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Graceful labeling is one of the best known labeling methods of graphs. Despite the large
number of papers published on the subject of graph labeling, there are few particular
techniques to be used by researchers to gracefully label graphs. In this paper, first a new
approach based on the mathematical programming technique is presented to model the
graceful labeling problem. Then a “branching method” is developed to solve the problem
for special classes of graphs. Computational results show the efficiency of the proposed
algorithm for different classes of graphs. One of the interesting results of our model is in
the class of trees. The largest tree known to be graceful has at most 27 vertices but our
model can easily solve the graceful labeling for trees with 40 vertices.

1. Introduction

Let G= (V ,E) be an undirected finite graph without loops or multiple edges. All param-
eters in this paper are positive integers. Terms and notations not defined in this paper
follow that used in [1, 2].

A graceful labeling (or β-labeling) of a graph G = (V ,E) with n vertices and m edges
is a one-to-one mapping Ψ of the vertex set V(G) into the set {0,1,2, . . . ,m} with this
property: if we define, for any edge e = (u,v) ∈ E(G), the value Ω(e) = |Ψ(u)−Ψ(v)|,
then Ω is a one-to-one mapping of the set E(G) onto the set {1,2, . . . ,m}. A graph is
called graceful if it has a graceful labeling. The concept of a graceful labeling has been
introduced by Rosa [8] as a means of attacking the famous conjecture of Ringel that
K2n+1 can be decomposed into 2n+ 1 subgraphs that are all isomorphic to a given tree
with n edges.

Rosa proved that if G is graceful and if all vertices of G are of even degrees, then
|E(G)| ≡ 0 or 3(mod4). Although most graphs are not graceful, graphs that have some
sort of regularity of structure are graceful [4]. Many variations of graceful labeling have
been introduced in recent years by researchers. A detailed history of graph labeling prob-
lems and related results is presented by Gallian [3, 4]. All cycles Cn are graceful if and only
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if n ≡ 0 or 3(mod4). All snakes Pn, wheels Wn, helms Hn, crowns Rn, and complete bi-
partite graphs Km,n are graceful. The complete graphs Kn are graceful only if n≤ 4. It has
been conjectured that all trees are graceful. Although this conjecture has been the focus
of more that 200 papers, it is still an open problem. It has been shown that trees with at
most 27 vertices are graceful.

Although more than 400 papers have been published on the subject of graph labeling,
there are few particular techniques to be used by authors. The graceful labeling problem
is to find out whether a given graph is graceful, and if it is graceful, how to label the ver-
tices. The common approach in proving the gracefulness of special classes of graphs is to
either provide formulas for gracefully labeling the given graph, or construct desired la-
beling from combining the famous classes of graceful graphs. Although Redl [7] has pre-
sented integer programming and constraint programming approaches for formulating
the graceful labeling problem, he has mostly focused on three classes of graphs. Unfortu-
nately, the process of gracefully labeling a particular graph G is a very tedious and difficult
task for many classes of graphs. In this paper, a new approach based on the mathematical
programming technique is presented to model and solve the graceful labeling problem
for different classes of graphs.

2. Mathematical programming model of graceful labeling problem

In modeling the graceful labeling problem, some of our variables cannot take the same
value and should be formulated by inequality constraints. In 1996, Hajian [5] presented
an efficient method for dealing with inequality constraints. He used variables named
“nonzero variables” to convert inequality constraints to equality constraints. For exam-
ple, assume that we have the below constraints:

x1 �= x2, x1,x2 ≥ 0. (2.1)

By introducing a new variable w as a nonzero variable, we have

x1− x2−w = 0, x1,x2 ≥ 0, w �= 0. (2.2)

This method is more efficient than the traditional methods, such as using zero-one vari-
ables, to deal with inequality constraints, and we use it in our model.

