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N-TIMES INTEGRATED C-SEMIGROUPS AND
THE ABSTRACT CAUCHY PROBLEM

Y.-C. Li and S.-Y. Shaw

Abstract. This paper is concerned with generation theorems for expo-
nentially equicontinuous n-times integrated C-semigroups of linear op-
erators on a sequentially complete locally convex space (SCLCS). The
generator of a nondegenerate n-times integrated C-semigroup is charac-
terized. The proofs will base on a SCLCS-version of the Widder-Arendt
theorem about the Laplace transforms of Lipschitz continuous functions,
and on some properties of a C-pseudoresolvent. We also discuss the
existence and uniqueness of solutions of the abstract Cauchy problem:
u′ = Au + f, u(0) = x, for x ∈ C(D(An+1)) and suitable function f .

1. Introduction

The classical theory of (C0)-semigroups of operators is a powerful method
in studying the first order Cauchy problem: u′(t) = Au(t), t > 0;u(0) = x ∈
D(A), where A is a closed linear operator satisfying certain conditions and
having dense domain (see [8], [10], [22]). To deal with the Cauchy problem
with an A satisfying weaker conditions or having nondense domain, recently
two kinds of generalizations of (C0)-semigroups have been developed by some
authors.

The first kind is the so-called C-semigroups. A C-semigroup is a strongly
continuous family {S(t); t ≥ 0} of bounded linear operators satisfying S(0) =
C, a bounded injective operator, and S(s + t)C = S(s)S(t)(s, t ≥ 0). It was
studied first by Da Prato [2] and later by Davies and Pang [3] for the case that
C has dense range, and it was further generalized by Miyadera and Tanaka
([17], [18], [26], [27], [28]), and deLaubenfels ([5], [7]) for the case that the
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domain D(A) of A may not be dense. See also [25] for representation formulas
of C-semigroups.

The other kind of generalization is the so-called n-times integrated semi-
groups. A 0-times integrated semigroup is just a (C0)-semigroup. When n ≥ 1,
an n-times integrated semigroup is defined as the special case: C = I of our
Definition 1.1, to be given below. This generalized semigroup was introduced
by Arendt [1], and further developed by Kellerman and Hieber [11], Neubran-
der ([20], [21]), Tanaka and Miyadera ([27], [28]), and deLaubenfels [4]. Fur-
ther extension to fractionally integrated semigroups were carried out by Hieber
[9], and Miyadera, Okubo and Tanaka [19].

Both these theories are established in the setting of a Banach space, and
neither of them completely covers the other. Moreover, two different ap-
proaches have been used; namely, the proof for C-semigroups, as an extension
of Hille and Yosida’s treatment for (C0)-semigroups, is of operator theoretical
nature, and Arendt’s treatment for n-times integrated semigroups makes use
of an integrated version of Widder’s theorem on Laplace transform of Banach-
space-valued functions.

This paper aims to study a natural generalization of the above two no-
tions to a wider class of operator families, called exponentially equicontinuous
n-times integrated C-semigroups. The ground space will be a sequentially
complete locally convex space. The result in particular provides a unified
treatment for both C-semigroups and integrated semigroups, and extends and
improves many existing results.

To begin with, let X be a sequentially complete locally convex space, and
let L(X) denote the space of all continuous linear operators on X.

Definition 1.1. Let n ≥ 1 and C ∈ L(X). A strongly continuous family
{S(t); t ≥ 0} ⊂ L(X) is called an n-times integrated C-semigroup on X if it
satisfies:

(1.1) S(t)C = CS(t) for t ≥ 0 and S(0) = 0;

(1.2) S(t)S(s)x = 1
(n−1)!(

∫ s+t
0 − ∫ s

0 −
∫ t
0)(s+ t−r)n−1S(r)Cxdr for x ∈ X and

t, s ≥ 0.

S(·) is said to be nondegenerate if

(1.3) S(t)x = 0 for all t > 0 implies x = 0.

Finally, S(·) is called exponentially equicontinuous if

(1.4) there is w ∈ R such that {e−wtS(t); t ≥ 0} is equicontinuous.

A 0-times integrated C-semigroup is just a C-semigroup.
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In Section 4, relations between an exponentially equicontinuous integrated
C-semigroup and its Laplace transforms will be discussed. Sections 5 and
6 will concentrate on the generation of nondegenerate n-times integrated C-
semigroups. Their generators will be defined and characterized. As will be seen
in Section 8, for each n ≥ 1 there exists an n-times integrated C-semigroup
with C 6= I such that its generator does not generate a (n−1)-times integrated
C-semigroup. Section 7 will devote to the associated abstract Cauchy problem:
u′ = Au + f, u(0) = x.

The proofs of the generation theorems (Theorems 4.2 and 6.2) will base
on a version of the Widder-Arendt theorem, for functions with values in a
sequentially complete locally convex space, and also on some properties of
C-pseudoresolvents. For this sake, these two subjects will be discussed in Sec-
tions 2 and 3 first. They also serve as tools in establishing a parallel theory
of exponentially equicontinuous n-times integrated C-cosine functions ([13],
[14]). However, this method does not apply to those n-times integrated C-
semigroups which are not exponentially equicontinuous, because their Laplace
transforms can not be defined. In general, integrated C-semigroups are not
necessarily exponentially bounded (see e.g. [7], [9]). In [12], generators of non-
exponentially bounded, fractionally integrated C-semigroups are characterized
in terms of existence and uniqueness of solutions of the abstract Cauchy prob-
lem: u′ = Au+f, u(0) = x for suitable initial value x ∈ X and function f . On
the other hand, it is known that every n-times integrated C-semigroup of her-
mitian operators on a Banach space is exponentially bounded. This and some
other interesting properties of n-times integrated C-semigroups of hermitian
and positive operators can be found in [16].

2. The Widder-Arendt Theorem in LCS

In 1934 Widder [30] proved that a function r : (0,∞) → R is the Laplace
transform (i.e. r(λ) =

∫∞
0 e−λtf(t)dt, λ > 0) of a bounded function f ∈

L∞(0,∞) if and only if it satisfies

sup{|λn+1r(n)(λ)/n!|;λ > 0, n ≥ 0} < ∞.(2.1)

When R is replaced by a Banach space X, Arendt [1] proved that the above
Widder’s theorem holds if and only if X has the Radon-Nikodym property.

He showd that when X is a general Banach space what condition (2.1)
characterizes is a larger class of functions as described in the following inte-
grated version of Widder’s theorem. For our purpose we extend the result of
Arendt to sequentially complete locally convex spaces.

From now on X will denote such a space, and S(X) will denote the set of
all continuous seminorms on X.
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Theorem 2.1. Let r : (0,∞) → X be a function. The following assertions
are equivalent.

(i) r is infinitely differentiable and

Mp := sup{p(λn+1r(n)(λ))/n!;λ > 0, n = 0, 1, · · ·} < ∞ (p ∈ S(X)).(2.2)

(ii) There exists a continuous function g : [0,∞) → X satisfying g(0) = 0
and

Np := sup{p(g(t + τ)− g(t))/τ ; t ≥ 0, τ > 0} < ∞ (p ∈ (X))(2.3)

such that

r(λ) =
∫ ∞

0
λe−λtg(t)dt (λ > 0).(2.4)

Moreover, we have Mp = Np for all p ∈ S(X).

Proof. We shall only prove the theorem for the case that X is a complex
vector space; the real case can be deduced from the complex case by complex-
ification arguments. Assume that (i) holds. Then it is clear that r has an
analytic continuation r(z) on Ω := {z ∈ C; Re(z) > 0}, which can be defined
iteratively by

r(z) :=
∞∑

k=0

(z − λ)k

k!
r(k)(λ) (|λ− z| < λ, λ > 0).

Using (2.2) we can carry out the following estimation for |λ − z| < λ, n =
0, 1, · · ·, and p ∈ S(X)

p((Re z)n+1r(n)(z)/n!) =
(Re z)n+1

n!
p

( ∞∑

k=0

(z − λ)k

k!
r(n+k)(λ)

)

≤
(

Re z

λ

)n+1 ∞∑

k=0

(n + k)!
n!k!

