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N-TIMES INTEGRATED C-SEMIGROUPS AND
THE ABSTRACT CAUCHY PROBLEM

Y.-C. Li and S.-Y. Shaw

Abstract. This paper is concerned with generation theorems for expo-
nentially equicontinuous n-times integrated C-semigroups of linear op-
erators on a sequentially complete locally convex space (SCLCS). The
generator of a nondegenerate n-times integrated C-semigroup is charac-
terized. The proofs will base on a SCLCS-version of the Widder-Arendt
theorem about the Laplace transforms of Lipschitz continuous functions,
and on some properties of a C-pseudoresolvent. We also discuss the
existence and uniqueness of solutions of the abstract Cauchy problem:
W = Au+ f, u(0) =z, for x € C(D(A™*!)) and suitable function f.

1. INTRODUCTION

The classical theory of (Cp)-semigroups of operators is a powerful method
in studying the first order Cauchy problem: u/(t) = Au(t),t > 0;u(0) = = €
D(A), where A is a closed linear operator satisfying certain conditions and
having dense domain (see [8], [10], [22]). To deal with the Cauchy problem
with an A satisfying weaker conditions or having nondense domain, recently
two kinds of generalizations of (Cj)-semigroups have been developed by some
authors.

The first kind is the so-called C-semigroups. A C-semigroup is a strongly
continuous family {S(¢);t > 0} of bounded linear operators satisfying S(0) =
C, a bounded injective operator, and S(s +¢)C = S(s)S(t)(s,t > 0). It was
studied first by Da Prato [2] and later by Davies and Pang [3] for the case that
C has dense range, and it was further generalized by Miyadera and Tanaka
([17], [18], [26], [27], [28]), and deLaubenfels ([5], [7]) for the case that the
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domain D(A) of A may not be dense. See also [25] for representation formulas
of C-semigroups.

The other kind of generalization is the so-called n-times integrated semi-
groups. A 0-times integrated semigroup is just a (Cp)-semigroup. Whenn > 1,
an n-times integrated semigroup is defined as the special case: C' = I of our
Definition 1.1, to be given below. This generalized semigroup was introduced
by Arendt [1], and further developed by Kellerman and Hieber [11], Neubran-
der (]20], [21]), Tanaka and Miyadera ([27], [28]), and deLaubenfels [4]. Fur-
ther extension to fractionally integrated semigroups were carried out by Hieber
[9], and Miyadera, Okubo and Tanaka [19].

Both these theories are established in the setting of a Banach space, and
neither of them completely covers the other. Moreover, two different ap-
proaches have been used; namely, the proof for C-semigroups, as an extension
of Hille and Yosida’s treatment for (Cp)-semigroups, is of operator theoretical
nature, and Arendt’s treatment for n-times integrated semigroups makes use
of an integrated version of Widder’s theorem on Laplace transform of Banach-
space-valued functions.

This paper aims to study a natural generalization of the above two no-
tions to a wider class of operator families, called exponentially equicontinuous
n-times integrated C-semigroups. The ground space will be a sequentially
complete locally convex space. The result in particular provides a unified
treatment for both C-semigroups and integrated semigroups, and extends and
improves many existing results.

To begin with, let X be a sequentially complete locally convex space, and
let L(X) denote the space of all continuous linear operators on X.

Definition 1.1. Let n > 1 and C € L(X). A strongly continuous family
{S(t);t > 0} C L(X) is called an n-times integrated C-semigroup on X if it
satisfies:

(1.1) S(t)C =CS(¢t) for t > 0 and S(0) = 0;
(1.2) S(t)S(s)x = <n—11)!( S — [ (s+t—r)""1S(r)Cadr for x € X and
t,s >0

S(-) is said to be nondegenerate if

(1.3) S(t)x =0 for all t > 0 implies z = 0.

Finally, S(-) is called exponentially equicontinuous if

(1.4) there is w € R such that {e~%!S(¢); ¢t > 0} is equicontinuous.

A O-times integrated C-semigroup is just a C-semigroup.
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In Section 4, relations between an exponentially equicontinuous integrated
C-semigroup and its Laplace transforms will be discussed. Sections 5 and
6 will concentrate on the generation of nondegenerate n-times integrated C-
semigroups. Their generators will be defined and characterized. As will be seen
in Section 8, for each n > 1 there exists an n-times integrated C-semigroup
with C' # I such that its generator does not generate a (n—1)-times integrated
C-semigroup. Section 7 will devote to the associated abstract Cauchy problem:
u = Au+ f,u(0) = .

The proofs of the generation theorems (Theorems 4.2 and 6.2) will base
on a version of the Widder-Arendt theorem, for functions with values in a
sequentially complete locally convex space, and also on some properties of
C-pseudoresolvents. For this sake, these two subjects will be discussed in Sec-
tions 2 and 3 first. They also serve as tools in establishing a parallel theory
of exponentially equicontinuous n-times integrated C-cosine functions ([13],
[14]). However, this method does not apply to those n-times integrated C-
semigroups which are not exponentially equicontinuous, because their Laplace
transforms can not be defined. In general, integrated C-semigroups are not
necessarily exponentially bounded (see e.g. [7], [9]). In [12], generators of non-
exponentially bounded, fractionally integrated C-semigroups are characterized
in terms of existence and uniqueness of solutions of the abstract Cauchy prob-
lem: v = Au+ f,u(0) = z for suitable initial value z € X and function f. On
the other hand, it is known that every n-times integrated C-semigroup of her-
mitian operators on a Banach space is exponentially bounded. This and some
other interesting properties of n-times integrated C-semigroups of hermitian
and positive operators can be found in [16].

2. THE WIDDER-ARENDT THEOREM IN LCS

In 1934 Widder [30] proved that a function r : (0,00) — R is the Laplace
transform (i.e. r(A) = [;Ce Mf(t)dt,A > 0) of a bounded function f €
L*°(0, 00) if and only if it satisfies

(2.1) sup{| X" M () /nl); A > 0,n > 0} < oo

When R is replaced by a Banach space X, Arendt [1] proved that the above
Widder’s theorem holds if and only if X has the Radon-Nikodym property.

He showd that when X is a general Banach space what condition (2.1)
characterizes is a larger class of functions as described in the following inte-
grated version of Widder’s theorem. For our purpose we extend the result of
Arendt to sequentially complete locally convex spaces.

From now on X will denote such a space, and S(X) will denote the set of
all continuous seminorms on X.
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Theorem 2.1. Letr: (0,00) — X be a function. The following assertions
are equivalent.

(i) r is infinitely differentiable and
(2.2) My, == sup{p(A" T (A)) /nl A > 0,n =0,1,---} < 0o (p € S(X)).

(ii) There exists a continuous function g : [0,00) — X satisfying g(0) = 0
and

(2.3) N, :=sup{p(g(t+71)—g(t))/m:t>0,7 >0} < o0 (p € (X))
such that

(2.4) r(\) = / AeMg(t)dt (A > 0).
0
Moreover, we have M, = N, for all p € S(X).

