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Attractors for a Class of Kirchhoff Models with p-Laplacian and Time Delay

Sun-Hye Park

Abstract. This paper is concerned with a class of Kirchhoff models with time delay

and perturbation of p-Laplacian type

utt(x, t) + ∆2u(x, t)−∆pu(x, t)− a0∆ut(x, t) + a1ut(x, t− τ) + f(u(x, t)) = g(x),

where ∆pu = div(|∇u|p−2∇u) is the usual p-Laplacian operator. Many researchers

have studied well-posedness and decay rates of energy for these equations without

delay effects. But, there are not many studies on attractors for other delayed systems.

Thus we establish the existence of global attractors and the finite dimensionality of

the attractors by establishing some functionals which are related to the norm of the

phase space to our problem.

1. Introduction

We consider the following Kirchhoff models with time delay and perturbation of p-Laplacian

type

utt + ∆2u−∆pu− a0∆ut + a1ut(x, t− τ) + f(u) = g(x) in Ω× R+,(1.1)

u = ∆u = 0 on ∂Ω× R+,(1.2)

u(0) = u0, ut(0) = u1 on Ω,(1.3)

ut(x, t) = j0(x, t) for (x, t) ∈ Ω× (−τ, 0),(1.4)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. a0 > 0, a1 ∈ R, τ > 0 is

time delay, and g ∈ L2(Ω).

This model can be regarded as a fourth order viscoelastic plate equation with a lower

order perturbation of p-Laplacian type and is related to one-dimensional nonlinear equa-

tion of elastoplastic microstructure flows given by

(1.5) utt + uxxxx − a(u2
x)x = 0.

As a general form of (1.5), many authors [8,14,16,17] studied the following equation with

appropriate boundary and initial conditions:

(1.6) utt + α∆2u−∆pu−∆ut + h(ut) + f(u) = g(x).
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Ma and Soriano [8] proved the global existence and decay of the solutions when α =

h(ut) = 0 in (1.6). Park et al. [14] improved the results in [8] by generalizing the as-

sumptions on h, that is, the function h is assumed to be a discontinuous and nonlinear

multi-valued function.

With respect to plate equations with memory of the form

utt + ∆2u−∆pu+

∫ t

0
µ(t− s)∆u2(s) ds−∆ut = 0,

the authors of [1] proved the existence result and established the exponential decay rate

when the relaxation function µ decays at the same rate. The interaction of the memory

term with p-Laplacian operator was first considered by them. Later, Park [12] obtained

general decay rate by weakening the conditions of kernel function µ.

It is well known that the strong damping −∆ut plays an important role to obtain global

well-posedness and uniqueness of solutions due to the presence of the p-Laplacian. Most

recently, Jorge silva et al. [6] studied the nonlinear viscoelastic Kirchhoff plate equation

of the form

(1.7) utt −∆utt + α∆2u− div(F (|∇u|2)∇u)−
∫ t

0
µ(t− s)∆2u(s) ds = 0,

where F : RN → RN is a vector field satisfying some conditions, here |∇u|p−2 is an example

of F (|∇u|). Dropping the strong damping, they proved the existence and uniqueness of

stronger solutions in the presence of the rotational inertia term −∆utt, which gives the

regularity of solutions and hence enables to control the the p-Laplacian term, and showed

the memory component is enough to decay the energy of solutions. But, the energy of

solutions is stationary when µ = 0 in (1.7). So, it will be needed additional dissipation to

investigate energy decay rates or the long time dynamics in terms of attractors.

The aim of this work is to investigate the existence of attractors and finite dimen-

sionality of the attractors for the Kirchhoff equations (1.1)–(1.4) with p-Laplacian and

time-delay and without the memory.

Since time delays arise in many applications depending not only on the present state

but also on some past occurrences and the presence of delay may be a source of instability,

partial differential equations with time delay effects have become an active area of research

(see [3, 9–11] and references therein). Nicaise and Pignotti [10] investigated the wave

equation with time delay

utt(x, t)−∆u(x, t) + a0ut(x, t) + a1ut(x, t− τ) = 0.