∣∣∣∣
z − λ

λ

∣∣∣∣
k

·p
(
λn+k+1r(n+k)(λ)/(n + k)!

)

≤ Mp

(
Re z

λ

)n+1 ∞∑

k=0

(
n + k

k

) ∣∣∣∣
z − λ

λ

∣∣∣∣
k

= Mp

(
Re z

λ− |z − λ|
)n+1

.

Since Re z/(λ− |z − λ) → 1 as λ →∞ for each z ∈ Ω, we have
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sup{p((Re z)n+1r(n)(z))/n!; z ∈ Ω, n = 0, 1, · · ·} = Mp.(2.5)

In particular, the function r(z), z ∈ Ω, is bounded on the half plane
{z; Re z ≥ λ} for every λ > 0. Therefore we can define a function h :
[0,∞) → X by

h(t) :=
1

2πi

∫ λ+i∞

λ−i∞
etzz−2r(z)dz (t ≥ 0, λ > 0),(2.6)

the integral being well-defined and independent of λ > 0.
For each x∗ ∈ X∗, the classical Widder’s theorem implies that there is a

function f(·; x∗) ∈ L∞[0,∞) with ‖f(·; x∗)‖∞ = sup{|λn+1〈r(n)(λ), x∗〉/n!|;λ >
0, n = 0, 1, · · ·} such that

〈r(z), x∗〉 =
∫ ∞

0
e−ztf(t; x∗)dt

= z2
∫ ∞

0
e−zt

∫ t

0

∫ u

0
f(v; x∗)dvdudt, z ∈ Ω.

(2.7)

By the inversion of Laplace transform and (2.6) we have that

〈h(t), x∗〉 =
∫ t

0

∫ u

0
f(v; x∗)dvdudt for all x∗ ∈ X∗ and t ≥ 0.(2.8)

Next, we prove that lim
τ→0

h(t+τ)−h(t)
τ exists uniformly for t ≥ 0. Let V be

any absolutely convex open neighborhood of 0, p be the Minkowski functional
of V , and let V 0 := {x∗ ∈ X∗; |〈x, x∗〉| ≤ 1 for all x ∈ V }. We shall show that
h(t+τ)−h(t)

τ − h(t+s)−h(t)
s ∈ V for all t ≥ 0 if τ and s are sufficiently srmall, for

then the sequential completeness of X will ensure the uniform convergence of
τ−1(h(t + τ)− h(t)) as τ → 0.

Since p is the Minkowski functional of V , (2.2) implies that {λn+1r(n)(λ)/n!;
λ > 0, n = 0, 1, · · ·} ⊂ (Mp + ε)V for every ε > 0. Thus, if x∗ ∈ V 0, then
‖f(· ; x∗)‖∞ ≤ Mp + ε for every ε > 0 and hence ‖f(· ; x∗)‖∞ ≤ Mp. If
|τ |, |s| < 1/2Mp, then we have

∣∣∣∣
〈

h(t + τ)− h(t)
τ

− h(t + s)− h(t)
s

, x∗
〉∣∣∣∣

=
∣∣∣∣
1
τ

∫ t+τ

t

∫ u

0
f(v;x∗)dvdu− 1

s

∫ t+s

t

∫ u

0
f(v;x∗)dvdu

∣∣∣∣

=
∣∣∣∣
∫ 1

0

∫ t+τw

t+sw
f(v;x∗)dvdw

∣∣∣∣ ≤ ‖f(· ; x∗)‖∞ · |τ − s|
2

<
1
2
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for all t ≥ 0 and x∗ ∈ V 0, and it follows from the bipolar theorem (cf. [29, p.
162]) that h(t+τ)−h(t)

τ − h(t+s)−h(t)
s ∈ 1

2V ⊂ V .
Thus we can define a function g : [0,∞) → X by

g(t) := lim
s→0

h(t + s)− h(t)
s

, t ≥ 0.

For x∗ ∈ V 0 we have, by (2.8), that 〈g(t), x∗〉 = d
dt〈h(t), x∗〉 =

∫ t
0 f(s; x∗)ds

and

|〈g(t + τ)− g(t), x∗〉 =
∣∣∣∣
∫ t+τ

0
f(s; x∗)ds

∣∣∣∣ ≤ τ‖f(· ; x∗)‖∞ ≤ τMp.

It follows that g(0) = 0, and {g(t+τ)−g(t)
τ ; t ≥ 0, τ > 0} ⊂ MpV̄ , by the bipolar

theorem. Therefore we have that p(g(t + τ) − g(t))/τ ≤ Mp for all t ≥ 0
and τ > 0 (cf. [29, Theorem 12.3]), i.e. Np ≤ Mp. This and the sequential
completeness of X imply that the integral

∫∞
0 λe−λtg(t)dt exists for all λ > 0.

Finally, from (2.7), (2.8) we see that

〈r(λ), x∗〉 =
∫ ∞

0
λ2e−λt〈h(t), x∗〉dt

=
∫ ∞

0
λe−λt d

dt
〈h(t), x∗〉dt

=
∫ ∞

0
λe−λt〈g(t), x∗〉dt =

〈∫ ∞

0
λe−λtg(t)dt, x∗

〉

for all x∗ ∈ X∗ and λ > 0. Hence (2.4) holds and we have proved the assertion
(ii).

The converse implication is proved as easily as in the numerical case.

Theorem 2.2. Let R : (0,∞) → L(X) be a function. The following
assertions are equivalent.

(i) R(·)x is infinitely differentiable for every x ∈ X and the set {λn+1R(n)

(λ)/n!;λ > 0, n = 0, 1, · · ·} is equicontinuous.
(ii) There exists a function G : [0,∞) → L(X) satisfying

(a) G(0) = 0 and G(·)x is strongly continuous for every x ∈ X;
(b) {[G(t + τ)−G(t)]/τ ; t ≥ 0, τ > 0} is equicontinuous;
(c) R(λ)x =

∫∞
0 λe−λtG(t)xdt for all λ > 0 and x ∈ X.

Proof. (i) ⇒ (ii). By the assumption, for any p ∈ S(X) there exists
a q ∈ S(X) such that sup{p(λn+1R(n)(λ)x)/n!; λ > 0, n = 0, 1, · · ·} ≤ q(x)
for all x ∈ X. By Theorem 2.1, for each x ∈ X there exists a continuous
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function G(· · · ;x) : [0,∞) → X satisfying G(0;x) = 0, sup{p([G(t + τ ; x) −
G(t; x)]/τ); t ≥ 0, τ > 0} ≤ q(x), and

R(λ)x =
∫ ∞

0
λe−λtG(t;x)dt (λ > 0).

Since G(· ;x) is continuous, the uniqueness theorem of Laplace transform im-
plies that the map G(t) : x → G(t; x) is a linear operator on X. Moreover,

p(G(t + τ)x−G(t)x)/τ ≤ q(x) for all t ≥ 0, τ > 0 and x ∈ X

This shows that G(t) ∈ L(X) for all t ≥ 0 and that G(·) satisfies (a), (b), and
(c). That is, (ii) holds. The converse implication is proved as easily as in the
numerical case.

3. C-pseudoresolvents

In this section we first investigate some properties of a C-pseudoresolvent,
which is a generalization of pseudoresolvent (cf. [32]).

Definition 3.1. Let X be a locally convex space and let C ∈ L(X). A
function R(·) defined on a subset D(R) of the complex plane with values in
L(X) is called a C-pseudoresolvent if it commutes with C and satisfies the
equation:

(λ− µ)R(µ)R(λ) = R(µ)C −R(λ)C (λ, µ ∈ D(R)).(3.1)

Moreover, R(·) is said to be nodegenerate if R(λ)x = 0 for all except one
λ ∈ D(R) implies x = 0.

From (3.1) one sees that R(·) is a commutative family, and that if R(·)
is non-degenerate then C is injective. The converse is not true in general as

shown by the I-pseudoresolvent R(λ) :=

[
(λ− 1)−1 0

0 0

]
, λ > 1.

The following lemmas and theorem generalize the correspoding results [32,
pp. 215-216] on pseudoresolvents.

Lemma 3.2. Suppose C is an injection. Then the null space N(R(λ))
and the preimage C−1[R(R(λ))] of the range R(R(λ)) of R(λ) under C are
independent of λ in D(R).

