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A Fully Discrete Spectral Method for the Nonlinear Time Fractional
Klein-Gordon Equation

Hu Chen*, Shujuan Lii and Wenping Chen

Abstract. The numerical approximation of the nonlinear time fractional Klein-Gordon
equation in a bounded domain is considered. The time fractional derivative is de-
scribed in the Caputo sense with the order v (1 < v < 2). A fully discrete spectral
scheme is proposed on the basis of finite difference discretization in time and Legendre
spectral approximation in space. The stability and convergence of the fully discrete
scheme are rigorously established. The convergence rate of the fully discrete scheme
in H! norm is O(73~7 + N1=™), where 7, N and m are the time-step size, polyno-
mial degree and regularity in the space variable of the exact solution, respectively.

Numerical examples are presented to support the theoretical results.

1. Introduction

The following nonlinear Klein-Gordon equation is probably the simplest nonlinear rela-

tivistic equation of mathematical physics [17]:

utt—Au+m2u+\u|pu:O, zeR m>0,p>0,

(1.1)
u(q:,O) = ¢(l‘)v ut(x,()) = ¢($)

A complete understanding of it would illuminate our view of many other such equations,
such as Shrodinger equation, Dirac equation, etc. The Klein-Gordon equation plays a
significant role in many scientific applications such as solid state physics, nonlinear optics
and quantum field theory [23]. There are lots of works to investigate the analytical and
numerical aspects of the nonlinear Klein-Gordon equation, see [1},7,9,[11,|12}/17}23,24].
Fractional derivatives and integrals are the generalizations of the usual derivatives
and integrals. Fractional differential equations are the equations involving the fractional
derivatives of the unknown functions. One can refer to the book [5| for more details.

In fact, many phenomena in physics and other sciences can be described more accurately
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using fractional calculus, such as anomalous diffusion |15], relaxation and reaction kinetics
of polymers [8], image processing [3], bioengineering [14], continuous-time finance |16] and
SO on.

If we replace the second-order time derivative in equation with a fractional deriva-
tive of order 1 < v < 2, we obtain the nonlinear time fractional Klein-Gordon equa-
tion. Golmankhaneh et al. [6] obtained approximate analytical solutions of the nonlinear
time fractional Klein-Gordon equations using homotopy perturbation method. Demiray
et al. [4] used the Generalized Kudryashov Method to obtain the exact solutions of the
nonlinear time fractional Klein-Gordon equations. Vong and Wang [21] proposed a fourth
order compact difference scheme for a nonlinear fractional Klein-Gordon equation, and
proved the stability and convergence of the scheme using the energy method.

In this paper, we consider the following nonlinear time fractional Klein-Gordon equa-

tion in one-dimensional spatial domain:
(1.2) SDYu(z,t) — e + B(x) [ufPu= f(z,t), —-1<z<1,0<t<T

subject to the following initial and boundary conditions:

(1.3) u(x,0) =up(z), ui(z,0)=1vx), ze(-1,1),
(1.4) w(—1,8) =0, w(l,t)=0, 0<t<T,
where . L g2 (2. 5) 1
C B u(z, s s
ODtu(x’t)F@—’y)/o 952 (—sp T l<y<2

is the Caputo fractional derivative of order v with respect to ¢, p is a positive number,
B >0, and f is a given function.

We propose a fully discrete spectral method to solve the f numerically. The
proposed scheme is based on a finite difference method in the temporal direction and a
Legendre spectral method in the spatial direction. More precisely, we use the L1 ap-
proximation coupled with a Crank-Nicolson technique to approximate the Caputo time
fractional derivative, and use central difference to approximate the nonlinear term |u|’ .
We give a detailed analysis for the stability and convergence of the fully discrete scheme.
The convergence order of the proposed scheme in H' norm is O(73~7 4+ N1=™), where T,
N, and m are the time-step size, polynomial degree, and regularity in the space variable
of the exact solution, respectively.

