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Eigenvalue Problems for Fractional p(x, y)-Laplacian Equations with

Indefinite Weight

Nguyen Thanh Chung

Abstract. In this paper, we consider a class of eigenvalue problems for fractional

p(x, y)-Laplacian equations with indefinite weight in fractional Sobolev space with

variable exponent. Under some suitable conditions on the growth rates involved in

the problem, we establish some results on the existence of a continuous family of

eigenvalues using variational techniques and Ekeland’s variational principle.

1. Introduction

In this paper, we are interested in a class of eigenvalue problems for the following fractional

p(x, y)-Laplacian equation

(1.1)

Lp(x,y)u+ |u|q(x)−2u = λV (x)|u|r(x)−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN , N ≥ 2 is a bounded domain with Lipschitz boundary, p : Ω × Ω → R is

continuous, q, r ∈ C+(Ω), V : Ω → R is an indefinite weight function in the sense that

it is allowed to change sign in Ω, λ is a positive constant and Lp(x,y)(·) is the fractional

p(x, y)-Laplace operator, i.e.,

Lp(x,y)u := p.v.

∫
Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy, s ∈ (0, 1).

Throughout this paper, we assume that

(1.2) p(x, x) < q(x) < p∗s(x) :=
Np(x, x)

N − sp(x, x)
, p(x, y) = p(y, x) <

N

s
, ∀x, y ∈ Ω,

where p∗s(x) is the so-called critical exponent in fractional Sobolev space with variable

exponent. In the constant exponent case, the operator Lp(x,y) defined above is known as

the fractional p-Laplacian. On the other hand, we remark that it is a fractional version

of the well known p(x)-Laplacian. Recently, great attention has been focused on elliptic
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equations involving fractional operators, both for pure mathematical research and in view

of concrete real-world applications. This type of operator arises in a quite natural way in

many different contexts, such as, among others, the thin obstacle problem, optimization,

finance, phase transitions, soft thin films, conservation laws, multiple scattering, minimal

surfaces, material science, . . . . The fractional Laplacian also provides a simple model to

describe certain jump Lévy processes in probability theory. The cited results turn out to

be very fruitful in order to recover an elliptic PDE approach in a fractional framework, we

refer to some interesting papers [5,11,12,18,25,28] and the monograph of Bisci et al. [13] for

a thorough variational approach of fractional Sobolev spaces and corresponding nonlocal

problems.

In recent years, the study of differential equations and variational problems involving

variable exponent conditions has been an interesting topic. The interest in studying such

problems was stimulated by their applications in elastic mechanics, fluid dynamics and

the mathematical models of stationary thermo-rheological viscous flows of non-Newtonian

fluids. For more information on modeling physical phenomena by equations involving

p(x)-growth condition we refer to [2, 27]. We know that the p(x)-Laplacian operator

where p(·) is a continuous function possesses more complicated properties than the p-

Laplacian operator, mainly due to the fact that it is not homogeneous. There has been

many works devoted to the existence of solutions for variable exponent problems, both on

bounded domain and unbounded domain, we refer to [1, 3, 10, 14, 16, 20–22, 26]. In [4, 9],

the authors considered the existence, nonexistence and properties of solutions for p(x)-

curl systems or p(x, t)-curl systems arising in electromagnetism. A natural question to

see what results can be recovered when the p(x)-Laplace operator is replaced by the

fractional p(x, y)-Laplacian of the form Lp(x,y). To our best knowledge, Kaufmann et

al. [19] and Pezzo et al. [24] firstly introduced some results on fractional Sobolev spaces

with variable exponent W s,q(x),p(x,y)(Ω) and the fractional p(x, y)-Laplacian. There, the

authors established compact embedding theorems of these spaces into variable exponent

Lebesgue spaces. As an application, they also prove an existence result for nonlocal

problems involving the fractional p(x, y)-Laplacian. In [8], Bahrouni et al. obtained some

further qualitative properties of the fractional Sobolev space W s,q(x),p(x,y)(Ω) and the

fractional p(x, y)-Laplacian Lp(x,y). After that, some studies on this kind of problems are

performed by using different approaches, see [6, 7, 29].

In this paper, we are motivated by the results on the p(x)-Laplacian problems with

weight introduced in [1, 14, 20–22] and some results on the theory of fractional Sobolev

spaces with variable exponent due to Kaufmann et al. [19] and Bahrouni et al. [8]. In [21],

Mihailescu et al. studied an eigenvalue problem with non-negative weight for the Laplace

operator on a bounded domain with smooth boundary in RN , N ≥ 3. They showed the
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existence of two positive constants λ∗ and λ∗ with λ∗ ≤ λ∗ such that any λ ∈ (0, λ∗) is not

an eigenvalue of the problem while any λ ∈ [λ∗,+∞) is an eigenvalue of the problem. Some

similar results for a class of p(x)-Laplacian problems involving multiple variable exponents

can be found in [22], in which the authors considered the problem with indefinite weight.

We also refer to [1,14,20] for some further studies on the topic. Our aim is to study a class

of eigenvalue problems with indefinite weight for fractional p(x, y)-Laplacian equations.

The situation here is different from those performed in the previous papers in the sense

that we deal with problem (1.1) in a fractional framework. We also consider problem (1.1)

in both cases the nonlinear term is sublinear or superlinear at infinity. Finally, it should

be noticed that the obtained results here also complement and generalize Theorem 5.1

of [8] and Theorem 1.4 of [19]. The main tools which will be used in this paper comes

from some variational techniques and Ekeland’s variational principle [17].

2. Preliminaries

We recall, in what follows, some definitions and basic facts about the setup for gener-

alized Lebesgue spaces Lh(x)(Ω) and fractional Sobolev spaces with variable exponent

W
s,q(x),p(x,y)
0 (Ω), where Ω is a bounded domain in RN , with a smooth boundary ∂Ω. In

that context we refer to the books of Diening et al. [15] and Musielak [23], the papers of

Edmunds et al. [16], Bahrouni et al. [8], Kaufmann et al. [19] and their references. Set

C+(Ω) =
{
h;h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}
.

