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CLASSIFICATION OF PSEUDO-UMBILICAL SLANT SURFACES IN
LORENTZIAN COMPLEX SPACE FORMS

Yu Fu and Zhong Hua Hou

Abstract. In this paper we prove that slant surfaces in a non-flat Lorentzian
complex space form must be Lagrangian. By applying this result, we com-
pletely classify pseudo-umbilical slant surfaces in Lorentzian complex space
forms. Our classification results state that there exist two families of pseudo-
umbilical slant surfaces in Lorentzian complex plane C2

1, three families in
complex projective plane CP2

1 , and three families in complex hyperbolic plane
CH2

1 .

1. INTRODUCTION

Let M̃n
i (4c) be a simply-connected indefinite complex space form of complex

dimension n and complex index i. Here, the complex index is defined as the
complex dimension of the largest complex negative definite subspace of the tangent
space. If i = 1, we say that M̃n

1 (4c) Lorentzian. The curvature tensor R̃ of M̃n
i (4c)

is given by

R̃(X, Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y + 〈JY, Z〉JX

−〈JX, Z〉JY + 2〈X, JY 〉JZ}.
(1.1)

Let Cn denote the complex number n-space with complex coordinates z1, ..., zn.
The C

n endowed with gs,n, i.e., the real part of the Hermitian form

bs,n(z, ω) = −
s∑

k=1

z̄kωk +
n∑

j=s+1

z̄jωj, z, ω ∈ C
n,(1.2)

defines a flat indefinite complex space form with complex index s. We denote the
pair (Cn, gs,n) by C

n
s briefly, which is the flat Lorentzian complex n-space. In

particular, C
2
1 is the flat complex Lorentzian plane.
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Consider the differentiable manifold:

S2n+1
2 (c) = {z ∈ C

n+1
1 ; b1,n+1(z, z) = c−1 > 0},

which is an indefinite real space form of constant sectional curvature c. The Hopf-
fibration

π : S2n+1
2 (c) → CPn

1 (4c) : z �→ z · C
∗

is a submersion and there exists a unique pseudo-Riemannian metrix of complex
index one on CPn

1 (4c) such that π is a Riemannian submersion.
The pseudo-Riemannian manifold CP n

1 (4c) is a Lorentzian complex space form
of positive holomorphic sectional curvature 4c.

Analogously, if c < 0, consider

H2n+1
2 (c) = {z ∈ C

n+1
2 ; b1,n+1(z, z) = c−1 < 0},

which is an indefinite real space form of constant sectional curvature c. The Hopf-
fibration

π : H2n+1
2 (c) → CHn

1 (4c) : z �→ z · C∗

is a submersion and there exists a unique pseudo-Riemannian metrix of complex
index one on CHn

1 (4c) such that π is a Riemannian submersion.
The pseudo-Riemannian manifold CHn

1 (4c) is a Lorentzian complex space form
of negative holomorphic sectional curvature 4c.

It’s well-known that a complete simply-connected Lorentzian complex space
form M̃n

i (4c) is holomorphic isometric to Cn
1 , CPn

1 (4c), or CHn
1 (4c), according

to c = 0, c > 0 or c < 0, respectively.
A real surface in a Kähler surface with almost complex structure J is called

slant if its Wirtinger angle is constant (see [2, 3, 13]). From J-action point of views,
slant surfaces are the simplest and the most natural surfaces of a Lorentzian Kähler
surface (M̃, g̃, J). Slant surfaces arise naturally and play some important roles in
the studies of surfaces of Kähler surfaces in the Lorentzian complex space forms,
see [14].

In last years, the geometry of Lorentzian surfaces in Lorentzian complex space
forms has been studied by a series of papers given by B. Y. Chen and other ge-
ometers, for instance [1, 5-13, 15]. Lorentzian geometry is a vivid field of mathe-
matical research that represents the mathematical foundation of the general theory
of relativity-which is probably one of the most successful and beautiful theories of
physics. For Lorentzian surfaces in Lorentzian complex space forms, especially,
Chen [7] proved a very interesting result that Ricci equation is a consequence of
Gauss and Codazzi equations. This indicates that Lorentzian surfaces in Lorentzian
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complex space forms have much interesting properties, which is quite different from
surfaces in Riemannian complex space forms.

A submanifold is called pseudo-umbilical if its shape operator with respect to
the mean curvature vector is proportional to the identity map (see [2] for details).
Pseudo-umbilical submanifolds are a natural generalization of minimal submani-
folds. In [4], Chen completely classified pseudo-umbilical submanifolds in Rie-
mannian complex space forms. The non-flat minimal slant surfaces in C2

1 were
completely classified by Arslan-Carrazo-Chen-Murathan [1].

In this paper, we study pseudo-umbilical surfaces in Lorentzian complex space
forms and give a complete classification of pseudo-umbilical slant surfaces in
Lorentzian complex Euclidean plane C

2
1, Lorentzian complex projective plane CP2

1

and Lorentzian complex hyperbolic plane CH2
1 .