They proved that the energy of the problem decays exponentially under the condition

0 < a1 < a0. And then they extended the result to the time varying delay case in [11].
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For the related works of equations with time delay, we also refer [7, 13, 16] and references

therein.

It is worth mentioning that there are not much literature on attractors for delayed

systems. Furthermore, as far as we are concerned, this is the first work in the literature

that takes into account the global attractors for Kirchhoff models with p-Laplacian and

time delay. To obtain our desired results, we establish some functionals which are related

to the norm of the phase space to problem (1.1)–(1.4).

The outline of this paper is as follows. In Section 2, we give some notations and

material needed for our work. In Section 3, we prove the existence of attractors for

problem (1.1)–(1.4). Finally, in Section 4, we examine the finite dimensionality of the

attractors.

2. Preliminaries

We denote the inner product in L2(Ω) by ( · , · ) and the usual norm of Lp(Ω) by ‖ · ‖p.
For simplicity, we denote ‖ · ‖2 by ‖ · ‖. For a Banach space X, ‖ · ‖X denotes the norm of

X. Let λ and λ̃ be the best constants satisfying λ‖u‖2 ≤ ‖∆u‖2 for u ∈ H2(Ω) ∩H1
0 (Ω)

and λ̃‖u‖2 ≤ ‖∇u‖2 for u ∈ H1
0 (Ω), respectively.

We present the precise hypotheses to problem (1.1)–(1.4).

(H1) We assume that p satisfy

2 ≤ p ≤ 2N − 2

N − 2
if N ≥ 3 and p ≥ 2 if N = 1, 2.

This condition guarantees

H2(Ω) ∩H1
0 (Ω) ↪→W

1,2(p−1)
0 (Ω) ↪→ H1

0 (Ω) ↪→ L2(Ω).

(H2) The forcing term f : R→ R satisfies

|f(u)− f(ũ)| ≤ l(1 + |u|m + |ũ|m)|u− ũ| for u, ũ ∈ R,(2.1)

−l0 ≤ F (u) ≤ f(u)u for u ∈ R,(2.2)

here F (u) =
∫ u

0 f(s) ds, l > 0, l0 > 0, and

(2.3) 0 < m ≤ 4

N − 4
if N ≥ 5 and m > 0 if 1 ≤ N ≤ 4.

The condition (2.3) ensures that H2(Ω) ↪→ L2(m+1)(Ω).

(H3) g ∈ L2(Ω) and j0 ∈ L2(Ω× (−τ, 0)).

(H4) The coefficients a0 and a1 satisfy

0 < |a1| < a0λ̃.
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2.1. Well-posedness

As in [10], we define the function z as

z(x, ρ, t) = ut(x, t− ρτ) for (x, ρ, t) ∈ Ω× (0, 1)× (0,∞).

Then problem (1.1)–(1.4) is equivalent to

utt + ∆2u−∆pu− a0∆ut + a1z(x, 1, t) + f(u) = g(x) on Ω× R+,(2.4)

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 for (x, ρ, t) ∈ Ω× (0, 1)× (0,∞),(2.5)

u(x, t) = ∆u(x, t) = 0 for (x, t) ∈ ∂Ω× R+,(2.6)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω,(2.7)

z(x, ρ, 0) = j0(x,−ρτ) := z0(x, ρ) for (x, ρ) ∈ Ω× (0, 1).(2.8)

Let

V0 = L2(Ω), V1 = H1
0 (Ω), V2 = H2(Ω) ∩H1

0 (Ω)

and define the phase space

H = V2 × V0 × L2(Ω× (0, 1))

equipped with the norm

‖(u, v, z)‖2H = ‖∆u‖2 + ‖v‖2 + ‖z‖2L2(Ω×(0,1)).

We now state the well-posedness result which can be established by combining the

arguments of [4, 15].