Proof. We shall only prove the theorem for the case that X is a complex
vector space; the real case can be deduced from the complex case by complex-
ification arguments. Assume that (i) holds. Then it is clear that r has an
analytic continuation r(z) on Q := {z € C; Re(z) > 0}, which can be defined
iteratively by

o) 5 — k
r(z) = (kﬁ) rFA) (AN =z] <A, A>0).
k=0 :

Using (2.2) we can carry out the following estimation for |A — z| < A\,;n =
0,1,---,and p € S(X)

e 2" 1 00 P k
ple syt = B (52 ELA e )
’ k=0 :
Re 2\"" & (n + k)! 2 — )|k
= (A) kz:% nlk! )

‘p()\n-l—k—i-l?q(n—i-k)()\)/(n + k)')

Re 2\"t1 & n+k
M”(A) ,2( K

Re z n+1
M, | ———— .
P ()\— \z—/\]>

Since Re z/(A — |z = A) — 1 as A — oo for each z € 2, we have

2 —\|F

A

IN
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(2.5) sup{p((Re 2)"*1r™(2))/nl; z€Q, n=0,1,---} = M,

In particular, the function r(z),z € €, is bounded on the half plane
{z; Re z > A} for every A\ > 0. Therefore we can define a function h :
0,00) — X by

1 Atioo
(2.6) h(t) := 271/ e272r(2)dz (t > 0,\ > 0),
T J A—ioco

the integral being well-defined and independent of A > 0.

For each z* € X*, the classical Widder’s theorem implies that there is a
function f(-;2*) € L>®[0, 00) with || f(-; 2%)||ec = sup{|N\*T1(r™ (), z*)/nl; X >
0,n=0,1,---} such that

(r(z),z*) :/OOO e P f(t; ) dt

00 t ru
:,22/ e_Zt/ / f(v;z*)dvdudt, z € Q.
0 0 Jo

By the inversion of Laplace transform and (2.6) we have that

(2.7)

t ru
(2.8)  (h(t),z") = / / f(v; x¥)dvdudt for all z* € X* and ¢ > 0.
0 Jo

Next, we prove that lim M

any absolutely convex opgn neighborhood of 0, p be the Minkowski functional
of V, and let V0 := {z* € X*;|(z,2*)| < 1 for all z € V'}. We shall show that
h(HT) A(®) h(tﬂg ") ¢V for all ¢ > 0 if 7 and s are sufficiently srmall, for
then the sequential completeness of X will ensure the uniform convergence of

“L(h(t+7) - h(t)) as T — 0.

Since p is the Minkowski functional of V, (2.2) implies that {\"*17-(")(\) /n!;
A>0,n =01} C (M,+e)V for every ¢ > 0. Thus, if z* € V°, then
f(52%)]|oo < My + € for every € > 0 and hence || f(-;2%)|[cc < Mp. If

7|, |s| < 1/2M,, then we have

exists uniformly for ¢ > 0. Let V be

<h(t+¢2— ht) h(t—i—sz — h(t),x*>‘

_ |t /HT /u f(v;x™)dvdu — i/ttﬁ /Ou f(v;2™)dvdu

t+7w —
=\ s < i T <

t+sw 2

N | —
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for all t > 0 and z* € VO, and it follows from the bipolar theorem (cf. [29, p.
162]) that 2EED=RO _ hits)=ht) ¢ 17 7,

S
Thus we can define a function g : [0,00) — X by

h(t — h(t
o(t) o= tim EES =R o
s—0 S
For z* € VO we have, by (2.8), that (g(t),2*) = &(h(t),z*) = Jy f(s;2%)ds
and

t+1

[(g(t+7) —g(t),2%) = f(s;a7)ds| < 7| f(-;27) ][0 < TMp.

0

It follows that g(0) = 0, and {M;t > 0,7 > 0} C M,V, by the bipolar
theorem. Therefore we have that p(g(t + 7) — g(t))/7 < M, for all t > 0
and 7 > 0 (cf. [29, Theorem 12.3]), i.e. N, < M,. This and the sequential
completeness of X imply that the integral [;° e Mg (t)dt exists for all A > 0.
Finally, from (2.7), (2.8) we see that

(r(\), %) = /0 T2 MR (L), )t
_ /O b )\e*’\t%m(t),x*)dt

= /OOO e M (g(t), z*)dt = </OOO Ae)‘tg(t)dt,x*>

for all z* € X* and A\ > 0. Hence (2.4) holds and we have proved the assertion
(ii).

The converse implication is proved as easily as in the numerical case.

Theorem 2.2. Let R : (0,00) — L(X) be a function. The following
assertions are equivalent.

(i) R(-)x is infinitely differentiable for every x € X and the set {\"T1R(")
(A)/nl;A>0,n=0,1,---} is equicontinuous.

(ii) There exists a function G : [0,00) — L(X) satisfying
(a) G(0) =0 and G(-)x is strongly continuous for every x € X;
(b) {[G(t+ 1) — G(t)]/7;t > 0,7 > 0} is equicontinuous;
(c) RNz = [§° e MG (t)xdt for all X >0 and z € X.

Proof. (i) = (i1). By the assumption, for any p € S(X) there exists
a q € S(X) such that sup{p(\""'R™(\)z)/nl; A > 0,n = 0,1,---} < q(x)
for all x € X. By Theorem 2.1, for each z € X there exists a continuous
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function G(--- ;) : [0,00) — X satisfying G(0;z) = 0,sup{p([G(t + 7;2) —
G(t;x)]/7);t > 0,7 > 0} < ¢(x), and

R(\N)zx = /OOO e MG(t; z)dt (A > 0).

Since G(-;x) is continuous, the uniqueness theorem of Laplace transform im-
plies that the map G(t) :  — G(¢;x) is a linear operator on X. Moreover,

p(Git+7)x — G(t)x) /T < q(z) forall t > 0,7 >0and x € X

This shows that G(t) € L(X) for all ¢ > 0 and that G(-) satisfies (a), (b), and
(c). That is, (ii) holds. The converse implication is proved as easily as in the
numerical case.

3. C-PSEUDORESOLVENTS

In this section we first investigate some properties of a C-pseudoresolvent,
which is a generalization of pseudoresolvent (cf. [32]).

Definition 3.1. Let X be a locally convex space and let C' € L(X). A
function R(-) defined on a subset D(R) of the complex plane with values in
L(X) is called a C-pseudoresolvent if it commutes with C and satisfies the
equation:

(3.1) (A = W R(p)R(A) = R(p)C = R(N)C (A, 1 € D(R)).

Moreover, R(-) is said to be nodegenerate if R(\)x = 0 for all except one
A € D(R) implies z = 0.

From (3.1) one sees that R(-) is a commutative family, and that if R(-)
is non-degenerate then C' is injective. The converse is not true in general as
A-1"t 0

0 0

The following lemmas and theorem generalize the correspoding results [32,

pp. 215-216] on pseudoresolvents.

shown by the I-pseudoresolvent R(\) := , A> 1

Lemma 3.2. Suppose C is an injection. Then the null space N(R(\))
and the preimage C~Y[R(R(N))] of the range R(R()\)) of R(A\) under C are
independent of A in D(R).

