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ON STABILITY OF THE EQUAIONS Bu(t) = Au(t)

Quoc-Phong VY

Abstract. The stability of solutions of the equation Bu'(t) = Au(t) is
considered, where A and B are dosed linear operators on a Banach space.
Under the well-posedness condition it is proved that if the imaginary part of
the spectrum of the pencil (, B j A) iscountable, then a bounded uniformly
continuous solution u(t) of the equation is asymptotically almost periodic
if and only if the functions e- tu(t), (, 2 iR), have uniformly convergent
means. A condition of exponential stability also is given when the generalized
eigenvectors and associated root vectors of the linear pencil (, B j A) form a
Riesz basis.

0. INTRODUCTION

Many problems in physics or engineering |l ead to differentiad equations in Hilbert
gpaces, with congant operator coefficients, or to integro-differentia operators where
the kernd depends on the difference of arguments. Such problems are usudly sud-
ied using the Laplace transform methods. In the classical, most well sudied case
of the differentid eguation U'(t) = Au(t), u(0) = x, the Laplace transform of
the solution yidds the resolvent, Ra(,) = (.1 j A)i 1, which satisfies some nice
properties (e.g., the resolvent equation, anong other things). Methods of compl ex
analyss, notably the Cauchy integrd, and the theory of srongly continuous semi-
groups (Cp-semigroups) enable us to construct a complete theory with many deep
results

Laplace trandorm is still the main method in the study of more generd differ-
ential or integro-differentid equations. In particular, it leads normdly to the notion
of “genedized’ resolvent, which is in fact, the inverse of some operator-vaued
functions or an operaor pencil (whose values are, in general, unbounded linear
Received July 17, 2000; revised Jan. 20, 2001.

Communicated by S Y. Shaw
2000 Mathematics Subject Classification: 47D06, 34G10.

Key words and phrases: Semigroups of operators, sability, Laplace transform, spectrum.
YResearch supported in part under NASA grant NCC 4-121.

417



418 Quoc-Phong Vu

operators). The study of such an operator pencil is in general a difficult prob-
lem, which, in particular, explains the absence of an advanced theory of generd
integro-differentid equations including the solvability and the asymptotic behavior
guegions.

In this paper, we make an atempt to carry on a study of the Laplace trandorm
and its gpplications to asymptotic behavior of solutions to the initial vaue problem
of the following form

(Buo(t) = Au(t)

@ ui® = ug

where A and B are, in generd, unbounded linear operators on a Banach space H.
If A and B are both bounded and B isinvertible (i.e, has a bounded inverse), then
equation (1) is completely equivaent to the regular equation u'(t) = Bi1Au(b).
However, when A is not bounded, even if Bil exigs as a bounded linear operaor,
the operator Bi 1A is not, in general, a generator of a Co-semigroup (it may not
even be dosed). Therefore, the existing theory of Co-semigroups is not directly
goplicable

The paper is organized as follows. In Section 1, we introduce main definitions
and in Section 2 we present some standard results on the Laplace transform for
equation (1) (cf. [8]). Section 3 contains our man results on the gability of
solutions to equation (1).

While our study of the Laplace transform and gability of equation (1) may have
independent theoreticd interest and applications (because some problemsin physics
and engineering lead to equations of this form, see e.g. [6]), one of our primary
objectives is to give a prototype for a more general sudy of Laplace transforms of
more general integro-differential equations and their asymptotic behavior where our
research is still going on.

1. PRELIMINARIES

Let A and B be dosed linear operators on a Hilbert (or Banach) space H.
Cond der the Cauchy problem

(Buo(t) = Au(t)

1
0 ui® = up:

Definition 1. A functionu(® : R+ ¥ H iscdled a (dassical) solution to (1),
if, foral t, 0, u(t) 2 D(A)\D(B), u(t) and Bu(¢) are (strongly) continuous
on [0; 1), the (strong) derivative u’(t) exists, U'(t) 2 D(B), Bu'(t) is strongly
continuous on (0; 1), Bu’(t) = Au(t), and u(0) = up .
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Definition 2. The Cauchy problem (1) iswell posed if for dl up 2 D(A)\D(B)
there exists a unique solution u(t) of (1), and if for al u{® % D(A) \ D(B) such
thet lim ul® = 0, we have lim un(t) = 0 for dl t > 0, where un(t) is the

nil nt¥l
Llution with un(0) = ud?.