Theorem 2.1. Assume that (H1), (H2), (H3) hold. Then we have:

(i) For every (u0, u1, z0) ∈ H and T > 0, there exists a weak solution (u, ut, z) of

problem (2.4)–(2.8) in the class

u ∈ L∞(0, T ;V2), ut ∈ L∞(0, T ;V0) ∩ L2(0, T ;V1), z ∈ L∞(0, T ;L2(Ω× (0, 1)))

satisfying (u, ut, z) ∈ C([0, T ];H). Moreover, the solution is unique and depends

continuously on the initial data (u0, u1, z0) ∈ H and g ∈ L2(Ω).

(ii) Let (u, ut, z) and (ũ, ũt, z̃) be two weak solutions of problem (2.4)–(2.8) corresponding

to initial data (u0, u1, z0) and (ũ0, ũ1, z̃0), respectively. Then one gets

‖(u, ut, z)− (ũ, ũt, z̃)‖H ≤ ect‖(u0, u1, z0)− (ũ0, ũ1, z̃0))‖H for some c > 0.
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2.2. A short overview on infinite-dimensional dynamical systems

To study the existence of attractors for problem (2.4)–(2.8) and the finite dimensionality of

the attractors, we present some basic concepts and abstract results on dynamical systems

given by the Chueshov and Lasiecka’s book [2].

Let F be a Banach space and B be a bounded subset of F . We call a function φ( · , · )
which defined on F×F is a contractive function on B×B if for any sequence {xn}∞n=1 ⊂ B,

there is a subsequence {xnk
}∞k=1 ⊂ {xn}∞n=1 such that

lim inf
k→∞

lim inf
l→∞

φ(xnk
, xnl

) = 0.

Theorem 2.2. [2, Theorem 7.1.11] Let {S(t)}t≥0 be a semigroup on a Banach space

(F , ‖ · ‖F ) and have a bounded absorbing set B0. Assume that for any ε > 0 there exist

T = T (B0, ε) and a contractive function φT ( · , · ) on B0 ×B0 such that

‖S(T )x− S(T )y‖F ≤ ε+ φT (x, y) for all x, y ∈ B0,

where φT depends on T . Then S(t) is asymptotically smooth in F .

Theorem 2.3. [2, Theorem 7.2.4] A dissipative dynamical system (S(t),F) has a compact

global attractor if and only if it is asymptotically smooth.

Let X, Y , Z be three reflexive Banach spaces with X compactly embedded in Y ,

F = X × Y × Z, and (S(t),F) a dynamical system given by an evolution operator

(2.9) S(t)x = (u(t), ut(t), z(t)) for x = (u0, u1, z0) ∈ F ,

where the functions u has regularity

(2.10) u ∈ C(R+;X) ∩ C(R+;Y ), z ∈ C(R+;Z).

We call the dynamical system (S(t),F) is quasi-stable on B ⊂ F if there exists a compact

seminorm nX on X and nonnegative scalar function a(t) and c(t), locally bounded in

[0,∞), and b(t) ∈ L1(R+) with limt→∞ b(t) = 0 such that

(2.11) ‖S(t)x− S(t)y‖2F ≤ a(t)‖x− y‖2F

and

(2.12) ‖S(t)x− S(t)y‖2F ≤ b(t)‖x− y‖2F + c(t) sup
0<s<t

[nX(u(s)− ũ(s))]2,

where S(t)x = (u(t), ut(t), z(t)), S(t)y = (ũ(t), ũt(t), z̃(t)) and x, y ∈ B.

Theorem 2.4. [2, Theorem 7.9.6] Let (S(t),F) be given by (2.9) and satisfy (2.10). If

(S(t),F) has a compact global attractor A and is quasi-stable on A, then the attractor A
has finite fractional dimension.
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3. Existence of attractors

In this section we prove the existence of global attractors for problem (2.4)–(2.8) by

applying Theorem 2.3. For this, let us define a map S(t) : H → H by

(3.1) S(t)(u0, u1, z0) = (u(t), ut(t), z(t)),

where (u(t), ut(t), z(t)) is the unique weak solution of system (2.4)–(2.8) corresponding to

initial data (u0, u1, z0). Then, by Theorem 2.1, {S(t)}t≥0 is a C0-semigroup on H.