2. PRELIMINARIES

Let M be a Lorentzian surface of a Lorentzian Kähler surface M̃2
1 equipped with

an almost structure J and metric g̃. Let 〈 , 〉 denote the inner product associated
with g̃.

We denote the Levi-Civita connections of M and M̃2
1 by ∇ and ∇̃, respectively.

Gauss formula and Weingarten formula are given respectively by (see [2, 3])

∇̃XY = ∇XY + h(X, Y ),(2.1)

∇̃Xξ = −AξX + DXξ(2.2)

for vector fields X, Y tangent to M and ξ normal to M , where h, A and D are the
second fundamental form, the shape operator and the normal connection. It’s well
known that the second fundamental form h and the shape operator A are related by

〈h(X, Y ), ξ〉 = 〈AξX, Y 〉(2.3)

for X, Y tangent to M and ξ normal to M .
A vector v is called spacelike (timelike) if 〈v, v〉 > 0(〈v, v〉 < 0). A vector v

is called lightlike if it is nonzero and it satisfies 〈v, v〉 = 0.
For each normal vector ξ of M at x ∈ M , the shape operator Aξ is a symmetric

endomorphism of the tangent space TxM . The mean curvature vector is defined by

H =
1
2
trace h.(2.4)

A Lorentzian surface M in M̃2
1 is called minimal if its mean curvature vector

vanishes at each point on M . A Lorentzian surface M in M̃2
1 is called quasi-

minimal if its mean curvature vector is lightlike at each point on M . And, a
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Lorentzian surface M in M̃2
1 is called pseudo-umbilical if its shape operator AH

satisfies

AH = ρI,

where ρ is a nonzero function and I is the identity map.
For a Lorentzian surface M in a Lorentzian complex space form M̃2

1 , the Gauss
and Codazzi and Ricci equations are given respectively by

〈R(X, Y )Z, W 〉 = 〈R̃(X, Y )Z, W 〉+ 〈h(Y, Z), h(X, W )〉(2.5)

−〈h(X, Z), h(Y, W )〉,

(R̃(X, Y )Z)⊥ = (∇̄h)(X, Y, Z)− (∇̄h)(Y, X, Z),(2.6)

〈RD(X, Y )ξ, η〉 = 〈R̄(X, Y )ξ, η〉+ 〈[Aξ, Aη]X, Y 〉,(2.7)

where X, Y, Z, W are vectors tangent to M , and ∇̄h is defined by

(∇̄h)(X, Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).(2.8)

3. BASIC RESULTS FOR LORENTZIAN SLANT SURFACES

Let M be a Lorentzian surface in a Lorentzian Kähler surface (M̃2
1 , g, J). For

each tangent vector X of M , we put

JX = PX + FX,(3.1)

where PX and FX are the tangential and the normal components of JX .
On the Lorentzian surface M there exists a pseudo-orthonormal local frame

{e1, e2} such that

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1.(3.2)

It follows from (3.1), (3.2) and 〈JX, JY 〉 = 〈X, Y 〉 that

Pe1 = (sinh θ)e1, Pe2 = −(sinh θ)e2(3.3)

for some function θ. This function θ is called the Wirtinger angle of M .
When the Wirtinger angle θ is constant on M , the Lorentzian surface M is

called a slant surface (cf. [3, 13]). In this case, θ is called the slant angle; the slant
surface is then called θ-slant.

A θ-slant surface is called Lagrangian if θ = 0 and proper slant if θ �= 0.
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If we put

e3 = (sech θ)Fe1, e4 = (sech θ)Fe2,(3.4)

the we find from (3.1)-(3.4) that

Je1 = sinh θe1 + cosh θe3, Je2 = − sinh θe2 + cosh θe4,(3.5)

Je3 = − cosh θe1 − sinh θe3, Je4 = − cosh θe2 + sinh θe4,(3.6)

〈e3, e3〉 = 〈e4, e4〉 = 0, 〈e3, e4〉 = −1.(3.7)

We call such a frame {e1, e2, e3, e4} an adapted pseudo-orthonormal frame for the
Lorentzian surface M in M̃2

1 .
We need the following lemmas (see [13]).

Lemma 3.1. If M is a slant surface in a Lorentzian K ähler surface M̃2
1 , then

with respect to an adaped pseudo-orthonormal frame we have

∇Xe1 = ω(X)e1, ∇Xe2 = −ω(X)e2,(3.8)

DXe3 = Φ(X)e3, DXe4 = −Φ(X)e4(3.9)

for some 1-forms ω, Φ on M .

For a Lorentzian surface M in M̃2
1 , we put

h(ei, ej) = h3
ije3 + h4

ije4,(3.10)

where {e1, e2, e3, e4} is an adapted pseudo-orthonormal frame and h is the second
fundamental form of M .

Lemma 3.2. ([13]) If M is a θ-slant surface in a Lorentzian K ähler surface
M̃2

1 , then with respect to an adaped pseudo-orthonormal frame we have

ωj − Φj = 2h3
1j tanh θ,(3.11)

AFXY = AFY X,(3.12)

Ae3ej = h3
1je1 + h4

1je2, Ae4ej = h3
j2e1 + h4

j2e2,(3.13)

for any X, Y ∈ TM and j = 1, 2, where ωj = ω(ej) and Φj = Φ(ej).