The rest of the paper is organized as follows. In Section [2] some preliminaries and
notations are shown. In Section [3] we present the formulation of the fully discrete spectral
scheme, and give a priori estimate for the approximate solutions. Based on the a priori
estimate, the existence and uniqueness of the approximate solutions are proved. In Sec-
tion [4] we analyse the stability and convergence of the fully discrete scheme. We do some

numerical experiments in Section [5] Finally, some conclusions are given in Section [6}
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2. Preliminaries and notations

Let A = (—1,1). Throughout this paper, we use Sobolev spaces W"P(A) with norm |[[-[|,. .
When p = 2, we denote W"2(A) and its inner product, semi-norm and norm by H"(A),

(-s)r, ||, and ||-||,. respectively. In particular, (-,-) = (-,-)o, ||| = ||‘|lo- Furthermore,
Hy(A) = {ve H'(A)|v(£l) =0}.

We denote by L>°(0,T; H™(A)) the space of the measurable functions v: (0,7) — H™(A),
such that

[0l Lo (£rmy = esssup [[v(#)]],,, < o0,
0<t<T

C*([0,T]; H™(A)) (0 < k < 00) the space of k-times continuous differentiable functions
v: [0,T] = H™(A), such that

k

_ (7)
lollos gz = 3 g [vO0)]| < oo

1=

For simplicity we denote 0%v(z) = C&—kkv(:v). Throughout the paper, ¢ denotes a generic
positive constant.

Let N be a positive integer. We denote by Py (A) the space of all polynomials of
degree less than or equal to N. PY; := {¢ € Py (A) | ¢(£1) = 0}. Next we introduce some
projection approximation results.

Let 7T]1\}0 be the H}-orthogonal projection operator from H}(A) into IP’?V, such that for
all w € H(A),

<8x7r]1\}0u, 8IUN> = (Opu,0zvN), Yoy € IP’(]]V.

For the projection operator 7T]1\}0, one has the following approximation result:
Lemma 2.1. [2] For all u € HY(A) N H™(A), we have
1,0 k—m —
HU—TI'N qu <CN l|ull,,, k=0,1, m>1,
where C' is a positive constant independent of N.

The following Poincaré’s inequality is useful.

Lemma 2.2. For any u(x) € C'[—1,1], with u(—1) = u(1) = 0, we have

lull < —= |0zl -

1
7

Proof. The inequality can be obtained by a simple computation. O
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We then give a discrete Gronwall’s inequality.

Lemma 2.3. [10] Let k, B, and a,, by, cu, Yyu, for integers pp > 0, be nonnegative numbers
such that

an—i-kzn:bu < kzn:’yuau—i-kzn:cu—i-B, n > 0.
n=0 n=0 ©=0

Suppose that kv, < 1, for all u, and set o, = (1 — kv,)~'. Then

n n n
an+k‘ZbM§exp kZJu’y# k:Zcu+B , n>0.
u=0 u=0 n=0

The following lemma will be used in the proof of the existence of approximation solu-

tions.

Lemma 2.4. |20, Lemma 1.4, Ch. 2] Let X be a finite-dimensional Hilbert space with
scalar product |- ,-] and norm [-], and let P be a continuous mapping from X into itself
such that

[P(£),€] >0 for[¢]=Fk>0.
Then there exists £ € X, [€] < k, such that

P(£) = 0.

3. The formulation of the fully discrete scheme

For a positive integer M, let t, = kr, k = 0,1,..., M, where 7 = T//M is the time-step
length. Given a grid function w = {wk |0<Ek< M}, we define

wht1/2 — % (wk+1 + wk) o SuwRtl? = 1 (wk+1 _ wk) ‘
T

For the discretization of the Caputo fractional derivative of order v (1 < v < 2) in
time, we use the L1 approximation coupled with the Crank-Nicolson technique as in [19];
see also [22].