To obtain our desired result, we need to show that the dynamical system given in

(3.1) is dissipative and asymptotically smooth. Inspired by [11], let us define the energy

of problem (2.4)–(2.8) by

E(t) =
1

2
‖ut(t)‖2 +

1

2
‖∆u(t)‖2 +

1

p
‖∇u(t)‖pp +

∫
Ω
F (u(t)) dx

− (g, u(t)) +
ξ

2

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds,

(3.2)

where

(3.3) |a1| < ξ < 2a0λ̃− |a1| and 0 < θ <
1

τ
ln

ξ

|a1|
.

The lemma below states the relation between the norm of phase space and the energy,

which plays an important role in the process of our work.

Lemma 3.1. There exists a positive constant c0 such that

(3.4) ‖(u, ut, z)‖2H ≤ c0

(
E(t) + l0|Ω|+

‖g‖2

λ

)
.

Proof. Integration by substitution s = t− ρτ implies that

ξ

2

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds = −ξτ

2

∫ 0

1

∫
Ω
e−θρτu2

t (x, t− ρτ) dxdρ

=
ξτ

2

∫ 1

0

∫
Ω
e−θρτz2(x, ρ, t) dxdρ.

(3.5)

Young’s inequality and (2.2) give

(3.6)

∫
Ω
F (u) dx− (g, u) ≥ −l0|Ω| −

1

4
‖∆u‖2 − ‖g‖

2

λ
.

Substituting (3.5) and (3.6) into (3.2), one sees that

E(t) ≥ 1

2
‖ut‖2 +

1

4
‖∆u‖2 +

1

p
‖∇u‖pp − l0|Ω| −

‖g‖2

λ
+
ξτ

2

∫ 1

0

∫
Ω
e−θτρz2(x, ρ, t) dxdρ
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≥ 1

2
‖ut‖2 +

1

4
‖∆u‖2 +

1

p
‖∇u‖pp − l0|Ω| −

‖g‖2

λ
+
ξτe−θτ

2

∫ 1

0

∫
Ω
z2(x, ρ, t) dxdρ

≥ 1

c0

(
‖ut‖2 + ‖∆u‖2 + ‖z‖2L2(Ω×(0,1))

)
− l0|Ω| −

‖g‖2

λ

=
1

c0
‖(u, ut, z)‖H − l0|Ω| −

‖g‖2

λ
,

where 1/c0 := min{1/4, ξτe−θτ/2}.

Lemma 3.2. Assume that (H1)–(H4) hold. Then there exists positive constants c1 and

c2 satisfying

E′(t) ≤ −c1‖∇ut(t)‖2 − c2‖z(1, t)‖2 −
θξ

2

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds.

Proof. Multiplying (2.4) by ut integrating over x ∈ Ω, we get

d

dt

(
1

2
‖ut(t)‖2 +

1

2
‖∆u(t)‖2 +

1

p
‖∇u(t)‖pp +

∫
Ω
F (u(t)) dx− (g, u(t))

)
= −a0‖∇ut(t)‖2 − a1(z(1, t), ut(t)).

From this, (3.2), and the following estimate

d

dt

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds = −θ

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds+ ‖ut(t)‖2 − e−θτ‖ut(t− τ)‖2,

we see that

E′(t) = −a0‖∇ut(t)‖2 − a1(z(1, t), ut(t))−
θξ

2

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds

+
ξ

2
‖ut(t)‖2 −

ξe−θτ

2
‖ut(t− τ)‖2.

This and Young’s inequality give

E′(t) ≤ −
(
a0 −

|a1|
2λ̃
− ξ

2λ̃

)
‖∇ut(t)‖2 −

(
ξe−θτ

2
− |a1|

2

)
‖z(1, t)‖2

− θξ

2

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds.