Proof. If x ∈ N(R(λ)), then by (3.1) CR(µ)x = (λ − µ)R(µ)R(λ)x +
CR(λ)x = 0. Since C is injective, we have R(µ)x = 0 for all µ ∈ D(R). Hence
N(R(λ)) = N(R(µ)) for all λ and µ.
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If x ∈ C−1[R(R(λ))], then Cx = R(λ)y for some y ∈ X. Let z := y −
(λ − µ)x. Then C[R(µ)z − R(λ)y] = C[R(µ)y − R(λ)y] − (λ − µ)CR(µ)x =
(λ−µ)R(µ)R(λ)y−(λ−µ)R(µ)Cx = 0. Since C is injective, we have R(λ)y =
R(µ)z and hence x ∈ C−1[R(R(µ))].

Lemma 3.3. Suppose C is an injection. Then N(C−λR(λ)) and C−1[R(C−
λR(λ))] are independent of λ in D(R).

Proof. For any λ, µ ∈ D(R) we have, by (3.1), that

(C − (λ− µ)R(λ))(C − µR(µ))

= C2 − µCR(µ)− (λ− µ)R(λ)C + µ(λ− µ)R(λ)R(µ)

= C2 − µCR(µ)− (λ− µ)R(λ)C + µ[CR(µ)− CR(λ)]

= C(C − λR(λ)).

(3.2)

Since C is injective, we have N(C − µR(µ)) ⊂ N(C − λR(λ)) and hence also
the inverse inclusion.

If x ∈ C−1[R(C − λR(λ))], then Cx = (C − λR(λ))y for some y ∈ X. Let
z := µy + (λ− µ)x. Using (3.2) we have

C[(C − µR(µ)z − λCx]

= (λ− µ)(C − µR(µ))Cx + µC(C − µR(µ))y − λC2x

= (λ− µ)(C − µR(µ))(C − λR(λ))y + µC(C − µR(µ))y − λC2x

= λ(C − µR(µ))Cy − λ(λ− µ)R(λ)(C − µR(µ))y − λC2x

= λ(C − µR(µ))Cy + λC(C − λR(λ))y − λC(C − µR(µ))y − λC2x

= 0,

which implies that Cx = λ−1(C−µR(µ))z ∈ R(C−µR(µ)). Hence C−1[R(C−
λR(λ))] = C−1[R(C − µR(µ))] for any λ, µ ∈ D(R).

Theorem 3.4. Let R(·) be a C-pseudoresolvent with C injective.

(i) There exists some linear operator B such that λ−B is injective and

R(R(λ)) ⊂ D(B) and

R(λ)(λ−B) ⊂ (λ−B)R(λ) = C for all λ ∈ D(R)
(3.3)

if and only if N(R(λ)) = {0}.
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(ii) The largest operator which satisfies (3.3) is the closed operator A
defined by





D(A) := C−1[R(R(λ))] = {x ∈ X; Cx ∈ R(R(λ))};
Ax := (λ−R(λ)−1C)x for x ∈ D(A),

(3.4)

which is independent of λ ∈ D(R).
(iii) If B satisfies (3.3), then C−1BC = A, where D(C−1BC) := {x ∈

X;Cx ∈ D(B) and BCx ∈ R(C)}. In particular, C−1AC = A.

Proof. The necessity part of (i) is clear. For the sufficiency, suppose
N(R(λ)) = {0}. Lemma 3.2 has shown that the definition of D(A) is inde-
pendent of λ. Since R(λ) and R(µ) are injective and

R(λ)R(µ)[λ−R(λ)−1C − µ + R(µ)−1C]

= (λ− µ)R(λ)R(µ)−R(µ)C + R(λ)C = 0,

we have λ − R(λ)−1C = µ − R(µ)−1C for any λ, µ ∈ D(R). Hence the
operator A in (3.4) is a well-defined closed operator. If x ∈ D(A), then
(λ−A)x = R(λ)−1Cx and so R(λ)(λ−A)x = Cx. Since R(λ) commutes with
C, for any x ∈ X we have R(λ)x ∈ D(A) and

(λ−A)R(λ)x = R(λ)−1CR(λ)x = R(λ)−1R(λ)Cx = Cx.

Hence λ−A is injective and R(R(λ)) ⊂ D(A) and R(λ)(λ−A) ⊂ (λ−A)R(λ) =
C. Since (3.3) implies that D(B) ⊂ C−1[R(R(λ))] = D(A), A is the largest
operator which satisfies (3.3). This proves (i) and (ii).

To prove (iii), let x ∈ D(A). By the definition of the domain of A we have
Cx = R(λ)y for some y ∈ X and λ ∈ D(R). By (3.3) we have Cx ∈ D(B)
and

(λ−B)Cx = (λ−B)R(λ)y = Cy = (λ−A)R(λ)y

= (λ−A)Cx

= λ−A)[R(λ)(λ−A)x]

= [(λ−A)R(λ)](λ−A)x

= C(λ−A)x,

hence Cx ∈ D(B) and BCx = CAx for x ∈ D(A). This shows A ⊂ C−1BC.
If x ∈ D(C−1BC), then Cx ∈ D(B) and BCx ∈ R(C) so that by the

commutativity of C and R(λ) we have

R(λ)(λ− C−1BC)x = C−1R(λ)(λC −BC)x = C−1C2x = Cx for λ ∈ D(R).
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Hence x ∈ D(A) and Ax = (λ−R(λ)−1C)x = C−1BCx. This proves (iii).

4. Laplace Transforms of N-times Integrated C-semigroups

Let X be a sequentially complete locally convex space, let C ∈ L(X), and
let S : [0,∞) → L(X) be strongly continuous such that {e−wtS(t); t ≤ 0}
is equicontinuous for some w. For n = 0, 1, · · ·, let Rn : (w,∞) → L(X)
be defined by Rn(λ)x :=

∫∞
0 λne−λtS(t)xdt(x ∈ X, λ > w). In Definition

1.1 we have defined n-times integrated C-semigroups. The following lemma
characterizes the integrated C-semigroup property (i.e. (1.2)) in terms of
Rn(·) being a C-pseudoresolvent. The proof is almost the same with those in
Proposition 2.2 and Theorem 3.1 of [1], where n-times integrated I-semigroups
on Banach spaces have been considered.

Lemma 4.1. R0(·) (resp. Rn(·), n ≥ 1), is a C-pseudoresolvent if and
only if S(·) satisfies S(t)S(s) = S(t + s)C (resp. (1.2)), t, s ≥ 0. Thus, when
S(0) = C or 0 (depending on n = 0 or n ≥ 1), S(·) is an n-times integrated
C-semigroup if and only if Rn(·) is a C-pseudoresolvent.

Conversely, for a given function R(·) : (w,∞) → L(X), the next theo-
rem describes when λ−n−1R is the Laplace transform of some (n + 1)-times
integrated C-semigroup.

Theorem 4.2. Let C ∈ L(X). The following assertions are equivalent.

(i) R(·) is a C-pseudoresolvent and

{(λ− w)k+1

(
d

dλ

)k

(R(λ)/λn)/k!; λ > w, k = 0, 1, · · ·}
is equicontinuous.

(4.1)

(ii) There exists an (n + 1)-times integrated C-semigroup S(·) such that
R(λ) =

∫∞
0 λn+1e−λtS(t)dt(λ > w) and such that

{e−wt(S(t + τ)− S(t))/τ ; t ≥ 0, 0 < τ ≤ 1} is equicontinuous.(4.2)

Proof. (i) ⇒ (ii). Let R̃(λ) := (λ + w)−nR(λ + w), λ > 0, and replace the
R(·) in Theorem 2.2 by R̃(·). Then it follows that there is a continuous function
G : [0,∞) → L(X) such that G(0) = 0, {[G(t + τ) −G(t)]/τ ; t ≥ 0, τ > 0} is
equicontinuous, and R̃(λ) =

∫∞
0 λe−λtG(t)dt, λ > 0. Hence

R(λ) = λn(λ− w)
∫ ∞

0
e−(λ−w)tG(t)dt = λn+1

∫ ∞

0
e−λtS(t)dt (λ > w),
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where S(t) := ewtG(t)− w
∫ t
0 ewsG(s)ds, t ≥ 0. Since R(·) is assumed to be a

C-pseudoresolvent and S(0) = 0, Lemma 4.1 tells that S(·) is an (n+1)-times
integrated C-semigroup.