Assume that (1) iswel posed. Define afamily U (t) of mappings from D(A) \

D(B) into itsalf by
U(t)uo := u(t);
where u(t) is the solution of (1).

Propostion 1 ([8]). U(t) satisfy the following:
(i) U(t) arelinear;
(ii) If xn 2 D(A)\ D(B), nIi!mlxn =Xo02 D(A)\ D(B), then
nIi!m1 U)xn =U([)xo; TForall t, O:
@iii) U0) =1; U(t+s)x =U({)U(s)x, for al x2 D(A)\D(B).
Propostion 2 ([8]). Assume that D(A) \ D(B) is dense in H and (1) is well
posed. Then there exids a unique famly of operatorsV (t) 2 L(H) such that
V() x=U({)x foralx2D(A)\DB), V(O =I;V({t+s)=V(@)V(s):

It follows from the definitions tha V (t)x = U (t)x are grongly continuous on
[0; 1) for al x 2 D(A) \ D(B). One can show, by a gandard argument (see eg.
[7], p. 26), that, for every + > 0, there exids M. > 0, such that kV (t)k - M for
dlt,+- t- +. From thisit follows tha V (t)x is continuous on (0; 1) for all
x2H.

I+

Propostion 3. Assume that D(A) \D(B) is dense and (1) iswell posed. If u
isa solution of (1), then u’(t) is continuous on (0; 1).

Proof: We have

0't) = < UOuo = limU) YO < jimy (o MOLYO) —y 4,
and continuity of u’(t) on (0; 1) follows from the above remark. [ ]

Propodtion 4. Assume D(A)\ D(B) isdense and (1) iswell posed. Then

i L1 _ :
@ idl- t"!nlt InkvV(tk =1 <+1.:
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The proof of Proposition 4 is standard (see e.g. [7], p. 28).

Proposition 5. Assume D(A) \D(B) isdense and (1) iswdl posed. Then for
al ,; suchthat Re, > I, the operator (,B j A) isoneto-one

Proof: Leaz2D(A)\D(B),z6& 0; and ,Bz j Az =0. Consider
ut)=etz:
We have BU'(t) = Au(t), for dl t , 0, u(0) = z: Hence
u(t) =V(t)z; andsoke-tzk - kV(t)kkzk;

which implies
Re,% limkv @)k D Re, - I: [ ]

2. THE LAPLACE TRANSFORM

Proposition 6. Assume that u(t) is a slution of (1) such that ku(t)k -

Me®; t . 0; for some M and ®. Then for al ,; Re, > ®, the following
transforms exist 7
1
o) = ei -tu(t) dt
0
Z N Zq
i i it — i.t0
I'!Q)] nIl!m1 el (V) dt . . e'-tu’(t) dt
and
yA a1
©) ef-fu'(t) dt=_0() i u(o):
0+

Proof: The proof for the existence of &(t) is standard. We have
Z N AN
el -t @dt=ei -Nu(N)j el - u"+, el -tu(t)dt:

Since ku(t)k - Me®t, we have
kei -Nu(N)k - Meli Re)*N 1 g asN 1 1;
hence Z Z .

N
i ity = iy it :
Nll!ml el ®dt=je'- u(")+, R u(t) dt:
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Since u(t) is continuous on [0; 1), we have
z N z 1
lim lim ei-tU)dt:=  ef-td'(t)dt = ju@)+ . 0(): -
"W NI 1L . o*

nt

Propostion 7. Assure that there exigs 1 2 %(B) such that (* j B)I 1A is
dosed. Then for every solution u(t) such that ku(t)k - Me®%; t . 0; for some
M; ®, we have &(,) 2 D(A) \ D(B) and

@) (.Bi A)()=Bu();, forall Re, >0:

Proof (cf. [3], p. 10): From Bu'(t) = Au(t), the continuity of u’(t) on (0; 1)

(Propostion 3), and closedness of B, it foll ows
VAN ZnN

el -tAU()dt=B  ei-td'(t)dt

. _ Z .
() =B ei-tu@® N+,  ei-tu(t)dt
ZnN

=¢ei-NBu(N)j ei-"Bu(")+, ei -tBu(t) dt:

From (5) we have

Z
Ve AU dt=ei -N(B i T)u(N)j el - (B i 1)u()
Z N
+, el-tBi udt+2el-Nu(N)j el u(")
Z N
+1, el tu(t) dt;
or
Z N
(Bi 1)t el-tAu)dt=ei-Nu(N)i ef-"u(")

