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A STRONG AND WEAK CONVERGENCE THEOREM FOR
RESOLVENTS OF ACCRETIVE OPERATORS

IN BANACH SPACES

Shigeru Iemoto and Wataru Takahashi

Abstract. In this paper, we first introduce an iterative sequence of Mann’s
type and Halpern’s type for finding a zero point of an m-accretive operator
in a real Banach space. Then we obtain the strong and weak convergence by
changing control conditions of the sequence. The result improves and extends
a strong convergence theorem and a weak convergence theorem obtained by
Kamimura and Takahashi [9], simultaneously.

1. INTRODUCTION

Let E be a real Banach space and let A ⊂ E × E be an m-accretive operator.
Then the problem of finding a solution v ∈ H with 0 ∈ Av has been investigated
by many researchers.

One well-known method for solving the equation 0 ∈ Av in E is the following:
x0 = x ∈ E and

(1) xn+1 = Jλnxn, n = 0, 1, 2, · · · ,

where {λn} ⊂ (0,∞) and Jλn = (I + λnA)−1. This method is called the
proximal point algorithm. Rockafellar [21] proved that if E is a Hilbert space,
lim infn→∞ λn > 0 and A−10 �= ∅, then the sequence {xn} generated by (1) con-
verges weakly to an element of A−10. Later, many researchers have studied the
convergence of (1); Brézis and Lions [1], Güler [5], Reich [14, 18], Pazy [13],
Nevanlinna and Reich [11], Jung and Takahashi [7] and these references mentioned
therein. Some of them dealt with the weak convergence of (1) and others proved
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strong convergence theorems by imposing strong assumptions on A. See also Bruck
[3], Reich [15-17, 19], Passty [12] and Bruck and Passty [4]. On the other hand,
motivated by Halpern [6] and Mann [10], Kamimura and Takahashi [9] introduced
the following two iterative schemes,

(2) xn+1 = αnx + (1 − αn)Jλnxn, n = 0, 1, 2, · · ·
and

(3) xn+1 = αnxn + (1 − αn)Jλnxn, n = 0, 1, 2, · · · ,

where x0 = x ∈ E , {αn} is a sequence in [0, 1] and {λn} is a sequence in (0,∞).
Then, under additional conditions, they proved that the sequence {xn} generated by
(2) converges strongly to some v ∈ A−10 and the sequence {xn} generated by (3)
converges weakly to some v ∈ A−10.

In this paper, motivated by Kamimura and Takahashi [9], we introduce the
following iterative sequence: x0 = x ∈ E and

(4) xn+1 = αnx + βnxn + γnJλnxn, n = 0, 1, 2, · · · ,
where {αn}, {βn} and {γn} ⊂ [0, 1] satisfy αn +βn +γn = 1 and {λn} ⊂ (0,∞).
And, by changing control conditions of the sequence, we prove a convergence
theorem which improves and extends a strong convergence theorem and a weak
convergence theorem obtained by Kamimura and Takahashi [9], simultaneously.

Finally, using this result, we consider the problem of finding a minimizer of a
convex function in a real Hilbert space H .

2. PRELIMINARIES

Throughout this paper, we denote the set of all nonnegative integers by N . Let
E be a real Banach space with norm ‖·‖ and let E∗ denote the dual of E . We
denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in
E , we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. We also know that if C is a closed convex subset of
a uniformly convex Banach space E , then for each x ∈ E , there exists a unique
element u = Px ∈ C with ‖x − u‖ = inf{‖x − y‖ : y ∈ C}. Such a P is called
the metric projection of E onto C. The duality mapping J from E into 2E∗ is
defined by

J(x) = {y∗ ∈ E∗ : 〈x, y∗〉 = ‖x‖2 = ‖y∗‖2}, x ∈ E.