Denote 9 = 777 IT'(3 — ) and b; = (j + 1)?>77 — 5277 for j > 0. For a differentiable

function v(t), let

k—1
1 .
Lgvk-i-l/? _ 7 (5tvk+1/2 _ E (bj o bj+1)6tvk_1_J+1/2 _ bk'l},(to) ’
0 -
J=0

where £k =0,1,...,. M — 1.
For the approximation of fractional derivative of order v € (1, 2), we have the following

lemma.
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Lemma 3.1. [1§] Let

1 ba(s)
D]u(t) = d t <tpiq.
tv( ) F(2—’)’) /0 (t_s),y_l S, 0< > lk+1

Suppose v(t) € C3[0,tx11] (0 <k <M —1), then
1
5 (DRvltiin) + Do(u) - Lo

1 2—vy 2377 - 1
< —1+27")+ =
_F(3—7)[ 12 34 (1270 + ]

12
It is direct to check that

max [0 ()| T°77.
0<t<tr41

b >0, j=0,1,....k

1=0by>b > -->bg, br.— 0whenk — oc;
k—1

Z(bj —bjt1)+bp =1.

j=0

Moreover, we have

741 1
b= DT == @) [ Sz oD
J

Let tj41/2 = (k+1/2)7. For the nonlinear term |u[” u, using Taylor’s expansion, we have

U Julten) [P — Julty) P
p+2 u(tpy1) — u(ty)

— |uts1/2) | ultyrr2) = O(F?).

We discretize the space using a Legendre spectral method. Let ugv € IP’?V be the
approximation of u(z,t) at time ¢t = t; for j = 0,1,..., M. Then the fully discrete scheme
in weak formulation for (1.2) is as follows: find uﬁ,ﬂ € P, such that

1 [P E |P+2
U — |u
k+1/2 k+1/2 B ‘ N ’ |u|
<6tuN 7UN) +70(81‘UN 781‘1}]\7) +fYO p+2 u{]cv_;'_l —u{fv 7UN

(3.1)

k—1 .

—1—j5+1/2
=5 (fF20n) +Y (b — bin) (Gruy T 2 un) + bi(w,on), Yoy € P,

=0

with u?v = W}\}OUO, where £k =0,1,..., M — 1.

Before we prove the well-posedness of the scheme, we need a priori estimate for u]]“VH.



236 Hu Chen, Shujuan Lii and Wenping Chen

Lemma 3.2. Suppose ulfvﬂ (0 <k <M —1) is the solution of the problem (3.1)), then we

have
2 & k—j+1/2||? k+1 k+1
o S o2 o e
T(3—7)]Z;] N p+2
2 ! +2
<o+ 25 [ a o
(k+1)7)%"

+TZ2F2 Dt e wuwu

Proof. Taking vy = 5tuégv+1/ % in (13.1) gives

Héukﬂ/zH + 90(0s uk+1/2 8x6tuﬂc\[+1/2)
5 |k -

p+2 uﬁvﬂ—u?\,

‘p+2

‘ Un k+1/2
)5tuN

(32) T

k—1
:70(fk+1/2 u k+1/2 +Z b —bg+1 5tuk 1—j+1/2 S k+1/2)_|_bk(¢},5uk+1/2)
7=0

For the second and third terms on the left-hand side of (3.2)), we have

~0(Dsu k+1/2 Oy0u k+1/2) 70( 9.kt 2_) 2)

TN

vt 2T

and

s s

p+2 uﬁ,ﬂ—u’fv

p+2 (/ B)’““ dx—/ ﬁ‘uN‘pH >

For the right-hand side of ({3.2]), using Holder’s inequality and Young’s inequality, one has

k+1/2
Upn

i

Y0

e 1
by 5tuk 2 s k+1/2)

Jj= O

=

<53 (5~ bysa) (Hét“k e k)

7=0
1 he1—j41/2 1 kt1/2||2
+

S R R e
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be (v, run %) < by <||¢||2 + % Hétufv“ﬂHQ)

and
’Yo(fk+1/2,5tufv+l/2 kaH/ZH + b HéukH/QH :