Denote the vertices of the graph G= (V ,E) by v1,v2, . . . ,vn, respectively. Now suppose
that the decision variables of the model are defined as follows:

(i) xj : the label of vertex vj ;
(ii) xi j : the label of an edge (vi,vj) and a nonzero variable that connects vertices vi and

vj , where xi j �= 0 implies that the labels of adjacent vertices vi and vj are distinct;
(iii) si jkl: a nonzero variable, where si jkl �= 0 implies that the labels of edges (vi,vj) and

(vk,vl) are not equal;
(iv) wijkl: a nonzero variable, where wijkl �= 0 implies that the value of an edge label

(vi,vj) is unequal to the negative value of an edge label (vk,vl);
(v) yi j : a nonzero variable, where yi j �= 0 implies that the labels of nonadjacent ver-

tices vi and vj are distinct.

The following model has a feasible solution if G is graceful.
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Problem 2.1. (1) xi− xj = xi j for all i, j, such that (vi,vj)∈ E(G);
(2) xi j − xkl = si jkl for all i, j,k, l, (i, j) �= (k, l), such that (vi,vj),(vk,vl)∈ E(G);
(3) xi j + xkl =wijkl for all i, j,k, l, (i, j) �= (k, l), such that (vi,vj),(vk,vl)∈ E(G);
(4) xi− xj = yi j for all i, j, i �= j such that vi,vj ∈V(G), (vi,vj) /∈ E(G);
(5) 0≤ xi ≤m, integer, for all i such that vi ∈V(G);
(6) xi j , si jkl, wijkl, and yi j are nonzero variables.

In the above model, the first constraint is related to the definition of an edge label as
the difference between the corresponding vertex labels. This constraint also causes the
edge vertex labels to be distinct. Note that here an edge label is defined as a nonzero, but
free in sign variable. Constraints (2) and (3) ensure that the absolute values of edge la-
bels are not equal. Constraint (4) causes the labels of nonadjacent vertices to be distinct.
Constraint (5) is related to this fact that the vertex labels are positive integers bounded
between 0 and m. Constraints (1)–(5) guarantee that the edge labels are to be distinct
and their absolute values generate the set {1,2, . . . ,m}. The number of constraints in each
equality sets (1)–(4) ism, (m2−m)/2, (m2−m)/2, and (n2−n)/2−m, respectively. Thus,
the total number of constraints (1)–(4) of Problem 2.1 is (m2 + 1/2n2 −m− n/2). Fur-
thermore, in Problem 2.1, the total number of variables is equal to the total number of
constraints.

3. Branching method for solving graceful labeling problem

Branch-and-bound (B&B) algorithm is widely considered to be the most effective method
for solving integer programming problems. In this section a special case of B&B algorithm
is developed for solving Problem 2.1. First, the relaxation form of Problem 2.1 is defined
as follows.

Problem 3.1. (1) xi− xj = xi j for all i, j, such that (vi,vj)∈ E(G);
(2) xi j − xkl = si jkl for all i, j,k, l, (i, j) �= (k, l), such that (vi,vj),(vk,vl)∈ E(G);
(3) xi j + xkl =wijkl for all i, j,k, l, (i, j) �= (k, l), such that (vi,vj),(vk,vl)∈ E(G);
(4) xi− xj = yi j for all i, j, i �= j such that vi,vj ∈V(G), (vi,vj) /∈ E(G);
(5) 0≤ xi ≤m for all i such that vi ∈V(G);
(6) xi j , si jkl, wijkl, and yi j are free variables.

In the relaxation form of Problem 2.1, the hard constraints are relaxed to produce an
easy subproblem. The hard constraints of Problem 2.1 are the integer constraints and the
nonzero constraints. First, in Problem 2.1, the integrality constraint is removed and then
the sign of the variables is changed from nonzero to free in sign to generate Problem 3.1.
It is clear that Problem 3.1 is a linear model and it is much more easier to solve than
Problem 2.1. In our branching method for solving Problem 3.1, in each node, the corre-
sponding problem 3.1 is solved, and if the solution satisfies integrality and nonzero con-
straints, then a feasible solution of Problem 2.1 is found and the algorithm is terminated.
If in each node, the corresponding problem 3.1 has no feasible solution, then the related
node is fathomed. If the corresponding problem 3.1 has a feasible solution in the current
node which is not a feasible solution of Problem 2.1, then at least one of the following
cases occurs:
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(1) noninteger values for integer variables;
(2) zero values for nonzero variables.