For h(x) ∈ C+(Ω), we define the variable exponent Lebesgue space Lh(x)(Ω) by

Lh(x)(Ω) =

{
u;u is a measurable real-valued function,

∫
Ω
|u(x)|h(x) dx <∞

}
.

The Luxemburg norm on this space is given by the formula

|u|h(x) := inf

{
µ > 0,

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣h(x)

dx ≤ 1

}
.

It’s well known, that (Lh(x)(Ω); | · |h(x)) is a separable, uniformly convex Banach space.

(Lh(x)(Ω); | · |h(x)) is called a generalized Lebesgue space. Moreover, its conjugate space is

Lh
′(x)(Ω), where 1/h′(x) + 1/h(x) = 1. For u ∈ Lh(x)(Ω) and v ∈ Lh′(x)(Ω), one has the

following Hölder type inequality

(2.1)

∣∣∣∣∫
Ω
u(x)v(x) dx

∣∣∣∣ ≤ ( 1

h−
+

1

h′−

)
|u|h(x)|v|h′(x) ≤ 2|u|h(x)|v|h′(x),

where h− := minΩ h(x) and h′− := minΩ h
′(x). Moreover, if h1, h2, h3 ∈ C+(Ω) and

1/h1(x) + 1/h2(x) + 1/h3(x) = 1, then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω) and w ∈
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Lh3(x)(Ω) we have

(2.2)

∣∣∣∣∫
Ω
uvw dx

∣∣∣∣ ≤ ( 1

h−1
+

1

h−2
+

1

h−3

)
|u|h1(x)|v|h2(x)|w|h3(x).

Note that Lh2(x)(Ω) ↪→ Lh1(x)(Ω) for all functions h1 and h2 in C+(Ω) satisfying

h1(x) ≤ h2(x) for any x ∈ Ω. In addition this embedding is continuous.

An important role in manipulating the generalized Lebesgue spaces is played by the

modular of the Lh(x)(Ω) space, which is the mapping ρh(x) : Lh(x)(Ω)→ R defined by

ρh(x)(u) =

∫
Ω
|u|h(x) dx.

If (un), u ∈ Lh(x)(Ω) and h+ := maxx∈Ω h(x) < +∞, then the following relations hold

true

|u|h(x) > 1 =⇒ |u|h−h(x) ≤ ρh(x)(u) ≤ |u|h+h(x),(2.3)

|u|h(x) < 1 =⇒ |u|h+h(x) ≤ ρh(x)(u) ≤ |u|h−h(x),(2.4)

|un − u|h(x) → 0 if and only if ρh(x)(un − u)→ 0.

Proposition 2.1. (see [16]) Let h1 and h2 be measurable functions such that h1 ∈ L∞(RN )

and 1 ≤ h1(x)h2(x) ≤ +∞ for a.e. x ∈ RN . Let u ∈ Lh2(x)(RN ), u 6= 0. Then we have

the following assertions

|u|h1(x)h2(x) ≤ 1 =⇒ |u|h
+
1

h1(x)h2(x) ≤
∣∣|u|h1(x)

∣∣
h2(x)

≤ |u|h
−
1

h1(x)h2(x),

|u|h1(x)h2(x) ≥ 1 =⇒ |u|h
−
1

h1(x)h2(x) ≤
∣∣|u|h1(x)

∣∣
h2(x)

≤ |u|h
+
1

h1(x)h2(x).

In particular, if h1(x) = h1 is a constant, then it holds that∣∣|u|h1∣∣
h2(x)

= |u|h1h1h2(x).

For the convenience of the readers, we recall some definitions and basic properties of

variable exponent Sobolev fractional spaces. For a deeper treatment on these spaces, we

refer to [8, 19,24].

For a smooth bounded domain Ω in RN , we consider two continuous functions p : Ω×
Ω→ (1,+∞) and q : Ω→ R. We assume that p is symmetric, i.e., p(x, y) = p(y, x) for all

x, y ∈ Ω and

1 < p− := min
(x,y)∈Ω×Ω

p(x, y) ≤ p(x, y) ≤ p+ := max
(x,y)∈Ω×Ω

p(x, y) < +∞,

1 < q− := min
x∈Ω

q(x) ≤ q(x) ≤ q+ := max
x∈Ω

q(x) < +∞.
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For s ∈ (0, 1), the fractional Sobolev space with variable exponent via the Gagliardo

approach X = W s,q(x),p(x,y)(Ω) is defined as follows

X =

{
u ∈ Lq(x)(Ω),

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

µp(x,y)|x− y|N+sp(x,y)
dxdy < +∞ for some µ > 0

}
.

Let

[u]s,p(x,y) := inf

{
µ > 0,

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

µp(x,y)|x− y|N+sp(x,y)
dxdy < 1

}
be the variable exponent Gagliardo seminorm and define

‖u‖X = [u]s,p(x,y) + |u|q(x).

Then X equipped with the norm ‖ · ‖X is a Banach space. For u ∈ X, we set

ρ(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω
|u|q(x) dx

and

‖u‖ρ = inf

{
µ > 0, ρ

(
u

µ

)
≤ 1

}
.

It’s well known that ‖ · ‖ρ is a norm which is equivalent to the norm ‖ · ‖X . Due to

Lemma 3.1 in [19], (X, ‖ · ‖X) is a separable and reflexive Banach space.

To take into account the boundary condition in problem (1.1) we consider the space

X0 = W
s,q(x),p(x,y)
0 (Ω) that is the closure of C∞0 (Ω) in X. Then X0 is a separable and

reflexive Banach space under the norm

‖u‖ = [u]s,p(x,y).