Substituting these inequalities into , and noticing that

k

. 2

H6 k+1/2” +Zbﬂ+1H5t“k 1—- ]+1/2H :ijH(;tul]cv—Hl/zH 7
=0

we obtain
sz Hét - J+1/2H +70‘ ! k+1H2+ 2% / 5’ k+1‘ dx
p+2
_ o )
(3.3) STij H‘Stufv 1 ]+1/2H
5=0
270 d b 2770 k+1/2
b 20l ek 2rm ol + 58 |
Let
2 2’70 +2 4
R = [0l + 2% [ Rl
and

Fk+1—TZb H5 k— g+1/2H

p+2

for 0 <k < M — 1. Then from ({3.3]), we have

P < PR 4 o )2 4+ 220 ka+1/2
b

or equivalently
k 272 . 2
(3.4) PR < PO r 30 S0t 2) T or (i 4 1) ).
j=0

Since b; > (2 —7)(j + 1)'77, I'(s + 1) = sT'(s) and v9 = I'(3 — )77 71, we have

i < vy, ey = 2EEDD

Substituting these two inequalities into (3.4]), we have

290 ((k + 1)7)2~
I'(3—7)

k
. 2 Y
FHU< B0 73 ar(@ = )T g 47412 2.
=0

2 p+2
k+1H 4 20 / 5‘ k+1‘ dz

237
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Then we have

T f:b- Hdtuk—j-l-l/Q’ 2
L@ —7) = I

2 | ‘p—&-z

2 p+2
k+1 k+1
[ g [ o

< [0z | o

+722r2 )T Hf]“/QH ];(+3 il )) 2. O

For the existence of solution u?\,ﬂ for (3.1)), we have the following theorem.

k
Theorem 3.3. For { N} given, there exists one u’f\,H satisfying (3.1)).

Proof. Let X = PQ;; the scalar product on X is the usual inner product (-,-) in L2(A).
Define a mapping P: X — X, such that

A G

+2 p+2
Jw +uf " — |u] k4172
+70<p+2 ” v —=(f , V)
k—1
305 — b)) Gy T 0) — bi(,0), Vw,v € X,
7=0

The continuity of the mapping P is obvious. Next, we have

2
[P(w)7w] = Hu;_H + Y% (’8xw|| + (a:cuﬁ\laaarw)>

2
1 p+2 p+2
(3.5) +p7+°2 </ ﬁ‘w+u’7vj d:v—/ B’uN‘ )
k—1
o (FY2 ) Z (b — b1 5tuk L4120 by (15, W),
7=0

For the right-hand side of (3.5)), using Hélder’s inequality and Young’s inequality, we

have

> 5S ' ]
Z(b — b)) Gy R ) < D) (bj —bjt1) ( H@J{lfﬁlﬂu + )
Jj=0 =
k1 )
T e s "
ST TN
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belitw) < <er 1”“;”)

k41/2 W || prr1ge|?, 1 Jlw]?
Yo(f ,w) < =T Hf H + —bg :
by, 4 T

and

Substituting the above inequalities into (3.5), and using the a priori estimate in
Lemma [3:2] we get

1 2 aw k 2 1
Pyl 2 10 I o (O g ae - [ ikl )

2 2 k! L 2
B2 = 5 3l = by ek = b
§=0

T A ey
2 - 0 p+2//8| N[ de

2
el o i

1 |jwl|? 2

= el 2 <H6z 42 [ sl s
e A )

z”“(”w”zE),

2 Y0

where
2
=0’ + /3! i dw+722f e+ )||w||

Then it follows that [P(w),w] > 0 for |w|| = K, K > (17E)"/?. By virtue of Lemma

there exists wht! € X satisfying P(w*+!) = 0. Set uf! = wF+! + ok, thus the existence

k+1

of uy"" is proved. O

Next we give the uniqueness theorem.
Theorem 3.4. The solution u’f\,ﬂ for (3.1)) is unique.