4. A FUNDAMENTAL THEOREM OF LORENTZIAN SLANT SURFACES

For Lorentzian slant surfaces in M̃2
1 (4c), we have the following result
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Theorem 4.1. Every slant surface in a non-flat Lorentzian complex space form
M̃2

1 (4c) must be Lagrangian.

Proof. Assume that M is a θ-slant surface in a Lorentzian complex space
form M̃2

1 (4c). Let {e1, e2, e3, e4} be an adapted pseudo-orthonormal frame on M .
By applying (3.2) and the total symmetry of 〈h(X, Y ), FZ〉, we obtain

(4.1)
h(e1, e1) = βFe1 + λFe2, h(e1, e2)

= αFe1 + βFe2, h(e2, e2) = γFe1 + αFe2

for some real-valued functions α, β, γ, λ. Then it follows from Lemma 3.1, (4.1)
and Codazzi equation (2.6) that

(4.2)

(R̃(e1, e2)e1)⊥ = (∇̄e1h)(e1, e2) − (∇̄e2h)(e1, e1)

= e1(α)Fe1 + e1(β)Fe2 + αΦ1Fe1 − βΦ1Fe2

−e2(β)Fe1 − e2(λ)Fe2 − βΦ2Fe1 + λΦ2Fe2

+2ω2(βFe1 + λFe2),

(4.3)

(R̃(e2, e1)e2)⊥ = (∇̄e2h)(e1, e2)− (∇̄e1h)(e2, e2)

= e2(α)Fe1 + e2(β)Fe2 + αΦ2Fe1 − βΦ2Fe2

−e1(γ)Fe1 − e1(α)Fe2 − γΦ1Fe1 + αΦ1Fe2

−2ω1(γFe1 + αFe2).

On the other hand, by applying (1.1) and (3.5)-(3.6) we have

(R̃(e1, e2)e1)⊥ = 3c(sinhθ)Fe1, (R̃(e2, e1)e2)⊥ = 3c(sinh θ)Fe2.(4.4)

Thus, combining (4.2)-(4.4) and comparing coefficients give

−3c sinh θ + e1(α) − e2(β) + αΦ1 − βΦ2 + 2βω2 = 0,(4.5)

e1(β) − e2(λ)− βΦ1 + λΦ2 + 2λω2 = 0,(4.6)

−3c sinh θ + e2(β) − e1(α) − βΦ2 + αΦ1 − 2αω1 = 0,(4.7)

e2(α) − e1(γ) + αΦ2 − γΦ1 − 2γω1 = 0.(4.8)

Combining (4.5) with (4.7) we obtain

−6c sinh θ + 2α(Φ1 − ω1) − 2β(Φ2 − ω2) = 0.(4.9)

From Lemma 3.2 and (4.1) we have

ω1 − Φ1 = 2β sinh θ, ω2 − Φ2 = 2α sinh θ.(4.10)
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Consequently, (4.9) becomes

−6c sinh θ = 0,

which implies that θ = 0, from the assumption c �= 0 .

Theorem 4.2. Every pseudo-umbilical slant surface in a Lorentzian complex
space form M̃2

1 (4c) has constant Gaussian curvature c.

Proof. Let M be a pseudo-umbilical θ-slant surface in a Lorentzian complex
space form M̃2

1 (4c). There is a pseudo-orthonormal local frame field {ê1, ê2} such
that

〈ê1, ê1〉 = 〈ê2, ê2〉 = 0, 〈ê1, ê2〉 = −1,(4.11)

H = −h(ê1, ê2).(4.12)

Assume that h(ê1, ê2) = α̂F ê1 + β̂F ê2 for some real-valued functions α̂, β̂. Since
M is not minimal, without loss of generality, we assume α̂ is not vanishing. By
putting e1 = α̂ê1, e2 = α̂−1ê2, we have

〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1,(4.13)

h(e1, e2) = Fe1 + βFe2,(4.14)

where β = β̂α̂−1. Similar as in the proof of Theorem 4.1, we have

(4.15)
h(e1, e1) = βFe1 + λFe2, h(e1, e2)

= Fe1 + βFe2, h(e2, e2) = γFe1 + Fe2.

Then the mean curvature vector is given by

H = −h(e1, e2) = −Fe1 − βFe2.

It follows from (2.3), (3.4), (3.7) and (4.15) that

AH =

(
−2β cosh2 θ −(1 + βγ) cosh2 θ

−(λ + β2) cosh2 θ −2β cosh2 θ

)
.(4.16)

Hence, from the assumption that M is pseudo-umbilical, we have

1 + βγ = 0, λ + β2 = 0.(4.17)

On the other hand, it follows from (4.15) and Gauss equation (2.5) that

K = c + (−β + λγ) cosh2 θ.(4.18)

Substituting (4.17) into (4.18), we find K = c. This completes the proof of Theorem
4.2.
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5. CLASSIFICATION OF PSEUDO-UMBILICAL SLANT SURFACES IN C2
1

In this section we completely classify pseudo-umbilical slant surfaces in C
2
1.