Proposition 2.2. (i) If 1 ≤ [u]s,p(x,y) < +∞, then

([u]s,p(x,y))
p− ≤

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy ≤ ([u]s,p(x,y))

p+ .

(ii) If [u]s,p(x,y) ≤ 1, then

([u]s,p(x,y))
p+ ≤

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy ≤ ([u]s,p(x,y))

p− .

In the following lemma, we give a compact embedding result into the variable exponent

Lebesgue spaces.
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Proposition 2.3. (see [19]) Let Ω ⊂ RN be a Lipschitz bounded domain and s ∈ (0, 1).

Let q(x), p(x, y) be continuous variable exponents with sp(x, y) < N for all (x, y) ∈ Ω×Ω

and q(x) > p(x, x) for all x ∈ Ω. Assume that r : Ω → (1,+∞) is a continuous function

such that

p∗s(x) :=
Np(x, x)

N − sp(x, x)
> r(x) ≥ r− > 1

for all x ∈ Ω. Then, there exists a constant c = c(N, s, p, q, r,Ω) such that for every

u ∈ X = W s,q(x),p(x,y)(Ω), it holds that

|u|r(x) ≤ c‖u‖X .

That is, if 1 < r(x) < p∗s(x) for all x ∈ Ω then the space X is continuously embedded in

Lr(x)(Ω). Moreover, this embedding is compact. In addition, when one considers functions

u ∈ X0 = W
s,q(x),p(x,y)
0 (Ω), it holds that

|u|r(x) ≤ c‖u‖.

Proposition 2.4. (see [8]) For the operator Lp(x,y) : X0 → X∗0 defined as in the beginning

of the paper, we have

〈Lp(x,y)u, ϕ〉 =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

for all ϕ ∈ X0. Moreover, under the conditions of Proposition 2.3, the following assertions

hold true:

(i) Lp(x,y) is a bounded and strictly monotone operator.

(ii) Lp(x,y) is a mapping of type (S+), i.e., if un ⇀ u in X0 and

lim sup
n→∞

〈Lp(x,y)un − Lp(x,y)u, un − u〉 = 0,

then un → u in X0 as n→∞.

(iii) Lp(x,y) is a homeomorphism.

3. Main results

In this section, we will state and prove our main results. We denote by ci general positive

number whose value may change from line to line.
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Definition 3.1. We say that λ ∈ R is an eigenvalue of problem (1.1) if there exists

u ∈ X0 \ {0} such that∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω
|u|q(x)−2uϕdx− λ

∫
Ω
V (x)|u|r(x)−2uϕdx = 0

for all ϕ ∈ X0. It is clear that if λ is an eigenvalue of problem (1.1) then the corresponding

eigenfunction ϕ ∈ X0 \ {0} is a weak solution of problem (1.1).

Our first result concerns problem (1.1) in the sublinear case, we establish the existence

of a continuous family of eigenvalues for problem (1.1) in a neighborhood of the origin.

Theorem 3.2. Let the functions p, q : Ω→ R be such that condition (1.2) holds. Moreover,

we assume that the functions p : Ω × Ω → R, and q, r, σ : Ω → R satisfy the following

conditions:

(H1) 1 < r(x) < p− ≤ p+ < N/s < σ(x) for all x ∈ Ω;

(H2) V ∈ Lσ(x)(Ω) and there exists a measurable set Ω0 ⊂⊂ Ω of positive measure such

that V (x) > 0 for all x ∈ Ω0.

Then there exists λ > 0 such that any λ ∈ (0, λ) is an eigenvalue of problem (1.1).

Proof. For each λ > 0, let us consider the functional Jλ : X0 → R associated with prob-

lem (1.1) by the formula

Jλ(u) = Φ(u)− λΨ(u),

where

Φ(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

q(x)
|u|q(x) dx,

Ψ(u) =

∫
Ω

V (x)

r(x)
|u|r(x) dx.

From conditions (H1)–(H2) and Proposition 2.1, for all u ∈ X0, we get

|Ψ(u)| ≤ 2

r−
|V |σ(x)

∣∣|u|r(x)
∣∣
σ(x)/(σ(x)−1)

≤

 2
r− |V |σ(x)|u|r

−

σ(x)r(x)/(σ(x)−1) if |u|σ(x)r(x)/(σ(x)−1) ≤ 1,

2
r− |V |σ(x)|u|r

+

σ(x)r(x)/(σ(x)−1) if |u|σ(x)r(x)/(σ(x)−1) ≥ 1.

(3.1)

We also deduce from (H1) that α(x) = σ(x)r(x)/(σ(x) − 1) < p∗s(x) and β(x) =

σ(x)r(x)/(σ(x) − r(x)) < p∗s(x) for all x ∈ Ω and by Proposition 2.3, the embeddings
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X0 ↪→ Lα(x)(Ω) and X0 ↪→ Lβ(x)(Ω) are continuous and compact. Thus, the functional Jλ

is well-defined on X0. The proof of Theorem 3.2 is divided into the following four steps.

Step 1. We prove that Jλ ∈ C1(X0,R) and its derivative is

J ′λ(u)(ϕ) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω
|u|q(x)−2uϕdx− λ

∫
Ω
V (x)|u|r(x)−2uϕdx

for all u, ϕ ∈ X0. This means that weak solutions of problem (1.1) can be found as the

critical points of the functional Jλ in the space X0.

First of all, using the same method as in the proof of [8, Lemma 4.1], we can show

that Φ ∈ C1(X0,R) and

Φ′(u)(ϕ) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω
|u|q(x)−2uϕdx

for all u, ϕ ∈ X0.