N M N M
Proof. Suppose {ui} .y {ui*} - are the solutions of the problem (3.1)), with the same
j= J*

initial condition. Let u’ = ui — ul,, then we have

(5tuk+1/27vN) 4 70(8xuk+1/2’ Bzun) + Y0 (5(Gk+1/2 B ék+1/2)’ UN)

kol
—_

(3.6) |
= (bj—bj+1)((5tuk_1_J+1/2,UN>, Yoy GP]OV, k=0,1,...,M —1,

<.
Il
o
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where

1 |u/:+1‘p+2 . ‘uﬂf}p+2 k+1‘p+2 uk ‘p+2

g2 _ 1 |u

Gk+1/2 —
p+2 ul Ll — b 7 p+2 uk — b,

Denote g(s) = |s|” s, then we have [1]

1 1
G2 = / (0 1 (1 - 0)yuk)do, TV = / g(0uH 1 (1 - 0)uk,) do.
0 0

By virtue of a priori estimate, the ui, ul, are uniformly bounded, therefore,

1
Ghr2 G / g(OuE 4 (1= 0)ub) — g(OulH! 4 (1 O)uk,) do
0

2
o ukJrlH
T

1
< Cl/ 0 ’ukﬂ‘ +(1-0) ‘uk‘ dé
0
=5 (j ] Ja) -
Let vy = 6;uf*1/2 in (3.6), we have
oo 32 T)
2T

(3.7) k-1 . o

— (b; — bj+1)(5tuk—1—J+1/2’ 5tuk+1/2) % <5(Gk+1/2 -a ), 5tuk+1/2> .
§=0

For the right-hand side of ({3.7]), using Holder’s inequality and Young’s inequality, one has

k—1
(bj — bj+1)(5tukflfj+1/2’ 5tuk+1/2)
j=0
=
S §Z(b bjt1 <H6tuk 1_J+1/2H + H5 ukH/QH >
j=0
= .
e
j=0
and
- 2~2 2 2 1 2
0 <B(Gk+1/2 _ Gk+1/2),5tuk+1/2) < 4% HukHH n HukH 4 b H‘St“fvﬂ/QH '
4by 2
Then we have
k ) ,
T Z b H(Stuk_jﬂﬂ‘ SR H

<7'Zb Hétuk 1 j+1/2H —i—’}’())

T (| et
2y (“ )
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Following the same lines as in the proof of Lemma [3.2] and using Poincaré’s inequality,

we have

e +TZ T2 — )zt ([l + o)

) k—i—l .
< [|owu||" 47> ea [|0

Then suppose 7 < 1/cg, using Gronwall’s inequality in Lemma we have

7 < o =0

Finally, using Poincaré’s inequality, we have Huk‘HH = 0, that is v+ — u¥+1 = 0. The

uniqueness is proved. O

4. Stability and convergence of the fully discrete scheme

N M
Suppose {ﬂg\,} ~are the solutions of the following:

~py1|PT2 idias
U — |u
~k+1/2 ~k+1/2 /8 N ’
(6t ,UN) + ’YO(axUN ,0zUN) + 0 ~k+1 » UN
~k
p+2 uy =l

k-1
= 30(F2,0n) + 3 (b — bia) Gy T2 o) + (@, o), Vo € P,
7=0

with an initial condition ﬂ?v, where £k =0,1,..., M — 1.
Following the same lines as in the proof of Lemma[3.2)and Theorem [3.4] we can obtain
the following stability result.
N M
Theorem 4.1. Suppose {U?V}jzo are the solutions of problem (3.1)), with an initial con-

dition u%;. Let N = wy — Wy, then we have

2
k+1
(9an H

vt || pht1/2 | Fhr/2 T2 7
e | oani]” +TZQF N1 / H

]—

ol e |

For the convergence of the fully discrete scheme (3.1)), we have

Theorem 4.2. Let u be the exact solution of (1.2)—(1.4)), {u’f\,}ﬁio be the solution of the
problem (3.1)) with the initial condition u%; = W]l\}ouo(x). Suppose u € C3([0,T]; H*(A)) N
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L0, T; H™(A)), D}u € L>(0,T; H™(A)), v € H™(A), m > 1, then for j =0,1,..., M,

we have

.12
pulty) — Byl | < e20@ = )T (N2 DTl gy + 752 s )