Proof. If v € N(R())), then by (3.1) CR(pu)zr = (A — p)R(p)R(N\)z +

CR(MN)x = 0. Since C is injective, we have R(u)z = 0 for all u € D(R). Hence
N(R(X)) = N(R(p)) for all A and p.

81



82 Y.-C. Li and S.-Y. Shaw

If x € C7YHR(R()))], then Cz = R()\)y for some y € X. Let z := y —
(A = p)z. Then C[R(p)z — R(My] = C[R(p)y — R(A)y] = (A = w)CR(p)z =
A=p)R()R(N)y— (A—p)R(pu)Cx = 0. Since C is injective, we have R(\)y =
R(p1)z and hence x € C7[R(R(u))].

Lemma 3.3. Suppose C is an injection. Then N(C—AR()\)) and C~1[R(C—
AR()))] are independent of X in D(R).

Proof. For any A, € D(R) we have, by (3.1), that

(C = (A=) RN)(C — pR(p))

52) = C? — uCR(p) — (A = ) RA)C + p(X = ) RO\ R(p)
' = C? = uCR(p) — (A — ) R(NC + p[CR() — CR(N)]
=C(C = AR(\)).

Since C' is injective, we have N(C — pR(u)) C N(C — AR(X)) and hence also
the inverse inclusion.

If z € C7R(C — AR()\))], then Cx = (C — AR(\))y for some y € X. Let
z = py + (A — p)z. Using (3.2) we have

Cl(C = pR(p)z — ACx]
= (A= u)(C = pR(u))Cx + pC(C — pR(n))y — AC?z
= (A= p)(C = pR(1))(C = AR(N))y + pC(C — pR(u))y — AC?x
= MC — pR(1))Cy — XA — p) RA)(C — puR(p))y — AC?x
= MNC — pR(p))Cy + AC(C = AR(N)y — AC(C — pR(p))y — \C?z

which implies that Cz = A™1(C—puR(u))z € R(C—pR(p)). Hence C~1[R(C—
AR(N))] = C7YR(C — uR(w))] for any A\, € D(R).

Theorem 3.4. Let R(-) be a C-pseudoresolvent with C' injective.

(i) There exists some linear operator B such that A\ — B is injective and

R(R(X\)) € D(B) and
RAN(A—=B)C (A=B)R(A\) =C forall A € D(R)
if and only if N(R(\)) = {0}.

(3.3)
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(ii) The largest operator which satisfies (3.3) is the closed operator A
defined by

9y D(4) = C-[R(R(\)] = {x € X; Cx € R(RO\)
(34) Az := (A — R(\)"1C)x for z € D(A),
which is independent of X € D(R).

(iii) If B satisfies (3.3), then C"*BC = A, where D(C~'BC) := {x €
X;Cz € D(B) and BCx € R(C)}. In particular, C~1AC = A.

Proof. The necessity part of (i) is clear. For the sufficiency, suppose
N(R(X)) = {0}. Lemma 3.2 has shown that the definition of D(A) is inde-
pendent of A. Since R(\) and R(u) are injective and

RNR()[A — RN T'C — p+ R(p)~'C]
= (A=W RA)R(p) = R(p)C + R(AN)C =0,
we have A — R(\)7!C = p — R(u)~'C for any A\,u € D(R). Hence the
operator A in (3.4) is a well-defined closed operator. If z € D(A), then

(A—A)z = R(\)71Cz and so R(\)(\— A)z = Cz. Since R(\) commutes with
C, for any € X we have R(\)z € D(A) and

(A —A)R\)z =R\ 'CRN)2 = RA)'R(\)Cx = Cx.

Hence A— A is injective and R(R())) C D( )and R(A\)(A—A) C (A-A)R(\) =
C. Since (3.3) implies that D(B) C C~[R(R()\))] = D(A), A is the largest
operator which satisfies (3.3). This proves (i) and (ii).

To prove (iii), let x € D(A). By the definition of the domain of A we have
Cz = R(\)y for some y € X and A € D(R). By (3.3) we have Cx € D(B)

and ()\ B)CCC o (/\ B)R()\)y — Cy = ()\ A)R(A)

A—A)Cx

= A= A)[RAN)(A - A)z]
— [ = RN - A)z

=C(\— Az,

hence Cz € D(B) and BCx = C Az for x € D(A). This shows A C C~'BC.
If z € D(C7'BC), then Cz € D(B) and BCx € R(C) so that by the
commutativity of C' and R(X) we have

—~

R\ —C7'BC)z = CT'R(\)(A\C — BC)x = C~'C?%z = Cx for A € D(R).
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Hence z € D(A) and Az = (A — R(\)~!C)x = C~!BCx. This proves (iii).

4. LAPLACE TRANSFORMS OF N-TIMES INTEGRATED C-SEMIGROUPS

Let X be a sequentially complete locally convex space, let C' € L(X), and
let S : [0,00) — L(X) be strongly continuous such that {e"*tS(t);t < 0}
is equicontinuous for some w. For n = 0,1,---, let R, : (w,00) — L(X)
be defined by R,(\)z = [;° A\"e MS(t)zdt(z € X,\ > w). In Definition
1.1 we have defined n-times integrated C-semigroups. The following lemma
characterizes the integrated C-semigroup property (i.e. (1.2)) in terms of
R, (-) being a C-pseudoresolvent. The proof is almost the same with those in
Proposition 2.2 and Theorem 3.1 of [1], where n-times integrated I-semigroups
on Banach spaces have been considered.

Lemma 4.1. Ry(-) (resp. Ry(-),n > 1), is a C-pseudoresolvent if and
only if S(-) satisfies S(t)S(s) = S(t + s)C (resp. (1.2)), t,s > 0. Thus, when
S(0) = C or 0 (depending onn =0 orn > 1), S() is an n-times integrated
C-semigroup if and only if Ry(-) is a C-pseudoresolvent.

Conversely, for a given function R(-) : (w,00) — L(X), the next theo-
rem describes when A™""!R is the Laplace transform of some (n + 1)-times
integrated C-semigroup.

Theorem 4.2. Let C € L(X). The following assertions are equivalent.

(i) R(:) is a C-pseudoresolvent and

() — w)+1 (Cl‘i)k (ROV/A) /R A> w, k= 0,1, )

1S equicontinuous.

(4.1)

(ii) There exists an (n + 1)-times integrated C-semigroup S(-) such that
R(\) = [y° N HLe=MS(1)dt (A > w) and such that

(4.2) {e “Y(S(t+7)—S(t))/T;t > 0,0 < T < 1} is equicontinuous.