(3.7)

Letting c1 := a0− |a1|/(2λ̃)− ξ/(2λ̃) and c2 := ξe−θτ/2− |a1|/2, which are positive owing

to (3.3), we complete the proof.

Now, define the perturbed functional by

L(t) = E(t) + εΦ(t),
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where Φ(t) = (ut(t), u(t)), then one sees from Young’s inequality and (3.4) that

|Φ(t)| ≤ 1

2
‖ut(t)‖2 +

1

2λ
‖∆u(t)‖2 ≤ c0 max

{
1

2
,

1

2λ

}(
E(t) + l0|Ω|+

‖g‖2

λ

)
.

So, it holds that

|L(t)− E(t)| ≤ εc
(
E(t) + l0|Ω|+

‖g‖2

λ

)
,

here and in the sequel c denotes a generic positive constant different from line to line or

even in the same line. Choosing ε > 0 small, we deduce that

(3.8) α1E(t)− c3

(
l0|Ω|+

‖g‖2

λ

)
≤ L(t) ≤ α2E(t) + c3

(
l0|Ω|+

‖g‖2

λ

)
for t ≥ 0,

where α1 = 1− εc, α2 = 1 + εc, and c3 = εc.

Lemma 3.3. Assume the conditions (H1)–(H4) hold. Then, the semigroup {S(t)}t≥0

defined by (3.1) has a bounded absorbing set in H.

Proof. We have from (2.4) that

Φ′(t) = ‖ut(t)‖2 − ‖∆u(t)‖2 − ‖∇u(t)‖pp + a0(ut(t),∆u(t))

− a1(u(t), z(1, t))− (f(u(t)), u(t)) + (g, u(t)).
(3.9)

Young’s inequality gives that

a0(ut(t),∆u(t)) ≤ a2
0‖ut(t)‖2 +

1

4
‖∆u(t)‖2,

−a1(u(t), z(1, t)) ≤ 1

4
‖∆u(t)‖2 +

a2
1

λ
‖z(1, t)‖2.

Substituting these into (3.9) and applying (2.2), we find

(3.10) Φ′(t) ≤ c4‖ut(t)‖2−
1

2
‖∆u(t)‖2−‖∇u(t)‖pp + c5‖z(1, t)‖2−

∫
Ω
F (u) dx+ (g, u(t)),

where c4 = 1 + a2
0 and c5 = a2

1/λ. Thanks to Lemma 3.2 and (3.10), we see that

L′(t) ≤ −c1‖∇ut(t)‖2 − c2‖z(1, t)‖2 −
θξ

2

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds+ εc4‖ut(t)‖2

− ε

2
‖∆u(t)‖2 − ε‖∇u(t)‖pp + εc5‖z(1, t)‖2 − ε

∫
Ω
F (u) dx+ ε(g, u(t))

≤ −
(
c1 −

2εc4

λ̃

)
‖∇ut(t)‖2 − εc4‖ut(t)‖2 −

ε

2
‖∆u(t)‖2 − ε‖∇u(t)‖pp

− ε
∫

Ω
F (u) dx+ ε(g, u(t))− θξ

2

∫ t

t−τ
eθ(s−t)‖ut(s)‖2 ds− (c2 − εc5)‖z(1, t)‖2.
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Choosing ε > 0 small enough such that c1 − 2εc4/λ̃ > 0, c2 − εc5 > 0, we deduce that

L′(t) ≤ −α3E(t) for some α3 > 0.

From this, (3.8), and (3.4) we infer that

‖(u(t), ut(t), z)‖2H ≤
c0α2

α1
E(0)e−α3t/α2 + c0

(
2c3

α1
+ 1

)(
l0|Ω|+

‖g‖2

λ

)
.

This shows that any closed ball B0 = B(0, R) with R >
√
c0(2c3/α1 + 1)(l0|Ω|+ ‖g‖2/λ)

is a bounded absorbing set of (S(t),H).