272
+ N2 ||, 4+ N2 ||y} oo (Hm) -
I'(3—7) Le=(H™)

Proof. Let e{v = u(t;) — uN, eN = 7r11\,0 (tj) — uN, 3\, = u(t;) — ﬂ]l\}ou(tj), thus we have
egv = eN + eN, in particular eN = uo ]1\,0 0 — 39\,, E?V = 0. From the initial equation

and the fully discrete scheme , we have the following error equation

(Breh 2, o) + 0(0ek 2, avn) + 30 (BGHT2 = G H2) )
k—

= (b — bj1)( )@een T2 o) +0(RyTYP o), Vo € Y,
=0

;_-

.

where Rf+1/2 = Ljuf+2 — L(DJu(tyir) + D]u(ty)) + cr?,

Wk pt2 ‘uk ‘p+2
ék+1/2 1 N N

k+1 _ ok ’ - Wit k
p+2 U U p+2 uit = uk;

Gk+1/2 B 1 |uk+1‘p+2 . ‘uk‘erz

As egv = 'éﬂN + é\g\,, and by virtue of the definition of the projection operator 7T]1\}0, we get

(5tq<:+1/ 7 N)—l—'yo(axéljvﬂﬁ,axv]v)-i-’m (/B(Gk+1/2 —ékﬂ/z),w\/)

(4.1) -1 2
IZ (bj — bjs1)(deeh I, N)+70(Rf+1/2,UN)+ZRfH, Yoy € PR,

.

where
& = e
R = — [ oy 2 = (0 — bipn)diely T < b — m0w), o |
=0

R = —by (¢ — my", un).

Denote ey (z,t) = u — W]l\}ou, we have

k—1

5tAk+1/2 Z(b . b]+1)6t/\k 1—j+1/2 bk('éb . 7T]1\}01/J)
7=0
— ’YoLaAk+1/2

= %5 (DYen(thr1) + Djen () + Ry T2
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Then according to the Lemmas [2.1] 2.2 and [3.1], we have
2
Y, _ 2 _ 1 9
B < G0 (N D7l e gy + 77 Jullosgany) + b low?,
_ 1
e e e P O

and )
k+1/2 Y _ 1
(R 0n) < 50707 ulgaua + ghellow .

We also have

k—1 k—1
1
Z b; — bi1)( 5t~k 1—j+1/2 Jun) < 5 (bj — bjs1) <H5t€N1 j+1/2H +||UNH2>
j=0 §=0
=
= 5 Sy~ by 6 T S0 b o
7=0

Denote g(s) = |s|” s, then we have

1 1
GFH1/2 = / g(OuF T+ (1 — 9)u*) do, GrE = / g(0ul + (1 — 0)uk,) do.
0 0

Therefore,

1
G e = [ g(0uFt 4 (1 - 0)uk) — g(aukH + (1 - 0)uk) o
‘k:-i—l/z k+1/2‘ / (OuF+ 4 ( Yuk) — g(Bukr! + ( Yuk)
0
<61/ ‘ k+1‘+(1—9)‘€§:\/’d9
-5 ()

and
- (B(Gk—l-l/Q _ak+1/2)’ ) cﬂo <H k+1H n He,va2> N ébk low]?.