For any continuous seminorm p ∈ S(X), let q ∈ S(X) be such that p([G(t+
τ)−G(t)]x) ≤ τq(x) for all τ > 0, t ≥ 0, and x ∈ X. If τ ∈ (0, 1], then

p(e−wt[S(t + τ)− S(t)]x)

≤ p[(ewτ − 1)G(t + τ)x− w

∫ τ

0
ewsG(t + s)xds]

+p([G(t + τ)−G(t)]x)

≤ p(w
∫ τ

0
ews[G(t + τ)−G(t + s)]xds) + τq(x)

≤ [w
∫ τ

0
ews(τ − s)ds + τ ]q(x)

≤ [τ(ewτ − 1) + τ ]q(x) ≤ τewq(x)

for all x ∈ X, which shows (4.2).
(ii) ⇒ (i). Since λ−n−1R(λ) is the Laplace transform of the (n + 1) times

integrated semigroup S(·), Lemma 4.1 asserts that R(·) is a C-pseudoresolvent.
To show (4.1) we shall apply Theorem 2.2 to the function

R̃(λ) = (λ + w)−nR(λ + w)

= (λ + w)
∫ ∞

0
e−(λ+w)tS(t)dt

= λ

∫ ∞

0
e−λt[e−wtS(t) + w

∫ t

0
e−wsS(s)ds]dt.

Let G(t) := e−wtS(t) + w
∫ t
0 e−wsS(s)ds, t ≥ 0. Then G(0) = S(0) = 0. Also,

by an estimation similar to the above one can deduce from (4.2) that the set
{[G(t + τ)−G(t)]/τ ; t ≥ 0, 0 < τ ≤ 1} is equicontinuous. Since we can write

[G(t + τ)−G(t)]/τ =
1
m

m∑

k=1

[
G

(
t + k

τ

m

)
−G

(
t + (k − 1)

τ

m

)]
/

(
τ

m

)

for any τ > 0 and m = 1, 2, · · ·, it is clear that {[G(t+τ)−G(t)]/τ ; τ > 0, t ≥ 0}
is equicontinuous. Hence one can deduce from Theorem 2.2 that (4.1) holds.
This completes the proof.
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5. Subgenerators and Generators

In this and the next sections we are concerned with the generation of non-
degenerate n-times integrated C-semigroups. In this case C must be injective
as easily seen from (1.2). (But this is not a sufficiency for nondegeneracy
except when n = 0.)

First we define subgenerators of an n-times integrated C-semigroup S(·)
to be those closed operators B which satisfy the following two conditions:

S(t)x ∈ D(B) and BS(t)x = S(t)Bx for all x ∈ D(B) and t ≥ 0;(5.1)

∫ t

0
S(s)xds ∈ D(B) and

B

∫ t

0
S(s)xds = S(t)x− tnCx/n! for x ∈ X, t ≥ 0.

(5.2)

Let G be the set of all subgenerators of S(·). The following lemma shows
that when S(·) is nodegenerate G is nonempty and is invariant under the map:
B → C−1BC.

Lemma 5.1. Let S(·) be a nondegenerate n-times integrated C-semigroup.

(i) The operator A0, defined by





D(A0) :=

{
m∑

k=1

∫ tk

0
S(s)xkds; xk ∈ X, tk ≥ 0, k = 1, · · · , m,m ≥ 1

}

A0

[
m∑

k=1

∫ tk

0
S(s)xkds

]
:=

m∑

k=1

[S(tk)xk − tnkCxk/n!] (xk ∈ X, tk ≥ 0),

is closable, and its closure A0 is the smallest subgenerator of S(·).
(ii) C−1G ⊂ G.

Proof. (i) Let T (t) :=
∫ t
0 S(r)dr. To show that A0 is well-defined it sufflces

to show that
m∑

k=1
T (tk)xk = 0 implies

m∑
k=1

[S(tk)xk − tnkCxk/n!] = 0.

By straightforward computation involving integration of (1.2) with respect
to t and s, one can see that T (·) is a nondegenerate (n + 1)-times integrated
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C-semigroup. Hence we have for all t ≥ 0

0 = T (t)
m∑

k=1

T (tk)xk

=
1
n!

m∑

k=1

{∫ tk+t

t
(tk + t− r)nT (r)dr −

∫ tk

0
(tk + t− r)nT (r)dr

}
Cxk

=
1

(n + 1)!

m∑

k=1

{∫ tk+t

t
(tk + t− r)n+1S(r)dr + tn+1

k T (t)−
∫ tk

0
(tk + t− r)n+1S(r)dr + tn+1T (tk)

}
Cxk

=
1

(n = 1)!

m∑

k=1

{∫ tk+t

t
(tk + t− r)n+1S(r)dr + tn+1

k T (t)−
∫ tk

0
(tk + t− r)n+1S(r)dr

}
Cxk + 0,

and so its second derivative S(t)
m∑

k=1
[S(tk)xk − tnkCxk/n!] also vanishes for all

t ≥ 0. Since S(·) is nondegenerate, we have
m∑

k=1
[S(tk)xk − tnkCxk/n!] = 0.

To see that A0 is closable, let {yα} ⊂ D(A0) be a net such that yα → 0
and A0yα → y(∈ X). Then by the definition of A and the commutativity of
T (t) with S(t), we have T (t)y = lim

α
T (t)A0yα = lim

α
A0T (t)yα = lim

α
[S(t)yα −

tnCyα/n!] = 0 and hence y = 0.
By the definition of A0, every B in G is an extension of A0 and hence an

extension of A0. Next, we show that A0 is itself a subgenerator and accordingly
is the smallest subgenerator. Let x ∈ D(A0) and let {xα} ⊂ D(A0) be a net
such that xα → x and A0xα → A0x. Then the definition of A0 implies that
S(t)xα ∈ D(A0) ⊂ D(A0) and A0S(t)xα = A0S(t)xα = S(t)A0xα for all α.

Since S(t)xα → S(t)x and A0S(t)xα = S(t)Axα → S(t)A0x, the closedness
of A0 implies that S(t)x ∈ D(A0) and A0S(t)x = S(t)A0x, i.e. (5.1) holds for
B = A0. Since (5.2) holds for B = A0 (by the definition of A0), it certainly
holds for B = A0.

(ii) Let B ∈ G and B1 = C−1BC. If x ∈ D(B1), then Cx ∈ D(B) and
BCx ∈ R(C). Using (5.1) we have CS(t)x = S(t)Cx ∈ D(B) and BCS(t)x =
BS(t)Cx = S(t)BCx = S(t)C−1CBCx = CS(t)B1x ∈ R(C). This means
that S(t)x ∈ D(B1) and B1S(t)x = C−1BCS(t)x = S(t)B1x, that is, (5.1)
holds with B replaced by B1. Next, by (5.2) we have that C

∫ t
0 S(s)xds ∈

D(B) and BC
∫ t
0 S(s)xds = B

∫ t
0 S(s)Cxds = S(t)Cx−tnC2x/n! = C[S(t)x−

tnx/n!] ∈ R(C) for all x ∈ X. Hence
∫ t
0 S(s)xds ∈ D(B1) and B1

∫ t
0 S(s)xds =

S(t)x − tnCx/n! for all x ∈ X, i.e. (5.2) also holds for B1. Finally, we show

87



88 Y.-C. Li and S.-Y. Shaw

that B1 is closed. Indeed, let {xα} ⊂ D(B1) be a net such that xα → x
and B1xα → y(∈ X). Then Cxα → Cx and BCxα = CBxα → Cy. The
closedness of B implies that Cx ∈ D(B) and BCx = Cy so that x ∈ D(B1)
and B1x = y. Hence B1 is a subgenerator of S(·).

The next lemma gives a characterization of subgenerators of an exponen-
tially equicontinuous n-times integrated C-semigroup in terms of its Laplace
transforms.