Z N
+, el-tu@dt+1Bj 1)itei-Nu(N)

itel-"(Bi *)itu(”
z

N
+1 (Bj )il ei-ty(t)dt:
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LettingN ¥ 1., and " #0, we see that the following integrad converges and
yA 1
el -1 (Bi 1) tAu(®) dt = j u(0)+, a(.)i *(Bi ) 'u(0)+, 1 (Bi 1) *a(,):
O+
This implies that &(,) 2 D(B) and

R, . )
(Bi 1) g-ei-Y(Bji 1itAut)dt=j (B Hu@+®Bi 1).0(,)i *u()
+,10(,)
=i Bu(0) + ,Ba(,):

Snce (B j 1)i 1A is dosed, it followsthat &(,) 2 D(A) and
Z 1
A ei-ty)dt= _Bo(,)i Bu(0);
O+
or
Aa(,) =.Ba(,) i Bu(0);

(.Bi A)a(,) =Bu(0): u

If equation (1) is well posed and ! isdefined by (2), then, snce (B j A)is

one-to-onefor all , > 1 (Proposition 5), formula (4) can be written as
Zq
(6) ei-tv(t)xdt=(,Bj A)ilBx fordl x 2D(A)\D(B):
0

Note that from (6) it follows tha the operaor (_(B j A)i !B is a bounded
operator from D(A) \ D(B) to H for dl Re, > 1, but the operator (B j A)i?
may not be bounded.

A complex number , is called (A;B)-regular, if (,B j A) is one-to-one and
the operator (B j A)i 1B is bounded. The st of dl (A; B)-regular points is
denoted by %(A;B) and cdled the (A; B)-resolvent st. Its complement in C is
called the spectrum of (A;B) and denoted by %(A; B). The function R(,) :=
(.Bi A)ilB; , 2%(A;B) is caled the (A; B)-resolvent. From (6) we have

Proposition 8. Assume that D(A) \ D(B) is dense, (1) is well posed; and
condition in Propogtion 7 holds Then T, : Re, > 1g% %(A;B).

Proposition 9. The (A; B)-resolvent set %(A;B) is open and R(, ) isan ana-
Iytic function on %(A; B). Moreover; the following identity holds

(7) R()i R(™M) =i ,)RCIRE):
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Proof: Let 2 %(A;B),andr:=k(.B i A)i 'Bki!. From
(Bi A=(BiAli(i".BiAI'B]

it follows that (1B j A) is one-to-one and (1B j A)i 1B is bounded whenever
jti.ji<r,ie %A;B)isan open sd. Since

EBiAIBi (BiAB=[1iLiY.BiA!B)HI(BiAI'B

and

i CiCBiAIBILi 1= (iv).BiAIBKI0as1 ;
k=1

it follows that R(,) is continuous. Furthermore,

((BiA)IBi tBiA)IB=(Bi Aili (BiAE@Bi A)i'B
=(BiAEBiAi (.Bi AI*Bi Ai'B
=(.Bi Ail(*j .,)B(*Bi A)ilB;

which implies (7), as wel as the fact that R(, ) has derivative in %(A;B), hence is
an andytic function. [ ]

From (7) it also follows that the resolvents are commuting, i.e. R(,)R(®) =
R™)RC(,).

Since every solution u(t) is continuosly differentiable on [ty; t2] (t1 > 0) (Propo-
gtion 3), we have by the formula for the inverse Laplace transform

Z ovia

@8) V(t)x=% e-'((Bj A)I'Bxd,; x2D(A)\D(B):
41 °iidl

3. SrABILITY

Leg u: Ry H be a bounded uniformly continuous function. Then the
function a(,) := Olei -tu(t) dt isdefined and andytic in f, 2 C: Re, > 0g.
A point _o 2 iR iscdled aregular point of u, if &(,) has an analytic continueti on
into a neighborhood of . The complement in iR of the sa of regular points is
cdled spectrum of u and denoted by %(u).

The following Lemma is a specid case of Propodtion 7.
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Lemma 10. Assume the condition in Proposition 7 hold and that u(t) is a
bounded solution of (1). Then, for every ,; Re, >0, a(,) 2 D(A)\ D(B) and
(LB j A)a(,) = Bup. In particular; if , 2 %(A; B); then 0&(,) = R(, )uo.