Substituting these above inequalities into (4.1)), and taking vy = (5@?,“/ 2, we get

~k+1H2
€N

sz H(sfk g+1/2H

2 —2m 2
+ 27becN vl

gfzbjuatal;vl s e
j=0

272 2123 2
+ 550 (N2 D7l ooy + 7 o) + =0 <H & [k | )

Then following the same lines as in the proof of Lemma we obtain
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s < Tzczr DT (N2 Dl gy + 7072 Nl

_ ; 2T
+TZC%2F(2_7)T7 1 <H€3V+1H +H NH > WN S (]
=0
k1

H and Lemma
k“H<N“WmemH§)@W NI 0]
=
+cl(2—9)17 (N_zm HDZUHLoo(Hm) +707 HUHCS(Hl)>
N 2T
'@ —7)

Finally,

k+1
i <]

we have

N2 )12,

Suppose 7¢22I'(2—)T7~! < 1, then according to Grénwall’s inequality in Lemma

we have

2 _ 2 - 2
peb | < e2r(@ = )T (N2 DYl o gy + 702 B
2T

+ N7 D| + eN272 (Ju|? o ymy - O
L ol

5. Numerical experiment

5.1. Implementation

For the implementation of our methods, we follow the similar lines as in paper [13]. Both of
the integrals are evaluated by using numerical quadratures. We use the Legendre-Gauss-
Lobatto quadrature to compute the integrals. Let L, (x) denote the Legendre polynomial
with degree n. {J?j}j.vzo are the zeros of (1 — )L’y (), and the weights are expressed by

2 1

T NN 1) I ()2

0<j<N.

{zj,w; };VZO are referred to as the Legendre-Gauss-Lobatto quadrature nodes and weights,

such that the following quadrature holds:

1 N
/_ p(z)dz = Zp(acj)wj, Vp € Pon_1(A).

1 Jar

Define the discrete inner product as follows:

N
(&, 0)n =Y b)) d(zj)ws, Vo,v € COR),

Jj=0
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and the associated discrete norm ||d>|] N = (0, gb)l/ 2

Let ag = 779/2, we rewrite in the form
k1|PH2 k |p+2
20 ’uN ‘ - ’uN|

k+1 k
p+2 un = U

(ufvﬂ, 'UN)N + ao(amu?\;—l, 8I’I)N)N + ,ON | = Fjlff—'—l(’l)]v)

for all vy € IP’?V, where

FN T ow) = (ufy, vv) v — ao(0puly, Ovn) v + ao(f + ¥ on)n
+ Z(bj — bj+1)(uf,€V_A — ’UJ?‘V 1= J UN)N + T (Y, vN) N

k+1

We express the function uy™ in terms of the Lagrangian interpolants based on the

Legendre-Gauss-Lobatto points x;, j = 0,1,..., N,

N
k+1 Z ak—&—lh
J=0
where uf“ := uk(x;), are unknowns of the discrete solution, h;(x) is the Lagrangian

polynomial defined in A. So we have
hi(a}j):5ij, W,je{O,l,...,N},

here 0;; denotes the Kronecker-delta function.
As ulf\,ﬂ(il) = 0, then choosing each test function vy to be hi(z), i =1,2,...,N —1,

we obtain

=, 2 7v+1’ — [k |
k—i—l Ak—i—l Qo )
E (hj, hi)n + o E (Ozhj, Oghi) U +p+2 B ATk , R

= Fx*(ha).

Using the definition of the discrete inner product, we have

(i, by N—Zh w)hj(@)wr = widij,

(8uhi, Ouhy) N = Z@xhi(xl)ﬁxhj(xl)wl
=0

‘ ke | ]]g\[‘P'f‘? Zﬁ k+1(ml)‘p+2 | Ilc\f(xl)|p+2h ( )
i\ L1 )W
uy —ul N utt () — ufy ()

’Ak+1 ’p+2 |Ak’p+2

and

= Bz A _ gk Wi
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Thus we obtain the following system of nonlinear equations:

1 |PT2 et
1 & ~t1 20 ui+ ‘ B ‘uﬂ
u; T wp + oo E E amhz(xl)axhj (wl)wluj + T 2/8(‘771) k1l % wi
j=1 I= p Uy U

We adopt the Newton iteration method to solve it.