Let S(E) = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be uniformly
Gâteaux differentiable if for each y ∈ S(E), the limit

(5) lim
t→0

‖x + ty‖ − ‖x‖
t
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is attained uniformly for x ∈ S(E). The norm of E is said to be Fréchet differ-
entiable if for each x ∈ S(E), (5) is attained uniformly for y ∈ S(E). It is also
said to be uniformly Fréchet differentiable if the limit (5) is attained uniformly for
x, y ∈ S(E). In such a case, E is called uniformly smooth. It is known that if
the norm of E is uniformly Gâteaux differentiable, then the duality mapping J is
single-valued and uniformly norm to weak∗ continuous on each bounded subset of
E . If E is uniformly smooth, then the duality mapping J is uniformly norm to
norm continuous on each bounded subset of E .

Let C be a closed convex subset of E . A mapping T : C → C is said to be
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote the set of
all fixed points of T by F (T ). A closed convex subset C of E is said to have
the fixed point property for nonexpansive mappings if every nonexpansive mapping
of a bounded closed convex subset D of C into itself has a fixed point in D. A
nonempty closed convex subset of a uniformly convex Banach space E has the
fixed point property for nonexpansive mappings. Let D be a subset of C. A
mapping P of C into D is said to be sunny if P (Px+ t(x−Px)) = Px whenever
Px + t(x−Px) ∈ C for x ∈ C and t ≥ 0. A mapping P of C into itself is called
a retraction if P 2 = P . We denote the closure of the convex hull of D by coD.

Let I denote the identity operator on E . An operator A ⊂ E × E with domain
D(A) = {z ∈ E : Az �= ∅} and range R(A) =

⋃{Az : z ∈ D(A)} is said
to be accretive if for each x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2, there exists
j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 ≥ 0. If A is accretive, then we have
‖x1 − x2‖ ≤ ‖x1 − x2 + r(y1 − y2)‖ for all x1, x2 ∈ D(A), y1 ∈ Ax1, y2 ∈ Ax2

and r > 0. An accretive operator A is said to be m-accretive if R(I + rA) = E
for all r > 0. If A is accretive, then we can define, for each r > 0, a nonexpansive
single valued mapping Jr : R(I+rA) → D(A) by Jr = (I+rA)−1. It is called the
resolvent of A. We also define the Yosida approximation Ar by Ar = (I − Jr)/r.
We know that Arx ∈ AJrx for all x ∈ R(I +rA) and ‖Arx‖ ≤ inf{‖y‖ : y ∈ Ax}
for all x ∈ D(A) ∩ R(I + rA). We also know that for an m-accretive operator
A, we have A−10 = F (Jr) for all r > 0. An operator A ⊂ E × E∗ is called
monotone if for any (x1, y1), (x2, y2) ∈ A, 〈x1 − x2, y1 − y2〉 ≥ 0. A monotone
operator A ⊂ E × E∗ is called maximal if its graph G(A) = {(x, y) : y ∈ Ax}
is not properly contained in the graph of any other monotone operator. In a real
Hilbert space, an operator A is m-accretive if and only if A is maximal monotone;
see [24, 25] for more details.

3. MAIN THEOREMS

Let A ⊂ E×E be an m-accretive operator and let Jr : E → E be the resolvent
of A for each r > 0. Then we consider the following algorithm. The sequence
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{xn} is generated by

(6)

{
x0 = x ∈ E,

xn+1 = αnx + βnxn + γnJλnxn + en, n ∈ N ,

where {αn}, {βn}, {γn} ⊂ [0, 1], {λn} ⊂ (0,∞) and {en} ⊂ E .
The following lemmas are useful in the proof of our main theorem.

Lemma 3.1. (Reich [19] and Takahashi-Ueda [27]). Let E be a reflexive
Banach space whose norm is uniformly G âteaux differentiable. Suppose that E
has the fixed point property for nonexpansive mappings. If A −10 �= ∅, then the
strong limt→∞ Jtx exists and belongs to A−10 for all x ∈ E . Further, if Px =
limt→∞ Jtx for each x ∈ E , then P is a sunny nonexpansive retraction of E onto
A−10.

