) ∈ Hn : |z| = r} and define
the spherical mean on Hn by

f ∗ µr(z, t) =
∫

|w|=r
f(z− w, t− s − 2Im z · w̄)dµr(w).

Let

ψ
(α)
k (z, t) = eiαte−|α|·|z|2L

(n−1)
k (2|α||z|2)

be the generalized Laguerre function of type n − 1. Then we have the following:

ψ
(α)
k ∗ µr(z, t) =

k!(n− 1)!
(k + n− 1)!

ψ
(−α)
k (r, 0)ψ(α)

k (z, t),

where

ψ
(−α)
k (r, 0) = e−|α|r2

L
(n−1)
k (2|α|r2).

This follows from the fact that ψ
(α)
k (z, t) are spherical functions on Hn (see

Agranovsky-Berenstein-Chang-Pascuas [5, 8]). Now the condition f ∗ µr = 0
implies that

lim
r→1−

∞∑

k=0

Cn,kr
k

∫ ∞

−∞
ψ

(−α)
k (r, 0)[f ∗ ψ(α)

k ](z, t)|α|ndα = 0.

Since the projection operator Pk is bounded on L
p(Hn) for 1 < p <∞, it follows

that ∫ ∞

−∞
ψ

(−α)
k (r, 0)[f ∗ ψ(α)

k ](z, t)|α|ndα = 0 for f ∈ Lp(Hn).

We may choose a sequence {fj} ⊂ S(Hn) such that fj → f in Lp norm. Hence

we have

lim
j→∞

∫ ∞

−∞
ψ

(−α)
k (r, 0)[fj ∗ ψ(α)

k ](z, t)|α|ndα = 0.

Therefore,

lim
j→∞

∫ ∞

−∞
ψ

(−α)
k (r, 0)(̃Pkfj)α(z)eiαtdα = 0.

Here (̃Pkfj) denotes the partial Fourier transform of Pkfj in the t-variable. That

is, since the above sequence converges to 0 in the Lp-norm, the sequence of the

partial Fourier transform converges to 0 in the sense of distributions:

lim
j→∞

ψ
(−α)
k (r, 0)(̃Pkfj)α(z) = 0.
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We also know that

lim
j→∞

(̃Pkfj)α(z) = (̃Pkf)α(z)

as distributions. It follows that

ψ
(−α)
k (r, 0)(̃Pkf)α(z) = 0.

This means that the support of (̃Pkf)α(z) in the α-variable is contained in the zero
set of ψ

(−α)
k (r, 0), which is a discrete set. As Pkf ∈ Lp, this is not possible unless

Pkf = 0. Since this holds for all k, we conclude that f = 0. Therefore, we have
the following one radius theorem (see [4, 40]). For k = 1, . . . , n, consider the
following differential forms on Cn:

ωk(z) = dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · d̂z̄k · · · ∧ dz̄n.

Theorem 2.4. Let r1, . . . , rn > 0 and let f ∈ Lp(Hn) where 1 < p < ∞.
Then f is a CR function on Hn if and only if

∫

|z|=rk

Lyf(z, 0)ωk(z) =
∫

|z|=rk

f(y · (z, 0))ωk(z) = 0

for every y ∈ Hn and k = 1, . . . , n.

When p = 1, choose an approximation to the identity φj ∈ C∞
0 (Hn). Then

φj ∗ f ∈ Lp for all p ≥ 1 and also φj ∗ f satisfies φj ∗ f ∗ µr = 0 for every j.
By Theorem 2.4, we know that φj ∗ f = 0 for all j. On the other hand, since
φj ∗ f → f in L1(Hn), it follows that f ≡ 0. This concludes that Theorem 2.4 is
also true for p = 1.

Remark 3. Note that the above theorem requires only one radius per variable.

We can even assume that r1 = r2 = · · · = rn = r, i.e., Cr(0) has the Pompeiu
property for Lp(Hn), 1 ≤ p <∞. Here Cr(0) = {(z, 0) ∈ Hn : |z| = r}.

Question 4. Can we prove a theorem similar to Theorem 2.4 by using other
sets, e.g., Korányi ball, {(z, t) ∈ Hn : |z|4 + t2 = r4} for r > 0?

In fact, we may consider the Pompeiu problem in a more general setting (see

Berenstein-Zalcman [19] and Sajith-Rathakumar [36]). Let K be a compact sub-

group of Aut(Hn), the automorphism group of Hn. There is a natural action of K
on L1(Hn) defined by

Ly(f)(x) = (y · f)(x) := f(y · x) for y ∈ K.
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We say that the pair (Hn, K) is a Gelfand pair if the subalgebra L1
K(Hn) of K-

invariant functions in L1(Hn) under this action is commutative with respect to the
usual convolution. There are many proper subgroups of U(n) for which (Hn, K)
forms a Gelfand pair. For example, (Hn, SU(n)), (Hn, sp(k)). In [15], Benson,
Jenkin and Ratcliff characterized all the compact subgroup K of Aut(Hn) such
that (Hn, K) is a Gelfand pair. Our approach is to exploit the general theory of
commutative Banach algebra for L1

K(Hn).
AK-invariant complex-valued function ψ onHn is calledK-spherical if ψ(0) =

1 and ψ is a joint eigenfunction for all left Hn-invariant and right K-invariant dif-

ferential operators on Hn.