Now, we will prove that Ψ ∈ C1(X0,R), that is, for given u ∈ X0 we show that for all

ϕ ∈ X0, it holds that

lim
t→0

Ψ(u+ tϕ)−Ψ(u)

t
= Ψ′(u)(ϕ),

and Ψ′ : X0 → X∗0 is continuous, where we denote by X∗0 the dual space of X0.

Indeed, by conditions (H1)–(H2), for |t| < 1 using Hölder’s inequality (2.2) and Propo-

sitions 2.1 and 2.3, it implies that∫
Ω

∣∣∣V (x)|u+ tϕ|r(x)−2(u+ tϕ)ϕ
∣∣∣ dx ≤ ∫

Ω
|V (x)||u+ tϕ|r(x)−1|ϕ| dx

≤
∫

Ω
|V (x)|(|u|+ |ϕ|)r(x)−1|ϕ| dx

≤ 3|V (x)|σ(x)

∣∣∣∣∣|u|+ |ϕ|∣∣r(x)−1
∣∣∣
r(x)/(r(x)−1)

|ϕ|β(x)

≤ 3|V |σ(x)

∣∣|u|+ |ϕ|∣∣rτ−1

r(x)
|ϕ|β(x)

< +∞,

where τ = + if
∣∣|u| + |ϕ|∣∣

r(x)
> 1 and τ = − if

∣∣|u| + |ϕ|∣∣
r(x)
≤ 1 since X0 ↪→ Lβ(x)(Ω),

X0 ↪→ Lr(x)(Ω) and V ∈ Lσ(x)(Ω).
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For all ϕ ∈ X0, using Lebesgue’s convergence theorem, we get

lim
t→0

Ψ(u+ tϕ)−Ψ(u)

t

=
d

dt
Ψ(u+ tϕ)

∣∣∣∣
t=0

=

(
d

dt

∫
Ω

V (x)

r(x)
|u+ tϕ|r(x) dx

)∣∣∣∣
t=0

=

∫
Ω

d

dt

(∫
Ω

V (x)

r(x)
|u+ tϕ|r(x) dx

)∣∣∣∣
t=0

dx =

∫
Ω
V (x)|u+ tϕ|r(x)−2(u+ tϕ)ϕ

∣∣∣∣
t=0

dx

=

∫
Ω
V (x)|u|r(x)−2uϕdx = Ψ′(u)(ϕ).

Since the embedding X0 ↪→ Lβ(x)(Ω) is continuous, there exists c1 > 0 such that

|ϕ|β(x) ≤ c1‖ϕ‖ for all ϕ ∈ X0 and by conditions (H1)–(H2),

|Ψ′(u)(ϕ)| =
∣∣∣∣∫

Ω
V (x)|u|r(x)−2uϕdx

∣∣∣∣ ≤ ∫
Ω
|V (x)||u|r(x)−1|ϕ| dx

≤ 3|V |σ(x)|u|r
τ−1
r(x) |ϕ|β(x) ≤ 3c1|V |σ(x)|u|r

τ−1
r(x) ‖ϕ‖

for any ϕ ∈ X0, where τ = + if |u|r(x) > 1 and τ = − if |u|r(x) ≤ 1. Combining this

with the linearity of Ψ′ we deduce that Ψ′ ∈ X∗0 . Note that the map u 7→ |u|r(x)−2u from

Lr(x)(Ω) into Lr(x)/(r(x)−1)(Ω) is continuous. For the Fréchet differentiability, we conclude

that Ψ is Fréchet differentiable and

Ψ′(u)(ϕ) =

∫
Ω
V (x)|u|r(x)−2uϕdx, ∀u, ϕ ∈ X0

and thus Step 1 is completed.

Step 2. We prove that there exists λ > 0 such that for any λ ∈ (0, λ), there exist

constants R, ρ > 0 such that Jλ(u) ≥ R for all u ∈ X0 with ‖u‖ = ρ.

Indeed, since α(x) = σ(x)r(x)/(σ(x) − 1) < p∗(x) for all x ∈ Ω, the embedding

X0 ↪→ Lα(x)(Ω) is continuous, there exists c2 > 0 such that

|u|α(x) ≤ c2‖u‖, ∀u ∈ X0.

Hence, by relation (3.1), for any u ∈ X0 with ‖u‖ = ρ small enough,

Jλ(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

q(x)
|u|q(x) dx− λ

∫
Ω

V (x)

r(x)
|u|r(x) dx

≥ 1

p+
‖u‖p+ − λ2cr

−
2

r−
|V |σ(x)‖u‖r

−
=

1

p+
ρp

+ − λ2cr
−

2

r−
|V |σ(x)ρ

r−

= ρr
−

(
1

p+
ρp

+−r− − λ2cr
−

2

r−
|V |σ(x)

)
.
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Putting

λ =
ρp

+−r−

2p+
· r−

2cr
−

2 |V |σ(x)

> 0,

then for any λ ∈ (0, λ) and u ∈ X0 with ‖u‖ = ρ, there exists R = ρp
+
/(2p+) such that

Jλ(u) ≥ R > 0.

Step 3. We prove that there exists ϕ0 ∈ X0 such that ϕ0 ≥ 0, ϕ0 6= 0 and Jλ(tϕ0) < 0

for all t > 0 small enough.

Indeed, condition (H1) implies that r(x) < min{p−, q−} = p− for all x ∈ Ω0. In the

sequel, we use the notation r−0 := infx∈Ω0
r(x). Let ε0 > 0 be such that r−0 + ε0 < p−. We

also have since r ∈ C(Ω0) that there exists an open subset Ω1 ⊂ Ω0 such that

|r(x)− r−0 | < ε0, ∀x ∈ Ω1

and thus

r(x) ≤ r−0 + ε0 < p−, ∀x ∈ Ω1.