Lemma 5.2. Let S : [0,∞) → L(X) be a strongly continuous function
such that {e−wtS(t); t ≥ 0} is equicontinuous for some w ≥ 0, and let C ∈
L(X).

(i) A closed linear operator B satisfies conditions (5.1) and (5.2) if and
only if the function Rn(λ) :=

∫∞
0 λne−λtS(t)dt(λ > w) satisfies:

R(Rn(λ)) ⊂ D(B) and

Rn(λ)(λ−B) ⊂ (λ−B)Rn(λ) = C for λ > w.
(5.3)

(ii) If S(·) commutes with C, and if there is a closed operator B satisfying
(5.1) and (5.2) (or equivalently (5.3)), then S(·) is an n-times integrated C-
semigroup with B a subgenerator.

Proof. (i) Suppose (5.1) and (5.2) are satisfied. Then for all x ∈ X we
have, on the one hand,

λn+1
∫ ∞

0
e−λtB

∫ t

0
S(s)xdsdt = λn+1

∫ ∞

0
e−λt[s(t)− tnC/n!]xdt

= λRn(λ)x− Cx,

and on the other hand,

λn+1
∫ ∞

0
e−λt

∫ t

0
S(s)xdsdt = λn

∫ ∞

0
e−λtS(t)xdt = Rn(λ)x.

Since B is closed, we must have that Rn(λ)x ∈ D(B) and BRn(λ)x =
λRn(λ)x − Cx for all x ∈ X. When x ∈ D(B), (5.1) and the closedness
of B imply that BRn(λ)x = Rn(λ)Bx. Hence (5.3) holds.

To prove the sufficiency we shall use the Post inversion formula, which says
that if L(f, λ) =

∫∞
0 e−λtf(t)dt, with f an exponentially bounded, continuous

function on [0,∞), then lim
m→∞

(−1)m

m! λm+1Dmλ(f, λ)
∣∣∣
λ=m/t

= f(x) uniformly on

bounded subsets of [0,∞). (see [31, Chapt. 7] or [24, p. 250] for the proof).
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Dividing (5.3) by λn and λn+1 we have

λ

∫ ∞

0
e−λt[S(t)− tnC/n!]xdt =





B

∫ ∞

0
e−λtS(t)xdt, x ∈ X;

∫ ∞

0
e−λtS(t)Bxdt, x ∈ D(B),

(5.4)

and

∫ ∞

0
e−λt[S(t)− tnC/n!]xdt =





B

∫ ∞

0
e−λt

∫ t

0
S(s)xdsdt, x ∈ X;

∫ ∞

0
e−λt

∫ t

0
S(s)Bxdsdt, x ∈ D(B).

(5.5)

Since B is closed, differentiating the two terms on the right hand side of (5.4)
twice shows that BDm

∫∞
0 e−λtS(t)xdt = Dm

∫∞
0 e−λtS(t)Bxdt for x ∈ D(B).

By the Post inversion formula we see that
{

(−1)m

m! λm+1Dm
∫∞
0 e−λtS(t)xdt|λ=m/t

}

converges weakly to S(t)x and
{

(−1)m

m! λm+1Dm
∫∞
0 e−λtS(t)xdt|λ=m/t

}
con-

verges weakly to S(t)Bx. Again by the weak closedness of B one can assert
that S(t)x ∈ D(B) and BS(t)x = S(t)Bx for x ∈ D(B), i.e. (5.1) holds.
Similarly, m-times differentiation of two sides of the identity (5.5) followed by
invoking the Post inversion formula and the closedness of B will show (5.2).

(ii) will follow from Lemma 4.1 once we show that Rn(·) is a C-
pseudoresolvent. Indeed, the commutativity of S(·) and C implies that of
Rn(·) and C. Then by (5.3) we have

Rn(µ)C = Rn(µ)(λ−B)Rn(λ)

= (λ− µ)Rn(µ)Rn(λ) + Rn(µ)(µ−B)Rn(λ)

= (λ− µ)Rn(µ)Rn(λ) + Rn(λ)C

for all λ, µ > w.
If S(·) is a nodegenerate n-times integrated C-semigroup and if it is ex-

ponentially equicontinuous, then it follows from Lemma 4.1 and the uniqueness
theorem of Laplace transform that Rn(·) is a nondegenerate C-pseudoresolvent.
Thus one can deduce the folloing theorem as a consequence of Lemmas 5.1,
5.2, and Theorem 3.4.

Theorem 5.3. Let S(·) be an exponentially equicontinuous, nondegenerate
n-times integrated C-semigroup and let A be as defined in Lemma 5.1. Then

(i) A0 and A := C−1A0C are respectively the smallest and the largest sub-
generators, and a0 ⊂ B ⊂ C−1BC = A for any subgenerator B. In particular,
C−1AC = A.
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(ii) The above defined operator A is identical to the operator defined by




D(A) := {x ∈ X;Cx ∈ R(Rn(λ))};
Ax := [λ−Rn(λ)−1C]x for x ∈ D(A).

This operator A will be called the generator of S(·).

Since Rn(λ)x =
∫∞
0 λne−λtS(t)xdt =

∫∞
0 λn+1e−λt

∫ t
0 S(s)xdsdt, from

Lemma 4.1 and (ii) of Theorem 5.3 follows the next corollary.

Corollary 5.4. If S(·) is an n-times integrated C-semigroup with genera-
tor A, then the family {T (t) =

∫ t
0 S(s)ds; t ≥ 0} is an (n + 1)-times integrated

C-semigroup with the same generator A.

Remark. However, not every (n+1)-times integrated C-semigroup is the
integral of some n-times integrated C-semigroup. For instance, the weak∗-
Riemman integral of the dual S∗(·) of an n-times integrated C-semigroup S(·)
on a Banach space X is an (n+1)-times integrated C∗-semigroup on the dual
space X∗. It is not the integral of some n-times integrated C∗-semigroup; if it
were, S∗(·) would have to be strongly continuous on X∗, but this is not always
the case.

The next proposition is readily read from Theorem 5.3.

Proposition 5.5. We have the following (5.6)− (5.8):

S(t)x ∈ D(A) and AS(t)x = S(t)Ax for x ∈ D(A) and t ≥ 0;(5.6)

∫ t

0
S(s)xds ∈ D(A) and

A

∫ t

0
S(s)xds = S(t)x− tnCx/n! for x ∈ Xt ≥ 0;

(5.7)

R(Rn(λ)) ⊂ D(A) and

Rn(λ)(λ−A) ⊂ (λ−A)Rn(λ) = C for λ > w.
(5.8)

Corollary 5.6. For all x ∈ X we have S(t)x ∈ D(A), t ≥ 0. If S(·)x is
right-sided differentiable at some t ≥ 0, then S(t)x ∈ D(A) and

d

dt
S(t)x =

{
AS(t)x + tn−1Cx/(n− 1)! if n > 0,
AS(t)x if n = 0.

In particular, this is true for x ∈ D(A).
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Proof. Using (5.7) one has that

S(t)x = lim
h→0+

h−1
∫ t+h

t
S(s)xds ∈ d(A)

and

S(t + h)x− S(t)x
h

= Ah−1
∫ t+h

t
S(s)xds +

(t + h)n − tn

h
Cx/n!,

from which the second assertion follows since A is closed.

When S(·) is a nondegenerate (0-times) C-semigroup, let G and Ai be the
operators defined as follows




D(G) := {x ∈ X;S([0,∞))x ⊂ R(C) and lim
t→0+

t−1[C−1S(t)x− x] exists},
Gx := lim

t→+
t−1[C−1S(t)x− x] for x ∈ D(G);

and 



D(Ai) := {x ∈ X; lim
t→0+

t−1[S(t)x− Cx] ∈ R(C)},
Aix := C−1 lim

t→0+
t−1[S(t)x− Cx] for x ∈ D(Ai).

Ai is called the infinitesimal generator of S(·) (see [28]). Note that this G is a
little bigger than that defined in [3] and [28].

Corollary 5.7. For a nondegenerate C-semigroup we have A = Ai, R(C) ⊂
D(A), and G ∈ G.