K-spherical functions can also be characterized as the nontrivial continuous
functions on Hn satisfying the functional equation:

∫

K
ψ(xg · y)dg = ψ(x)ψ(y),

where dg denotes the normalized Haar measure on K.
The complex homomorphisms of the commutative Banach algebra L1

K(Hn) are
all given by the Gelfand transform of f :

f 7→ G(f) =
∫

Hn
f(x)ψ(x)dx,

where ψ is a bounded K-spherical function on Hn. This way the maximal ideal

space of L1
K(Hn) is identified with the set of boundedK-spherical functions onHn.

For example, the bounded U(n)-spherical functions on Hn are the eigenfunctions

φ
(α)
k,ε (z, t) and cn Jn−1(ρ|z|)/(ρ|z|)n−1 (see [5] and Korányi [32]).

Observe that the sphere {(z, t) ∈ Hn : |z| = r} is the U(n)-orbit and {(z, t) ∈
Hn : |zj | = r, j = 1, . . . , n} is the T (n)-orbit of a point (z, t), respectively. In
general, let (z0, t0) ∈ Hn and let

K(z0,t0) = {(g · z0, t0), g ∈ K}

denote the K-orbit of the point (z0, t0). Since K is a compact subgroup of U(n),
it is easy to see that K(z0,t0) is a smooth compact manifold in Cn × {t0} ⊂ Hn

homeomorphic to K/I(z0), where I(z0) is the isotropic subgroup for (z0, t0), i.e.,
I(z0) = {g ∈ K : g ·z0 = z0}. Let µ(z0,t0) denote the normalized surface measure

on the K-orbit of the point (z0, t0). Then we have the “one radius theorem”:

Theorem 2.5. Let µ(z0 ,t0) be the normalized surface measure on the K-orbit
of the point (z0, t0). If f ∈ Lp(Hn), 1 ≤ p < ∞, satisfies f ∗ µ(z0 ,t0) = 0, then
f ≡ 0.
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The above theorem can be generalized to a wider class ofK-invariant probability

measures on Hn. Let us borrow an idea from Choquet [20] to construct an example

as follows. Let t0 ∈ R be fixed. Let us define an equivalent relation ∼ on

Cn × {t0} ⊂ Hn by setting (z1, t0) ∼ (z2, t0) if there exists a g ∈ K such that

z1 = g · z2. It follows that the equivalent classes are precisely the K-orbits and

the set of equivalent classes Cn × {t0}/ ∼= X can be identified with a subset of

Cn. Obviously, this is an unbounded set, which contains R+ = [0,∞). Let ν be
a probability measure on X such that

∫
X µ(z0 ,t0)dν(z0) converges in (C0(Cn))∗ in

the weak ∗ topology. Then

µ =
∫

X
µ(z0,t0)dν(z0)

defines a K-invariant probability measure on Hn. It can be shown that

φ
(α)
k,j ∗ µ = Ck,j

∫

X
φ

(−α)
k,j (z0, t0)dν(z0) · φ(α)

k,j ,

where φ
(α)
k,j are K-spherical functions. Therefore, the above theorem holds for all

such measures µ provided zeros of µ(φ(−α)
k,j ) as a function of α form a discrete set

since f ∗ µ ∈ Lp(Hn) whenever f ∈ Lp(Hn). In particular, when K = U(n), we
have X = [0,∞). Let µr,t denote the normalized surface measure on the sphere

{(z, t) ∈ Hn : |z| = r} in Hn. Let ν be any probability measure on [0,∞) such
that

∫∞
0 r2dν(r) <∞. Then

µt =
∫

X
µr,tdν(r)

is a U(n)-invariant probability measure. In view of the integrability condition on
the measure ν, it is not difficult to see that µt(φ

(−α)
k,j ) extends to the half plane

{d : Re (α) > 0} as a holomorphic function of α. Consequently, the zeros of
µt(φ

(−α)
k,j ) form a discrete set and hence Theorem 2.5 holds. Readers can consult

[3] and [36] for detailed discussions.

As we can see, the method employed in the case p < ∞ does not work for

p = ∞ since there is no spectral decomposition for bounded functions on Hn.

Inspired by a computation in Stein and Weiss [31], we have the following example

(see also Berenstein-Chang-Pascuas-Zalcman [7]):

Example 2. Let α > 0, and consider the function

f(z, t) = f(z) = e−iπαRe (zn), (z, t) ∈ Hn.

Clearly, f ∈ L∞(Hn) but f /∈ Lp(Hn) for 1 ≤ p < ∞. Since f does not depend
on t and

∂f

∂z̄n
(z, t) = −iπαf(z, t) 6= 0, (z, t) ∈ Hn.
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It follows that f is not a CR function onHn. On the other hand, if y = (w, s) ∈ Hn,

then

Lyf(z, 0) = f(z + w) = f(z)f(w),

so that ∫

|z|=r
Lyf(z, 0)ωk(z) = f(w)

∫

|z|=r
f(z)ωk(z).