Lemma 3.2. (Browder [2]). Let C be a bounded closed convex subset of a
uniformly convex Banach space E and let T be a nonexpansive mapping of C into
itself. If {xn} converges weakly to z ∈ C and {xn − Txn} converges strongly to
0, then Tz = z.

Lemma 3.3. (Reich [18] and Takahashi-Kim [26]). Let E be a uniformly
convex Banach space whose norm is Fréchet differentiable, let C be a nonempty
closed convex subset of E and let {T0, T1, T2, . . .} be a sequence of nonexpansive
mappings of C into itself such that

⋂∞
n=0 F (Tn) is nonempty. Let x ∈ C and

Sn = TnTn−1 · · ·T0 for all n ∈ N . Then the set
⋂∞

n=0 co{Smx : m ≥ n} ∩ U
consists of at most one point, where U =

⋂∞
n=0 F (Tn).

Lemma 3.4. (Xu [29]). Let E be a uniformly convex Banach space. Then
for each r > 0, there exists a strictly increasing, continuous and convex function
g : [0,∞) → [0,∞) such that g(0) = 0 and

‖λx + (1− λ)y‖2 ≤ λ ‖x‖2 + (1− λ) ‖y‖2 − λ(1− λ)g(‖x − y‖)
for all x, y ∈ {z ∈ E : ‖z‖ ≤ r} and λ ∈ [0, 1].

Using these results, we first prove the following theorem. The proof is mainly
due to Kamimura and Takahashi [9].

Theorem 3.1. Let E be a uniformly convex Banach space whose norm is
uniformly smooth and let A ⊂ E ×E be an m-accretive operator. Let x 0 = x ∈ E
and let {xn} be a sequence generated by (6). Assume that αn + βn + γn = 1 for
all n ∈ N ,

∑∞
n=0 ‖en‖ < ∞ and A−10 �= ∅. Then we have the following (i) and

(ii):
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(i) If
∞∑

n=0

αn = ∞, lim
n→∞ αn = 0, lim

n→∞ βn = 0, and lim
n→∞ λn = ∞,

then {xn} converges strongly to an element of A−10. Further, if Px =
limn→∞ xn for each x ∈ E , then P is a sunny nonexpansive retraction of E

onto A−10.

(ii) If
∞∑

n=0

αn < ∞, lim sup
n→∞

βn < 1, and lim inf
n→∞ λn > 0,

then {xn} converges weakly to v ∈ A−10.

Proof. We first show that {xn} generated by (6) is bounded. In fact, from
A−10 �= ∅, there exists u ∈ A−10 such that Jsu = u for all s > 0. Then we have

‖x1 − u‖ = ‖α0x + β0x0 + γ0Jλ0x0 + e0 − u‖
≤ α0 ‖x − u‖ + β0 ‖x0 − u‖ + γ0 ‖Jλ0x0 − u‖+ ‖e0‖
≤ (α0 + β0) ‖x − u‖ + γ0 ‖x0 − u‖ + ‖e0‖
≤ ‖x − u‖+ ‖e0‖ .

If ‖xk − u‖ ≤ ‖x − u‖+
∑k−1

i=0 ‖ei‖ holds for some k ∈ N , we can similarly show
‖xk+1 − u‖ ≤ ‖x − u‖ +

∑k
i=0 ‖ei‖. Therefore, from

∑∞
n=0 ‖en‖ < ∞, {xn} is

bounded. Hence {Jλnxn} is also bounded.
(i) Let zt = Jtx, yn = Jλnxn and u ∈ A−10, where t > 0. By Lemma 3.1,

the strong limt→∞ zt exists and belongs to A−10. Putting z = limt→∞ zt, we shall
prove

(7) lim sup
n→∞

〈x − z, J(xn − z)〉 ≤ 0.