Proof. To prove Ai ⊂ A let x ∈ D(Ai). Then by (5.7) and the closedness of
A we have CAix = lim

t→0+
t−1[S(t)x− Cx] = A lim

t→0+

∫ t
0 S(s)xds = ACx. Hence

(i) of Theorem 5.3 implies x ∈ D(C−1AC) = D(A) and Ax = C−1ACx = Aix.
Conversely, let x ∈ D(A). Then by (5.6), (5.7), the closedness of A, and
S(0) = C, we have

lim
t→0+

t−1[S(t)x− Cx] = lim
t→0+

t−1
∫ t

0
S(s)Axds = CAx

so that x ∈ D(Ai) and Aix = Ax. The inclusion R(C) ⊂ D(A) follows from
the first assertion of Corollary 5.6.

Since G ⊂ Ai and Ai(= A) is closed, G is closable and G ⊂ A. To show
that B = G satisfies (5.1), let x ∈ D(G)(⊂ D(A)). Then by Corollaries 5.5
and 5.6 we have that S(t)x ∈ D(A) and lim

h→0+
h−1[C−1S(h)S(t)x − S(t)x] =
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lim
h→0+

h−1[S(t + h)x − S(t)x] =
d

dt
S(t)x = AS(t)x = S(t)Ax = S(t)Gx, that

is, S(t)x ∈ D(G) ⊂ D(G) and GS(t)x = GS(t)x = S(t)Gx. Lastly, we show
that (5.2) is satisfied by B = G so that G is a subgenerator. In fact,

G

∫ t

0
S(s)xds = lim

h→0+
h−1[C−1S(h)− I]

∫ t

0
S(s)xds

= lim
h→0+

h−1

(∫ t+h

t
−

∫ h

0

)
S(s)xds

= S(t)x− Cx.

Remarks. (i) That A = Ai was previously proved by Tanaka and Miyadera
[28] using different argument.

(ii) It follows from R(C) ⊂ D(A) that A is densely defined when C has
dense range. For different proof of this fact see Davies and Pang’s [3]. But, it
is possible that D(A) is dense while R(C) is not. For instance, the operator
C : x → ∫ t

0 x(s)ds is an injective operator on C [0,1] with nondense range.
For the C-semigroup S(·) defined by S(·) ≡ C (cf. [28, P. 102]) we have
A0 = 0|R(C) and G = Ai = A = 0 on C [0,1].

(iii) When n ≥ 1, the inclusion R(C) ⊂ D(A) is in general no longer true.
In fact, there is an once integrated I-semigroup with a nondensely defined
generator (see [1, Example 6.4]).

6. Generation of Nondegenerate Integrated C-semigroups

The generator A of an exponentially equicontinuous, nondegenerate n-
times integrated C-semigroup has been defined as above, we now proceed to
characterize it. Notice that the integral of an exponentially equicontinuous
n-times integrated C-semigroup is an (n + 1)-times integrated C-semigroup
satisfying (4.2). Hence the conclusion of the following proposition holds for
generators of exponentially equicontinuous n-times integrated C-semigroups.

Proposition 6.1. Let A be the generator of a nondegenerate (n+1)-times
integrated C-semigroup S(·) which satisfies (4.2). Then A has the following
properties:

(6.1) λ−A is injective for λ > w;

(6.2) R(C) ⊂ D((λ−A)−m) for λ > w and m ≥ 1;

(6.3) (λ−A)−1C is infinitely differentiable for λ > w and {(λ−w)k+1Dk[λ−n

(λ−A)−1C]/k!; λ > w, k ≥ 0} is equicontinuous;
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(6.4) C−1AC = A.

Proof. Since C is injective, (5.8) implies that λ−A is also injective and (λ−
A)−1C = R(λ) =

∫∞
0 λn+1e−λtS(t)dt. Furthermore, (λ − A)−1C is infinitely

differentiable and R(m)(λ) ∈ L(X) for all λ > w and m ≥ 0. Now (6.3) follows
from Theorem 4.2.

By the closedness of A we can differentiate (5.8) m times to obtain that
R(R(m)(λ)) ⊂ D(A) and (λ − A)R(m)(λ) + mR(m−1)(λ) = 0. Then it follows
by induction that R(R(m)(λ)) ⊂ D(Am+1) and

(λ−A)m+1R(m)(λ) = (−1)mm!(λ−A)R(λ) = (−1)mm!C

for all λ > w and m ≥ 0. Hence we have R(C) ⊂ D((λ − A)−m−1) and
(−1)mm!(λ − A)−m−1C = R(m)(λ) for λ > w and m ≥ 0. This proves (6.2).
Finally, we note that the validity of C−1AC = A has been asserted in Theorem
5.3.

Remark. If A is replaced by any subgenerator B, (5.6)-(5.8) and (6.1)-
(6.3) still hold but (6.4) does not. Instead, we only have that B ⊂ C−1BC.

A complete characterization of generators of nondegenerate integrated C-
semigroups is given by the following

Theorem 6.2. Let C ∈ L(X) be an injective operator and let A be a
closed linear operator. The following are true:

(i) A satisfies condition (6.1)− (6.4) if and only if A generates a nonde-
generate (n + 1)-times integrated C-semigroup S(·) such that

{e−wt[S(t + τ)− S(t)]/τ ; τ(0, 1], t ≥ 0} is equicontinuous.(6.5)

(ii) S(·)x is continuously differentiable on [0,∞) for x ∈ X1 := D(A),
and the family {S1(t) := d

dtS(t)|X1 ; t ≥ 0} of operators on X1 is an exponen-
tially equicontinuous n-times integrated C-semigroup with generator A1, where
C1 := C|X1 and A1 is the part of A in X1, i.e. D(A1) = {x ∈ D(A);Ax ∈ X1}
and A1x = Ax for x ∈ D(A1).

Proof. (i) The sufficiency is Proposition 3. To prove the necessity, let
R(λ) := (λ − A)−1C, λ > w. Then R(R(λ)) ⊂ D(A) and (λ − A)R(λ) = C.
Furthermore, if x ∈ D(A), then by (6.4) we have Cx ∈ D(A) and ACx = CAx
so that R(λ)(λ−A)x = (λ−A)−1C(λ−A)x = Cx. Thus we have

R(R(λ)) ⊂ D(A) and R(λ)(λ−A) ⊂ (λ−A)R(λ) = C for λ > w.(6.6)
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Also, R(λ)C = (λ − A)−1C2 = (λ − A)−1C(λ − A)R(λ) = CR(λ). Hence, as
shown in the proof of (ii) of Lemma 5.2, R(·) is a C-pseudoresolvent. This with
the assumption (6.3) implies that there exists an (n + 1)-times integrated C-
semigroup S(·) such that R(λ) =

∫∞
0 λn+1e−λtS(t)dt and such that {e−wt[S(t+

τ) − S(t)]/τ ; τ ∈ (0, 1], t ≥ 0} is equicontinuous (Theorem 4.2). Since C is
injective, (6.6) shows that R(λ) is injective and so S(·) is nondegenerate. Now
A being a subgenerator of S(·) such that C−1AC = A, it is the generator of
S(·), by Theorem 5.3.

(ii) By Proposition 5.5 we have that S(t)D(A) ⊂ D(A), AS(t)x = S(t)Ax
and S(t)x =

∫ t
0 S(s)Axds + tn+1Cx/(n + 1)! for all x ∈ D(A) and t ≥ 0,

which shows that X1 = D(A) is invariant under S(·), and S(·)x is strongly
differentiable and d

dtS(t)x ∈ X1 when x ∈ D(A). Then (6.5) together with
the sequential completeness of X guarantees that S(·)x is continuously differ-
entiable for all x ∈ X1, S1(t) := d

dtS(t)|X1 ∈ L(X1), and {e−wtS1(t); t ≥ 0} is
equicontinuous.

(6.4) implies that X is invariant under C, and the definition R(λ) =
(λ − A)−1C ensures that X1 is also invariant under R(·). Let C1 := C|X1

and R1(·) = R(·)|X1 . Then as the restriction of the C-pseudoresolvent R(·) to
X1, R1(·) is a C1-pseudoresolvent. Since now R1(λ)x =

∫∞
0 λn+1e−λtS(t)xdt =∫∞

0 λne−λtS1(t)xdt for all x ∈ X1, and since Corollary 5.6 shows that S1(0) =
C for n = 0 and 0 for n > 0, it follows from Lemma 4.1 that S1(·) is an n-times
integrated C1-semigroup on X1.