Let ϕ0 ∈ C∞0 (Ω0) such that Ω1 ⊂ supp(ϕ0), ϕ0(x) = 1 for all x ∈ Ω1 and 0 ≤ ϕ0 ≤ 1

in Ω0. Then, using the above information, for any t ∈ (0, 1) we have

Jλ(tϕ0) =

∫
Ω×Ω

|tϕ0(x)− tϕ0(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

q(x)
|tϕ0|q(x) dx− λ

∫
Ω

V (x)

r(x)
|tϕ0|r(x) dx

≤ tp
−

p−

∫
Ω0×Ω0

|ϕ0(x)− ϕ0(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

tq
−

q−

∫
Ω0

|ϕ0|q(x) dx

− λ
∫

Ω0

V (x)

r(x)
tr(x)|ϕ0|r(x) dx

≤ tp
−

p−

(∫
Ω0×Ω0

|ϕ0(x)− ϕ0(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω0

|ϕ0|q(x) dx

)

− λtr
−
0 +ε0

r+
0

∫
Ω1

V (x)|ϕ0|r(x) dx.

Therefore, Jλ(tϕ0) < 0 for 0 < t < δ1/(p−−r−0 −ε0) with

0 < δ < min

1,
λp−

r+
0

·
∫

Ω1
V (x)|ϕ0|r(x) dx∫

Ω×Ω
|ϕ0(x)−ϕ0(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω |ϕ0|q(x) dx

 .

The above fraction is meaningful if we can show that∫
Ω×Ω

|ϕ0(x)− ϕ0(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω
|ϕ0|q(x) dx > 0.

Indeed, it is clear that∫
Ω1

|ϕ0|r(x) dx ≤
∫

Ω
|ϕ0|r(x) dx ≤

∫
Ω
|ϕ0|r

−
dx.
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On the other hand, the space X0 is continuously embedded in Lr
−

(Ω) and thus, there

exists c3 > 0 such that |ϕ0|r− ≤ c3‖ϕ0‖, which implies that ‖ϕ0‖ > 0. Combining this

with (2.3) or (2.4) the claim follows at once.

By Step 2, we have

inf
u∈∂Bρ(0)

Jλ(u) > 0.

We also deduce from Step 2 that, the functional Jλ is bounded from below on Bρ(0).

Moreover, by Step 3, there exists ϕ ∈ X such that Jλ(tϕ) < 0 for all t > 0 small enough.

It follows from Step 2 that

Jλ(u) ≥ 1

p+
‖u‖p+ − λ2cr

−
2

r−
|V |σ(x)‖u‖r

−
,

which yields

−∞ < cλ = inf
u∈Bρ(0)

Jλ(u) < 0.

Let us choose ε > 0 such that 0 < ε < infu∈∂Bρ(0) Jλ(u) − infu∈Bρ(0) Jλ(u). Applying

the Ekeland variational principle [17] to the functional Jλ : Bρ(0) → R, it follows that

there exists uε ∈ Bρ(0) such that

Jλ(uε) < inf
u∈Bρ(0)

Jλ(u) + ε, Jλ(uε) < Jλ(u) + ε‖u− uε‖, u 6= uε,

then we infer that Jλ(uε) < infu∈∂Bρ(0) Jλ(u), and thus uε ∈ Bρ(0).

Let us consider the functional Iλ : Bρ(0)→ R by Iλ(u) = Jλ(u) + ε‖u− uε‖. Then uε

is a minimum point of Iλ and thus

Iλ(uε + τϕ)− Iλ(uε)

t
≥ 0

for all τ > 0 small enough and all v ∈ Bρ(0). The above information shows that

Jλ(uε + τϕ)− Jλ(uε)

τ
+ ε‖ϕ‖ ≥ 0.

Letting τ → 0+, we deduce that

J ′λ(uε)(ϕ) + ε‖ϕ‖ ≥ 0

and we infer that ‖J ′λ(uε)‖X∗0 ≤ ε. Therefore, there exists a sequence {un} ⊂ Bρ(0) such

that

(3.2) Jλ(un)→ c = inf
u∈Bρ(0)

Jλ(u) < 0 and J ′λ(un)→ 0 in X∗0 as n→∞.

Is is clear that the sequence {un} is bounded in X0. Now, since X0 is a reflexive

Banach space, there exists u ∈ X0 such that passing to a subsequence, still denoted by

{un}, it converges weakly to u in X0.
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Step 4. We prove that {un} which is given by (3.2) converges strongly to u in X0, i.e.,

limn→∞ ‖un − u‖ = 0.

By conditions (H1)–(H2), using Hölder’s inequality (2.2) and Propositions 2.1 and 2.3

we deduce that∣∣∣∣∫
Ω
|un|q(x)−2un(un − u) dx

∣∣∣∣ ≤ 2
∣∣∣|un|q(x)−2un

∣∣∣
q(x)/(q(x)−1)

|un − u|q(x)

≤ 2|un|q
+−1
q(x) |un − u|q(x)

→ 0 as n→∞

and ∣∣∣∣∫
Ω
V (x)|un|r(x)−2un(un − u) dx

∣∣∣∣ ≤ 3|V |σ(x)

∣∣∣|un|r(x)−2un

∣∣∣
r(x)/(r(x)−1)

|un − u|β(x)

≤ 3|V |σ(x)

(
1 + |un|r

+−1
r(x)

)
|un − u|β(x)

→ 0 as n→∞,

where β(x) = σ(x)r(x)/(σ(x)−r(x)). Moreover, by (3.2) we have limn→∞ J
′
λ(un)(un−u) =

0, i.e.,∫
Ω×Ω

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))((un(x)− u(x))− (un(y)− u(y)))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω
|un|q(x)−2un(un − u) dx− λ

∫
Ω
V (x)|un|r(x)−2un(un − u) dx→ 0 as n→∞,

which yields∫
Ω×Ω

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))((un(x)− u(x))− (un(y)− u(y)))

|x− y|N+sp(x,y)
dxdy → 0

or

(3.3) lim
n→∞

Lp(x,y)(un)(un − u) = 0.