By Stokes’s theorem we have
∫

|z|=r
f(z)ωk(z)= cn

∫

|z|<r
∂f∂z̄kdm(z)

= − iπ
2
cnδn,kα

∫

|z|<r
f(z)dm(z)

= Cn,kα
( r
α

)n
Jn(αr).

Now we may choose r ∈ R such that Jn(αr) = 0. Then it is easy to see that one
radius theorem is not true for L∞(Hn).

In [2, 3, 5], we studied the injectivity properties for U(n) and T (n) spherical
averages for the bounded continuous functions on Hn. One of the main ingredients

in the proof for L∞ function is the following Wiener-Tauberian theorem. We may

imitate the idea in Hulanicki and Ricci [31] to prove this theorem.

Theorem 2.6. Let R be a family of K-invariant compactly supported Radon
measures onHn. Assume that the familyR is large enough so that for any bounded

K-spherical function ψ there exists a µ ∈ R such that
∫
ψdµ 6= 0.

Then if f ∈ L∞(Hn) ∩ C(Hn) is such that

f ∗ µ = 0 for all µ ∈ R, then f ≡ 0.

Moreover, if the above condition fails to hold, then there exists f ∈ L∞(Hn) ∩
C(Hn), f 6= 0, such that f ∗ µ = 0.

Now we may apply the above theorem to prove the following theorem:

Theorem 2.7. Let f be a bounded continuous function on Hn satisfying the

condition f ∗µ(zj ,tj) = 0 for m points (z1, t1),...,(zm , tm) in Hn. Let Ψ and Φ be
the functions defined by

Φ(α, k) =
m∑

j=1

∣∣∣∣L
(n−1)
k

(
2α|zj |2

n+ 2k

)∣∣∣∣ and Ψ(w) =
m∑

j=1

|µ̂Kw(zj)|.
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Then f ≡ 0 if and only if both Φ and Ψ never vanish.

Remark 4. It is interesting to observe that this condition is the same as saying

that zj/zk are not quotients (with suitable interpretation) of zeros of K-spherical

functions. This is analogous to the condition for the two radii theorem below.

As we mentioned in Section 1, in the classical situation of Cn the Morera

problem can be related via Stokes’s formula to the Pompeiu problem. However,

there does not seem to be such clear-cut relation between Pompeiu and Morera

problems in Hn. Thus, the proof of Morera’s theorem becomes rather tricky. We

have to understand how the left-inavraint vector fields and right-invariant vector

fields act on K-spherical functions. However, when K = U(n) or T (n), we do
conquer these difficulties. Here we just state two results and the proofs of these

two theorems can be found in [2] and [8]. We will not go through the details here.

Theorem 2.8. Let r1, r2 > 0 be such that the following conditions hold :

1. (r1/r2)2 /∈ ∪k∈Z+Q(L(n)
k );

2. (r1/r2) /∈ Q(Jn).

Let f be a bounded C1-function on Hn with the property that

∫

|z|=rj

Lyf(z, 0)ωk(z) = 0, j = 1, 2,(9)

for every y ∈ Hn and k = 1, . . . , n. Then f is a CR function. Conversely, if one
of conditions 1 and 2 fails to hold, then there is a bounded C1 function f which

satisfies (9), but f is not a CR function.

Theorem 2.9. Let us consider m square-type tori T (rj), j = 1, . . . , n + 1,
such that the following conditions hold :

1. For all k ∈ (Z+)n, |k| = 1, the functions

P(k)
j (λ; ν) =

n∏

i=1

L(ki)
νi

(λr2j ), j = 1, . . . , n+ 1,

have no common zero (λ; ν) ∈ (0,∞)× (Z+)n.

2. For all k ∈ (Z+)n, |k| = 1, the functions

J (k)
j (ρ) =

n∏

i=1

Jki(ρirj), j = 1, . . . , n+ 1,

have no common zero ρ ∈ (R+)n.
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Let f be a bounded C1-function on Hn with the property that

∫

T (rj)
Lyf(z, 0)zkdσrj(z) = 0, j = 1, . . . , n+ 1,(10)

for every y ∈ Hn and all k ∈ (Z+)n with |k| = 1. Then f is a CR function.
Conditions 1 and 2 are necessary in the following sense: if one of them fails,

then there exists a bounded C1 function f which satisfies (10), but f is not a CR
function.

Question 5. Can we prove Theorems 2.8 and 2.9 by usingmK-orbitsK(zj,tj) =
{(g · zj , tj) : g ∈ K}, 1 ≤ j ≤ m ?

3. A MORERA TYPE THEOREM IN Bn

As we have seen that the hypotheses of Theorems 2.4, 2.7 and 2.8 are in some

sense as weak as possible since we integrate over spheres, i.e., 2n+ 1 dimensional
sets. Integral conditions on lower dimensional sets, e.g., circles embedded on Hn,

are stronger. In particular, when Ω is the unit ball Bn of Cn, we only need to check

the hypotheses for a restricted family of k-planes in order to insure holomorphy.
The following result was first proved in [7]. Since the situation in Bn is quite

different from Rn and Hn, here we give detailed discussions again.