Lemma 3.4. Assume the conditions (H1)–(H4) hold. Let B0 be a bounded absorbing set

obtained in Lemma 3.3, S(t)y0 = (u, ut, z) and S(t)ỹ0 = (ũ, ũt, z̃) be two weak solutions

of problem (2.4)–(2.8) corresponding to initial data y0 = (u0, u1, z0) ∈ B0 and ỹ0 =

(ũ0, ũ1, z̃0) ∈ B0, respectively. Then,

‖S(t)y0 − S(t)ỹ0‖2H
≤ ce−ωt‖y0 − ỹ0‖2H

+ C(B0)

∫ t

0
e−ω(t−s)

(
‖∇u(s)−∇ũ(s)‖22(p−1) + ‖u(s)− ũ(s)‖22(m+1)

)
ds,

(3.11)

where c > 0, ω > 0, and C(B0) is a constant depending on the size of B0.

Proof. Let w(t) = u(t) − ũ(t), q(x, ρ, t) = z(x, ρ, t) − z̃(x, ρ, t). Then from (2.4)–(2.8), w

and q satisfy

wtt + ∆2w − (∆pu−∆pũ)− a0∆wt + a1q(x, 1, t) + f(u)− f(ũ) = 0 on Ω× R+,

τqt(x, ρ, t) + q(x, ρ, t) = 0 for (x, ρ, t) ∈ Ω× (0, 1)× (0,∞),

w = ∆w = 0 on ∂Ω× R+,

w(0) = u0 − ũ0, wt(0) = u1 − ũ1 on Ω,

q(x, ρ, 0) = z0(x, ρ)− z̃0(x, ρ) := q0 for (x, ρ) ∈ Ω× (0, 1).

(3.12)

The similar calculation to that of (3.7) yields

E′w(t) ≤ −
(
a0 −

|a1|
2λ̃
− ξ

2λ̃

)
‖∇wt(t)‖2 −

(
ξe−θτ

2
− |a1|

2

)
‖q(1, t)‖2

− θξ

2

∫ t

t−τ
eθ(s−t)‖wt(s)‖2 ds− (∆pu(t)−∆pũ(t), wt(t))

− (f(u(t))− f(ũ(t)), wt(t)),

(3.13)

where

Ew(t) =
1

2
‖wt(t)‖2 +

1

2
‖∆w(t)‖2 +

ξ

2

∫ t

t−τ
eθ(s−t)‖wt(s)‖2 ds,
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here θ and ξ are as given in (3.3). In what follows, we shall estimate the last two terms

on the right had side of (3.13). From the Hölder inequality with p−2
2(p−1) + 1

2(p−1) + 1
2 = 1,

we see that

−(∆pu−∆pũ, wt) =

∫
Ω

(|∇u|p−2∇u− |∇ũ|p−2∇ũ)∇wt dx

≤ c
∫

Ω
(|∇u|p−2 + |∇ũ|p−2)|∇w||∇wt| dx

≤ c(‖∇u‖p−2
2(p−1) + ‖∇ũ‖p−2

2(p−1))‖∇w‖2(p−1)‖∇wt‖

≤ C(B0)

2η
‖∇w‖22(p−1) +

η

2
‖∇wt‖2.

(3.14)

Using (2.1) and m
2(m+1) + 1

2(m+1) + 1
2 = 1, we also obtain

−(f(u)− f(ũ), wt) ≤ lc
(
|Ω|

m
2(m+1) + ‖u‖m2(m+1) + ‖ũ‖m2(m+1)

)
‖w‖2(m+1)‖wt‖

≤ C(B0)‖w‖2(m+1)‖∇wt‖

≤ C(B0)

2η
‖w‖22(m+1) +

η

2
‖∇wt‖2.

(3.15)

Applying these to (3.13), we observe

E′w(t) ≤ −
(
a0 −

|a1|
2λ̃
− ξ

2λ̃
− η
)
‖∇wt(t)‖2 −

(
ξe−θτ

2
− |a1|

2

)
‖q(1, t)‖2

− θξ

2

∫ t

t−τ
eθ(s−t)‖wt(s)‖2 ds+

C(B0)

2η
‖∇w(t)‖22(p−1)

+
C(B0)

2η
‖w(t)‖22(m+1).