Proof. (i) = (ii). Let R(\) := (A +w) "R(A 4+ w), A > 0, and replace the
R(-) in Theorem 2.2 by R(-). Then it follows that there is a continuous function
G :]0,00) — L(X) such that G(0) =0, {[G(t+ 1) — G(t)]/7;t > 0,7 > 0} is
equicontinuous, and R(\) = [5° e G (t)dt, A > 0. Hence

RO =N = w) [ e OiG0d =X [T e Ns i (> w)
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where S(t) := e“!'G(t) — w [} e“*G(s)ds,t > 0. Since R(-) is assumed to be a
C-pseudoresolvent and S(0) = 0, Lemma 4.1 tells that S(-) is an (n+1)-times
integrated C-semigroup.

For any continuous seminorm p € S(X), let ¢ € S(X) be such that p([G(t+
7) — G(t)]x) < 7q(z) for all 7 > 0,t > 0, and z € X. If 7 € (0, 1], then

ple™[S(t +7) = S(t)])

<pl(e” — DG+ o —w [ Gt + s)ads

+p([G(t+7) = G(1)]x)

< p(w /OT eIG(t+ 1) — G(t + s)]zds) + Tq(x)

< |w /OT eV (T — s)ds + 7]q(x)
< [r(e"" = 1) + 7]q(z) < Te"q()

for all € X, which shows (4.2).

(i) = (i). Since A™""1R(\) is the Laplace transform of the (n + 1) times
integrated semigroup S(-), Lemma 4.1 asserts that R(-) is a C-pseudoresolvent.
To show (4.1) we shall apply Theorem 2.2 to the function

R(\) = (A4 w) "R\ + w)
_ w) [ e Ow
=(\+ )/0 TS (t)dt
_ o e—)\t e—wt w te—ws $)ds
_ /\/0 et S(t) + /0 S(s)ds]dt.

Let G(t) := e "*S(t) +w [3 e""*S(s)ds,t > 0. Then G(0) = S(0) = 0. Also,
by an estimation similar to the above one can deduce from (4.2) that the set
{[G{t+7)—G(t)]/T;t > 0,0 < 7 < 1} is equicontinuous. Since we can write

1 m

G+ =GOl = |6 (t+k5) =6 (t+ k-1 7))/ (Z)

m = m
forany 7 > 0and m = 1,2, -- -, it is clear that {[|G(t+7)—G(t)]/T;7 > 0,t > 0}

is equicontinuous. Hence one can deduce from Theorem 2.2 that (4.1) holds.
This completes the proof.

85



86 Y.-C. Li and S.-Y. Shaw
5. SUBGENERATORS AND GENERATORS

In this and the next sections we are concerned with the generation of non-
degenerate n-times integrated C-semigroups. In this case C' must be injective
as easily seen from (1.2). (But this is not a sufficiency for nondegeneracy
except when n = 0.)

First we define subgenerators of an n-times integrated C-semigroup S(-)
to be those closed operators B which satisfy the following two conditions:

(5.1) S(t)z € D(B) and BS(t)x = S(t)Bx for all x € D(B) and t > 0;

¢
/ S(s)xds € D(B) and
(5.2) 0 t
B / S(s)xds = S(t)r —t"Czx/n! for z € X, t > 0.
0

Let G be the set of all subgenerators of S(-). The following lemma shows
that when S(-) is nodegenerate G is nonempty and is invariant under the map:
B — C'BC.

Lemma 5.1. Let S(-) be a nondegenerate n-times integrated C-semigroup.

(i) The operator Ay, defined by

m th
D(Ay) = {Z/o S(s)xgds;x € X, tp, > 0,k=1,--- ,m,m > 1}
k=1

m

Ag [i /tk S(S)ﬁkd5‘| = Z[S(tk)l“k —tpCxi/n!] (x € X, 1 > 0),
k=1"0 k=1

is closable, and its closure Ay is the smallest subgenerator of S(-).

(i) C7'G CG.

Proof. (i) Let T(t) := [y S(r)dr. To show that Ag is well-defined it suffices
m m
to show that > T'(t;)xr = 0 implies Y [S(tg)xr — t}Cai/n!] = 0.
k=1 k=1

By straightforward computation involving integration of (1.2) with respect
to t and s, one can see that 7'(-) is a nondegenerate (n + 1)-times integrated
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C-semigroup. Hence we have for all ¢ > 0

0= T()> T(ty)zk
k=1

1 tp+t
= > / (tk +t —r)"T(r)dr —
o Wt

ty

S—

(tp+1t— r)"T(r)dT} Cuxy,

m tr+t
- Z{/ e+t = LS () + £ ()~

+
/ k(tk +t — )" LS (r)dr + t"HT(tk)} Cxy
0

- (nil) > {/ttm“k +t = )" S (r)dr + (T (1) -
k=1

ty
/ (b +t — 7“)”+1S(r)dr} Cag +0,
0

and so its second derivative S(t) Y [S(tx)xr — t}Cxy/n!] also vanishes for all
=1

m
t > 0. Since S(-) is nondegenerate, we have ) [S(t;)xy — t}Cxy/n!] = 0.
1

To see that Ay is closable, let {y,} C Dk(Ao) be a net such that y, — 0
and Apy, — y(€ X). Then by the definition of A and the commutativity of
T'(t) with S(t), we have T'(t)y = lién T(t)Aoya = licryn AT (t)ya = liOI‘n[S(t)ya -
t"Cyq/n!] = 0 and hence y = 0.

By the definition of Ay, every B in G is an extension of Ay and hence an
extension of Ag. Next, we show that Ay is itself a subgenerator and accordingly
is the smallest subgenerator. Let x € D(Ap) and let {z,} C D(Ap) be a net
such that v, — = and Agr, — Agx. Then the definition of Ay implies that
S(t)re € D(Ap) C D(Ag) and AgS(t)za = AoS(t)za = S(t)Apz, for all a.

Since S(t)xo — S(t)x and AgS(t)xe = S(t)Aze — S(t)Agz, the closedness
of Ay implies that S(t)x € D(Ap) and AgS(t)x = S(t)Apz, i.e. (5.1) holds for
B = Ay. Since (5.2) holds for B = Ay (by the definition of Ayp), it certainly
holds for B = Aj.

(ii) Let B € G and By = C7'BC. If x € D(By), then Cx € D(B) and
BCz € R(C). Using (5.1) we have CS(t)x = S(t)Cz € D(B) and BCS(t)x =
BS(t)Cx = S(t)BCx = S(t)C~*CBCx = CS(t)Biz € R(C). This means
that S(t)r € D(B;) and B1S(t)x = C 'BCS(t)r = S(t)Byx, that is, (5.1)
holds with B replaced by Bj. Next by (5.2) we have that C [I S(s)zds €
D(B) and BC [} S(s)xds = B [} S(s)Cxds = S(t)Cx—t"C?x/n! = C[S(t)x —
t"x/nl] € R(C) for all x € X. Hence fo S(s)zds € D(By) and By [} S(s)zds =
S(t)x —t"Cx/n! for all z € X, i.e. (5.2) also holds for B;. Finally, we show
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that B; is closed. Indeed, let {z,} C D(Bi) be a net such that z, — =
and Bz, — y(€ X). Then Cz, — Cz and BCz, = CBz, — Cy. The
closedness of B implies that Cz € D(B) and BCxz = Cy so that x € D(B;)
and Biz =y. Hence B; is a subgenerator of S(-).