Theorem 3.1. Let n ≥ 2, 1 ≤ k ≤ n − 1, and 0 < r < 1. Assume that
f ∈ C(∂Bn) satisfies

∫

Λ∩∂Bn

fβ = 0(11)

for every complex k-plane Λ at distance r from the origin and for every (k, k− 1)-
form β with constant coefficients on Cn. Let E be the set of all r’s, 0 < r < 1,
such that r2/(1− r2) is a root of one of the following polynomials :

Pp,q(x) =
p∑

`=max{p+1−q,0}

(−1)`x`

`!(p− `)!(`+ q − p− 1)!(n+ p− `− 1)!

for p ≥ 0, and q ≥ 1. Suppose that one of the following conditions holds :

1. k < n− 1.

2. k = n− 1 and r /∈ E.
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Then f is a CR function.

Moreover, if r ∈ E then there exists f ∈ C(∂Bn) which is not a CR function
but satisfies (11) for every (n − 1)-plane Λ and for every (n − 1, n− 2)-form β

with constant coefficients on Cn.

Proof. Let Y be the subspace of all functions f ∈ C(∂Bn) satisfying (11). Let
H(p, q) be the space of all harmonic homogeneous polynomials of total degree p in
the variables z1, . . . , zn and of total degree q in the variables z̄1, . . . , z̄n for every

p, q ≥ 0. Let U be the unitary group on Cn. It is clear that Y is a U -invariant
subspace of C(∂Bn). Then by a result of Nagel and Rudin [p. 63, 45], every
function in Y is a CR function if and only if H(p, q) 6⊂ Y for each p ≥ 0 and
q ≥ 1. (Note that if H(p, q) 6⊂ Y , then H(p, q)∩ Y = {0}.)

Case (1): k < n − 1. Let us check that the function f(z) = z
p
nz̄

q
k does not belong

to Y for p ≥ 0, q ≥ 1. Let

β = dz1 ∧ · · · ∧ dzk ∧ dz̄1 ∧ · · · ∧ dz̄k−1.

Consider the k-plane Λ = u(Λ0), where

Λ0 = {ζ ∈ Cn : ζk+1 = r, ζj = 0 (k + 1 < j ≤ n)},

and u ∈ U , which will be selected later in order to assure that the integral in (11)

does not vanish. Then
∫

Λ∩∂Bn

fβ =
∫

Λ0∩∂Bn

u∗(fβ) =
∫

Λ0∩∂Bn

(f ◦ u)u∗β.

Then by Stokes’s theorem, we have

∫

Λ∩∂Bn

fβ= (−q)∆
[

k∑

`=1

(−1)k+`ūk,`∆̄`

]
∫
Λ0∩Bn

(un(ζ))p(uk(ζ))q−1ω

= (−q)|∆|2
∫
√

1−r2Bk

(Vn(ζ))p(Vn(ζ))q−1ω,

where ω = dζ1 ∧ · · · ∧ dζk ∧ dζ̄1 ∧ · · · ∧ dζ̄k, ∆ is the determinant of the matrix

(uj,`)j,`=1,...,k, and ∆` is the minor obtained from the above matrixby by deleting

its last row and `th column.

The binomial expansion yields that the last integral is p!(q − 1)! times

∑ rpk+1+qk+1

p1!q1! · · ·pk+1!qk+1!
up1

n,1ū
q1

k,1 · · ·u
pk+1

n,k+1ū
qk+1

k,k+1

∫
√

1−r2Bk

ζp1
1 ζ̄

q1
1 · · ·ζpk

k ζ̄qk
k ω,

(12)
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where the sum is over p1 + · · ·+ pk+1 = p and q1 + · · ·+ qk+1 = q − 1. Since the
last integral is zero when (p1, . . . , pk) 6= (q1, . . . , qk), it turns out that (12) equals
p!(q − 1)! times

∑ rpk+1+qk+1(un,1ūk,1)p1 · · · (un,kūk,k)pku
pk+1

n,k+1ū
qk+1

k,k+1

(p1!)2 · · ·(pk!)2pk+1!qk+1!∫
√

1−r2Bk

|ζ1|2p1 · · · |ζk|2pkω,

the sum being over p1 + · · ·+ pk = p− pk+1 = q − 1 − qk+1. But we know that

∫
√

1−r2Bk

|ζ1|2p1 · · · |ζk|2pkω= ck

(√
1 − r2

)2k+p1+···+pk
∫

Bk

|ζ1|2p1 · · · |ζk|2pkdm

= ck

(√
1 − r2

)2k+p1+···+pk p1! · · ·pk!
(k + p− pk+1)!

= ck

(√
1 − r2

)2k+p−pk+1+q−1−qk+1 p1! · · ·pk !
(k + p− pk+1)!

.

Here dm is the Lebesgue measure on Ck.

Hence we know that
∫
Λ∩∂Bn

fβ equals

−ck|∆|2p!q!
(√

1 − r2
)2k+p+q−1

∑ (un,1ūk,1)p1 · · ·(un,k ūk,k)pku
pk+1

n,k+1ū
qk+1

k,k+1

p1! · · ·pk!pk+1!qk+1!(k + p− pk+1)!

(
r√

1 − r2

)pk+1+qk+1

.