(3.16)

On the other hand, it can be observed that Ew is equivalent to ‖(w,wt, q)‖H. Indeed,

integration by substitution s = t− ρτ gives

Ew(t) =
1

2
‖wt(t)‖2 +

1

2
‖∆w(t)‖2 +

ξτ

2

∫ 1

0
e−θρτ‖wt(t− ρτ)‖2 dρ

≥ 1

2
‖wt(t)‖2 +

1

2
‖∆w(t)‖2 +

ξτe−θτ

2

∫ 1

0

∫
Ω
q2(x, ρ, t) dxdρ

≥ min

{
1

2
,
ξτe−θτ

2

}
‖(w,wt, q)‖H

and it holds that

Ew(t) =
1

2
‖wt(t)‖2 +

1

2
‖∆w(t)‖2 +

ξτ

2

∫ 1

0
e−θρτ‖wt(t− ρτ)‖2 dρ

≤ 1

2
‖wt(t)‖2 +

1

2
‖∆w(t)‖2 +

ξτ

2

∫ 1

0

∫
Ω
q2(x, ρ, t) dxdρ

= max

{
1

2
,
ξτ

2

}
‖(w,wt, q)‖H.
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Next, let us define

Lw(t) = Ew(t) + εφ(t),

where φ(t) = (wt(t), w(t)). It can be easily shown that for appropriately small ε > 0 there

exist positive constants α6 and α7 satisfying

(3.17) α6Ew(t) ≤ Lw(t) ≤ α7Ew(t).

From (3.12), it follows

φ′(t) = ‖wt(t)‖2 − ‖∆w(t)‖2 − (∆pu(t)−∆pũ(t), w(t)) + a0(wt(t),∆w(t))

− a1(q(1, t), w(t))− (f(u(t))− f(ũ(t)), w(t)).
(3.18)

By Young’s inequality, we know that

a0(wt,∆w) ≤ η

2
‖∆w‖2 +

a2
0

2η
‖wt‖2 and − a1(q(1, t), w) ≤ η

2
‖∆w‖2 +

a2
1

2ηλ
‖q(1, t)‖2.

By the same arguments of (3.14) and (3.15), we also see that

−(∆pu−∆pũ, w) ≤ C(B0)‖∇w‖2(p−1)‖∇w‖ ≤ C(B0)‖∇w‖22(p−1),

where we used the embedding W
1,2(p−1)
0 (Ω) ↪→ H1

0 (Ω), and

−(f(u)− f(ũ), w) ≤ C(B0)‖w‖2(m+1)‖w‖ ≤
C(B0)

2ηλ
‖w‖22(m+1) +

η

2
‖∆w‖2.

Substituting these into (3.18), we deduce

φ′(t) ≤
(

1 +
a2

0

2η

)
‖wt(t)‖2 −

(
1− 3η

2

)
‖∆w(t)‖2

+
a2

1

2ηλ
‖q(1, t)‖2 + C(B0)‖∇w(t)‖22(p−1) +

C(B0)

2ηλ
‖w(t)‖22(m+1).

(3.19)

Combining (3.16) with (3.19), we have

L′w(t) ≤ −
{
a0 −

|a1|
2λ̃
− ξ

2λ̃
− η − 2ε

(
1 +

a2
0

2η

)}
‖∇wt(t)‖2 − ε

(
1 +

a2
0

2η

)
‖wt(t)‖2

− ε
(

1− 3η

2

)
‖∆w(t)‖2 − θξ

2

∫ t

t−τ
eθ(s−t)‖wt(s)‖2 ds

−
(
ξe−θτ

2
− |a1|

2
− ε a

2
1

2ηλ

)
‖q(1, t)‖2 +

(
C(B0)

2η
+ εC(B0)

)
‖∇w(t)‖22(p−1)

+

(
C(B0)

2η
+
εC(B0)

2ηλ

)
‖w(t)‖22(m+1).