Lemma 11. Assume that D(A) \ D(B) is dense, (1) is wel posed; and the
conditions in Proposition 7 hold. Then, for every bounded uniformly continuous
olution u(t),

B(u) % WwA;B):

Proof: Since
0(.)=(.Bj A)i'Buy; Re, >0;

it follows by Lemma 10, that if , 2 IR \%(A; B); then & has andytic continuation
into , . Therefore,
W(u) % W(A;B): [ ]

Theorem 12. Assunme that D(A) \ D(B) is dense, (1) is well posed; and
%(A; B)\iR iscountable. Let u(t) be a uniformly continuous and bounded solution
to (). Thenku(t)k ¥ O(t ¥ 1) if and only if; for each |, 2 %(A;B) \iR;

1 z h+T
li

il it =
MmT el-tu()dt=0

uniformly in h.

Proof: The gatement follows from Lemma 11 and an individual stability theo-
remin|[1], [2], or [4].

Corollary 13. Asuune %(A;B) \ iR = ;. Then every bounded uniformly
continuous solution of (1) satisfies t“-”i ku(t)k = 0.

In practice, sometimesit isknown that %(A; B) congstsof generdized eigenva-
Ues . 1,.2, .., .m, ... andthe corresponding egenvectorsyy , yx 2 D(A)\D(B),

xkBi Ay=0

form a Riesz bads. Recdl that fykg,}=1 form a Riesz basisin a Hilbert pace H if
there exigs an invertible operator Q and an orthonormal basis ey, e,, ::: such tha
Yk = Qec, k=1;2;:::.

Theorem 14. Assunme that equation (1) iswdl posed and %(A; B) consigts of
generalized eigenvalues ,k such that Re_ i - j " < 0 for some " > 0; for all k;
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and the corresponding eigenvectors form a Riesz basis. Then for every solution
u(t) of (1), we have

ku(tk - Mei tku(0)k; for all t , 0; where M = kQkkQ' k:

Proof: We have
(BiAyw=0GkBi Ayk+ (. i .x)Byk
=( i .WByk

hence
((Bi Ai'Byy=(C i .kl foralRe, >1:

Let x2 DgA) \D(B), and u(t) =V (t)x be the solution of (1) (with up = X).
Wehavex = 1, Cnyn. By (8),

Zoyiq X
V(Hx= = e-'(_Bj AiBxd, = CnV(byn
2% °iil n=1
X g Lewia _ Sk
- Cn? e'(Li.itynd, = e Cnyn:
n=1 ‘b oejia n=1
Hence
KV ()xk= E e-nt CnYn§ = E e=ntCnQenE
=1 ° =1
" OX f ( - _)132
o o 2
- ka g Cne’ nteng - ka _Cne’ nt=
n:Al ' n=l o °
L D S
- kQkei ™ iCnj? = kQkei 'S Cpens
gnzl Z n=1
= KQkei "t 2Qi 17 Chyns - kQK kQi tkei Tkxk = Mei "tkxk: g
n=1

Theorem 14 can be generalized to include the case when the Riesz bad's cond gs
of eigenvectors and associated root vectors.

Definition 3. Let o be a generalized eigenvalue of _.B j A and yo(6 0) be
the corresponding eigenvector, i.e, . Byo i Ayo =0. Vectorsys, yo, :::, Ym; 1 ae
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called root vectors associated with yyp, if

(LoBi A)y1 = Byo
(LoBi A2 By1

(LoBi A)Ymi1 = Bym;z:

The number m is the length of the chain yo, y1, Y2; :::; Ym; 1 Of the generdized
eigenvector y, and the associated root vectors yq, ::: ; Ym; 1. The maxima length
of chain of root vectors associated with yj is caled the multiplicity of yy and denoted
by m(yo).

Asaumethat thereis a Riesz basis congsting of eigenvectors and associated root
vectors, such that each of the eigenvectors has a finite multiplicity - m. We can
arange them as,

0 1
R IEER
0 1
vei e i yg
y; gD, e i)

where
(nBi AYY = o

GnBi A = Byfi Y 1. k<mp
Moreover, assume tha my = 0 for all but finitely many n.