We may pick u ∈ U such that

∆ 6= 0 and un,1 = · · · = un,k+1 = uk,1 = · · · = uk,k+1 = λ ∈ R∗(= R \ {0}).

Then
∫
Λ∩∂Bn

fβ equals −ck|∆|2p!q!
(√

1 − r2
)2k+p+q−1

λp+q−1 times

∑
(

r√
1−r2

)pk+1+qk+1

p2! · · ·pk !pk+1!qk+1!(k+ p− pk+1)!j2! · · ·jk+1!
,

which obviously is nonzero.

Case (2): k = n − 1. Let f(z) = zp
n−1z̄

q
n for p ≥ 0 and q ≥ 1. We will check

that f ∈ Y if and only if Pp,q(r2/(1 − r2)) = 0. Consider a generic generating
(n− 1, n− 2)-form with constant coefficients on Cn:

β = dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dz̄1 ∧ · · · ∧ d̂z̄j1 ∧ · · · ∧ d̂z̄j2 ∧ · · · ∧ dz̄n
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with 1 ≤ i ≤ n and 1 ≤ j1 < j2 ≤ n. Let Λ0 = {ζ ∈ Cn : ζn = r}. Then a
generic (n − 1)-plane is Λ = u(Λ0), where u ∈ U . Similar computations as in
Case (1) show that

∫
Λ∩∂Bn

fβ equals −cnp!q!(
√

1 − r2)2n+p+q−3 times

∆i∆̄J

∑ (un−1,1ūn,1)p1 · · · (un−1,n−1ūn,n−1)pn−1u
pn

n−1,nū
qn
n,n

p1! · · ·pn!qn!(n+ p− pn − 1)!
×
(

r√
1 − r2

)pn+qn

,

the sum being over p1 + · · ·+ pn−1 = p− pn = q − 1 − qn, where

∆i =

∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 · · · u1,n−1
...

. . .
...

ûi,1 · · · ûi,n−1
...

. . .
...

un,1 · · · un,n−1

∣∣∣∣∣∣∣∣∣∣∣∣

(13)

and

∆J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 · · · u1,n−1
...

. . .
...

ûj1 ,1 · · · ûj1 ,n−1
...

. . .
...

ûj2 ,1 · · · ûj2 ,n−1
...

. . .
...

un,1 · · · un,n−1

un,1 · · · un,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, J = (j1, j2).(14)

It is clear that ∆J = 0 when j2 6= n. Therefore we have only to consider the case

J = (j1, n), for 1 ≤ j < n, and then ∆J = ∆j .

Let

V = ∪1≤j<n,1≤i≤nVi,j ,

where

Vi,j = {u ∈ U : ∆i = ∆i(u) 6= 0, ∆j = ∆j(u) 6= 0}.

It is clear that V is a nonempty open set of U . Consider the following real-analytic
function on U :

Fr(u) =
∑ (un−1,1ūn,1)p1 · · ·(un−1,n−1ūn,n−1)pn−1upn

n−1,nū
qn
n,n

p1! · · ·pn!qn!(n+ p− pn − 1)!

(
r√

1 − r2

)pn+qn

,

where the sum is over p1 + · · · + pn−1 = p − pn = q − 1 − qn. Then from the

above discussion, f ∈ Y is equivalent to Fr ≡ 0 on V . Since U is connected (see

e.g., [1, 27]), this last condition means that Fr ≡ 0 on U , by analytic continuation.
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Now for u ∈ U , we have

un−1,1ūn,1 + · · ·+ un−1,n−1ūn,n−1 = −un−1,nūn,n.

Thus, using the binomial expansion, we obtain

Fr(U)=
∑

p−pn=q−1−qn

(−1)p−pn

pn!qn!(n+ p− pn − 1)!(p− pn)!

(
r√

1 − r2

)pn+qn

up
n−1,nū

q−1
n,n

= (−1)p

(
r√

1− r2

)q−1−p

Pp,q

(
r2

1 − r2

)
up

n−1,nū
q−1
n,n .

Finally, since there exists u ∈ U such that un−1,n = un,n 6= 0, the above identity
shows that Fr ≡ 0 on U if and only if Pp,q(r2/(1− r2)) = 0.

When n = 2, Theorem 3.1 is a result of Globevnik and Stout [33]. Note that

in this case only hyperplanes arise (n = 2, k = 1). Observe also that the cases
k < n−1 and k = n−1 exhibit completely different behaviors, in the sense that in
the first case there are no exceptional r’s, while in the second case such exceptional

r’s do appear. In fact, we have E 6= ∅, since it is easy to check that Pp,q has at

least one positive root for p odd and p+ 1 ≤ q. The simplest example is p = 1 and
q = 2; then the corresponding value of r is 1/

√
n.

Let us show that when r = 0 Theorem 3.1 never holds.

Example 3. Let f(z) = zm
j z̄`, 1 ≤ j, ` ≤ n, m ≥ 1. It is clear that f is not

a CR function on ∂Bn. But it satisfies condition (11) for every k-plane Λ passing
through the origin and for every (k, k−1)-form β with constant coefficients on Cn.