Choosing η > 0 and ε > 0 small enough, we infer

L′w(t) ≤ −cEw(t) + C(B0)(‖∇w(t)‖22(p−1) + ‖w(t)‖22(m+1)).
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This and (3.17) yield that

L′w(t) ≤ −ωLw(t) + C(B0)(‖∇w(t)‖22(p−1) + ‖w(t)‖22(m+1)) for some ω > 0.

Thus, we have from this and (3.17) that

Ew(t) ≤ ce−ωtEw(0) + C(B0)

∫ t

0
e−ω(t−s)(‖∇w(s)‖22(p−1) + ‖w(s)‖22(m+1)) ds.

Owing to Ew ∼ ‖(w,wt, q)‖H, we complete the proof.

Lemma 3.5. Assume (H1)–(H4) hold. Then, the semigroup {S(t)}t≥0 defined by (3.1) is

asymptotically smooth in H.

Proof. The process of the proof is the same as that of Lemma 4.3 in [5]. So, we omit the

details here.

Our main result of this section reads as:

Theorem 3.6. Under the conditions (H1)–(H4), the semigroup {S(t)}t≥0 corresponding

to problem (2.4)–(2.8) has a global attractor in H.

Proof. Lemmas 3.3, 3.5 and Theorem 2.3 guarantee the existence of a global attractor.

4. Finite-dimensional attractor

In this section we prove the finite dimensionality of the attractors given in Theorem 3.6

making use of Theorem 2.4.

Lemma 4.1. Let the conditions (H1)–(H4) hold. If we assume subcritical conditions

2 ≤ p < 2N − 2

N − 2
if N ≥ 3 and 0 < m <

4

N − 4
if N ≥ 5,

then the dynamical system (S(t),H) defined by (3.1) is quasi-stable on any bounded posi-

tively invariant set B ⊂ H.

Proof. Theorem 2.1(i) ensures that the dynamical system (S(t),H) satisfies (2.9) and

(2.10) by considering X = V2, Y = V0, and Z = L2(Ω× (0, 1)). Furthermore, we observe

from Theorem 2.1(ii) that (S(t),H) satisfies (2.11). Now, it remains to show that (S(t),H)

satisfies (2.12). Let B0 ⊂ H be a bounded set positively invariant with respect to S(t).

Let S(t)y0 = (u, ut, z) and S(t)ỹ0 = (ũ, ũt, z̃) for y0 ∈ B0 and ỹ0 ∈ B0, respectively. Define

the seminorm

nX(u) = ‖∇u‖2(p−1) + ‖u‖2(m+1),



A Class of Kirchhoff Models with p-Laplacian and Time Delay 895

then nX(·) is a compact seminorm on X because the embeddings V2 ↪→W
1,2(p−1)
0 (Ω) and

V2 ↪→ L2(m+1)(Ω) are compact. Hence, (3.11) can be rewritten as

‖S(t)y0 − S(t)ỹ0‖2H ≤ b(t)‖y0 − ỹ0‖2H + c(t) sup
0<s<t

(nX(u(s)− ũ(s)))2,

where b(t) = ce−ωt and c(t) = C(B0)
∫ t

0 e
−ω(t−s) ds. Moreover we see that b ∈ L1(R+),

limt→∞ b(t) = 0, and c(t) is locally bounded on [0,∞) because B0 is bounded.

Our desired result of this section is the following:

Theorem 4.2. Let the conditions of Lemma 4.1 hold. Then the global attractor A given

in Theorem 3.6 has finite fractal dimension.

Proof. Since the global attractor A given in Theorem 3.6 is a bounded positively invariant

set of H, Lemma 4.1 yields that the dynamical system (S(t),H) defined (3.1) is quasi-

stable on A. Thus, Theorem 2.4 implies that A has finite fractal dimension.
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