It remains to show that A is the generator of S1(·). First, let x ∈ D(A1).
Then x ∈ D(A) and A1x = Ax ∈ X1. Then (5.6) implies that S1(t)x =
S(t)x ∈ D(A) and AS1(t)x = AS(t)x = S(t)Ax = S1(t)A1x ∈ X1. Hence
one has S1(t)x ∈ D(A1) and A1S1(t)x = AS1(t)x = S1(t)A1x for x ∈ D(A1)
and t ≥ 0. Next, using (5.7) we have that for x ∈ X1,

∫ t
0 S1(s)xds ∈ D(A)

and A
∫ t
0 S1(s)xds = S1(t)x − tnC1x/n! ∈ X1 so that

∫ t
0 S1(s)xds ∈ D(A1)

and A1
∫ t
0 S1(s)xds = S1(t)x− tnC1x/n!. Thus A1 is a subgenerator of S1(·).

Finally, by routine computation one can deduce C−1
1 A1C1 = A1 from the

assumption (6.4). Hence A1 is the generator of S1(·).

Corollary 6.3. Let C ∈ L(X) be an injective operator. Then a densely
defined closed operator A is the generator of a nondegenerate n-times inte-
grated C-semigroup if and only if it satisfies conditions (6.1)− (6.4).

Remarks. (i) When the condition (6.4) is replaced by A ⊂ C−1AC, i. e.
Cx ∈ D(A) and ACx = C Ax for x ∈ D(A), then in Theorem 6.2 (and also
in Corollary 6.3) the generators of S(·) and S1(·) are C−1AC and C−1

1 A1C1,
respectively. When n = 0, (i) and (ii) of Theorem 6.2 reduce to Theorem 1 of
Miyardera [18] and Theorem 2.1 of Tanaka & Miyadera [28], respectively, and
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Corollary 6.3 subsurnes Theorem 10 and 11 of Davies and Pang [3].
(ii) When C = I, (i) of Theorem 6.2 reduces to Theorem 4.1 of Arendt [1],

meanwhile, (ii) of Theorem 6.2 and Corollary 6.3 reduce respectively to his
Corollary 4.2 and Theorem 4.3 in the same paper.

(iii) When n = 0 and C = I, Corollary 6.3 reduces to the classical Hille-
Phillips-Yosida theorem (cf. [8], [10], [22], [32]).

7. The Abstract Cauchy Problem of Order One

We consider the abstract Cauchy problem:
{

u′(t) = Au(t) + f(t), 0 ≤ t ≤ b;
u(0) = x ∈ X,

(P (x, f))

where A is assumed to be the generator of a nondegenerate n-times integrated
C-semigroup S(·), and f ∈ C([0, b], X). A solution of P (x, f) is a function u ∈
C1([0, b], D(A)) := {u; u is continuously differentiable and u(0, b]) ⊂ D(A)}
such that P (x, f) holds. Let vx : [0, b] → X be the function given by

vx(t) = S(t)x +
∫ t

0
S(s)f(t− s)ds, 0 ≤ t ≤ b.(7.1)

Theorem 7.1. For given x ∈ E, P (x, f) has a solution if and only if
v

(n)
x ([0, b]) ⊂ R(C) and C−1v

(n)
x ∈ C1([0, b], X). In this case, the function

ux = C−1v
(n)
x is the unique solution of P (x, f).

Proof. First, we suppose u is a solution of P (x, f). Let t ∈ [0, b] and
w(s) := S(t− s)u(s) for s ∈ [0, t]. Since u(s) ∈ D(A), we differentiate w and
use (5.6) and Corollary 5.6 to get

w′(s) = −(1− δ0,n)
[

1
(n− 1)!

(t− s)n−1Cu(s)
]
− S(t− s)Au(s) + S(t− s)u′(s)

= −(1− δ0,n)
[

1
(n− 1)!

(t− s)n−1Cu(s)
]

+ S(t− s)f(s)(s ∈ [0, t]),

S(t)x− δ0,nCu(t) = −
∫ t

0
w′(s)ds

= (1− δ0,n)
[

1
(n− 1)!

C

∫ t

0
(t− s)n−1u(s)ds

]
−

∫ t

0
S(t− s)f(s)ds

= (1− δ0,n)
[

1
(n− 1)!

C

∫ t

0
(t− s)n−1u(s)ds

]
−

∫ t

0
S(s)f(t− s)ds,
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where δ0,n, is the Kronecker delta. Consequently,

ux(t) =

{
Cu(t) if n = 0;

1
(n−1)!C

∫ t
0(t− s)n−1u(s)ds if n ≥ 1.

This shows that v
(n)
x (t) = Cu(t) ∈ R(C) for t ∈ [0, b] and C−1v

(n)
x = u ∈

C1([0, b], D(A)).
Conversely, by Fubini’s theorem we have

∫ t

0

∫ r

0
S(s)f(r − s)dsdr =

∫ t

0

∫ t

s
S(s)f(r − s)drds

=
∫ t

0

∫ t−s

0
S(s)f(r − s)drds

=
∫ t

0

∫ t−r

0
S(s)f(r − s)drds

Hence
∫ t
0 vx(r)dr =

∫ t
0 S(r)xdr+

∫ t
0

∫ t−r
0 S(s)f(r)dsdr for t ∈ [0, b]. Using (5.7)

we obtain

A

∫ t

0
vx(r)dr = S(t)x− tn

n!
Cx +

∫ t

0
[S(t− r)f(r)− 1

n!
(t− r)nCf(r)]dr

= vx(t)− tn

n!
Cx− 1

n!
C

∫ t

0
(t− r)nf(r)dr

(7.2)
for t ∈ [0, b]. If C−1v

(n)
x ∈ C1([0, b], X), then vx ∈ Cn+1([0, b], X). Since A is

closed, we may differentiate (7.2) n+1 times and obtain that v
(k−1)
x (t) ∈ D(A)

and

Av(k−1)
x (t) = v(k)

x (t)− 1
(n− k)!

tn−kCx− 1
(n− k)!

C

∫ t

0
(t− r)n−kf(r)dr(7.3)

for k = 1, 2, · · · , n and Cux(t) = v
(n)
x (t) ∈ D(A) and ACux(t) = Av

(n)
x (t) =

v
(n+1)
x (t) − Cf(t) = Cu′x(t) − Cf(t) ∈ R(C). By (6.4) we have ux(t) ∈ D(A)

and u′x(t) = Aux(t) + f(t). Moreover, if n = 0, then S(0) = C and so
ux(0) = C−1vx(0) = x. If n > 0, then S(0) = 0 and so vx(0) = 0. We see
from (7.3) that v

(k)
x (0) = 0 for k < n and v

(n)
x (0) = Av

(n−1)
x (0) + Cx = Cx,

i.e. ux(0) = x. This completes the proof.

Remark. When C = I, Theorem 7.1 reduces to Proposition 5.1 and
Theorem 5.2 of Arendt [1].

By Proposition 5.5, we know that S(t)x =
∫ t
0 S(s)Axds + tnCx/n! for

x ∈ D(A). Repeated substitutions show that for x ∈ D(Ak), k ≥ 1,
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S(t)x =
∫ t

0
S(s)Axds + tnCx/n!

=
∫ t

0

[∫ s

0
S(r)A2xdr + snCAx/n!

]
ds + tnCx/n!

=
∫ t

0
(t− s)S(s)A2xds +

1∑

j=0

tn+jCAjx/(n + j)!

= · · ·

=
∫ t

0
(t− s)k−1S(s)Akx/(k − 1)!ds +

k−1∑

j=0

tn+jCAjx/(n + j)!