In fact, carrying out computations similar to those in the proof of Theorem 3.1, we

see that the integral in (11) is a constant times

∫

Bk

(uj,1ζ1 + · · ·+ uj,kζk)pβ,

which obviously vanishes.

Question 6. Can we prove a local theorem similar to Theorems 1.8 and 1.9 in
Hn or ∂Bn?

4. POMPEIU PROBLEM RELATED TO THE HEAT KERNEL

In this section, we will discuss some Pompeiu problem related to the heat kernel

of the sub-Laplacian:

∂u

∂s
+ Lu = 0, for (z, t; s) ∈ Hn × R+, and u(z, t; 0) = f(z, t).
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The heat kernel was independently studied by Beals-Greiner [13], Gaveau [25]

and Hulanicki [30]. Here, we will see that hs(z, t) can be obtained easily via the
Laguerre calculus.

We first take the Fourier transform with respect to the t-variable and write the
heat kernel h̃s(z, τ) as a twisted convolution operator. The detailed calculation can
be found in Chapter 2 of [3].

h̃s(z, τ)= exp{−sL̃}Ĩ =
∞∑

|k|=0

exp{−sL̃}




n∏

j=1

W̃(0)
kj

(zj , τ)




=
∞∑

|k|=0

e−s|τ |(2|k|+n)
n∏

j=1

W̃(0)
kj

(zj , τ)

=
1
πn

(
|τ |

sinh(|τ |s)

)n

exp
{
−|τ | |z|2 coth(|τ |s)

}
.

Since

(
|τ |

sinh(|τ |s)

)n

=
(

τ

sinh(τs)

)n

and |τ | coth(|τ |s) = τ coth(τs),

we can simplify the above identity by removing the absolute sign for τ and have

h̃s(z, τ) =
1
πn

[
τ

sinh(τs)

]n

e−τγ(τs;z),

where γ(τs; z) = |z|2 coth(τs).
Now, we take the inverse Fourier transform with respect to the τ -variable and

obtain the heat kernel in the integral form:

hs(z, t)=
1

2πn+1

∫ +∞

−∞

(
τ

sinh(τs)

)n

eτ(it−γ(τs;z))dτ

=
1

2(πs)n+1

∫ +∞

−∞

(
τ

sinh(τs)

)n

e−
tau

s
(γ(τ ;z)−it)dτ.

We substitute τ by 2τ and rewrite the heat kernel in terms of the complex distance
g and volume element ν of the Heisenberg group:

hs(z, t) =
1

(πs)n+1

∫ +∞

−∞
ν(τ)τne−

2τ
s

g(τ ;z,t)dτ.(15)

Here

ν(τ) =
(

1
sinh(τs)

)n

and g(τ ; z, t) = |z|2 coth(τs)− it.



The Pompeiu Problem 29

Now we have the following theorems:

Theorem 4.1. Let 1 ≤ p <∞, 1 ≤ q ≤ 2. Let Γr = Sr × R = {(z, t) ∈ Hn :
|z| = r, t ∈ R} and let Γ̃r = Tr×R = {(z, t) ∈ Hn : |zj | = r, 1 ≤ j ≤ n, t ∈ R}.
Then Γr and Γ̃r satisfy the Pompeiu property for L

p,q(Hn) in Hn, i.e., if

∫

R

∫

Sr

f(g · (z, t))dσ(z)dt= 0 for all g ∈ Hn

or ∫

R

∫

Tr

f(g · (z1, . . . , zn, t))
n∏

j=1

dσj(zj)dt = 0 for all g ∈ Hn,

then f ≡ 0. Here

Lp,q(Hn) =

{
f ∈ L1

loc(H
n) : ‖f‖Lp,q =

∫

Cn

(∫

R
|f(z, t)|qdt

) p
q

dV (z) <∞
}
.

Theorem 4.2. Let f ∈ Lp,q(Hn) with 1 ≤ p < ∞ and 1 ≤ q ≤ 2. If
u(z, t; s) = f ∗ hs(z, t) = 0 for all s > 0 on a cylinder Γr or Γ̃r, then f ≡ 0.

Before we go further, let us recall some basic notations. For each pair (p, q) ∈
(Z+)2, let P(p, q) be the collection of all polynomials P in z and z̄ of the form

P (z) =
∑

|α|=p

∑

|β|=q

cαβz
αz̄β.

We denoteH(p, q) = {P ∈ P(p, q), ∆P = 0}, where∆ is the Euclidean Laplacian

on Cn. Let

S(p, q) = {P ∈ H(p, q), with |z| = 1}

be the space of all spherical harmonic polynomials on the unit sphere S2n−1. It

can be shown that the space L2(S2n−1) is the orthogonal direct sum of S(p, q) as
(p, q) ranges over (Z+)2. Given a continuous function f on Cn, we can expand the

function f(ρω), where ρ > 0, ω ∈ S2n−1, in terms of elements in S(p, q), i.e.,

f(ρω) =
∞∑

k=0

∑

p+q=k

fpq(ρω) with fpq ∈ S(p, q).