Since {un} converges weakly to u in X0, we also have that limn→∞ Lp(x,y)(u)(un−u) = 0.

Combining this with (3.3) we get

(3.4) lim
m→∞

(Lp(x,y)(un)− Lp(x,y)(u))(un − u) = 0.

Relation (3.4) and Proposition 2.4 show actually the sequence {un} converges strongly

to u in X0. Thus, in view of (3.2), we obtain Jλ(u) = cλ < 0 and J ′λ(u) = 0. This

means that u is a non-trivial weak solution of (1.1), i.e., any λ ∈ (0, λ) is an eigenvalue of

problem (1.1). Theorem 3.2 is completely proved.
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Now we will prove the second main result for problem (1.1) regarding the superlinear

case. We also consider V as an indefinite weight in the sense that it is allowed to change

the sign in the domain Ω. Let us define the subsets of X as follows:

X+
0 :=

{
u ∈ X0 :

∫
Ω
V (x)|u|r(x) dx > 0

}
,

X−0 :=

{
u ∈ X0 :

∫
Ω
V (x)|u|r(x) dx < 0

}
,

and

λ∗ = inf
u∈X+

0

Φ(u)

Ψ(u)
, λ∗ = inf

u∈X+
0

∫
Ω×Ω

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω |u|

q(x) dx∫
Ω V (x)|u|r(x) dx

,(3.5)

µ∗ = sup
u∈X−0

Φ(u)

Ψ(u)
, µ∗ = sup

u∈X−0

∫
Ω×Ω

|u(x)−u(y)|p(x,y)
|x−y|N+sp(x,y) dxdy +

∫
Ω |u|

q(x) dx∫
Ω V (x)|u|r(x) dx

.

Theorem 3.3. Let the functions p, q : Ω→ R be such that condition (1.2) holds. Moreover,

we assume that the functions p : Ω × Ω → R, and q, r, σ : Ω → R satisfy the following

conditions:

(H3) 1 < min{p−, q−} ≤ max{p+, q+} < r(x) < p∗s(x) for all x ∈ Ω, and r+ − 1/2 < r−;

(H4) V ∈ Lσ(x)(Ω) is a changing sign function such that σ ∈ C+(Ω) and

σ(x) > max

{
1,

Np(x, x)

Np(x, x) + sp(x, x)r(x)−Nr(x)

}
, ∀x ∈ Ω.

Then we have

(i) λ∗ and µ∗ are the positive and negative eigenvalue of problem (1.1) respectively,

satisfying µ∗ ≤ µ∗ < 0 < λ∗ ≤ λ∗;

(ii) λ ∈ (−∞, µ∗)∪ (λ∗,+∞) is an eigenvalue of problem (1.1) while any λ ∈ (µ∗, λ∗) is

not an eigenvalue.

Proof. Note that if λ is an eigenvalue of problem (1.1) with weight V then −λ is an

eigenvalue of problem (1.1) with weight −V . Hence, it is sufficient to prove Theorem 3.3

only for λ > 0 and we will consider problem (1.1) only in the set X+
0 defined as before.

For this case, the proof of Theorem 3.3 is divided into the following four steps.

Step 1. We prove that λ∗ > 0.

By relation (3.5), it follows that

(3.6)
r−

max{p+, q+}
λ∗ ≤ λ∗ ≤

r+

min{p−, q−}
λ∗ =

r+

p−
λ∗,
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and 0 ≤ λ∗ ≤ λ∗ since min{p−, q−} = p− and max{p+, q+} < r−, see conditions (1.2) and

(H3).

We will prove that

lim
‖u‖→0,u∈X+

0

Φ(u)

Ψ(u)
= +∞,(3.7)

lim
‖u‖→+∞,u∈X+

0

Φ(u)

Ψ(u)
= +∞.(3.8)

Indeed, first of all, we will prove (3.7) holds. Using Hölder’s inequality (2.1) and Propo-

sition 2.1, for all u ∈ X0 we have

|Ψ(u)| ≤ 2

r−
|V |σ(x)

∣∣|u|r(x)
∣∣
σ(x)/(σ(x)−1)

≤ 2

r−
|V |σ(x)|u|r

τ

α(x),

where τ = − if |u|α(x) ≤ 1 and τ = + if |u|α(x) ≥ 1 and α(x) = σ(x)r(x)/(σ(x) − 1).

By condition (H4), we have 1 < α(x) < p∗s(x) for all x ∈ Ω, that is, X0 is continuously

embedded in Lα(x)(Ω), so there exists c4 > 0 such that

(3.9) |Ψ(u)| ≤ 2c4

r−
|V |σ(x)‖u‖r

τ
.

For all u ∈ X+
0 with ‖u‖ ≤ 1 by relation (3.9), we infer that

Φ(u)

Ψ(u)
=

∫
Ω×Ω

|u(x)−u(y)|p(x,y)
p(x,y)|x−y|N+sp(x,y) dxdy +

∫
Ω

1
q(x) |u|

q(x) dx∫
Ω
V (x)
r(x) |u|r(x) dx

≥

∫
Ω×Ω

|u(x)−u(y)|p(x,y)
p(x,y)|x−y|N+sp(x,y) dxdy∫

Ω
V (x)
r(x) |u|r(x) dx

≥ r−

2c4p+|V |σ(x)
‖u‖p+−r− ,

(3.10)

which helps us to get relation (3.7) because of (H3), that is, p+ < r−.

On the other hand, since r+ − 1/2 < r−, there exists a constant θ > 0 such that

r+ − 1/2 < θ < r−, which gives us r+ − 1 < r− − 1/2 < θ and

(3.11) 1 + θ − r+ > 0, 2(r− − θ) ≤ 2(r+ − θ) < 1.