Theorem 5.1. Up to rigid motions of C
2
1, every pseudo-umbilical slant surface

in C2
1 is given by one of the following two families.

(1) A flat Lagrangian surface defined by

L(x, y) =
( 1
2b

e(ib+b)x+(−1+i)y +
1
2
e(ib−b)x+(1+i)y,

1
2b

e(ib+b)x+(−1+i)y

−1
2
e(ib−b)x+(1+i)y

)
with b ∈ R \ 0.
(2) A flat θ-slant surface defined by

L =
(
(1 + i)e

(
sinh θ+

√√√√
cosh2 θ+

a2

4
−

a

2
+ i
)
x +

( − sinh θ −
√

cosh2 θ +
a2

4
− a

2
+ i
)
y

+(−m + ni)e

(
sinh θ−

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
x+
( − sinh θ+

√
cosh2 θ+

a2

4
− a

2
+i
)
y
,

(1 + i)e

(
sinh θ+

√√√√
cosh2 θ+

a2

4
−

a

2
+ i
)
x +

(− sinh θ −
√

cosh2 θ +
a2

4
− a

2
+ i
)
y

+(n + mi)e

(
sinh θ−

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
x+
( − sinh θ +

√
cosh2 θ+

a2

4
− a

2
+ i
)
y)

with m = − c
a2+4

and n = − ac sinh θ

(a2+4)
√

4 cosh2 θ+a2
, where a ∈ R and c ∈ R \ 0.

Conversely, locally every pseudo-umbilical Lorentzian θ-slant surface in C
2
1 is

congruent to the two families of surfaces defined above.

Proof. Let M be a pseudo-umbilical θ-slant surface in C2
1. Since (4.17)

implies that β �= 0, M is not quasi-minimal. In this case, it follows from (4.10)
and (4.17) that (4.5)-(4.8) become

e2(β) − ω1 − βω2 = 0,(5.1)

e1(β) + 2βe2(β) − βω1 − 3β2ω2 + 4β2 sinh θ = 0,(5.2)

e1(β) − β2ω2 − 3βω1 + 4β2 sinh θ = 0.(5.3)

Substituting (5.1) and (5.3) into (5.2) yields

4βω1 = 0.(5.4)
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Since β �= 0, we have ω1 = 0. Then (5.1)-(5.3) become

e2(β) = βω2, e1(β) = β2ω2 − 4β2 sinh θ.(5.5)

we divide it into two cases:
Case (A): β is a constant, say b. In this case, it follows from (5.5) that ω2 =
sinh θ = 0, which implies that M is Lagrangian. Therefore we have ∇eiej = 0 for
i, j = 1, 2. There exist local coordinates {x, y} such that

g = −dx ⊗ dy − dy ⊗ dx,
∂

∂x
= e1,

∂

∂y
= e2.(5.6)

By applying (4.15), (4.17) and Gauss formula (2.1), we obtain that the immersion
satisfies

Lxx = ibLx − ib2Ly,(5.7)

Lxy = iLx + ibLy,(5.8)

Lyy = −1
b
iLx + iLy.(5.9)

Equations (5.7) and (5.8) reduce to

Lxxx = 2ibLxx + 2b2Lx,(5.10)

whose characteristic polynomial equation is given by

r3 − 2ibr2 − 2b2r = 0.(5.11)

After solving this equation, we obtain the immersion in the form

L(x, y) = A(y)e(ib+b)x + B(y)e(ib−b)x + C(y)(5.12)

for C
2
1-valued functions A, B and C. Substituting (5.12) into (5.7)-(5.9), we find

A(y) = c1e
(−1+i)y, B(y) = c2e

(1+i)y, C(y) = c3(5.13)

for constant vectors ci in C2
1, where i = 1, 2, 3. Combining these with (5.12) shows

that the immersion is congruent to

L(x, y) = c1e
(ib+b)x+(−1+i)y + c2e

(ib−b)x+(1+i)y.(5.14)

By applying (5.6),(5.14) and the Lagrangian condition, we obtain

〈c1, c1〉 = 〈c2, c2〉 = 〈c1, ic2〉 = 0, 〈c1, c2〉 = − 1
2b

.(5.15)
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Hence we may choose c1 = ( 1
2b ,

1
2b) and c2 = ( 1

2 ,−1
2). Combining these with

(5.15) yields Case (1).
Case (B): β is not constant. In this case, it follows from the first equation of (5.5)
and Lemma 3.1 that [β−1e1, e2] = 0. Therefore there exist local coordinates {x, y}
such that

∂

∂x
= β−1e1,

∂

∂y
= e2.(5.16)

Using these local coordinates, (5.5) implies that

βx = βy − 4β sinh θ.(5.17)

Solving equation (5.17), we have

β = f(x + y)e2 sinh θ(y−x)(5.18)

for a nonzero function f depending on variable x + y. Hence, the metric tensor is
given by

g = −f−1(x + y)e2 sinh θ(x−y)(dx⊗ dy + dy ⊗ dx),(5.19)

and the Levi-Civita connection of g satisfies

(5.20) ∇ ∂
∂x

∂

∂x
=(−fx

f
+2 sinh θ)

∂

∂x
, ∇ ∂

∂x

∂

∂y
=0, ∇ ∂

∂y

∂

∂y
=(−fy

f
−2 sinh θ)

∂

∂y
.