To prove this, it is sufficient to show

(8) lim sup
n→∞

〈x − z, J(yn − z)〉 ≤ 0.

In fact, since xn+1−yn = αn(x−yn)+βn(xn−yn)+en, we have xn+1−yn → 0.
This yields

lim
n→∞ ‖J(xn+1 − z) − J(yn − z)‖ = 0



920 Shigeru Iemoto and Wataru Takahashi

because J is uniformly continuous. Then (8) implies (7). Now, we know that
(x − zt)/t ∈ Azt and Aλnxn ∈ Ayn. Since A is accretive, we obtain〈

Aλnxn − x − zt

t
, J(yn − zt)

〉
≥ 0

and hence
〈x − zt, J(yn − zt)〉 ≤ t 〈Aλnxn, J(yn − zt)〉 .

From λn → ∞, we also have

lim
n→∞ ‖Aλnxn‖ = lim

n→∞

∥∥∥∥xn − yn

λn

∥∥∥∥ = 0.

Then we have

(9) lim sup
n→∞

〈x − zt, J(yn − zt)〉 ≤ 0.

for all t > 0. Since zt → z as t → ∞ and J is uniformly continuous, for any
ε > 0, there exists t0 > 0 such that for all t ≥ t0 and n ∈ N ,

|〈z − zt, J(yn − zt)〉| ≤ ε

2
and |〈x − z, J(yn − zt)− J(yn − z)〉| ≤ ε

2
.

This implies that for t ≥ t0 and n ∈ N ,

(10)

|〈x−zt, J(yn− zt)〉−〈x−z, J(yn−z)〉|
≤ |〈x−zt, J(yn−zt)〉−〈x−z, J(yn−zt)〉|

+|〈x−z, J(yn−zt)〉−〈x−z, J(yn−z)〉|
= |〈z−zt, J(yn−zt)〉|+ |〈x−z, J(yn−zt)−J(yn−z)〉|
≤ ε.

Hence, from (9) and (10), we have

lim sup
n→∞

〈x − z, J(yn − z)〉 ≤ lim sup
n→∞

〈x − zt, J(yn − zt)〉 + ε ≤ ε.

Since ε > 0 is arbitrary, we obtain (8).
Let ε > 0. From

∑∞
n=0 ‖en‖ < ∞ and (7), there exists m ∈ N such that for

all n ≥ m,

M

∞∑
i=m

‖ei‖ ≤ ε

2
and 〈x − z, J(xn − z)〉 ≤ ε

4
,
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where M = 2 supn∈N ‖xn − z‖. Since βn(xn − z) + γn(yn − z) = (xn+1 − z) −
αn(x − z) − en, we have

‖βn(xn − z) + γn(yn − z)‖2 ≥ ‖xn+1 − z‖2 − 2 〈αn(x− z) + en, J(xn+1 − z)〉 ,

which yields

‖xn+1−z‖2 ≤ ‖βn(xn−z) + γn(yn−z)‖2 + 2 〈αn(x−z) + en, J(xn+1−z)〉
≤ (βn ‖xn−z‖ + γn ‖yn−z‖)2 + 2αn 〈x−z, J(xn+1−z)〉+ M ‖en‖
≤ (βn ‖xn−z‖ + γn ‖xn−z‖)2 + 2αn 〈x−z, J(xn+1−z)〉 + M ‖en‖
≤ (1−αn) ‖xn−z‖2 + 2αn 〈x−z, J(xn+1−z)〉 + M ‖en‖ .

Hence for all n ∈ N , we have

‖xn+m+1 − z‖2 ≤ (1 − αn+m) ‖xn+m − z‖2 + αn+m
ε

2
+ M ‖en+m‖ .