Theorem 15. Assumethat Re, - j " <0 for some " > 0; and all k. Then
every solution u(t) of (1) satisfies the following: for every + < ; there exigs
M =M () such that

ku(k - Mei ®ku(0)k; for all t , O:
Proof: We have, for every n,
(Bi AiByY=(i.nYy?
CBi AP =(nBi AVE +( i .n)BYS;

=By + (i .n)ByS;
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hence
y=(Bi A BYY +(, i .n(.Bi A By
=Ci .ty + (i LB A)BYY
o,
CBi ABYY=Ci. .0 Ci a9
Analogously

CBiA)BY?=Ci.y2i Ci.niyP+0i.nisyd

CBiAIBYP=Ci .y R0 Ci.n)i2y§iD+ee
+GDRG i L)y Q1 k- my

Letx 2 D(A)\ D(B), and u(t) =V (t)x be the solution of (1) (with up = x). We
have

X
x="" cly:

n=1k=0
Hence
V (t)x = COV (tyd
Q k=0 7
X 1 °° .
= 8 ‘.Bi A By d
n=1 k=0 1 I:ZL
X 3¢ X °+Hi1
— ch % ! (i .n)ility&kid g
n=1 k=0 j=o 2H1 ejia
X g i
— c ; tl g-ntykid)
n=l®=0 O =0 1 1
X B K S
=77@ @ Ldciayaent
n=l k=0 j=0 ¥
The statement now follows eadly from (9). [ ]

In the case B = I, Theorem 15 remans through without the assumption that
mp =0 for dl but finitdy many n, if we assume mp, - m <+21 for dl n.
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Theorem 16. Assume B = 1; and (_1 j A) has a Riex basis consisting of
elgenvectors and asociated root vectors; such that supm(yr(lo)) =m< 1. If
Re.n - i" <O0foral n; then for every 0 < + < " there exigs M such that
ku(t)k - Mei *ku(0)k for all t , 0.

Under the condition of Theorem 16 the operator A is a Spectral operator in the
sense of Dunford, i.e, A has the representation

A=T+N

where T is a gectral operator of scdar type (T is similar to a norma operator)
and N is a nilpotent operator, such that N™*! = 0. Therefore, the satement in
Theorem 16 follows from the following generd resuilt.

Recdl that a cdlosed linear operator A is cdled spectral operator if A can be
represented in theform A =T + N, where T is a spectrd operator of scaar type
and N is a quagnilpotent operator such that TN = NT (see [5]).

Theorem 17. If A isa gectral operator such that
A=T+N

and NX = 0 for some k > 1; then 1 (A) = s(A); where 1(A) is the growth type
of A and s(A) is the spectral abscissa.

Proof: Since T and N commute, we have

e =gt ¢etN: t, O

5

Therefore ket”k - ketTk ketNk. Since Nk = 0,

o o

ketNK = o1 +tN + ¢ee+ i INKi 1o . (i)
for some polynomial p. Hence
kek - p(jtj) ke'Tk:

From this it follows
1(A) =1(T) =s(T) =s(A)
(it iswdl known that % (A) = %(T), hence s(T) = s(A)). [ ]

Theorem 17 is not true if A is an arbitrary spectral operator.
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Example We condruct an example of a spectra operator A such that s(A) =

i 1, but e™ is not exponentially stable. The operator A will have the form
A=jl+N
where N is quasinilpotent operator. Let

H=Clo C20 ¢¢¢o C"0 ¢ee

and
A=A;0 A,0 ¢¢O A, 0 ¢0C
where
o) 1
W o T il 1 0
A=il A= 0T A=0 0 i1 1 A e
! 0 0 1

It can be seen eadly that

A =eh1 g A2 ¢¢¢0 e O ot

where
B oy eit teit Lait
0 0 eit
For a corresponding vector
(@) 1
xnzgo, ;0 = B iy B2 0, 0; O; §
!n n{7 Fl
n terms
we have kx,k = 1 and
3 3 g
Alxn = 0;::1;0; 8= 1+t+%+¢¢¢+(§;'11)! eif;

3 -

niz 1 R ) i CE
B L+Ht+ 000+ oy el Boelt 0

¢ee :
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We have for large odd n

ke B 1t E i 1
- P +t+ — + e+
& XnK= P bt O D)
H t2 tniZ ﬂz
+ 1+t+— +¢¢0+-—
L+t oot o
+ 000+ (1 +1)2 +12 gt
1 H 2 ni 1 2
—  1+t+—+ ¢+ —— +
. P th g+ 000 0ee
A 1,31
2 e
+ 1+t+5+¢¢¢+1¥¢? e
2 A , 1,310
1 ,nj1l t tz )
LN v - 5 it
Hence L
sup kexk . P=:
kxk-pl 2 u
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