The next lemma gives a characterization of subgenerators of an exponen-
tially equicontinuous n-times integrated C-semigroup in terms of its Laplace
transforms.

Lemma 5.2. Let S : [0,00) — L(X) be a strongly continuous function
such that {e~*'S(t);t > 0} is equicontinuous for some w > 0, and let C €
L(X).

(i) A closed linear operator B satisfies conditions (5.1) and (5.2) if and
only if the function R, (\) := [5° Ahe MS(t)dt(\ > w) satisfies:

R(R, (X)) C D(B) and

(5.3)
Ro(A)(A = B) C (A= B)R,(\) = C for A > w.

(ii) If S(-) commutes with C, and if there is a closed operator B satisfying
(5.1) and (5.2) (or equivalently (5.3)), then S(-) is an n-times integrated C-
semigroup with B a subgenerator.

Proof. (i) Suppose (5.1) and (5.2) are satisfied. Then for all € X we
have, on the one hand,

o0 t o0
)\”‘H/ e_)‘tB/ S(s)xdsdt = )\"‘H/ e M[s(t) — t"C/n\]xdt
0 0 0
= AR,( Az — Cx,

and on the other hand,

00 t 00
)\"H/O e_/\t/o S(s)xdsdt:)\”/o e MS(t)xdt = R, (\)z.
Since B is closed, we must have that R,(A\)x € D(B) and BR,(A\)z =
AR,(AN)x — Cx for all z € X. When z € D(B), (5.1) and the closedness
of B imply that BR,,(\)x = R, (A\)Bx. Hence (5.3) holds.
To prove the sufficiency we shall use the Post inversion formula, which says
that if L(f,\) = [5° e M f(t)dt, with f an exponentially bounded, continuous

function on [0, c0), then n}gnoo %)\mHDm)\(f, )\)‘Ai W f

bounded subsets of [0, 00). (see [31, Chapt. 7] or [24:p. 250] for the proof).

() uniformly on
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Dividing (5.3) by A" and A"*! we have

B/ e MS()xdt, x e X;
(5.4) X / e M[S(t) — t"C/n\]xdt = 2

/ e S(t)Badt, =€ D(B),
0

and

oo B/ _)‘t/ s)xdsdt, © € X;
(5.5) / e MS(t) — °C/nl|adt —
0 / _’\t/ S(s)Bzdsdt, x € D(B).

Since B is closed, differentiating the two terms on the right hand side of (5.4)
twice shows that BD™ [§° e S (t)xdt = D™ [5° e~ S(t)Bxdt for x € D(B).

By the Post inversion formula we see that { (G ) ATHD™ [ e A (1) xdt \— /t}

converges weakly to S(t)x and {( ) )\mHDmf ) xdt!,\:m/t} con-
verges weakly to S(t)Bxz. Again by the weak closedness of B one can assert
that S(t)x € D(B) and BS(t)x = S(t)Bx for x € D(B), i.e. (5.1) holds.
Similarly, m-times differentiation of two sides of the identity (5.5) followed by
invoking the Post inversion formula and the closedness of B will show (5.2).

(ii) will follow from Lemma 4.1 once we show that R,(:) is a C-
pseudoresolvent. Indeed, the commutativity of S(-) and C' implies that of
R, () and C. Then by (5.3) we have

Rn(N)C = Rn(”)()‘ - B)Rn()‘)

:( ) n(,u n(>\

JRn(X) +
= ( ) n(:U’)Rn()‘)
for all A,y > w.

If S(-) is a nodegenerate n-times integrated C-semigroup and if it is ex-
ponentially equicontinuous, then it follows from Lemma 4.1 and the uniqueness
theorem of Laplace transform that R,,(-) is a nondegenerate C-pseudoresolvent.
Thus one can deduce the folloing theorem as a consequence of Lemmas 5.1,
5.2, and Theorem 3.4.

Theorem 5.3. Let S(-) be an exponentially equicontinuous, nondegenerate
n-times integrated C-semigroup and let A be as defined in Lemma 5.1. Then

(i) Ao and A := C~VYAgC are respectively the smallest and the largest sub-
generators, and ag C B C C~'BC = A for any subgenerator B. In particular,
C—TAC = A.
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(ii) The above defined operator A is identical to the operator defined by

D(A) :={z € X;Cx € R(R,(\))};
Az =[N — R,(\)"'C)x for x € D(A).

This operator A will be called the generator of S(-).

Since R,(\)z = [ ANe ™ MS(t)zdt = [N Hle M [!S(s)zdsdt, from
Lemma 4.1 and (ii) of Theorem 5.3 follows the next corollary.

Corollary 5.4. If S(-) is an n-times integrated C-semigroup with genera-
tor A, then the family {T(t) = [¢ S(s)ds;t > 0} is an (n+1)-times integrated
C-semigroup with the same generator A.

Remark. However, not every (n+ 1)-times integrated C-semigroup is the
integral of some n-times integrated C-semigroup. For instance, the weak*-
Riemman integral of the dual S*(-) of an n-times integrated C-semigroup S(-)
on a Banach space X is an (n + 1)-times integrated C*-semigroup on the dual
space X *. It is not the integral of some n-times integrated C*-semigroup; if it
were, S*(-) would have to be strongly continuous on X*, but this is not always
the case.

The next proposition is readily read from Theorem 5.3.

Proposition 5.5. We have the following (5.6) — (5.8):

(5.6)  S(t)x € D(A) and AS(t)x = S(t)Ax for x € D(A) and t > 0;

t
/ S(s)xds € D(A) and
0
t
A/ S(s)xds = S(t)x —t"Czx/n! for x € Xt > 0;
0

R(R,(N\)) C D(A) and

(5.8)
R, ANA—=A) CcA=A)R,(\) =C for A\ >w.

Corollary 5.6. For all x € X we have S(t)x € D(A), t > 0. If S(-)x is
right-sided differentiable at some t > 0, then S(t)x € D(A) and

d | AS@Wz +tCx/(n— 1) if n>0,
aS(t)a: N { AS(t)x if n=0.

In particular, this is true for x € D(A).
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Proof. Using (5.7) one has that

t+h

.|
S(t)x = hlLI(I)l+ h t S(s)xds € d(A)
and
_ t+h n __4n
S(t+h)z S(t)x :Ah_l/ S(s)xds—l—(t—i_h;tC’x/n!,
t

from which the second assertion follows since A is closed.

When S(-) is a nondegenerate (0-times) C-semigroup, let G and A; be the
operators defined as follows

D(G) :=={z € X;5([0,00))r C R(C) and tlira t=HO1S(t)x — z] exists},
Gz := tlirrj_ t=1[C~LS(t)xr — x] for € D(Q);

and

Az = C7! lim ¢t 1[S(t)x — Cx] for x € D(A;).

t—0+

{ D(A;) :={z € X;tlirgl+ t=1S(t)x — Cx] € R(O)},

A; is called the infinitesimal generator of S(-) (see [28]). Note that this G is a
little bigger than that defined in [3] and [28].