A node in a branching tree is called an active node if it has not been fathomed or separated
yet. Active nodes are maintained in an active list. Each of the above cases (or both) can
be the reason for being a node in the active list. Suppose that X∗ is the optimal solution
of the current Problem 3.1. Now define the following sets:

N1 =
{∀xi j , yi j ∈ X∗ | xi j = yi j = 0

}
,

N2 =
{∀si jkl,wijkl ∈ X∗ | si jkl = yi jkl = 0

}
,

N3 =
{∀xi ∈ X∗ | xi has noninteger value in X∗

}
.

(3.1)

There are two important steps that are the most critical to the performance of our algo-
rithm as follows:

(1) branching strategy: selection of the next node from the active list to branch on,
(2) separation rule: selection of which variable in the selected node to separate on.

Let N be the total number of variables of the corresponding Problem 3.1 in the current
node which are not feasible in constraints (5) or (6) of Problem 2.1. Denote the cardinal-
ity of set S by |S|. In fact, N = |N1|+ |N2|+ |N3|, and N is a degree of infeasibility of the
current node regarding Problem 2.1. If N is very small, then the corresponding solution is
very close to a feasible solution for Problem 2.1. According to our experimental results in
the implementation of the proposed algorithm, the “jumptracking strategy” is chosen as
branching strategy. In this strategy, a node from the active list with the minimum value
of N is chosen to branch on. If there is a tie, then a node with the minimum value for
|N1|+ |N2| is selected. If there is still a tie, then a node with minimum value for |N1| is
selected. Finally, if the tie is not broken, then a node from the remaining nodes is selected
arbitrarily.

Suppose that according to our jumptracking strategy, the current active node j is se-
lected. This node can have both types of variables causing infeasibility of node j for
Problem 2.1. In the separation rule, one of the variables such as x ∈ N1, N2, N3 in the
selected node is chosen to branch on. If the selected variable x ∈ N3, then the two new
subproblems are generated from the selected node by using the integer part of x. Denote
this strategy of separating current node by strategy A. If the selected variable x ∈ N1 or
N2, then branch it into two different subproblems in which additional constraints x ≥ 1
and x ≤−1 guarantee the nonzero values for x in the next nodes. Denote it by strategy B.
In the experimental results section of this paper, these two methods are applied to more
than 100 samples of different types of graphs and it is shown that the second method
is much more effective than the first method. Furthermore, according to our test prob-
lems, separation on variable x ∈ N1 is more effective than on variable y ∈ N2. This fact
shows that the potential effect of distinct edges is more powerful than that of distinct ver-
tices in gracefully labeling a particular graph. Therefore, in separation rule of branching
method, in the process of selection, the next variable, variable x ∈N1 has priority to vari-
able y ∈ N2 and in a similar way, y ∈ N2 has priority to z ∈ N3. Furthermore, when the
branching method continues, many branches on the same variable will be generated in
different parts of the branching tree. If a variable is chosen many times in different parts
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of our branching tree, then probably the separation on this variable will not lead us to
a feasible solution. Thus, in separation rule of our method, first variable x ∈ X∗ in the
selected node is chosen according to our priority list, and if there is a tie, then a variable
with the minimum number of selections in the other nodes of the branching tree has
priority to the other variables. Finally, if there is still a tie, then it is broken arbitrarily.