Moreover, it follows from (4.15), (4.17) and (5.16) that

(5.21)
h(

∂

∂x
,

∂

∂x
) = F

∂

∂x
− F

∂

∂y
, h(

∂

∂x
,

∂

∂y
)

= F
∂

∂x
+ F

∂

∂y
, h(

∂

∂y
,

∂

∂y
) = −F

∂

∂x
+ F

∂

∂y
.

By applying (5.20), (5.21) and Gauss formula (2.1), we have the following PDE
system:

Lxx = (−fx

f
+ i + sinh θ)Lx − (i + sinh θ)Ly,(5.22)

Lxy = (i − sinh θ)Lx + (i + sinh θ)Ly,(5.23)

Lyy = −(i − sinh θ)Lx + (−fy

f
+ i − sinh θ)Ly.(5.24)

The compatibility condition of this system is given by

(
fx

f
)y = 0.(5.25)



Slant Surfaces in Lorentzian Complex Space Forms 1929

Solving this equation gives

f = c−1ea(x+y)(5.26)

for some constants a ∈ R and c ∈ R \ 0. Hence (5.18) and (5.19) become

β = c−1e(a−2 sinh θ)x+(a+2 sin θ)y,(5.27)

g = −ce(2 sinhθ−a)x−(2 sinh θ+a)y(dx ⊗ dy + dy ⊗ dx),(5.28)

Using (5.26), combining (5.23) with (5.22) and (5.24), we have

Lxx + Lxy = (−a + 2i)Lx, Lxy + Lyy = (−a + 2i)Ly.(5.29)

After solving these two equations in (5.29), we obtain

Lx = P (x − y)e(−a
2
+i)(x+y), Ly = Q(x− y)e(−a

2
+i)(x+y)(5.30)

for vector-valued functions P , Q in C
2
1. Substituting the two equations in (5.30)

into (5.22) and (5.24) respectively, we have

Px + (
a

2
− sinh θ)P = −(i + sinh θ)Q,(5.31)

Qx − (
a

2
+ sinh θ)Q = (i − sinh θ)P.(5.32)

By differentiating equation (5.32) with respect to x and using (5.31) and (5.32)
again, we obtain

Qxx − 2 sinh θQy − (1 +
a2

4
)Q = 0.(5.33)

Solving this linear equation (5.33) gives

(5.34)
Q = c1e

(
sinh θ+

√√√√
cosh2 θ+

a2

4
)
(x−y)

+ c2e

(
sinh θ−

√√√√
cosh2 θ+

a2

4
)
(x−y)

for constant vectors c1 and c2. It follows from (5.32) and (5.34) that

(5.35)
P = −c1

(i + sinh θ)
cosh2 θ

(

√
cosh2 θ+

a2

4
− a

2
)e

(
sinh θ+

√√√√
cosh2 θ+

a2

4
)
(x−y)

+c2
(i + sinh θ)

cosh2 θ
(

√
cosh2 θ+

a2

4
+

a

2
)e

(
sinh θ−

√√√√
cosh2 θ+

a2

4
)
(x−y)

.
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Hence the second equation of (5.30) becomes

(5.36)

Ly

= c1e

(
sinh θ+

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
x+
( − sinh θ−

√
cosh2 θ+

a2

4
− a

2
+i
)
y

+c2e

(
sinh θ−

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
x+
( − sinh θ+

√
cosh2 θ+

a2

4
− a

2
+i
)
y
.

By integrating equation (5.36), we obtain that the immersion is congruent to

(5.37)

L = c3e

(
sinh θ+

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
x +

( − sinh θ −
√

cosh2 θ+
a2

4
− a

2
+i
)
y

+c4e

(
sinh θ−

√√√√
cosh2 θ+

a2

4
−a

2+i
)
x+
(
−sinh θ+

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
y

+A(x),

where A(x) is a vector-valued function and

c3=
c1

− sinh θ −
√

cosh2 θ+ a2

4 − a
2 + i

, c4 =
c2

− sinh θ +
√

cosh2 θ+ a2

4 − a
2 + i

.

By applying (5.35) and substituting (5.37) into the first equation of (5.30), we find

A′(x) = 0.

Hence A is a constant vector and the immersion is congruent to

(5.38)

L(x, y)

= c3e

(
sinh θ+

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
x+
( −sinh θ−

√
cosh2 θ+

a2

4
− a

2
+i
)
y

+c4e

(
sinh θ−

√√√√
cosh2 θ+

a2

4
−

a

2
+i
)
x+
( −sinh θ+

√
cosh2 θ+

a2

4
− a

2
+i
)
y
.