Corollary 5.7. For a nondegenerate C-semigroup we have A = A;, R(C) C
D(4), and G € G.

Proof. To prove A; C Alet x € D(A;). Then by (5.7) and the closedness of
A we have CA;x = tliI& t=HS(t)x — Cx] = Atlir(l)a+ J3 S(s)zds = ACx. Hence

(i) of Theorem 5.3 implies * € D(C~1AC) = D(A) and Az = C~1ACz = A;x.
Conversely, let © € D(A). Then by (5.6), (5.7), the closedness of A, and
S(0) = C, we have

t
lim t~1[S(t)x — Cz] = lim t_l/ S(s)Axds = CAx
t—0+ t—0+ 0

so that z € D(A;) and A;z = Az. The inclusion R(C) C D(A) follows from
the first assertion of Corollary 5.6.
Since G C A; and A;(= A) is closed, G is closable and G C A. To show

that B = G satisfies (5.1), let x € D(G)(C D(A)). Then by Corollaries 5.5
and 5.6 we have that S(t)z € D(A) and hh%lJr R=HC1S(R)S(t)x — S(t)x] =
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lim h-YS(t + h)z — S(t)a] = 2
h—0+ dt

is, S(t)z € D(G) c D(G) and GS(t)x = GS(t)x = S(t)Gx. Lastly, we show
that (5.2) is satisfied by B = G so that G is a subgenerator. In fact,

(t)yxr = AS(t)x = S(t)Az = S(t)Gz, that

t

t
e / S(s)xds = lim h='C-1S(h)—1] | S(s)ads
0 h—0+ 0

Remarks. (i) That A = A; was previously proved by Tanaka and Miyadera
[28] using different argument.

(ii) It follows from R(C) C D(A) that A is densely defined when C has
dense range. For different proof of this fact see Davies and Pang’s [3]. But, it
is possible that D(A) is dense while R(C') is not. For instance, the operator
C :x — [Tx(s)ds is an injective operator on C' [0,1] with nondense range.
For the C-semigroup S(-) defined by S(-) = C (cf. [28, P. 102]) we have
A() = O’R(C) and G = Az =A=0onC [0,1].

(iii) When n > 1, the inclusion R(C) C D(A) is in general no longer true.
In fact, there is an once integrated I-semigroup with a nondensely defined
generator (see [1, Example 6.4]).

6. GENERATION OF NONDEGENERATE INTEGRATED C-SEMIGROUPS

The generator A of an exponentially equicontinuous, nondegenerate n-
times integrated C-semigroup has been defined as above, we now proceed to
characterize it. Notice that the integral of an exponentially equicontinuous
n-times integrated C-semigroup is an (n + 1)-times integrated C-semigroup
satisfying (4.2). Hence the conclusion of the following proposition holds for
generators of exponentially equicontinuous n-times integrated C-semigroups.

Proposition 6.1. Let A be the generator of a nondegenerate (n+1)-times
integrated C-semigroup S(-) which satisfies (4.2). Then A has the following
properties:

(6.1) X — A is injective for A > w;
(6.2) R(C)C D((AN—A)"™) for A >w and m > 1,

(6.3) (A—A)"LC is infinitely differentiable for X\ > w and {(A—w)**1DFA~"
(A —A)1C)/kY A > w, k> 0} is equicontinuous;
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(6.4) C~lAC = A.

Proof. Since C'is injective, (5.8) implies that A— A is also injective and (A—
A)7IC = R(\) = [;° ATle A S(t)dt. Furthermore, (A — A)~!C is infinitely
differentiable and R("™(\) € L(X) for all A > w and m > 0. Now (6.3) follows
from Theorem 4.2.

By the closedness of A we can differentiate (5.8) m times to obtain that
R(RM™ (X)) € D(A) and (A — A)RM™ (X)) + mR(™~1()\) = 0. Then it follows
by induction that R(R(™ (X)) € D(A™*!) and

(A= AR (N) = (=1)™m!(A — AR(N) = (—1)"m!C

for all A > w and m > 0. Hence we have R(C) € D((A — A1) and
(=1D)™m!(A — A)~™1C = R™(A) for A > w and m > 0. This proves (6.2).
Finally, we note that the validity of C~'AC = A has been asserted in Theorem
5.3.

Remark. If A is replaced by any subgenerator B, (5.6)-(5.8) and (6.1)-
(6.3) still hold but (6.4) does not. Instead, we only have that B C C~1BC.

A complete characterization of generators of nondegenerate integrated C-
semigroups is given by the following

Theorem 6.2. Let C € L(X) be an injective operator and let A be a
closed linear operator. The following are true:

(i) A satisfies condition (6.1) — (6.4) if and only if A generates a nonde-
generate (n + 1)-times integrated C-semigroup S(-) such that

(6.5) {e ™ [S(t+71)— S(t)]/7;7(0,1],t > 0} is equicontinuous.

(ii) S(-)z is continuously differentiable on [0,00) for x € X7 := D(A),
and the family {S1(t) := %S(tﬂxl;t > 0} of operators on X1 is an exponen-
tially equicontinuous n-times integrated C'-semigroup with generator Ay, where
Cy = Clx, and Ay is the part of A in X1, i.e. D(A1) = {z € D(A); Az € X}
and Ayx = Az for x € D(A1).

Proof. (i) The sufficiency is Proposition 3. To prove the necessity, let
R(\) :== (A= A)~'C,\ > w. Then R(R()\)) C D(A) and (A — A)R(\) = C.
Furthermore, if z € D(A), then by (6.4) we have Cz € D(A) and ACx = C Ax
so that R(A)(A — A)z = (A — A)~1C (A — A)z = Cz. Thus we have

(6.6) R(R(\) C D(A) and RA)(A — A) € (A — A)R(N) = C for A > w.
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Also, RINC = (A —A)71C? = (A= A)~1C(A — A)R(\) = CR(\). Hence, as
shown in the proof of (ii) of Lemma 5.2, R(-) is a C-pseudoresolvent. This with
the assumption (6.3) implies that there exists an (n + 1)-times integrated C-
semigroup S(-) such that R(\) = [;° A" TLe=*S(¢)dt and such that {e %! [S(t+
T) = S(t)]/m;7 € (0,1],¢ > 0} is equicontinuous (Theorem 4.2). Since C' is
injective, (6.6) shows that R(\) is injective and so S(-) is nondegenerate. Now
A being a subgenerator of S(-) such that C~'AC = A, it is the generator of
S(-), by Theorem 5.3.

(ii) By Proposition 5.5 we have that S(t)D(A) C D(A), AS(t)x = S(t)Ax
and S(t)r = [JS(s)Axds + t"*1Cx/(n + 1)! for all z € D(A) and t > 0,
which shows that X; = D(A) is invariant under S(-), and S(-)z is strongly
differentiable and 4S(t)z € X; when 2 € D(A). Then (6.5) together with
the sequential completeness of X guarantees that S(-)x is continuously differ-
entiable for all z € X7, S1(t) := %S(tﬂxl € L(X1), and {e"%tSi(t);t > 0} is
equicontinuous.