By induction, we obtain

‖xn+m+1 − z‖2 ≤
n+m∏
i=m

(1−αi) ‖xm − z‖2+

{
1 −

n+m∏
i=m

(1 − αi)

}
ε

2
+M

n+m∑
i=m

‖ei‖

for all n ∈ N . So, we obtain

lim sup
n→∞

‖xn − z‖2 = lim sup
n→∞

‖xn+m+1 − z‖2 ≤ ε

2
+ M

∞∑
i=m

‖ei‖ ≤ ε.

Since ε > 0 is arbitrary, we can conclude that {xn} converges strongly to z.
(ii) First we prove the result in the case of αn ≡ 0 and en ≡ 0, that is,

(11)

{
u0 = x ∈ E;

un+1 = βnun + (1 − βn)Jλnun, n ∈ N .

Let yn = Jλnun and v ∈ A−10. For l = ‖x − v‖, the set D = {z ∈ E : ‖z − v‖ ≤
l} is a nonempty bounded closed convex subset of E which is invariant under Js

for all s > 0. So {un} ⊂ D is bounded and we can show that {Jλnun} is also
bounded. From

‖un+1 − v‖ = ‖βnun + (1 − βn)yn − v‖
≤ βn ‖un − v‖+ (1− βn) ‖yn − v‖
≤ ‖un − v‖ ,
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limn→∞ ‖un − v‖ exists. Since A is accretive and Aλnun = (un − Jλnun)/λn =
(un − yn)/λn, we have

‖yn − v‖2≤
∥∥∥∥yn − v +

λn

2
(Aλnun − 0)

∥∥∥∥
2

=
∥∥∥∥yn − v +

1
2
(un − yn)

∥∥∥∥
2

=
∥∥∥∥1

2
(un − v) +

1
2
(yn − v)

∥∥∥∥
2

≤ 1
2
‖un − v‖2 +

1
2
‖yn − v‖2 − 1

4
g(‖un − yn‖)

≤ ‖un − v‖2 − 1
4
g(‖un − yn‖)

and hence

(1 − βn)
1
4
g(‖un − yn‖)

≤ (1− βn)(‖un − v‖ − ‖yn − v‖)(‖un − v‖ + ‖yn − v‖)
= (‖un − v‖ − βn ‖un − v‖ − (1 − βn) ‖yn − v‖)(‖un − v‖ + ‖yn − v‖)
≤ (‖un − v‖ − ‖un+1 − v‖)(‖un − v‖ + ‖yn − v‖).

Since lim supn→∞ βn < 1 and limn→∞ ‖un − v‖ exists, from Lemma 3.4 we
obtain un − yn → 0. So, from

‖yn − J1yn‖ = ‖(I − J1)yn‖
= ‖A1yn‖
≤ inf{‖z‖ : z ∈ Ayn}
≤ ‖Aλnun‖

=
∥∥∥∥un − yn

λn

∥∥∥∥
and lim infn→∞ λn > 0, we have yn − J1yn → 0. Further, letting w ∈ E be a
weak subsequential limit of {un} such that uni ⇀ w, we get yni ⇀ w. Then
it follows from Lemma 3.2 that w ∈ F (J1) = A−10. Since E has a uniformly
smooth norm, putting Tn = βnI + (1 − βn)Jλn and Sn = TnTn−1 · · ·T0, we have⋂∞

n=0 F (Tn) = A−10 and {w} =
⋂∞

n=0 co{um : m ≥ n} ∩ A−10 by Lemma 3.3.
Therefore {un} converges weakly to an element of A−10.

Finally, we show the theorem in the case of (ii). Our discussion follows an
idea of Brézis and Lion [1]. Note that {Jλnxn} are bounded. Define Unz =
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Tnz+αn(x−Jλnz)+en for all z ∈ E and n ∈ N , where Tn = βnI +(1−βn)Jλn.
We know that {un} defined by (11) converges weakly to some u ∈ A−10 and the
sequence {xn} generated by (6) satisfies xn+1 = Unxn. We define, for every
m ∈ N , the sequence {zm