The natural action of U(n) on the unit sphere S2n−1 defines a unitary representation

of U(n) on the Hilbert space L2(S2n−1). When we restrict this action to S(p, q),
it defines an irreducible representation, which we denote by σpq. Let χpq be the

character associated to σpq. We may imitate the argument of Proposition 2.7 in
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Helgason’s book [27] where the ordinary spherical harmonic expansion has been

considered, and obtain the following result.

Lemma 4.3. Given a continuous function f on Cn, the projections fpq appear-

ing in the spherical harmonic expansion

f(ρω) =
∞∑

k=0

∑

p+q=k

fpq(ρω) with fpq ∈ S(p, q)

are given by

fpq(z) = dpq

∫

U(n)

χpq(u)f(u ◦ z)du,

where u is the normalized Haar measure of the group U(n) and dpq = dim S(p, q).

We also have the following result via direct computations.

Lemma 4.4. Let g(z) = g(|z|) be a radial function on Cn and P ∈ H(p, q).
We assume further that gP ∈ L1(Cn)∪L2(Cn). Then the following identity holds:

(gP ) ∗λ Φλ
k(z) =

(k − p)!(n− 1)!
(n− 1 + p+ q)!

P (z)L(n−1+p+q)
k−p (2|λ||z|2)e−|λ||z|2 .

Here Φλ
k(z) = L

(n−1)
k (2|λ||z|2)e−|λ||z|2 .

In order to prove Theorems 4.1 and 4.2, we need the following lemma.

Lemma 4.5. Let f ∈ Lp(Cn), 1 ≤ p ≤ ∞. If

f ∗1 Hs(z) = (2π)−n(sinh s)−n

∫

Cn
f(z−w)e−(coths)|w|2e−2iIm (z·w̄)dm(w)

vanishes on a sphere for all s > 0, then so does

f ∗1 Φk(z) = f ∗1 L
(n−1)
k (2|z|2)e−|z|2

for all k ≥ 0.

Proof. Note that

Hs(z) = (2π)−n
∞∑

k=0

e−(2k+n)sL
(n−1)
k (2|z|2)e−|z|2 = (2π)−n(sinh s)−ne−(coth s)|z|2

is the heat kernel for the operator L = ∆z−|z|2−i
∑n

j=1(xj(∂/∂yj)−yj(∂/∂xj)),
which can be extended as a holomorphic function to the half plane Re (s) > 0. It
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is a striaghtforward computation to show that |Hs(z)| has exponential decay in z
in the same region. It follows that f ∗1 Hs(z) is well-defined and holomorphic
in Re (s) > 0. Since f ∗1 Hs(z) = 0 on a sphere for all s > 0, we know that
f ∗1 Hs+iη(z) = 0 on the same sphere for all η if s > 0, i.e.,

0 = f ∗1 Hs+iη(z) = (2π)−n
∞∑

k=0

e−(2k+n)se−(2k+n)iηf ∗1 Φk(z)

which vanishes for all η on a sphere Sr for s > 0 fixed. By calculating the Fourier
coefficients of f ∗1 Hs+iη(z) as a function of η, we obatin f ∗1 Φk(z) = 0 on the
same sphere. This completes the proof of the lemma.

Now we are in a position to prove the main results of this section.

Proof of Theorem 4.1. If f is a radial function, then

f ∗1 Φk(z) = ck

(∫

Cn
f(w)L(n−1)

k (2|w|2)e−|w|2dm(w)
)
·L(n−1)

k (2|z|2)e−|z|2 .

Suppose that f ∗1 Φk(z) vanishes on the sphere Sr. Since the Laguerre polynomial

L
(n−1)
k has distinct zeros, L

(n−1)
k (2r2) can vanish for at most one value, say, k = m,

and hence the above integral vanishes for all k 6= m. This means that

f(z) = CmΦm(z) = CmL
(n−1)
m (2|z|2)e−|z|2 .

But then f(z)e|z|
2
cannot be in any Lp(Cn).

In general, without loss of generality, we may assume that f is continuous. Now

we may expand f in terms of spherical functions, i.e., f(z) =
∑

p,q fpq(z), where

fpq(z) =
dpq∑

`=1

f `
pq(|z|)P `

pq(z) with P `
pq ∈ H(p, q).(16)

Consider

fpq ∗1 Φk(z) =
∫

Cn

L
(n−1)
k (2|w|2)e−|w|2e−2iIm (z·w̄)fpq(z− w)dm(w).

Then Lemma 4.3 implies that the above is equal to
∫

Cn

∫

U(n)
L

(n−1)
k (2|z−w|2)e−|z−w|2e−2iIm (z·w̄)χ

pq(u)fpq(u ◦w)dudm(w).

Since Φk(z) is radial and Im (z · w̄) = Im [(u ◦ z) · (u ◦ w̄)] for all u ∈ U(n), we
have

fpq ∗1 Φk(z) =
∫

U(n)
f ∗1 Φk(u ◦ z)χpq(u)du.
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Therefore, if f ∗1 Φk vanishes on a sphere Sr then so does fpq ∗1 Φk for any ordered

pair (p, q) ∈ (Z+)2. Since fpq is given by the expression (16), by Lemma 4.4, we

have

fpq ∗1 Φk(z) =




dpq∑

`=1

C`
pq(k)P

`
pq(z)


L

(n−1+p+q)
k−p (2|z|2)e−|z|2 ,

where C`
pq is given by the integral

(k − p)!(n− 1)!
(n− 1 + k + p)!