It follows from (5.28) and (5.38) that

(5.39)

〈c3, c3〉 = 〈c4, c4〉 = 0, 〈c3, c4〉 = − c

a2 + 4
,

〈c3, ic4〉 = − ac sinh θ

(a2 + 4)
√

4 cosh2 θ + a2
.
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If we put

m = − c

a2 + 4
, n = − ac sinh θ

(a2 + 4)
√

4 cosh2 θ + a2
,

then we may choose c3 = (1 + i, 1 + i) and c4 = (−m + ni, n + mi), combining
these with (5.38) yields Case (2).

On the other hand, the converse can be verified by a long straightforward com-
putation. This completes the proof of Theorem 5.1.

6. CLASSIFICATION OF LORENTZIAN PSEUDO-UMBILICAL SLANT SURFACES IN

CP 2
1 (4) and CH2

1 (−4)

The following results classify all the pseudo-umbilical slant surfaces in Lorentzian
complex projective plane CP2

1 (4) and Lorentzian complex hyperbolic plane CH2
1 (−4).

Since the proofs of Theorems 6.1 and 6.2 require similar arguments, we will
prove them together. Let ε be the constant sectional curvature of the ambient space,
that is ε = 1 for CP 2

1 (4) and ε = −1 for CH2
1 (−4).

Theorem 6.1. Let M be a Lorentzian pseudo-umbilical θ-slant surface in
CP 2

1 (4). Then M is Lagrangian, with Gaussian curvature 1, and the immer-
sion is congruent to π ◦ L, where π : S 5

2(1) → CP 2
1 (4) is the Hopf-fibration and

L : M → S5
2(1) ∈ C

3
1 is locally one of the following three families of surfaces:

(1) A Lagrangian surface defined by

L(s, t) =
1√

a2 + 4

(
2 cosh(

1
2

√
a2 + 4t)

√
a2 | b |

| 1− beas |e
( a
2
+i)s,

2 sinh(
1
2

√
a2 + 4t)

√
a2 | b |

| 1 − beas |e
( a
2
+i)s,−2i− abeas + a

beas − 1

)
with a, b ∈ R \ 0.
(2) A Lagrangian surface defined by

L(s, t) =
1√

1− c2

(
cosh(

√
1 − c2t)

| c | eis

| cos(cs) | ,

sinh(
√

1 − c2t)
| c | eis

| cos(cs) | ,−i + c tan(cs)
)

with 0 <| c |< 1 and c ∈ R.
(3) A Lagrangian surface defined by

L(s, t) =
1√

c2 − 1

(
− i + tan(cs), sin(

√
c2 − 1t)

| c | eis

| cos(cs) | , cos(
√

c2 − 1t)
| c | eis

| cos(cs) |
)
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with | c |> 1 and c ∈ R.

Theorem 6.2. Let M be a Lorentzian pseudo-umbilical θ-slant surface in
CH2

1 (−4). Then M is Lagrangian, with Gaussian curvature -1, and the immersion
is congruent to π ◦ L, where π : H 5

3 (−1) → CH2
1 (−4) is the Hopf-fibration and

L : M → H5
3 (−1) ∈ C3

2 is locally one of the following three families of surfaces:
(1) A Lagrangian surface defined by

L(s, t) =
1√

a2 + 4

(
2i +

abeas + a

beas − 1
, 2 cosh(

1
2

√
a2 + 4t)

√
a2 | b |

| 1 − beas |e
( a
2
+i)s,

2 sinh(
1
2

√
a2 + 4t)

√
a2 | b |

| 1 − beas |e
( a
2
+i)s

)

with a, b ∈ R \ 0.
(2) A Lagrangian surface defined by

L(s, t)=
1√
1−c2

(
i−c tan(cs), cosh(

√
1−c2t)

| c | eis

| cos(cs) | , sinh(
√

1−c2t)
| c | eis

| cos(cs) |
)

with 0 <| c |< 1 and c ∈ R.
(3) A Lagrangian surface defined by

L(s, t)=
1√

c2 − 1

(
sin(

√
c2−1t)

| c | eis

| cos(cs) | , cos(
√

c2−1t)
| c | eis

| cos(cs) | , i−tan(cs)
)

with | c |> 1 and c ∈ R.

Proof. Assume that M is a Lorentzian pseudo-umbilical θ-slant surface in
CP 2

1 (4) or CH2
1 (−4). From Theorem 4.1, we conclude that M must be Lagrangian.