(6.4) implies that X is invariant under C, and the definition R(\) =
(A — A)~LC ensures that X; is also invariant under R(:). Let C; := C|x,
and Ri(-) = R(-)|x,. Then as the restriction of the C-pseudoresolvent R(-) to
X1, Ri(+) is a Cy-pseudoresolvent. Since now Ry(A\)z = [5° A" le ™ MS(t)zdt =
J5° Ame=A Sy (t)zdt for all z € X1, and since Corollary 5.6 shows that S1(0) =
C for n = 0 and 0 for n > 0, it follows from Lemma 4.1 that Si(+) is an n-times
integrated C}-semigroup on Xj.

It remains to show that A is the generator of S;(-). First, let z € D(A;).
Then z € D(A) and Ajz = Az € X;. Then (5.6) implies that Si(t)z =
S(t)xr € D(A) and ASi(t)xr = AS(t)x = S(t)Ax = Si(t)A1x € X;. Hence
one has S1(t)xr € D(A1) and A;5:1(t)x = AS1(t)x = Si(t)A1z for © € D(A;)
and t > 0. Next, using (5.7) we have that for x € X1, [3 Si(s)zds € D(A)
and A [ISi(s)zds = Si(t)x — t"Ciz/n! € X so that [f Si(s)zds € D(A;)
and Ay [} S1(s)zds = Si(t)x — t"Cyx/n!. Thus A; is a subgenerator of S ().
Finally, by routine computation one can deduce C| 14,0, = Ay from the
assumption (6.4). Hence A; is the generator of Si(-).

Corollary 6.3. Let C € L(X) be an injective operator. Then a densely
defined closed operator A is the generator of a nondegenerate n-times inte-
grated C-semigroup if and only if it satisfies conditions (6.1) — (6.4).

Remarks. (i) When the condition (6.4) is replaced by A ¢ C~1AC, i. e.
Cz € D(A) and ACx = C Az for x € D(A), then in Theorem 6.2 (and also
in Corollary 6.3) the generators of S(-) and S;(-) are C~'AC and C;'A,Cy,
respectively. When n = 0, (i) and (ii) of Theorem 6.2 reduce to Theorem 1 of
Miyardera [18] and Theorem 2.1 of Tanaka & Miyadera [28], respectively, and
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Corollary 6.3 subsurnes Theorem 10 and 11 of Davies and Pang [3].

(ii) When C = I, (i) of Theorem 6.2 reduces to Theorem 4.1 of Arendt [1],
meanwhile, (ii) of Theorem 6.2 and Corollary 6.3 reduce respectively to his
Corollary 4.2 and Theorem 4.3 in the same paper.

(iii) When n = 0 and C' = I, Corollary 6.3 reduces to the classical Hille-
Phillips-Yosida theorem (cf. [8], [10], [22], [32]).

7. THE ABSTRACT CAUCHY PROBLEM OF ORDER ONE

We consider the abstract Cauchy problem:

(P(x, 1)) s onpnd

where A is assumed to be the generator of a nondegenerate n-times integrated
C-semigroup S(-), and f € C([0,b], X). A solution of P(z, f) is a function u €
C1([0,0],D(A)) := {u; u is continuously differentiable and «(0,b]) C D(A)}
such that P(z, f) holds. Let v, : [0,b] — X be the function given by

{ W (t) = Au(t) + f(£),0 < t < b;
x €

(7.1) va(t) = S(t)z + /Ot S(s)f(t—s)ds, 0<t<b.

Theorem 7.1. For given x € E, P(x, f) has a solution if and only if
Ug(cn)([O,b]) C R(C) and c—L{M € CL([0,b], X). In this case, the function

Uy = C'_lvén) is the unique solution of P(z, f).

Proof. First, we suppose u is a solution of P(z, f). Let ¢ € [0,b] and
w(s) == S(t — s)u(s) for s € [0,¢]. Since u(s) € D(A), we differentiate w and
use (5.6) and Corollary 5.6 to get

w'(s) =—(1—0p.n) { (t— s)"1Cu(s)] —S(t —s)Au(s) + S(t — s)u'(s)

(n—1)!
=—(1—"4b0n) {(n—ll)'(t - s)"_lCu(s)] +S(t—s)f(s)(s €[0,t]),

S(t)x — 6o nCu(t) = — /Ot w'(s)ds

— (1 - o) [(n ! 1)!0/0'5(75 - s)"lu(s)ds} ~ /ot S(t — 5)f(s)ds

— (1= Go.n) {(n ! 1)!0/0'5(15 - s)”_lu(s)ds} - /OtS(s)f(t ~ 5)ds,
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where dg 5, is the Kronecker delta. Consequently,

C’u( ) it n=0;
ux(t) = { = 1)'Cf0( )”’Lu(s)ds if n>1.

This shows that Ug(cn)(t) = Cu(t) € R(C) for t € [0,b] and - =y e
C'([0,0], D(A)).

Conversely, by Fubini’s theorem we have

/Ot/OTS(s) r—sdsdr—//S flr—s)drds
:/O /Ot " S(s)f(r — s)drds
:/Ot/ot_TS(s)f(r—s)drds

Hence [ v, (r)dr = [5 S(r)zdr+ [y [3~" S(s)f(r)dsdr for t € [0,b]. Using (5.7)
we obtain

A/Otvx(r)dr = w——Ca:—i—/ (t—r)f i(t—r)"Cf(r)]dr

:vx()——C’x——C’/ t—r)"
(7.2)
for ¢ € [0,8]. If C~1o{™ € C([0,b], X), then v, € C™+1([0,], X). Since A is
closed, we may differentiate (7.2) n+1 times and obtain that o™ l)( t) € D(A)
and

t
(1.9) 40 = o) - ! it o - (n_lk)!c [ =t
for k =1,2,---,n and Cug(t) = vg(gn)( t) € D(A) and ACu,(t) = Avg([;n)(t) =
V@) - Cf () ul(t) — Cf(t) € R(C). By (6.4) we have uy(t) € D(A)
and ul(t) = Au () f(t). Moreover, if n = 0, then S(0) = C and so
u;(0) = C~tvz(0) = x. If n > 0, then S(0) = 0 and so v,(0) = 0. We see
from (7.3) that o) (0) =0 for k < n and U(n)( 0) = Av;(cn_l)(()) + Cz = Cx,

7.
i.e. uy(0) = 2. This completes the proof.
Remark. When C = I, Theorem 7.1 reduces to Proposition 5.1 and
Theorem 5.2 of Arendt [1].

By Proposition 5.5, we know that S(t)z = [} S(s)Axds + t"Cax/n! for
x € D(A). Repeated substitutions show that for € D(A*), k> 1,
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S(t)r = /t S(s)Axds + t"Cz/n!

= / [/ r)A2xdr + s"CAac/n‘} ds +t"Cx/n!