Let us take γ(x) any measurable function satisfying

(3.12)

max

{
σ(x)

1 + θσ(x)
,

p∗s(x)

p∗s(x) + θ − r(x)

}
< γ(x) < min

{
p∗s(x)

p∗s(x) + θσ(x)
,

1

1 + θ − r(x)

}
for all x ∈ Ω and

(3.13) θ

(
γ+

γ−
+ 1

)
< r−.
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From relations (3.11)–(3.13), it implies that γ ∈ L∞(Ω) and 1 < γ(x) < σ(x) for any

x ∈ Ω. Moreover, we have

1 <
θγ(x)σ(x)

σ(x)− γ(x)
< p∗s(x), 1 <

(r(x)− θ)γ(x)

γ(x)− 1
< p∗s(x), ∀x ∈ Ω,

so there exists c5 > 0 such that

(3.14) |u|θγ(x)σ(x)/(σ(x)−γ(x)) ≤ c5‖u‖, |u|(r(x)−θ)γ(x)/(γ(x)−1) ≤ c5‖u‖, ∀u ∈ X0.

For all u ∈ X+
0 , by Hölder’s inequality (2.1) and (3.12) we have

|Ψ(u)| ≤
∫

Ω

∣∣V |u|θ∣∣|u|r(x)−θ dx ≤ 2
∣∣V |u|θ∣∣

γ(x)

∣∣|u|r(x)−θ∣∣
γ(x)/(γ(x)−1)

and

∣∣V |u|θ∣∣
γ(x)
≤
(∫

Ω
|V |γ(x)|u|θγ(x) dx

)1/γ−

≤ 2
∣∣∣|V |γ(x)

∣∣∣1/γ−
σ(x)/γ(x)

∣∣∣|u|θγ(x)
∣∣∣1/γ−
σ(x)/(σ(x)−γ(x))

for all u ∈ X+
0 with

∣∣V |u|θ∣∣
γ(x)

> 1. Thus, by (3.14), we infer that

∣∣V |u|θ∣∣
γ(x)
≤ 1 + 2

∣∣∣|V |γ(x)
∣∣∣1/γ−
σ(x)/γ(x)

∣∣∣|u|θγ(x)
∣∣∣1/γ−
σ(x)/(σ(x)−γ(x))

≤ 1 + 2
(

1 + |V |γ
+/γ−

γ(x)

)(
1 + |u|θγ

+/γ−

θγ(x)σ(x)/(σ(x)−γ(x))

)
≤ c6

(
1 + ‖u‖θγ+/γ−

)
for any u ∈ X+

0 . Similarly,

∣∣∣|u|r(x)−θ
∣∣∣
γ(x)/(γ(x)−1)

≤ 1 + |u|r+−θγ(x)(r(x)−θ)/(γ(x)−1) ≤ 1 + c7‖u‖r
+−θ, ∀u ∈ X+

0 .

Combining (3.14) with the above information, we deduce that

|Ψ(u)| ≤ c6

(
1 + ‖u‖θγ+/γ−

)(
1 + c7‖u‖r

+−θ
)

= c6 + c6c7‖u‖r
+−θ + c6‖u‖θγ

+/γ− + c6c7‖u‖θγ
+/γ−‖u‖r+−θ

≤ c8

(
1 + ‖u‖2θγ+/γ− + ‖u‖2(r+−θ)

)(3.15)

for all u ∈ X+
0 with ‖u‖ > 1.
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Hence,

Φ(u)

Ψ(u)
=

∫
Ω×Ω

|u(x)−u(y)|p(x,y)
p(x,y)|x−y|N+sp(x,y) dxdy +

∫
Ω

1
q(x) |u|

q(x) dx∫
Ω
V (x)
r(x) |u|r(x) dx

≥

∫
Ω×Ω

|u(x)−u(y)|p(x,y)
p(x,y)|x−y|N+sp(x,y) dxdy∫

Ω
V (x)
r(x) |u|r(x) dx

≥
1
p+
‖u‖p−

c8

(
1 + ‖u‖2θγ+/γ− + ‖u‖2(r+−θ)

)
→ +∞

as ‖u‖ → +∞ since p− > 1 > 2(r+− θ) ≥ 2(r−− θ) ≥ 2θγ+/γ− > 2θ. Thus relation (3.8)

holds.

Now, we are in the position to prove that λ∗ > 0. Assume by contradiction that

λ∗ = 0, from (3.6) we get λ∗ = 0. Then, there exists a sequence {un} ⊂ X+
0 \ {0} such

that

(3.16) lim
n→∞

Φ(un)

Ψ(un)
= 0.

We also obtain from (3.10) that

Φ(un)

Ψ(un)
≥

∫
Ω×Ω

|un(x)−un(y)|p(x,y)
p(x,y)|x−y|N+sp(x,y) dxdy∫
Ω
V (x)
r(x) |un|r(x) dx

≥


r−

2c4p+|V |σ(x)
‖un‖p

−−r+ if ‖un‖ ≥ 1,

q−

2c4p+|V |σ(x)
‖un‖p

+−r− if ‖un‖ < 1.

(3.17)

By (H3), we get p− − r+ < 0 and p+ − r− < 0, so (3.17) implies that ‖un‖ → +∞ as

n→∞. Using again (3.17), we get

lim
n→∞

Φ(un)

Ψ(un)
= +∞,

which contradicts (3.16) and thus, we have λ∗ > 0. The proof of Step 1 is completed.

Step 2. We prove that λ∗ is an eigenvalue of problem (1.1).

Indeed, let {un} ⊂ X+
0 \ {0} be a minimizing sequence for the number λ∗, that is,

(3.18) lim
n→∞

Φ(un)

Ψ(un)
= λ∗ > 0.