n } by zm
0 = xm and zm

n+1 = Tn+mzm
n , n ∈ N . Then,

putting u0 = xm and un = zm
n , we have that {zm

n } converges weakly to some
zm ∈ A−10 as n → ∞. From the definition of {zm

n }, we also have∥∥zm+1
n − zm

n+1

∥∥ = ‖Tn+mTn+m−1 · · ·Tm+1xm+1 − Tn+mTn+m−1 · · ·Tmxm‖
≤ ‖xm+1 − Tmxm‖ = ‖αm(x − Jλmxm) + em‖
≤ αm ‖x − Jλmxm‖ + ‖em‖

for all m, n ∈ N . Since zm+1
n ⇀ zm+1 and zm

n ⇀ zm as n → ∞, we have that∥∥zm+1 − zm
∥∥ ≤ αm ‖x − Jλmxm‖ + ‖em‖ for all m ∈ N . From

∑∞
n=0 αn < ∞

and
∑∞

n=0 ‖en‖ < ∞, {zm} is a Cauchy sequence and hence {zm} converges
strongly to some z ∈ A−10. Since∥∥xn+m+1−zm

n+1

∥∥ = ‖Un+mUn+m−1 · · ·Umxm−Tn+mTn+m−1 · · ·Tmxm‖
= ‖Tn+mUn+m−1Un+m−2 · · ·Umxm

+ αn+m(x−Jλn+mUn+m−1Un+m−2 · · ·Umxm) + en+m

−Tn+mTn+m−1 · · ·Tmxm‖
= ‖Tn+mUn+m−1Un+m−2 · · ·Umxm

+ αn+m(x−Jλn+mxn+m) + en+m−Tn+mTn+m−1 · · ·Tmxm‖
≤ ‖Un+m−1Un+m−2 · · ·Umxm−Tn+m−1Tn+m−2 · · ·Tmxm‖

+ αn+m

∥∥x−Jλn+mxn+m

∥∥ + ‖en+m‖

≤ · · · ≤
n+m∑
i=m

{αi ‖x−Jλixi‖ + ‖ei‖},

we have

|〈xn+m+1 − z, h〉| = |〈xn+m+1 − zm
n+1, h〉+ 〈zm

n+1 − zm, h〉+ 〈zm − z, h〉|

≤
(

n+m∑
i=m

{αi ‖x − Jλixi‖ + ‖ei‖}
)
‖h‖ +

∣∣〈zm
n+1 − zm, h

〉∣∣
+ |〈zm − z, h〉|

for all h ∈ E∗ and m, n ∈ N . Since zm
n+1 − zm → 0 as n → ∞, this implies
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lim sup
n→∞

|〈xn − z, h〉| = lim sup
n→∞

|〈xn+m+1 − z, h〉|

≤
( ∞∑

i=m

{αi ‖x − Jλixi‖+ ‖ei‖}
)
‖h‖ + |〈zm − z, h〉|

for all h ∈ E∗ and m ∈ N . Since zm → z as m → ∞,
∑∞

n=0 αn < ∞ and∑∞
n=0 ‖en‖ < ∞, {xn} converges weakly to z ∈ A−10.

Using Theorem 3.1, we obtain the following two theorems proved by Kamimura
and Takahashi [8].

Theorem 3.2. ([8]) Let H be a real Hilbert space and let A ⊂ H × H be a
maximal monotone operator with A−10 �= ∅. Let x0 = x ∈ H and let {xn} be a
sequence generated by

(12) yn ≈ Jλnxn, xn+1 = αnx + (1 − αn)yn, n ∈ N ,

where ‖yn − Jλnxn‖ ≤ δn,
∑∞

n=0 δn < ∞, and {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞)
satisfy

lim
n→∞ αn = 0,

∞∑
n=0

αn = ∞ and lim
n→∞ λn = ∞.

Then {xn} converges strongly to Px, where P is the metric projection of H onto
A−10.