(7.4) - /0 (t — )S(s) A%ads + ZWCAJ:U/(n + )
7=0
t k—1
_ / (t— )18 () ARw/ (ks — 1)lds + 3 £ C ATz (n + )!
0 =

Now suppose z € C(D(A"*1)). Then z = Cy for some y € D(A"*!). By (6.4)
and induction we have that Cy € D(A’) and A7Cy = CAly for 0 < j <n+1.
In particular, we have 2 € D(A*1) so that (7.4) holds for k = n. Hence

n—1
(dn/dt™)S(t)x = S(t A”x+Z—tJCAJ
J= 0
n— 1
=C|S(t A”y+z CAJ e C(D(A))
J= 0

and C~1D"S(:)x € C'([0,b], D(A)). Thus in order that P(x, f) be solvable
for all x € C(D(A™ 1)) it is necessary and sufficient that the function

(7.5) /St—s ds—/OtS(s)f(t—s)ds,OStSb,

satisfies g(™ )([O, b)) € R(C) and C~1¢(™ € C(]0,b], X). We give two sufficient
conditions on f in the following.

Lemma 7.2. If fD([0,b]) C R(C),C~1 0+ e ¢([0,8], X), f*F)(0) €
D(A"F), and A"~* f¥)(0) € R(C) for all 0 < k < n, then g™ ([0,0]) C R(C)
and C~1g(™ € C(]0,b], D(A)), and

n 1 'j—l o
ClgM(t) = Z 7753 Z AT=R=1p(R) ()

=177 k=0
(7.6) + / "S5 30 LA (0)ds
0 k=1
+/t /t_s S(r)Ct D (s)drds, t € [0,b).
0 Jo

97



98 Y.-C. Li and S.-Y. Shaw

Proof. Using integration by parts n + 1 times and (7.4) we obtain

:/tS(s)f(t—s)ds:/tS(r dr—i—//S (t — s)drds = -

_Z/ t— kS F*(0) k'dr+/ / (s —r)"S(r) fOHD(t — 5) /nldrds

- Z/O (t r)k/ (r — )"F=18(5) A"F F9) (0 Tkl (n — k — 1)!]dsdr
k=0

n t n—k—
+Z/ (t=r)* Y A fR0)/[k!(n + §)dr
k=070

Jj=0

t pt—s — s — S £ () /nldrds
[ = s =S £ ) mtaras

Hence we have

n n—1n—1
g™t = > / tS(s)A"*’f FP0)ds + > S AT B 0)/(5 +1)!
k=070 k=0 j=F

+ /t /ts S(r)f ) (s)drds
0 JO

= Czn:/tS(s)C_lA”‘kf(k ds+CZ—tJZAJ F=1 ) (0)
k=0"0 =17

t rt—s
—|—C/ / S(r)C ) (5)drds
0 JO

for ¢ € [0, b], which shows the assertion.

Lemma 7.3. If f([0,b]) C D(A™*), A1 £([0,8]) € R(C),C 1AM f €
C([0,b], X), and A*f € C(]0,b],X) for 0 < k < n, then g™ ([0,b]) C R(C),
C—1g™ e C1([0,b], D(A)), and

t n

f(s)ds
0

k=0
t pt—s
+/ / S(rC A f(s)drds (0 <t <b).
0

o
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Proof. Under the hypothesis we may apply (7.4) with &k = n+ 1 to obtain
g(t) = / S(t—s)
t—s
- / { | = s=nsmartss) midr
o LJo

+z $MEC AR F(5)/(n + k)| ds.

Hence

//tss YA f(s) drds+02/ o)k AF f(s)/Klds

:C{/o /OtSS( “LAnHLf( drds+z/ s)F AR f )/k'd}

which shows the conclusion.
The above discussion has justified the following theorem.

Theorem 7.4. let x € C(D(A™)). If f satisfies the conditions given
in Lemma 7.2 (resp. the condition given in Lemma 7.3), then P(z, f) has a
unique solution which is

up(t) = C~ i (1)

(7.8) n-1
= C18(t) A%+Z—tﬂAﬂx+C Ly (1),
Jj= 0

where C~1g(")(t) is as expressed in (7.6) (resp. (7.7)).

Corollary 7.5. Let A be the generator of a C-semigroup, and assume
either

(i) {£(0)} U f([0,b) € R(C) and C1f" € C([0,b], X),

(ii) f € C([0,8], D(A)), Af([0,b]) C R(C) and C~ Af € ([0,b], X).
Then P(x, f) has a unique solution for any x € C(D(A)).

Corollary 7.6. Let A be the generator of an n-times integrated C-semigroup.
For every x € C(D(A™Y)) the unique solution of P(x,0) is

n—1
1
ug(t) = C71S(t) A”x—i—Zj—tJA]
7=0
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Remarks. When C = I, Corollary 7.5 reduces to a theorem of Phillips
[23] (see also [8, p. 84]), and Corollary 7.6 reduces to Proposition 2.6 in [17].
When n = 0, Corollary 7.6 reduces to Corollary 1.3 in [28].

8. EXAMPLES

We conclude the paper with examples which show that for each n > 0
there is an n-times integrated C-semigroup (C' # I) whose generator does not
generate any (n — 1)-times integrated C-semigroup, We start with the case
n =0.

Example 8.1. For t > 0 let Sy(t) be the operator on the space Cp(R)
defined by So(t)f := exp{t[X[0,00) = X(—o0,0]} sIN(-)f(f € Co(R)). Then it is
easy to see that Sp(-) is a C-semigroup on Cy(R) with C defined by (Cf)(s) :=
(sin(s))f(s), and the generator Ay sends f to (X[0,00) = X(=o0,0])f for f in its
domain D(Ay) := {f € Cy(R); f(0) = 0}.

It is proved in [20, Proposition 2.4] that if B generates a nonholomorphic
(Cp)-semigroup on a Banach space Y (for example, B = d/ds generates the
semigroup of left translations on Cy(R)), then the operator A; : D(B)"*! —
X, := Y"1 defined by

(B 0 0 |
B B
0 B B

Ay = 0
. B - B 0
0O - - -0 B B

generates a nondegenerate n-times integrated I-semigroup Si(-) on X but
does not generate a nondegenerate (n — 1)-times integrated I-semigroup.

Example 8.2. Let X := X; ® Cy(R) and S(t) := S1(t) & ﬁfg(t -
s)""1Sy(s)ds,t > 0. Then S(:) is a nondegenerate n-times integrated C-
semigroup on X with C =1®C and generator A = Ay ® Ag. If A also
generates some (n — 1)-times integrated C-semigroup T'(-), then from the
identity [;°A"e MS(t)dt = (A — A)7IC = [ A le T (t)dt we see that
S(t) = [y T(s)ds for t > 0. Thus Si(-) = S(*)|x,, is continuously differen-
tiable on [0, 00) and %Sl(t) = %S(tﬂxl = T(t)|x, is strongly continuous on
[0,00). This means that (d/dt)Si(t) is an (n—1)-times integrated I-semigroup
generated by Ay. This is a contradiction.
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