By (3.18), we infer that {un} is a bounded sequence in X0. Since X0 is reflexive, there

exists u∗ ∈ X0 and a subsequence of {un}, still denoted by {un} such that {un} converges

weakly to u∗ in X0 as n→∞. Since Φ is weakly lower semi-continuous, we get

(3.19) lim
n→∞

Φ(un) ≥ Φ(u∗).
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On the other hand, since the embedding X0 ↪→ Lα(x)(Ω) is compact, the sequence

{un} converges strongly to u∗ in Lα(x)(Ω), where α(x) = r(x)σ(x)/(σ(x) − 1). It is

noticed that |un|α(x) → |u∗|α(x),
∣∣|un|r(x)

∣∣
σ(x)/(σ(x)−1)

→
∣∣|u∗|r(x)

∣∣
σ(x)/(σ(x)−1)

, the se-

quence
∣∣|un|r(x)

∣∣
σ(x)/(σ(x)−1)

is bounded and {|un|r(x)} converges weakly to |u∗|r(x) in

Lσ(x)/(σ(x)−1)(Ω), so we deduce that |un|r(x) → |u∗|r(x) in Lσ(x)/(σ(x)−1)(Ω). From the

above information, it implies that

|Ψ(un)−Ψ(u∗)| ≤
∫

Ω

|V (x)|
r(x)

(
|un|r(x) − |u∗|r(x)

)
dx

≤ 2

r−
|V |σ(x)

∣∣|un|r(x) − |u∗|r(x)
∣∣
σ(x)/(σ(x)−1)

→ 0

as n→∞, that is,

(3.20) lim
n→∞

Ψ(un) = Ψ(u∗) =

∫
Ω

V (x)

r(x)
|u∗|r(x) dx ≥ 0.

In view of (3.19) and (3.20) we obtain Φ(u∗)/Ψ(u∗) = λ∗ if Ψ(u∗) > 0, i.e., u∗ ∈
X+

0 \ {0}. We need to show that Ψ(u∗) > 0. Assume by contradiction that Ψ(u∗) = 0,

that is, {Ψ(un)} converges to 0 or

(3.21) lim
n→∞

Ψ(un) = 0.

Now, taking ε ∈ (0, λ∗) be fixed, by (3.18), for n large enough,∣∣∣∣Φ(un)

Ψ(un)
− λ∗

∣∣∣∣ < ε

or

(λ∗ − ε)Ψ(un) < Φ(un) < (λ∗ + ε)Ψ(un),

which follows from (3.21) that limn→∞Φ(un) = 0. This means that un → 0 in X0, that

is, ‖un‖ → 0 as n→∞ and thus,

lim
n→∞

Φ(un)

Ψ(un)
= +∞

which is a contradiction. Therefore, Ψ(u∗) > 0 and u∗ ∈ X+
0 \ {0} is an eigenfunction and

λ∗ is an eigenvalue of problem (1.1).

Step 3. We prove that any λ ∈ (λ∗,+∞) is an eigenvalue of problem (1.1).

Let λ ∈ (λ∗,+∞) be arbitrary but fixed. We know that λ is an eigenvalue of prob-

lem (1.1) if and only if there exists uλ ∈ X+
0 \ {0} a critical point of Jλ.
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From (3.15), it implies that

Jλ(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

q(x)
|u|q(x) dx− λ

∫
Ω

V (x)

r(x)
|u|r(x) dx

≥ 1

p+
‖u‖p− − λc8

(
1 + ‖u‖2θγ+/γ− + ‖u‖2(r+−θ)

)
→ +∞

as ‖u‖ → +∞ since p− > 1 > 2(r+ − θ) ≥ 2(r− − θ) ≥ 2θγ+/γ− > 2θ. This follows that

Jλ is coercive in X+
0 .

By the of proof in Step 2, the functional Ψ is weakly-strongly continuous in X+
0 . We

also know that Φ is weakly lower semi-continuous, so by Weierstrass theorem, there exists

uλ ∈ X+
0 a global minimum point of Jλ. We need to prove that uλ is non-trivial critical

point of Jλ. Indeed, since λ∗ = infu∈X+
0

Φ(u)/Ψ(u) and λ > λ∗, it follows that there exists

uλ ∈ X+
0 such that Φ(uλ)/Ψ(uλ) < λ, that is,

Jλ(uλ) = Φ(uλ)− λΨ(uλ) < 0.

This means that infu∈X+
0
Jλ(u) < 0 and thus, uλ is a non-trivial critical point of Jλ or

λ is an eigenvalue of problem (1.1). The proof of Step 3 is completed.

Step 4. We prove that any λ ∈ (0, λ∗) is not an eigenvalue of problem (1.1).

Indeed, assume by contradiction that there exists λ ∈ (0, λ∗) is an eigenvalue of prob-

lem (1.1), that is, there exists uλ ∈ X+
0 such that

Φ′(uλ)(v) = λΨ′(uλ)(v), ∀ v ∈ X+
0 .

Thus, for v = uλ ∈ X+
0 we have

(3.22)

∫
Ω×Ω

|uλ(x)− uλ(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω
|uλ|q(x) dx = λ

∫
Ω
V (x)|uλ|r(x) dx.

By the definition of the set X+
0 , we have

∫
Ω V (x)|uλ|r(x) dx > 0. By (3.22) and the

definition of λ∗ and the fact that λ < λ∗, we deduce that∫
Ω×Ω

|uλ(x)− uλ(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω
|uλ|q(x) dx

≥ λ∗
∫

Ω
V (x)|uλ|r(x) dx > λ

∫
Ω
V (x)|uλ|r(x) dx

=

∫
Ω×Ω

|uλ(x)− uλ(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω
|uλ|q(x) dx,

which is a contradiction. Therefore, the proof of Theorem 3.3 is now completed.
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with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg,

2011.
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