(7.4)

Now suppose x ∈ C(D(An+1)). Then x = Cy for some y ∈ D(An+1). By (6.4)
and induction we have that Cy ∈ D(Aj) and AjCy = CAjy for 0 ≤ j ≤ n+1.
In particular, we have x ∈ D(A(n+1)) so that (7.4) holds for k = n. Hence

(dn/dtn)S(t)x = S(t)Anx +
n−1∑

j=0

1
j!

tjCAjx

= C


S(t)Any +

n−1∑

j=0

tj

j!
CAjy


 ∈ C(D(A))

and C−1DnS(·)x ∈ C1([0, b], D(A)). Thus in order that P (x, f) be solvable
for all x ∈ C(D(An+1)) it is necessary and sufficient that the function

g(t) :=
∫ t

0
S(t− s)f(s)ds =

∫ t

0
S(s)f(t− s)ds, 0 ≤ t ≤ b,(7.5)

satisfies g(n)([0, b]) ⊂ R(C) and C−1g(n) ∈ C1([0, b], X). We give two sufficient
conditions on f in the following.

Lemma 7.2. If f (n+1)([0, b]) ⊂ R(C), C−1f (n+1) ∈ C([0, b], X), f (k)(0) ∈
D(An−k), and An−kf (k)(0) ∈ R(C) for all 0 ≤ k ≤ n, then g(n)([0, b]) ⊂ R(C)
and C−1g(n) ∈ C1([0, b], D(A)), and

C−1g(n)(t) =
n∑

j=1

1
j!

tj
j−1∑

k=0

Aj−k−1f (k)(0)

+
∫ t

0
S(s)

n∑

k=1

C−1An−kf (k)(0)ds

+
∫ t

0

∫ t−s

0
S(r)C−1f (n+1)(s)drds, t ∈ [0, b].

(7.6)
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Proof. Using integration by parts n + 1 times and (7.4) we obtain

g(t) =
∫ t

0

S(s)f(t− s)ds =
∫ t

0

S(r)f(0)dr +
∫ t

0

∫ s

0

S(r)f ′(t− s)drds = · · ·

=
n∑

k=0

∫ t

0

(t− r)kS(r)f (k)(0)/k!dr +
∫ t

0

∫ s

0

(s− r)nS(r)f (n+1)(t− s)/n!drds

=
n∑

k=0

∫ t

0

(t− r)k

∫ r

0

(r − s)n−k−1S(s)An−kf (k)(0)/[k!(n− k − 1)!]dsdr

+
n∑

k=0

∫ t

0

(t− r)k
n−k−1∑

j=0

rn+jCAjf (k)(0)/[k!(n + j)!]dr

+
∫ t

0

∫ t−s

0

(t− s− r)nS(r)f (n+1)(s)/n!drds.

Hence we have

g(n)(t) =
n∑

k=0

∫ t

0
S(s)An−kf (k)(0)ds +

n−1∑

k=0

n−1∑

j=k

tj+1CAj−kf (k)(0)/(j + 1)!

+
∫ t

0

∫ t−s

0
S(r)f (n+1)(s)drds

= C
n∑

k=0

∫ t

0
S(s)C−1An−kf (k)(0)ds + C

n∑

j=1

1
j!

tj
j−1∑

k=0

Aj−k−1f (k)(0)

+C

∫ t

0

∫ t−s

0
S(r)C−1f (n+1)(s)drds

for t ∈ [0, b], which shows the assertion.

Lemma 7.3. If f([0, b]) ⊂ D(An+1), An+1f([0, b]) ⊂ R(C), C−1An+1f ∈
C([0, b], X), and Akf ∈ C([0, b], X) for 0 ≤ k ≤ n, then g(n)([0, b]) ⊂ R(C),
C−1g(n) ∈ C1([0, b], D(A)), and

C−1g(n)(t) =
∫ t

0

n∑

k=0

(t− s)k

k!
Akf(s)ds

+
∫ t

0

∫ t−s

0
S(r)C−1An+1f(s)drds (0 ≤ t ≤ b).

(7.7)
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Proof. Under the hypothesis we may apply (7.4) with k = n + 1 to obtain

g(t) =
∫ t

0
S(t− s)f(s)ds

=
∫ t

0

[∫ t−s

0
(t− s− r)nS(r)An+1f(s)/n!dr

+
n∑

k=0

(t− s)n+kCAkf(s)/(n + k)!

]
ds.

Hence

g(n)(t) =
∫ t

0

∫ t−s

0
S(r)An+1f(s)drds + C

n∑

k=0

∫ t

0
(t− s)kAkf(s)/k!ds

= C





∫ t

0

∫ t−s

0
S(r)C−1An+1f(s)drds +

n∑

k−0

∫ t

0
(t− s)kAkf(s)/k!d



 ,

which shows the conclusion.

The above discussion has justified the following theorem.

Theorem 7.4. let x ∈ C(D(An+1)). If f satisfies the conditions given
in Lemma 7.2 (resp. the condition given in Lemma 7.3), then P (x, f) has a
unique solution which is

ux(t) = C−1v
(n)
x (t)

= C−1S(t)Anx +
n−1∑

j=0

1
j!

tjAjx + C−1g(n)(t),
(7.8)

where C−1g(n)(t) is as expressed in (7.6) (resp. (7.7)).

Corollary 7.5. Let A be the generator of a C-semigroup, and assume
either

(i) {f(0)} ∪ f ′([0, b) ⊂ R(C) and C−1f ′ ∈ C([0, b], X),
or

(ii) f ∈ C([0, b], D(A)), Af([0, b]) ⊂ R(C) and C−1Af ∈ ([0, b], X).

Then P (x, f) has a unique solution for any x ∈ C(D(A)).

Corollary 7.6. Let A be the generator of an n-times integrated C-semigroup.
For every x ∈ C(D(An+1)) the unique solution of P (x, 0) is

ux(t) = C−1S(t)Anx +
n−1∑

j=0

1
j!

tjAjx.
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Remarks. When C = I, Corollary 7.5 reduces to a theorem of Phillips
[23] (see also [8, p. 84]), and Corollary 7.6 reduces to Proposition 2.6 in [17].
When n = 0, Corollary 7.6 reduces to Corollary 1.3 in [28].

8. Examples

We conclude the paper with examples which show that for each n ≥ 0
there is an n-times integrated C-semigroup (C 6= I) whose generator does not
generate any (n − 1)-times integrated C-semigroup, We start with the case
n = 0.

Example 8.1. For t ≥ 0 let S0(t) be the operator on the space C0(R)
defined by S0(t)f := exp{t[χ[0,∞) − χ(−∞,0]]} sin(·)f(f ∈ C0(R)). Then it is
easy to see that S0(·) is a C-semigroup on C0(R) with C defined by (Cf)(s) :=
(sin(s))f(s), and the generator A0 sends f to (χ[0,∞) − χ(−∞,0])f for f in its
domain D(A0) := {f ∈ C0(R); f(0) = 0}.

It is proved in [20, Proposition 2.4] that if B generates a nonholomorphic
(C0)-semigroup on a Banach space Y (for example, B = d/ds generates the
semigroup of left translations on C0(R)), then the operator A1 : D(B)n+1 →
X1 := Y n+1 defined by

A1 :=




B 0 · · · · 0
B B · · · · ·
0 B B · · · ·
· 0 · · · · ·
· · · · · · ·
· B · · · B 0
0 · · · 0 B B




generates a nondegenerate n-times integrated I-semigroup S1(·) on X1 but
does not generate a nondegenerate (n− 1)-times integrated I-semigroup.

Example 8.2. Let X := X1 ⊕ C0(R) and S(t) := S1(t) ⊕ 1
(n−1)!

∫ t
0(t −

s)n−1S0(s)ds, t ≥ 0. Then S(·) is a nondegenerate n-times integrated C-
semigroup on X with C̃ = I ⊕ C and generator A = A1 ⊕ A0. If A also
generates some (n − 1)-times integrated C̃-semigroup T (·), then from the
identity

∫∞
0 λne−λtS(t)dt = (λ − A)−1C̃ =

∫∞
0 λn−1e−λtT (t)dt we see that

S(t) =
∫ t
0 T (s)ds for t ≥ 0. Thus S1(·) = S(·)|X1 , is continuously differen-

tiable on [0,∞) and d
dtS1(t) = d

dtS(t)|X1 = T (t)|X1 is strongly continuous on
[0,∞). This means that (d/dt)S1(t) is an (n−1)-times integrated I-semigroup
generated by A1. This is a contradiction.
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