Proof. Letting en = (1 − αn)(yn − Jλnxn) in (12), we have

xn+1 = αnx + (1− αn)Jλnxn + en

for all n ∈ N . And we also have
∞∑

n=0

‖en‖ =
∞∑

n=0

(1 − αn) ‖yn − Jλnxn‖ ≤
∞∑

n=0

‖yn − Jλnxn‖ ≤
∞∑

n=0

δn < ∞.

So, if we put βn = 0 for every n ∈ N in Theorem 3.1, we get the conclusion.

Theorem 3.3. ([8]) Let H be a real Hilbert space and let A ⊂ H × H be a
maximal monotone operator with A−10 �= ∅ and let P be the metric projection of
H onto A−10. Let x ∈ H and let {xn} be a sequence generated by

(13) yn ≈ Jλnxn, xn+1 = βnxn + (1− βn)yn, n ∈ N ,

where ‖yn − Jλnxn‖ ≤ δn,
∑∞

n=0 δn < ∞, and {βn} ⊂ [0, 1] and {λn} ⊂ (0,∞)
satisfy

lim sup
n→∞

βn < 1 and lim inf
n→∞ λn > 0.
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Then {xn} converges weakly to v ∈ A−10.

Proof. As in the proof of Theorem 3.2, put en = (1−βn)(yn−Jλnxn) in (13).
So, if we put αn = 0 for every n ∈ N in Theorem 3.1, we get the conclusion.

Remark 1. As in the proofs of Theorems 3.2 and 3.3, we can also show the
strong and weak convergence theorems of Xu [30, Theorems 5.1 and 5.2].

4. APPLICATIONS

Let H be a real Hilbert space and let f : H → (−∞,∞] be a proper lower
semicontinuous convex function. Then, we can define the subdifferential of f as
follows:

∂f(x) = {z ∈ H : f(y) ≥ 〈z, y − x〉 + f(x), y ∈ H}
for all x ∈ H . In this section, we apply our algorithm to the case of A = ∂f . In
such a case, we know that A = ∂f is a maximal monotone operator; see [24, 25].
Our discussion follows Rockafellar [21]. If A = ∂f , the algorithm (6) is reduced
to the following:

(14)




x0 = x ∈ H,

yn ≈ argmin
z∈H

{
f(z) +

1
2λn

‖z − xn‖2

}
= Jλnxn,

xn+1 = αnx + βnxn + γnyn, n ∈ N ,

where ‖yn − Jλnxn‖ ≤ δn, Jλn = (I +λn∂f)−1,
∑∞

n=0 δn < ∞, and {αn}, {βn},
{γn} ⊂ [0, 1] satisfy αn + βn + γn = 1 and {λn} ⊂ (0,∞). Using Theorem 3.1,
we can prove the following theorem.

Theorem 4.1. Let f : H → (−∞,∞] be a proper lower semicontinuous
convex function with (∂f)−10 �= ∅. Let x0 = x ∈ H and let {xn} be a sequence
generated by (14). Then we have the following (i) and (ii):

(i) Suppose that

∞∑
n=0

αn = ∞, lim
n→∞ αn = 0, lim

n→∞ βn = 0 and lim
n→∞ λn = ∞.

Then {xn} converges strongly to v ∈ (∂f)−10, where v = P(∂f)−10x.
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(ii) Suppose that

∞∑
n=0

αn < ∞, lim sup
n→∞

βn < 1, and lim inf
n→∞ λn > 0.

Then {xn} converges weakly to v ∈ (∂f)−10.

Proof. (i) Putting gn(z) = f(z) + ‖z − xn‖2 /2λn, we obtain

∂gn(z) = ∂f(z) +
1
λn

(z − xn)

for all z ∈ H and

Jλnxn = (I + λn∂f)−1xn = argminz∈Hgn(z).

It follows from Theorem 3.1 that {xn} converges strongly to v ∈ (∂f)−10, where
v = P(∂f)−10x.

(ii) As in the proof of (i), we can prove (ii).
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