3.1. The branching method for solving Problem 2.1

Step 1 (initializing). Suppose that a graph G= (V ,E) with n vertices and m edges is given
and we want to know whether or not the graph G is graceful. Furthermore, ifG is graceful,
we want to know how to label the vertices. A node in a branching tree is active if its
corresponding problem has not been either solved or subdivided yet. Let the set A denote
the list of currently active nodes. Initially, set A = {an active node corresponds to the
original problem}.
Step 2 (branching). If list A is empty, then stop. G is not graceful. Otherwise, select a
node j from the active list A according to jumptracking strategy. If its corresponding
Problem 3.1 has a feasible solution in which all the integer variables of problem 2.1 have
integer values and all nonzero variables of Problem 2.1 have nonzero values, then N = 0,
a feasible solution of Problem 2.1 is found, the graph G is graceful, and the algorithm is
terminated. If the corresponding problem 3.1 has a feasible solution in the current node
which is not a feasible solution for Problem 2.1, then go to Step 3.
Step 3 (selecting). Separate the current node into two subproblems according to separa-
tion rule described before. In each new node, solve its corresponding problem 3.1. Add
the new subproblems to the active list if they have feasible solutions for Problem 3.1. Go
to Step 2.

4. Computational results

In this section, our experimental results are summarized. The branching method pre-
sented in this paper is coded in the C language and the corresponding relaxation prob-
lems in Step 2 of the algorithm are run by OSL V. 3.0 software [6]. All computations were
run on a Pentium IV 2500 MHz, 40000 MG H.D. with 256 MG RAM. In the tables shown
in this section, the following abbreviations are used for columns: “Graph type” (the class
of graphs under consideration), “n” (the number of the vertices of the graph), “m” (the
number of the edges of the graph), “No. samples” (the number of samples of the given
class of graph generated randomly), “No. var.,” (the number of variables in the model),
“Graceful?” (is the graph under consideration graceful?), and “Average time” (the average
CPU time in seconds required to process the given class of graph). The notations and
definitions of different classes of graphs used in this section follow that used in [1, 2]. It
should be also noted that the number of constraints in our model is equal to the number
of variables.

First, the effects of applying two methods for branching rule in implementation of
branching method are reported in Table 4.1. The results show that strategy B is faster
than A. In Table 4.2, different classes of randomly generated graphs are examined by the
proposed B&B algorithm. According to the result of this table, a correct solution for each



6 A zero-one model for graceful labeling problem

Table 4.1. Comparison of two methods for branching rule in branching method.

Graph type n m No. samples No. var. Graceful?
Average time
(strategy A)

Average time
(strategy B)

Caterpillars 15 14 30 302 Yes 0.01 0.05
Trees 20 19 32 552 Yes 146.02 149.12
Trees 30 29 32 1277 Yes 7656.06 4447.44
Snakes 27 26 20 1028 Yes 4659.00 2828.47
Snakes 28 27 20 1108 Yes 5265.55 3305.55

Table 4.2. The results of our algorithm for different classes of graphs.

Graph type n m No. var. Graceful? Average time

Cycles Cn

C8 8 8 92 Yes 0.00
C10 10 10 145 No 0.00
C15 15 15 330 Yes 0.65
C20 20 20 590 Yes 105.32
C25 25 25 925 No 3088.00
C30 30 30 1335 No 4828.21

Snakes Pn

P5 5 4 27 Yes 0.00
P10 10 9 127 Yes 0.00
P20 20 19 552 Yes 91.88
P25 25 24 877 Yes 2898.11
P30 30 29 1277 Yes 4452.02

Complete graphs Kn

K5 5 10 105 No 0.00
K8 8 28 792 No 2332.15
K10 10 45 2035 No 7085.21

Complete bipartite graph Km,n K5,5 10 25 655 Yes 1301.02

Wheels Wn

W7 8 14 218 Yes 0.00
W8 9 16 285 Yes 0.00
W10 11 20 446 Yes 55.50
W15 16 30 1006 Yes 3358.11