Then similar as in Theorem 5.1, we have

β �= 0, ω1 = 0, e2(β) = βω2, e1(β) = β2ω2.(6.1)

Suppose that β is constant. Since β �= 0, from the third equation of (6.1) we have
ω2 = 0. This implies that M is flat, which contradicts to Theorem 4.2. Hence
β is nonconstant. It follows from the third equation of (6.1) and Lemma 2.1 that
[β−1e1, e2] = 0. Therefore there exist local coordinates {x, y} such that

∂

∂x
= β−1e1,

∂

∂y
= e2.(6.2)

By (6.2), the third and the fourth equations of (6.1) imply that

βy = βx.(6.3)
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From (6.3) we may assume β = f(x + y), where f is a nonconstant function
depending on x + y. Therefore the metric tensor is given by

g = −f−1(x + y)(dx⊗ dy + dy ⊗ dx),(6.4)

and the Levi-Civita connection is given by

∇ ∂
∂x

∂

∂x
= −fx

f

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
= −fy

f

∂

∂y
.(6.5)

Moreover, it follows from (5.21) that

(6.6)
h(

∂

∂x
,

∂

∂x
) = J

∂

∂x
− J

∂

∂y
, h(

∂

∂x
,

∂

∂y
)

= J
∂

∂x
+ J

∂

∂y
, h(

∂

∂y
,

∂

∂y
) = −J

∂

∂x
+ J

∂

∂y
.

It follows from (6.5), (6.6) and Gauss formula (2.1) that lift L : M2
1 → C3

i of the
immersion of M into CP2

1 (4) for i = 1 and CH2
1 (−4) for i = 2, satisfies

Lxx = (−fx

f
+ i)Lx − iLy,(6.7)

Lxy = iLx + iLy + εf−1L,(6.8)

Lyy = −iLx + (i− fy

f
)Ly.(6.9)

If we put

s = x + y, t = x − y,(6.10)

then f is a function depending only on s, and (6.7)-(6.9) become

Lss = (i− f ′

2f
)Ls +

ε

2f
L,(6.11)

Lst = (i − f ′

2f
)Lt,(6.12)

Ltt = (−i − f ′

2f
)Ls − ε

2f
L.(6.13)

The compatibility condition of this system is given by

(−f ′

f
)′ = εf−1.(6.14)
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Solving this nonlinear autonomous ordinary equation, we obtain two kinds of solu-
tions, which are given by

f(s) =
ε(1 − beas)2

2a2beas
,(6.15)

and

f(s) =
ε

2c2
cos2(cs + d),(6.16)

where a, b, c ∈ R � 0 and d ∈ R. It should be noted that we can let d = 0 by
replacing s by s − d/c.

Solving (6.12) gives

L(s, t) = A(t)f(s)−
1
2 eis + B(s)(6.17)

for vector-valued functions A, B in C
3
i , where i = 1 or 2. Substituting (6.17) into

(6.11)-(6.13) gives

B′′ = (i− f ′

2f
)B′ +

ε

2f
B,(6.18)

ε

2f
B = (−i− f ′

2f
)B′,(6.19)

A′′ = (
f ′2

4f2
− ε

2f
+ 1)A.(6.20)

It follows from (6.18) and (6.19) that

B(s) = c1ε(−2i − f ′f−1)(6.21)

for constant vector c1.
We note that, from (6.4), (6.10) and the Lagrangian condition, the immersion L

should satisfy the following conditions:

(6.22)
〈Ls, Lt〉 = 〈Ls, iLt〉 = 0, 〈Ls, Ls〉 = − 1

2f(s)
,

〈Lt, Lt〉 =
1

2f(s)
, 〈L, L〉 = ε.

Depending on two different kinds of solutions of f , we divide it into two cases.
Case (A): f takes the solution in the form (6.15). Without loss of generality, we
may assume f(x + y) > 0 by choosing the sign of the constant b. Substituting
(6.15) into (6.20) and (6.21) gives

A′′(t) = (
a2

4
+ 1)A(t),(6.23)

B(s) = c1ε(−2i − abeas + a

beas − 1
).(6.24)
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Solving (6.23) gives

A(t) = c2e

√
a2

4
+1t + c3e

−
√

a2

4
+1t.(6.25)

Substituting (6.15), (6.24) and (6.25) into (6.17), we find that the immersion is
congruent to

(6.26)
L(s, t) =

(
c2e

√
a2

4
+1t + c3e

−
√

a2

4
+1t) √2a2 | b |

| 1 − beas |e
( a
2
+i)s

+c1ε(−2i− abeas + a

beas − 1
),

where c1, c2 and c3 are constant vectors in C3
1 or C3

2 depending on ε = 1 or −1,
respectively. It follows from (6.26) that the conditions in (6.22) reduce to

〈c1, c1〉 =
ε

a2 + 4
,

〈c2, c2〉 = 0,

〈c3, c3〉 = 0,

〈c1, c2〉 = 0,

〈c1, c3〉 = 0,

〈c2, c3〉 = − 1
a2 + 4

,

〈c1, ic2〉 = 0,

〈c1, ic3〉 = 0,

〈c2, ic3〉 = 0.

(6.27)

Case (A.1): ε = 1. In this case, c1, c2, c3 ∈ C
3
1, we may choose

(6.28)
c1 =

1√
a2 + 4

(0, 0, 1), c2 =
1√

2(a2 + 4)
(1, 1, 0),

c3 =
1√

2(a2 + 4)
(1,−1, 0).

Combining these with (6.26) gives Case (1) of Theorem 6.1.
Case (A.2): ε = −1. In this case, c1, c2, c3 ∈ C

3
2, we may choose

(6.29)
c1 =

1√
a2 + 4

(1, 0, 0), c2 =
1√

2(a2 + 4)
(0, 1, 1),

c3 =
1√

2(a2 + 4)
(0, 1,−1).