∫

Cn

f `
pq(|z|)L

(n−1+p+q)
k−p (2|z|2)e−|z|2 |z|2(p+q)dm(z).

Now if fpq∗1Φk(z) vanishes on Sr, then as before since the zeros of L
(n−1+p+q)
k−p (2|z|2)

are distinct, we conclude that

dpq∑

`=1

C`
pq(k)P

`
pq(z) = 0

for all values of k except possibly for one value k = m. The restrictions of P `
pq to

the unit sphere are othonormal and so the above implies C`
pq(m) = 0 for all ` when

k 6= m. This means that fpq ∗1 Φk(z) = 0 for all k 6= m and hence

fpq(z) =




dpq∑

`=1

C`
pq(m)P `

pq(z)


L

(n−1+p+q)
m−p (2|z|2)e−|z|2 .

Note that the condition f(z)e|z|
2 ∈ Lp(Cn) holds also for fpq and hence the above

is possible only when fpq = 0. Since p, q are arbitrary, we conclude that f ≡ 0.
The proof of Theorem 4.1 is therefore complete.

Proof of Theorem 4.2. The proof of this theorem is similar. Without loss of

generality, we may assume that f ∈ C(Hn). Since f ∗hs(z, t) = 0 on Γr = Sr×R
for all s > 0, by taking Fourier transform in the t-variable, we have f̃λ∗λ h̃s(z, λ) =
0 for all λ ∈ R∗, s > 0 and z ∈ Sr. Since h̃s(z, λ) = C ·Hλs(

√
λz), by Lemma

4.5, we obtain the equation

f̃λ ∗λ Φλ
k(z) = 0 on Sr, for λ ∈ R∗ and k ∈ Z+.

Now we expand f̃λ(z) in terms of spherical harmonic functions getting

f̃λ(z) =
∑

p,q

fλ
pq(z)
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and as before this leads to the equations fλ
pq ∗λ Φλ

k(z) = 0 on Sr. It follows that

fλ
pq(z) =

dpq∑

`=1

fλ,`
pq (|z|)P `

pq(z) with Pλ
pq ∈ H(p, q).

Hence,

fλ
pq ∗λ Φλ

k(z) =




dpq∑

`=1

Cλ,`
pq (k)Pλ

pq(z)


L

(n−1+p+q)
k−p (2|λ||z|2)e−|λ||z|2 .

Therefore, the condition fλ
pq ∗λ Φλ

k(z) = 0 on Sr implies that for each k,

L
(n−1+p+q)
k−p (2|λ|r2) = 0 only for finitely many values of λ. Thus, there is a
countable set N such that when λ is not in N ,

dpq∑

`=1

Cλ,`
pq (k)Pλ

pq(z) = 0 for all k ∈ Z+.

This in turn leads to the vanishing of Cλ,`
pq (k) for all ` and k. Consequently, fλ

pq = 0
for all (p, q) ∈ (Z+)2, which means that f̃λ(z) = 0 for all λ /∈ N and z ∈ Cn.

But then the Fourier transform of f(z, t) in the t-variable is supported on the set
N , which contradicts the assumption that f ∈ Lp,q(Hn) unless f ≡ 0. The proof
of Theorem 4.2 is therefore complete.

Remark 5. Here we just proved that the set Γr satisfies the Pompeiu property

for Lp,q(Hn). In fact, using the above results, we may obtain several corollaries
related to twisted spherical means. The readers can consult the paper by Narayanan

and Thangavelu [35] for a detailed discussion.

For the case of Γ̃r, the proofs of the above theorems are slightly complicated. As-

sume that f∗µr(z, t) = 0 for all z ∈ Tr. (Here µr(z, t) =
∏n

j=1 dσj(zj)×dt.) Then
we know that f∗1Ψk(z) = 0 on Tr as well. HereΨk(z) =

∏n
j=1 CjL

(0)
kj

(2|zj |2)e−|zj |2 .

Let us consider the m-homogenization of f and call it fm. We then have fm ∗1

Ψk(z) = 0 on Tr. As f is m-homogeneous and the special Hermite function Φp,q

is p− q homogeneous. It follows that

fm ∗1 Ψk =
∑

|p|=|k|

〈f,Φp−m,p〉Φp−m,p(z),(17)

which vanishes on Tr. Now Φp−m,p(z) can be written in terms of certain Laguerre
polynomials. We can see the implication of the vanishing of all the coefficients in
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the expression (17) and conclude that f ≡ 0. We can also generalize these reaults
to non-isotropic Heisenberg group, i.e., the group law on Hn is given as

(z, t) · (w, s) =


z + w, t+ s+ 2Im

n∑

j=1

ajzj w̄j




with aj > 0 for j = 1, . . . , n. For details, see Chang and Thangavelu [21].

Question 7. The restriction on 1 ≤ q ≤ 2 is imposed for technical reasons
since we have to take Fourier transform in the t-variable. We believe that Theorems

4.1 and 4.2 are ture for all q with 1 ≤ q <∞. How do we remove this restriction?
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