Helms Hn

H5 11 15 276 Yes 0.00
H8 17 24 705 Yes 1585.44
H10 21 30 1101 Yes 3471.22

Crowns Rn

R5 10 10 145 Yes 0.00
R8 16 16 376 Yes 3.51
R10 20 20 590 Yes 89.82
R15 30 30 1335 Yes 4730.00

Generalized Peterson graphs P(n,k)

P(5,2) 10 15 265 Yes 0.00
P(6,3) 12 15 288 Yes 0.00
P(7,3) 14 21 525 Yes 50.41
P(8,4) 16 20 516 Yes 53.17
P(9,4) 18 27 873 Yes 2063.52
P(10,5) 20 25 810 Yes 2499.68

Product graphs K4×Pn
K4×P5 16 36 1396 Yes 5172.14
K4×P10 20 46 2280 Yes 5457.69
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Table 4.3. The results of solving the model for different classes of trees.

Graph type n m No. samples No. var. Graceful? Average time

Trees 20 19 30 552 Yes 149.12
Trees 25 24 30 877 Yes 2898.14
Trees 28 27 30 1108 Yes 3827.11
Trees 30 29 30 1277 Yes 4447.25
Trees 35 34 30 1752 Yes 7625.69
Trees 40 39 30 2302 Yes 11321.54

of the test problems was found by our method in a reasonable amount of time. The num-
ber of test problems in each of the class of graphs in Table 4.2 is 10. Since the graceful-
ness of trees is a very important problem, in Table 4.3 the proposed model is applied
to different types of large-scale trees generated randomly by “Naughty V. 2.2” program
(http://cs.anu.edu.au/∼bdm/). It is useful to note that the largest tree known to be grace-
ful has at most 27 vertices [3, 4], but our model can easily solve the graceful labeling for
trees with 40 vertices.

For comparison purposes, we have also compared our results with the results pre-
sented by Redl in [7]. He has developed two different approaches for graceful labeling
problem. In the first approach, he developed an integer programming model and in
the second one he applied a constraint programming technique. In the implementation
of these two methods, three classes of graphs were tested at most: generalized Peterson
graphs, product graphs of the form K4×Pn, and double cones. According to his results,
the constraint programming approach is more efficient than the integer programming
approach. The largest graph tested by his constraint programming approach was the gen-
eralized Peterson graphs P(10,5). The CPU time in seconds reported to solve P(10,5) was
10481.40. It should be noted that Redl performed his algorithms on a SUN 220 worksta-
tion with two 450 MHz Ultra SPARC CPUs. Although the computer and the operating
system reported in [7] are more powerful than our computer system, the computational
time of our algorithm for the same test problem P(10,5) is almost five times faster than
the constraint programming approach presented in [7]. The average computational time
of our algorithm for the class of generalized Peterson graphs is almost 25% faster than the
proposed approach in [7]. Moreover, as it can be seen from Table 4.2, our algorithm can
be easily applied to different classes of large graphs and provides accurate and efficient
results. The results show that mathematical programming is a very powerful technique to
solve the graceful labeling problem.

5. Conclusion

The graceful labeling problem is one of the most popular problems in the world of graph
theory and discrete mathematics. Despite the large number of papers in this field of graph
theory, there are no general techniques for labeling different classes of graphs. A common
approach in graph labeling is to provide formulas for gracefully labeling the given graph.
In this paper, first we presented a new approach for modeling the graceful labeling prob-
lem as a linear programming model. The main goal of this model is to determine how to

http://cs.anu.edu.au/~bdm/
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label the vertices of different classes of graceful graphs. Then a branching strategy was de-
veloped to solve the model. The algorithm has been extensively tested on a set of different
classes of randomly generated graphs. The computational results show that the proposed
approach can be a very effective tool for finding a feasible solution for the graceful label-
ing problem. Moreover, our algorithm does not depend on a particular class of graphs
and can be easily applied to different types of graphs.
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