5.2. Numerical results

We carry out some numerical experiments and present some results to confirm our theo-

retical statements.
Example 5.1. We consider the problem ([1.2])—(1.4) with an exact analytical solution:
u(z,t) = t*17 sin(mz),

B(z) = 4cos(zx), p = 2. The corresponding forcing term is

flapy = TEED

t2sin(mz) + 7227 sin(rx) 4 4 cos(x)toT37 sin ().
Example 5.2. We consider the problem (1.2)—(1.4) with an exact solution which has

limited regularity:

u(z, t) = 21 (1 — 22)x'%/3,

(one can verify u € H5(A), but ¢ HS(A)), B(z) = 1, p = 1/2. The corresponding forcing

term is

font) = F(32+ ) £2(1 - w2)x16/3 42ty (4;8x16/3 _ 288$10/3> 43S (] x2)3/2x8.

To confirm the temporal accuracy, we choose N big enough to eliminate the error
caused by spatial discretization. For Example [5.1] we take N = 15, while for Example
we take N = 100. Tables|5.1{and [5.2[ show the errors Hu(T) —ulf H and the corresponding
temporal convergence rates, which are consistent with our theoretical analysis. Here T' = 1.
The convergence rate is given by the formula: Rate = log. /- (e1/e2) (e; is the error

corresponding to 7;).
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a=1.01 a=15 a=19

Error Rate Error Rate Error Rate
1/10  1.7360e-02 1.9699 3.9470e-02  1.6353 2.3262e-01  1.0527
1/20  4.4313e-03 1.9921 1.2706e-02  1.6061 1.1214e-01 1.0761
1/40  1.1139e-03 1.9976 4.1737e-03  1.5795 5.3188e-02  1.0886
1/80  2.7895e-04 1.9989 1.3966e-03  1.5586 2.5010e-02 1.0947
1/160  6.9790e-05 1.9992 4.7409e-04  1.5428 1.1711e-02 1.0976
1/320 1.7457e-05 * 1.6272e-04 * 5.4726e-03 *

Table 5.1: H' errors and temporal convergence rates for Example

a=1.1 a=15 a=1.9

Error Rate Error Rate Error Rate
1/10  2.2529¢-04 1.9083 1.8471e-03 1.4957 1.2132e-02 1.0847
1/20  6.0019e-05 1.9092 6.5500e-04  1.4988 5.7202e-03  1.0910
1/40  1.5979e-05 1.9109 2.3177e-04  1.5004 2.6853e-03 1.0952
1/80  4.2492¢-06 1.9172 8.1922e-05 1.5022 1.2569e-03 1.0976
1/160 1.1251e-06 1.9315 2.8920e-05 1.5107 5.8734e-04 1.0988
1/320 2.9494e-07 * 1.0149e-05 * 2.7423e-04 *

Table 5.2: H' errors and temporal convergence rates for Example

Next we check the spatial accuracy with respect to the polynomial degree N. By fixing
the time step small enough to avoid the contamination of the temporal error. We take the

case 7 = 0.001, v = 1.5 to illustrate.

Figure shows the errors corresponding to the polynomial degree N in a semi-log
scale for Example From which, we can see the errors decay exponentially. That is the

so-called spectral accuracy.

Figure shows the errors with respect to the polynomial degree N in a log-log
scale for Example Since its solution belongs to H®(A), but ¢ HS(A), we can see
from Figure the convergence rate is between N4 and N =5, which conforms with our

theoretical analysis.
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Figure 5.1: v = 1.5 for Example

H1 error
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Figure 5.2: v = 1.5 for Example

6. Conclusion

We have presented a fully discrete spectral scheme for the nonlinear time fractional Klein-
Gordon equation in a bounded domain. The priori estimate for the approximate solution
is derived. We have proved the well-posedness of the fully discrete scheme based on the
priori estimate. The stability and convergence of the fully discrete scheme have been
rigorously established. We have carried out some numerical experiments to confirm the
theoretical results.

In the future, we will try to solve some other nonlinear time-fractional partial differ-

ential equation, such as Schrodinger equation, Dirac equation, etc.
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