Combining these with (6.26) gives Case (1) of Theorem 6.2.
Case (B): f takes the solution in the form (6.16). By applying a suitable translation
in s, we may assume d = 0. Substituting (6.16) into (6.20) and (6.21) respectively
gives

A′′(t) = (1− c2)A(t),(6.30)

B(s) = c1ε(−2i + 2c tan(cs)).(6.31)
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Solving (6.30) gives

A(t) =




c2e
√

1−c2t + c3e
−√

1−c2t, if 0 <| c |< 1;
c2t + c3, if | c |= 1;

c2 sin(
√

c2 − 1t) + c3 cos(
√

c2 − 1t), if | c |> 1

(6.32)

for constant vectors c1, c2 and c3.
Case (B.1): 0 <| c |< 1. Substituting (6.16), (6.31) and the first equation of (6.32)
into (6.17), we find that the immersion is congruent to

(6.33) L(s, t) =
(
c2e

√
1−c2t + c3e

−√
1−c2t

) √
2c2eis

| cos(cs) | + c1ε(−2i + 2c tan(cs)),

where c1, c2 and c3 are constant vectors in C
3
1 or C

3
2 depending on ε = 1 or −1,

respectively. It follows from (6.33) that the conditions in (6.22) reduce to

〈c1, c1〉 = − ε

4(c2 − 1)
,

〈c2, c2〉 = 0,

〈c3, c3〉 = 0,

〈c1, c2〉 = 0,

〈c1, c3〉 = 0,

〈c2, c3〉 =
ε

4(c2 − 1)
,

〈c1, ic2〉 = 0,

〈c1, ic3〉 = 0,

〈c2, ic3〉 = 0.

(6.34)

Case (B.1.1): ε = 1. In this case, c1, c2, c3 ∈ C
3
1, we may choose

(6.35) c1= 1
2
√

1−c2
(0, 0, 1), c2 = 1

2
√

2(1−c2)
(1, 1, 0), c3= 1

2
√

2(1−c2)
(1,−1, 0).

Combining these with (6.33) gives Case (2) of Theorem 6.1.
Case (B.1.2): ε = −1. In this case, c1, c2, c3 ∈ C

3
2, we may choose

(6.36) c1= 1
2
√

1−c2
(1, 0, 0), c2 = 1

2
√

2(1−c2)
(0, 1, 1), c3= 1

2
√

2(1−c2)
(0, 1,−1).

Combining these with (6.33) gives Case (2) of Theorem 6.2.
Case (B.2): | c |> 1. Substituting (6.16), (6.31) and the third equation of (6.32)
into (6.17), we find that the immersion is congruent to
(6.37)

L(s, t) = (c2 sin(
√

c2 − 1t)+c3 cos(
√

c2 − 1t))

√
2c2eis

| cos(cs) |+c1ε(−2i+2 tan(cs)),

where c1, c2 and c3 are constant vectors in C3
1 or C3

2 depending on ε = 1 or −1,
respectively. It follows from (6.37) that the conditions in (6.22) reduce to

〈c1, c1〉 =
−ε

4(c2 − 1)
, 〈c1, c2〉 = 0, 〈c1, ic2〉 = 0,

〈c2, c2〉 =
ε

2(c2 − 1)
, 〈c1, c3〉 = 0, 〈c1, ic3〉 = 0,(6.38)

〈c3, c3〉 =
ε

2(c2 − 1)
, 〈c2, c3〉 = 0, 〈c2, ic3〉 = 0.
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Case (B.2.1): ε = 1. In this case, c1, c2, c3 ∈ C3
1, we may choose

(6.39)
c1 =

1
2
√

c2 − 1
(1, 0, 0), c2 =

1√
2(c2 − 1)

(0, 1, 0),

c3 =
1√

2(c2 − 1)
(0, 0, 1).

Combining these with (6.37), we obtain Case (3) of Theorem 6.1.
Case (B.2.2): ε = −1. In this case, c1, c2, c3 ∈ C3

2, we may choose

(6.40)
c1 =

1
2
√

c2 − 1
(0, 0, 1), c2 =

1√
2(c2 − 1)

(1, 0, 0),

c3 =
1√

2(c2 − 1)
(0, 1, 0).

Combining these with (6.37), we obtain Case (3) of Theorem 6.2.
Case (B.3): | c |= 1. Substituting (6.16), (6.31) and the second equation of (6.32)
into (6.17), we find that the immersion is congruent to

L(x, y) = (c2t + c3)
√

2eis

| cos s | + c1ε(−2i + 2 tans),(6.41)

where c1, c2 and c3 are constant vectors in C
3
1 or C

3
2 depending on ε = 1 or −1,

respectively. From (6.41) and the third condition of (6.22), we find that

〈c2, c2〉 = ε/2.(6.42)

Combining this with (6.41), we find the condition 〈L, L〉 = ε does not hold. There-
fore this case is impossible. This completes the proof of Theorem 6.1 and Theorem
6.2.
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